高压变频器控制方式的种类

合集下载

高压变频器工作原理

高压变频器工作原理

高压变频器工作原理一、概述高压变频器是一种用于控制电动机转速的电力调节设备。

它通过调节电源电压和频率,实现对电动机的精确控制。

本文将详细介绍高压变频器的工作原理。

二、工作原理1. 输入电源高压变频器的输入电源通常为三相交流电源,其电压和频率根据实际需求进行设定。

2. 整流器输入电源经过整流器,将交流电转换为直流电。

整流器通常采用可控硅等器件,通过控制整流器的导通角度,可以实现对输出直流电压的调节。

3. 滤波器直流电经过滤波器,去除电源中的脉动成份,使输出电压更加稳定。

4. 逆变器经过滤波后的直流电进入逆变器。

逆变器将直流电转换为交流电,并根据控制信号调整输出电压的幅值和频率。

5. 控制单元控制单元是高压变频器的核心部件,它接收来自外部的控制信号,并根据信号的要求调整输出电压和频率。

控制单元通常由微处理器和控制电路组成。

6. 输出电源经过逆变器和控制单元的调节,最终输出的交流电供给电动机使用。

输出电压和频率的调节可以实现对电动机的精确控制,实现不同转速和负载的要求。

三、优势和应用1. 节能效果显著高压变频器可以根据实际负载需求调整电动机的转速,避免了传统的调速方式中频率固定的问题,从而大大提高了电动机的效率和节能效果。

2. 控制精度高高压变频器具有精确的电压和频率调节功能,可以实现对电动机转速的精确控制,满足不同工况下的要求。

3. 起动平稳高压变频器在启动电动机时,可以通过逐渐增加输出电压和频率的方式实现平稳启动,避免了传统的直接启动方式对电动机和设备的冲击。

4. 应用广泛高压变频器广泛应用于工业生产中的各种电动机驱动系统,如风机、水泵、压缩机等。

它可以根据不同的工况需求,实现对电动机的精确调速和控制。

四、总结高压变频器通过调节电源电压和频率,实现对电动机的精确控制。

其工作原理包括输入电源、整流器、滤波器、逆变器、控制单元和输出电源等部份。

高压变频器具有节能效果显著、控制精度高、起动平稳等优势,并广泛应用于各种电动机驱动系统中。

变频器常用的几种控制方式

变频器常用的几种控制方式

变频器常用的几种控制方式Prepared on 22 November 2020变频器常用的几种控制方式变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

1、变频器简介变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。

对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。

变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2、变频器中常用的控制方式非智能控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2) 转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

高压变频器的工作原理

高压变频器的工作原理

高压变频器的工作原理
高压变频器是一种用于调节电源频率并实现电压变换的电力变频调速设备。

它能够将固定频率和电压的电源输入转换为可调节频率和电压的输出。

高压变频器的工作原理如下:
1. 整流:高压变频器首先将交流电源输入进行整流,将交流电转换为直流电。

这通常通过使用整流桥电路实现,其中包括四个二极管。

2. 滤波:直流电在通过整流后,仍然存在一些脉动,需要进行滤波以减小脉动幅度。

滤波电路通常包括电容器,用于存储电荷并平滑直流电流。

3. 逆变:经过滤波后的直流电被送入逆变器,将其转换为可调节频率和电压的交流电。

逆变器通过控制电子开关器件(例如晶闸管、IGBT等)的开关状态来实现。

4. 控制:高压变频器通常配备一个控制系统,用于控制逆变器的开关频率和占空比。

根据用户的需求,控制系统可以通过改变开关频率和占空比来实现输出频率和电压的调节。

总的来说,高压变频器通过整流、滤波、逆变和控制等过程,将固定频率和电压的输入电源转换为可调节频率和电压的输出电源。

这种调节能力使得高压变频器可以广泛应用于工业控制系统,如电机调速、电力传输、电网稳定等领域。

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点高压变频器是一种电力调节设备,主要用于控制和调节电动机的转速和负载。

