江苏省苏州市工业园区星海实验中学2019年中考数学二模试卷
江苏省苏州市2019-2020学年中考数学二模试卷含解析
江苏省苏州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.252.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x 之间的函数关系的是()A.B.C.D.3.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根4.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D5.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE 为半径作扇形EAB,π取3,则阴影部分的面积为()A .1324﹣4B .72﹣4C .6﹣524 D .3252- 6.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .127.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 8.如图,△ABC 中,AB =4,AC =3,BC =2,将△ABC 绕点A 顺时针旋转60°得到△AED ,则BE 的长为( )A .5B .4C .3D .29.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体10.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)11.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根12.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.14.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,23=ABBC,DE=6,则EF= .15.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)16.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.17.若一个多边形的每一个外角都等于40°,则这个多边形的内角和是_____.18.已知双曲线k1yx+=经过点(-1,2),那么k的值等于_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知线段a及如图形状的图案.(1)用直尺和圆规作出图中的图案,要求所作图案中圆的半径为a(保留作图痕迹)(2)当a=6时,求图案中阴影部分正六边形的面积.20.(6分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.21.(6分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为.22.(8分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.23.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?24.(10分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根25.(10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.26.(12分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.27.(12分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1.当点F从D到B时,用5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.2.A【解析】由题意可得:△APE 和△PCF 都是等腰直角三角形.∴AE=PE ,PF=CF ,那么矩形PEBF 的周长等于2个正方形的边长.则y=2x ,为正比例函数.故选A .3.D【解析】【分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+V ==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根.故选D .【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3-表示的点与点B最接近,故选B.5.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»AC BC=,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S△ABC=12(AB+AC+BC)⋅EO=12AC⋅BC,∴2−1,∴AE 2=AO 2+EO 2=12−1)2,∴扇形EAB 的面积=135(4360π-=9(24-,△ABE 的面积=12AB ⋅−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积=224-,∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−(224-)=4−4, 故选:A.6.D【解析】【分析】 根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y 值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1. 故选D .【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键. 7.C【解析】【分析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.8.B【解析】【分析】根据旋转的性质可得AB=AE ,∠BAE=60°,然后判断出△AEB 是等边三角形,再根据等边三角形的三条边都相等可得BE=AB .【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.9.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.10.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.11.A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 12.D【解析】【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣1【解析】【分析】根据根与系数的关系得出b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n >2,再去绝对值符号,即可得出答案.【详解】解:∵关于x 的方程x 2−2x+n=1没有实数根,∴b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n >2,∴|2−n |-│1-n│=n -2-n+1=-1.故答案为-1.本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可. 14.1.【解析】试题分析:∵AD∥BE∥CF,∴AB DEBC EF=,即263EF=,∴EF=1.故答案为1.考点:平行线分线段成比例.15.52【解析】【分析】如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【详解】如图,作BH⊥AC于H.在Rt△ABH中,∵AB=10海里,∠BAH=30°,∴∠ABH=60°,BH=12AB=5(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),∴BH=CH=5海里,∴2.故答案为2【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.16.1【解析】【分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.17.1260︒【解析】【分析】根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9,则内角和是:(9-2)•180°=1260°.故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.18.-1【解析】【详解】分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入k1yx+=,得:k121+=-,解得:k=-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)如图所示见解析,(2)当半径为6时,该正六边形的面积为【解析】试题分析:(1)先画一半径为a的圆,再作所画圆的六等分点,如图所示,连接所得六等分点,作出两个等边三角形即可;(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,由已知条件先求出AB和OE的长,再求出CD的长,即可求得△OCD的面积,这样即可由S阴影=6S△OCD求出阴影部分的面积了.(1)所作图形如下图所示:(2)如下图,连接OA、OB、OC、OD,作OE⊥AB于点E,则由题意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三边三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=33,OE=3,∴AB