它通过改变电源电压和频率的方式,实现对电动机的精确控制,从而实现对机械设备的精确控制。

工作原理:高压变频器的工作原理基于变频技术和电力电子技术。

它通过将输入的交流电转换为直流电,然后再将直流电转换为可调频率和可调幅度的交流电。

具体工作原理如下:1. 输入电源:高压变频器通常接收三相交流电源,电压范围通常为380V至10000V。

2. 整流器:交流电经过整流器,将交流电转换为直流电。

整流器通常采用可控硅整流器,通过控制可控硅的导通角度,实现对直流电的控制。

3. 逆变器:直流电经过逆变器,将直流电转换为可调频率和可调幅度的交流电。

逆变器通常采用IGBT(绝缘栅双极型晶体管)作为主要元件,通过控制IGBT的开关状态,实现对输出交流电频率和幅度的控制。

4. 控制系统:高压变频器的控制系统通过对整流器和逆变器的控制,实现对输出电压、频率和电流的精确控制。

控制系统通常采用先进的数字信号处理器(DSP)和微处理器,通过对输入信号的采样和处理,实现对输出信号的精确控制。

性能特点:高压变频器具有以下几个性能特点:1. 宽频调节范围:高压变频器可以实现对电动机的宽范围频率调节,通常频率范围为0.1Hz至1000Hz。

这使得电动机可以在不同的工况下运行,提高了设备的适应性和灵活性。

2. 高效节能:高压变频器采用先进的电力电子技术,具有高效节能的特点。

通过调节电动机的转速,使其在负载变化时保持最佳运行状态,减少能量的浪费,提高了系统的能源利用率。

3. 精确控制:高压变频器具有精确的转速控制能力,可以实现对电动机的精确控制。

通过调节输出频率和电压,可以实现对电动机的精确转速控制,提高了系统的控制精度和稳定性。

4. 超载能力:高压变频器具有较强的超载能力,可以在短时间内承受较大的过载电流,保证设备的正常运行。

这使得高压变频器在起动和负载突变时具有较好的适应性和稳定性。

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点一、工作原理高压变频器是一种用于调节机电转速的电力设备,通过改变电源输入的电压和频率,控制机电的转速。

其工作原理主要包括以下几个方面:1. 电源输入:高压变频器通常接受三相交流电源输入,输入电压范围广泛,可以适应不同的电源条件。

2. 整流:输入的交流电经过整流单元,将交流电转换为直流电。

这个过程通常采用整流桥电路来实现,将交流电转换为直流电,为后续的逆变提供直流电源。

3. 逆变:直流电经过逆变单元,将直流电转换为可调频率的交流电。

逆变单元通常采用高频开关器件(如IGBT)来实现,通过调节开关器件的开关频率和占空比,可以控制输出交流电的频率和电压。

4. 输出:逆变后的交流电经过输出滤波单元,去除杂散波形和谐波,得到稳定的输出电压和频率,供给驱动机电。

5. 控制:高压变频器通过内部的控制器,根据用户设定的转速要求,自动调节输出电压和频率,实现机电的精确控制。

二、性能特点高压变频器具有以下几个性能特点,使其在工业应用中得到广泛应用:1. 宽频调节范围:高压变频器可以实现广泛的频率调节范围,通常在0-400Hz 之间。

这使得机电可以在不同的负载条件下运行,并且实现精确的转速控制。

2. 高效节能:相比传统的调速方式(如阀门调节、机械变速器等),高压变频器具有更高的能量转换效率。

通过调整机电的转速,可以根据实际负载需求提供恰当的功率输出,从而降低能耗和运行成本。

3. 精确控制:高压变频器具有精确的转速控制能力,可以实现机电的恒定转矩调速和矢量控制。

通过内部的PID控制算法,可以根据负载变化实时调整输出电压和频率,使机电运行更加平稳。

4. 保护功能:高压变频器内置了多种保护功能,包括过电流、过电压、欠电压、过载、短路、过热等保护。

当检测到异常情况时,变频器会自动停机或者降低输出功率,保护机电和设备的安全运行。

5. 多种控制方式:高压变频器支持多种控制方式,包括本地控制、远程控制、自动控制等。

变频器的控制方式有哪些

变频器的控制方式有哪些

变频器的控制方式有哪些变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。

变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。

随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

那么,常见的变频器有哪些种类,它们的控制方法又是什么?变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。

从电压角度来讲,有低压变频器、高压变频器两种。

从电源角度来讲,有单相变频器、三相变频器的区分。

从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。

变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1)V/f正弦脉宽调制(SPWM)控制方式V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。

V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。

(2)转差频率控制转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。

这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳。

高压变频器的几种控制方式

高压变频器的几种控制方式

高压变频器的几种控制方式高压变频器装置指驱动输入电源为6,000V或10KV的电机装置,高压变频器一般主要有下列几种方案选择:一直接高压控制(高成本)目前以采用美国罗宾康类似的无谐波变频技术,由低压模块串接起来成为高压输出,其优点是极低的谐波,但是需要专用输入变压器装置,投入成本最高,低频运转时因为IGBT的饱和压降串联产生效率较低的问题.比较适合大容量高压电机的风机水泵类负载驱动.二三电平控制(中等成本)由于功率半导体的耐压较低,采用串联方案以提高输出电压,与低压变频器技术类似差异性在于输出电压提高一倍,输出电流谐波较低等优点,比较适用于中压场合(690~3300V),容量也属中等,由于也有使用IGCT高压功率模块,所以电压也可以提高到6,000V,但是目前市场应用较少.三电平技术目前欧美国家使用在地铁驱动,风机水泵节电运转以及油田矿山场合,一般电压范围集中到低压与中压内使用,日本也有使用三电平技术生产低压变频器在市场上销售.三高低压控制(低成本)高低压控制变频器指利用变压器将高压降为低压,再购买低压变频器装置驱动低压电机..此系统技术最成熟,可靠性最高,运行效率最高,投入成本最低,维修服务方便.中低容量电机(一般指2,000KW以下)最适合使用.对于用户新上项目最适合选用此方案.四高低高控制一般适用于老设备的节电改造,原来高压电机设备的改造,高低高控制方案对于2,000KW以下高压变频器非常适合,此技术采用变压器将高压降到低压,在购买低压变频器装置,再将变频器输出电压经过变压器直接升到高压驱动高压电机.目前德国西门子公司在中国有较多的销售实绩.而且该公司出口到欧美的设备也在中国采购输入输出变压器,可见此方案有一定的优越性.高低高控制的优点是技术成熟,可靠性高,维修服务方便,投入成本低.由于变频器的广泛应用,中小容量的高压电机已逐步减少需求,主要是因为变频器能够有效的控制起动电流,运转效率及功率因子,因此中低容量高压电机应该尽量改选用低压驱动目前欧洲有些电机厂都已生产低压电机到1,500KW,用户可以选购低成本,低维护费用,高效率,高可靠性的变频装置驱动.。

变频器常用的10种控制方式

变频器常用的10种控制方式

变频器常用的10种控制方式
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素。

除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。

本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。

一、变频器的分类
变频器的分类方法有多种。

按照主电路工作滤波方式分类,可以分为电压型变频器和电流型变频器。

按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器。

按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等。

按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

二、变频器中常用的控制方式
1、非智能控制方式
在交流变频器中使用的非智能控制方式有V/f控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制
V/f就是加在电机定子上的电压和电源频率的比值。

如下图,V/F符合直线AB,则是直线型;符合折线段ABC,则是多点型;符合曲线AB,则是平方型。

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点一、工作原理高压变频器是一种用于改变电源电压和频率的电力调节设备,主要用于控制高压电机的转速和扭矩。

其工作原理基于电力电子技术和控制理论。

1. 输入电源:高压变频器通过接入输入电源,将交流电转换为直流电。

2. 整流器:直流电进入整流器,通过整流器将电流转换为直流脉动电流。

3. 滤波器:直流脉动电流通过滤波器进行滤波,去除脉动成分,使电流变得更加稳定。

4. 逆变器:滤波后的直流电通过逆变器,将直流电转换为交流电。

逆变器采用高频开关技术,通过控制开关管的导通和截止,改变输出电压的幅值和频率。

5. 控制系统:高压变频器的控制系统通过对逆变器的开关管进行精确控制,调节输出电压和频率,实现对电机的转速和扭矩的精确控制。

二、性能特点1. 高效节能:高压变频器采用先进的电力电子技术,能够实现电机的无级调速,避免了传统的机械调速方式带来的能量浪费。

通过调整电机的工作频率,使其在不同负载条件下以最佳效率运行,从而实现高效节能。

2. 精确控制:高压变频器具有精确的转速和扭矩控制能力。

通过控制系统对逆变器的开关管进行精确控制,可以实现对电机转速和扭矩的精确调节,满足不同工况下的需求。

3. 转矩输出平稳:高压变频器具有良好的转矩输出特性,能够在不同负载条件下保持稳定的输出转矩。

通过控制系统对逆变器的开关管进行精确控制,能够实现电机的平稳启动和运行,避免了传统的机械调速方式带来的转矩波动问题。

4. 过载能力强:高压变频器具有较强的过载能力,能够在短时间内承受较大的负载冲击。

通过控制系统对逆变器的开关管进行精确控制,能够实现电机的过载保护和自动限流,保证设备的安全可靠运行。

5. 多功能应用:高压变频器具有多种功能,可以满足不同应用场景的需求。

例如,可以实现电机的正反转控制、定速控制、定位控制等功能,广泛应用于机械制造、石油化工、电力、冶金等领域。

6. 维护方便:高压变频器采用先进的故障诊断和保护功能,能够实时监测设备的运行状态,及时发现故障并进行报警。

高压变频器的三大分类

高压变频器的三大分类

(1)电流源型。

电流源型逆变部分采用SGCT直接串联解决耐压问题,直流部分用电抗器储存能量,目前的技术水平可以做到7.2KV输出电压,所以适应国内大部分电压为6KV这一现状。

电流源型变频器输入侧的功率因数比较低,电抗器的发热量较大,效率比电压源型变频器低,由于采用电流控制,输出滤波器的设计比较麻烦,而两电平变频器的共模电压和谐波、 dv/dt问题较突出,所以对电机的要求较高。

虽然电流源型变频器有可回馈能量的优点,但是需要回馈能量的负载毕竟不是太多,尤其是通用型的变频器,所以电流源型变频器的市场竞争能力已经逐渐变弱。

(2)功率单元串联多电平型。

此变频器采用多个低压的功率单元串联实现高压,输入侧的降压变压器采用移相方式,可有效消除对电网的谐波污染,输出侧采用多电平正弦PWM技术,可适用于任何电压的普通电机,另外,在某个功率单元出现故障时,可自动退出系统,而其余的功率单元可继续保持电机的运行,减少停机时造成的损失。

系统采用模块化设计,可迅速替换故障模块。

由此可见,单元串联多电平型变频器的市场竞争力是很明显的。

(3)三电平型。

三电平型变频器采用钳位电路,解决了两只功率器件的串联的问题,并使相电压输出具有三个电平。

三电平逆变器的主回路结构环节少,虽然为电压源型结构,但易于实现能量回馈。

三电平变频器在国内市场遇到的最大难题是电压问题,其最大输出电压达不到 6KV,所以往往需要采用变通的方法,要么改变电机的电压,要么在输出侧加升压变压器。

这一弱点限制了它的应用。

如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注/。

高压变频器的原理及应用

高压变频器的原理及应用

高压变频器的原理及应用前言高压变频器是一种电器设备,用于将电源的交流电转换成可调节频率和电压的交流电。

它在工业领域有着广泛的应用,可以用于驱动各种高压电机,实现节能和精确控制。

本文将介绍高压变频器的原理和应用。

高压变频器的原理高压变频器的原理主要包括三个方面:整流、逆变和PWM调制。

1.整流:高压变频器首先对输入的交流电进行整流,将交流电转换为直流电。

这一步通常使用整流桥电路完成,包括多个可控整流器。

整流过程中,可以通过控制整流器的导通和关断时机,实现对输出直流电电压的控制。

2.逆变:经过整流后得到的直流电,需要进一步经过逆变处理,将其转换为可调频率和电压的交流电。

逆变主要通过逆变器完成,逆变器是由多个功率开关器件组成的,如晶闸管、IGBT等。

逆变器将直流电转换为高频交流电,在输出电压上通过调节逆变器的开关器件通断时机来实现。

3.PWM调制:高压变频器通过PWM(脉宽调制)技术对逆变器的开关器件进行控制,从而实现对输出电流、电压的精确控制。

PWM调制会根据输入的控制信号生成一系列脉冲宽度可调的波形,用于控制逆变器开关器件的导通和关断。

通过调节这些脉冲的脉宽和频率,可以控制输出电压和频率的大小。

常用的PWM调制方式有SVM(空间矢量调制)和SPWM(正弦波脉宽调制)。

高压变频器的应用高压变频器在工业领域的应用十分广泛,主要用于电机的调速控制和节能改造。

以下是一些典型的应用场景:1.水泵控制:高压变频器可以用于水泵的调速控制,根据需要调整输出频率和电压,以实现对水泵的精确控制。

例如,在供水系统中,可以根据不同的需求调整水泵的工作频率和电压,节约能源和延长设备寿命。

2.风机控制:高压变频器广泛应用于工业风机的调速控制。

通过调整输出频率和电压,可以灵活地控制风机的转速和风量。

这对于一些需要根据工艺需求随时调整风机转速的场合非常有用,比如空调系统、通风系统等。

3.压缩机控制:高压变频器也常用于压缩机的调速控制。

高压变频器手动旁路方式与自动旁路方式应用的比较

高压变频器手动旁路方式与自动旁路方式应用的比较

高压变频器手动旁路方式与自动旁路方式应用的比较高压变频器/变频运行/工频运行/旁路1引言高压电动机在未进行调速改造之前,由电机上口的断路器控制启停,电动机直接与母线连接,定速运行。

在进行变频调速改造后,电动机与母线之间除了原来的高压断路器外,还增加了一套高压变频调速装置。

随着变频器使用的增多,工程技术人员发现当变频器出现故障,需要检修时,电机就不得不停下来,不能满足现场连续生产的要求。

为此,工程技术人员又在变频器和电机、母线之间增加了一套切换装置,以满足电机连续运转的要求。

根据切换开关的不同,变频器的旁路方案分为手动旁路方式与自动旁路方式。

下面分别介绍如下:图1 一拖一手动旁路方式2两种旁路方式的介绍2.1 一拖一手动旁路方式2.1.1 基本原理一拖一手动旁路方式是由3个高压隔离开关QS1、QS2和QS3组成,如图1所示。

要求QS2和QS3不能同时闭合,在机械上实现互锁。

变频运行时,QS1和QS2闭合,QS3断开;工频运行时,QS3闭合,QS1和QS2断开。

2.1.2 详细介绍(1)隔离开关分别选用GN19系列单投和双投户内高压隔离开关,相间距为210mm;单投隔离开关的进线端的三个绝缘端子为高压带电显示装置的三个传感器;(2)照明灯为柜门式照明灯;(3)避雷器采用三相组合式;(4)外加输入、输出端子;工频、变频指示。

(5)标准柜体尺寸(长×宽×高):1200mm×1200mm×2320mm2.1.3 优缺点(1)优点在检修变频器时,有明显断电时间,能够保证人身安全,同时也可手动使负载投入工频电网运行;手动旁路可人为判断故障后再切换,比较安全;造价低等。

(2)缺点负载在倒入工频运行时必须人工干预,这不符合有些现场工况不能停机的要求。

2.2 一拖一自动旁路方式2.2.1 基本原理一拖一自动旁路方式是由3个高压真空开关(电流小于300A时选用真空接触器,电流大于300A时选用真空断路器)KM1、KM2和KM3组成,如图2所示。

(完整word版)高压变频器原理及应用

(完整word版)高压变频器原理及应用

高压变频器原理及应用1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。

所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性.目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。

其应用领域和范围也越来越为广范,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。

2、几种常用高压变频器的主电路分析(1)单元串联多重化电压源型高压变频器.单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。

所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。

但其存在以下缺点:a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题;b)所需高压电缆太多,系统的内阻无形中增大,接线太多,故障点相应的增多;c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏;d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大.此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。

高压变频器工作原理

高压变频器工作原理

高压变频器工作原理高压变频器是一种用于控制电机转速和电源电压的电力调速设备。

它通过改变电源电压的频率来实现对电机的调速,广泛应用于工业生产中的各种机械设备。

高压变频器的工作原理主要包括三个方面:电力传输、电流控制和频率调节。

首先,我们来看一下高压变频器的电力传输原理。

高压变频器主要包含直流侧和交流侧两部分。

在直流侧,交流电源经过整流电路转换为直流电源,然后通过滤波电路对直流电进行平滑处理,最后送至逆变器。

逆变器是变频器的关键部件,它将直流电转换为交流电,并通过适当的控制方法输出变频电压给交流侧。

在交流侧,变频电压经过滤波电路进行平滑处理后,供给给电动机使用。

其次,高压变频器的电流控制原理。

在电机运行中,高压变频器通过对电机的电流进行控制,实现对电机的调速。

变频器通过测量电机的工作电流,并对其进行调整,从而达到设定的电流控制目标。

当电机需要增大转矩时,变频器会增加输出电流;当电机需要减小转矩时,变频器会减小输出电流。

通过这种方式,变频器可以对电机的工作状态进行精确控制,确保电机可以按照要求稳定运行。

最后,高压变频器的频率调节原理。

高压变频器可以通过改变输出变频电压的频率,来实现对电机转速的调节。

通常情况下,电机的转速与电源电压的频率成正比关系。

通过调节变频器输出电压的频率,可以改变电机的转速。

变频器内部有一个频率控制回路,可以根据用户的要求,将输入电源的频率转变为所需的输出频率,并通过输出变频电压实现对电机转速的调节。

综上所述,高压变频器的工作原理主要包括了电力传输、电流控制和频率调节三个方面。

它通过改变电源电压的频率实现对电机的调速,从而满足不同工况下电机的运行要求。

在工业生产中,高压变频器的应用可以提高设备的运行效率和可靠性,降低能源消耗,实现更加精准和可控的生产过程。

高压变频器工作原理

高压变频器工作原理

高压变频器工作原理一、引言高压变频器是一种电力变频调速装置,广泛应用于工业领域,用于控制和调节电动机的转速。

本文将详细介绍高压变频器的工作原理和组成部分。

二、工作原理高压变频器主要由整流器、滤波器、逆变器和控制系统四个部分组成。

其工作原理如下:1. 整流器整流器将交流电源转换为直流电源。

在高压变频器中,通常采用三相全控整流桥电路,将输入的三相交流电转换为直流电。

2. 滤波器滤波器用于平滑整流后的直流电信号,减小电流的脉动。

常见的滤波器包括电容滤波器和电感滤波器,可以有效降低直流电的纹波系数。

3. 逆变器逆变器将直流电信号转换为交流电信号,供给电动机。

逆变器通过控制开关管的导通和关断,改变输出电压的频率和幅值,从而实现对电动机的调速。

4. 控制系统控制系统是高压变频器的核心部分,用于监测和控制变频器的运行状态。

控制系统通常由微处理器和相关电路组成,可以根据设定的参数对变频器进行精确的控制。

三、高压变频器的优势高压变频器具有以下几个优势:1. 节能效果显著通过调整电动机的转速,高压变频器可以实现精确的调速控制,避免了传统的阀门调节方式中的能量损耗,从而提高了能源利用效率。

2. 提高设备的可靠性和寿命高压变频器可以通过控制电机的起动和停止过程,减少电机的启动冲击和机械应力,延长设备的使用寿命。

3. 提高生产效率高压变频器可以根据生产工艺要求实现精确的转速控制,从而提高生产线的生产效率和产品质量。

4. 减少维护成本高压变频器具有自动故障检测和保护功能,可以实时监测电机的运行状态,及时发现故障并采取相应的措施,减少了设备的维护成本。

四、案例分析以某化工厂为例,该厂使用高压变频器控制反应釜的搅拌电机。

通过使用高压变频器,该厂实现了对搅拌电机的精确调速控制,避免了传统的阀门调节方式中的能量损耗。

同时,高压变频器还具备故障检测和保护功能,可以及时发现电机运行异常,并采取相应的措施,提高了设备的可靠性和寿命。

该厂的生产效率得到了显著提升,维护成本也大幅度降低。

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点摘要:高压变频器是一种电力传动设备,广泛应用于工业生产中,用于控制高压电机的转速和转矩。

本文将详细介绍高压变频器的工作原理和性能特点。

一、工作原理高压变频器是通过改变供电频率来控制电机的转速和转矩。

其主要由整流器、滤波器和逆变器组成。

1. 整流器:将交流电源进行整流,转换为直流电,并通过滤波电路获得平滑的直流电。

2. 滤波器:用于过滤直流电中的杂波和谐波,使输出电流更加稳定。

3. 逆变器:将直流电转换为交流电,输出频率和电压可根据需要调节。

逆变器通过将直流电切割成一系列窄脉冲,然后利用PWM 技术进行宽度调制,最终通过输出变压器将输出电压升压至所需的高压。

二、性能特点高压变频器具有以下几个显著的性能特点:1. 调速精度高:高压变频器通过改变输出频率来调节电机的转速,可实现平稳和精确的调速控制。

用户可根据需要随时调整电机的转速,满足不同生产过程的要求。

2. 能量效率高:高压变频器采用先进的调速控制技术,根据负载的需求提供合适的转矩输出,有效降低了能源消耗。

相比于传统的调速方式,高压变频器能够使电机在大部分时间内以高效率运行。

3. 负载适应性强:高压变频器具有良好的负载适应性,能够适应不同负载条件下的工作要求。

无论是启动大负载启动还是对瞬时负载的调整,高压变频器都能够迅速响应并提供适当的输出功率。

4. 控制方式多样:高压变频器支持多种控制方式,包括PID闭环控制、矢量控制、直接转矩控制等。

用户可根据实际需求选择合适的控制方式,实现更精确的转速和转矩控制。

5. 维护方便:高压变频器具有良好的故障诊断功能,可自动检测并报警,方便用户进行故障排查和维修。

同时,高压变频器还具。

高压同步电动机的变频控制

高压同步电动机的变频控制

4.3 闭环控制的应用在控制系统中,泵电机可以以多种方式使用,如:在启动时自动启动,机器手启动和现场控制箱启动。

使用PLC技术在电气设备的控制中可以实现自动控制非常好,在系统运行中,根据每台泵机的运行状态采取运行状态.PLC自动控制技术和电机控制权具有在许多电气设备中使用的优越的自动控制系统。

PLC控制技术的改进电气控制系统的稳定性和安全性可大大地实现闭环控制,从而不断推进电气设备的动态控制系统的完善。

4.4 自动切换控制中的应用为了提高电气自动化设备运行的安全性和可靠性,通常采用由PLC组成的自动输入设备安装在待机电源,实现对设备的有效控制,以及设备正常运行的数据信号作为基础,决定是否启动备用电源,为了提高数据分析和逻辑控制系统PLC能力的能力,不仅可以提高电气自动化设备的安全性和可靠性,而且还可以提高智能化整个系统的完整性。

5 PLC 技术在电气设备自动化控制应用的未来发展趋势随着PLC技术的深入应用,大多数电气设备自动化控制水平将提高,相应的电气自动化产品将更加丰富,规格将由PLC 更加完善。

人机界面的渗透更加完善和完善的通信设备将更加合理地适应各种电气设备自动化控制应用的要求,在大型工业电气设备的发展中,PLC控制技术将成为核心技术大型电气设备的主控制系统。

例如,DCS在分布式计算机控制系统中,目前PLC技术已经应用成功,并取得了良好的效果。

PLC具有高可靠性,智能控制和自动化,电气设备现代化系统逐步应用网络速度和高响应高集成特性,对电气设备的自动控制功能更加完善。

6 结束语综上所述,PLC 技术在电气自动化设备中的应用具有众多优势,能够显著的简化操作,提高电气自动化设备运行的安全性和可靠性,被广泛的推广和应用在电气自动化设备切换控制、调速器控制、闭环控制、开关量控制以及顺序控制中,具有非常好的发展前景。

参考文献:[1] 陈镜波. PLC技术在电气自动化中的应用[J]. 机电信息,2013,09:106-107.[2] 于军,苗百春. PLC技术在电气自动化中的应用[J]. 科技资讯,2013,21:122.[3] 刘铁中. PLC技术在电气设备自动化控制中的应用[J]. 科技视界,2013,34:106.高压同步电动机的变频控制李 涛包钢给水厂 内蒙古自治区 包头 014010摘要:如何采取技术上可行、经济上合理、环境和社会可接受的一切措施来提高能源和资源的利用效率,是每个企业面临的实际问题,因为只有提高能源的利用效率,才能在市场竞争中处于有利地位。

高压变频器最低运行频率

高压变频器最低运行频率

高压变频器最低运行频率高压变频器是一种电力传输和变换设备,常用于工业生产过程中对电机进行频率和速度调节。

它通过改变电源输入的频率和电压来控制电机的运行状态。

在工业领域中,高压变频器广泛应用于电力、石化、冶金、矿山等各个行业。

高压变频器的最低运行频率是指在最低负载条件下,设备可以正常运行的最低频率。

高压变频器的最低运行频率主要取决于电路设计和相关硬件的参数。

一般来说,高压变频器的最低运行频率在几赫兹至几百赫兹之间。

这个范围的选择可以根据具体的应用需求进行调整。

较低的运行频率可以降低设备的能耗和噪音,但同时也会影响电机的输出功率和扭矩。

高压变频器的最低运行频率与其控制方式和拓扑结构密切相关。

目前常见的高压变频器控制方式有V/F控制、矢量控制和直接转矩控制。

V/F控制是最简单和常见的控制方式,可以实现较低的运行频率。

矢量控制和直接转矩控制可以实现更高的运行精度和响应速度,但同时也对控制器的计算和处理能力有更高的要求。

高压变频器的拓扑结构通常有单电平、多电平和多电平换流等几种。

单电平变频器的最低运行频率一般较高,多电平变频器可以实现较低的运行频率。

多电平换流技术是目前高压变频器的发展方向之一,它可以实现更低的运行频率和更高的输出质量。

多电平换流技术在高压变频器中应用较多的有Diode-Clamped多电平换流技术和Cascaded多电平换流技术等。

另外,高压变频器的最低运行频率还与相关配套设备和电机的参数有关。

在实际应用中,需要根据电机的额定功率、扭矩和最低运行频率来选择合适的变频器。

同时还需要考虑电机启动的稳定性和负载特性。

对于一些特殊应用场合,如矿山提升机和风电变频器等,对最低运行频率的要求相对较低。

总的来说,高压变频器的最低运行频率是一个复杂的问题,受到多种因素的影响。

在选择和应用高压变频器时,需要综合考虑设备的工作环境、电机的特性和实际需求等因素,以确定合适的最低运行频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.恒U/f控制
在工业传动上,一般应用场合采用变压变频(VVVF)即U/f恒定的开环控制策略,这种方法的优点是实现简单,成本相对较低,比较适用于风机、水泵等大容量的拖动性工业负载。

主要问题是系统的低速性能较差,不能保持磁通瓯恒定,需要电压补偿,同时异步电动机要强迫通风制冷。

2.矢量控制
矢量控制可以获得很高的动、静态性能指标,由于异步电动机的参数对其影响比较大,因此此类系统多配备专用电动机。

对于诸如大型轧机类动态性能要求较高的场合,矢量控制双PWM结构的三电平电压源型高压变频器得到广泛的应用。

3.直接转矩控制
直接转矩控制系统的转矩响应迅速,限制在一拍以内,且无超调,与矢量控制相比,不受转子参数变化的影响,是一种高静、动态性能的交流调速方法,三电平高压变频装置中经常采用。

4.无速度传感器矢量控制
此种控制方式又称为直接矢量控制,罗克韦尔公司的Powerflex 7000型变频器就是采用此种控制方式。

实现无速度传感器控制的关键之一是如何从得到的定子电流、定子电压中计算出与速度有关的量。

目前常用的方法主要有以下两种:
(l)利用电动机的基本方程式(稳态或动态)导出速度的方程式进行计算。

(2)根据模墅参考自适应的理论选择合适的参考模型,利用自适应算法辨识速度。

矢量控制的核心内容是控制电动机的磁通;因而磁通的观测也是无速度传感器控制的关键之一,无论是速度辨识还是磁通的观测,均离不开电动机的数学模型,模型参数的准确性直接影响到控制的精度,因而在无速度传感器控制中均有参考辨识系统。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路
器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城/。

相关文档
最新文档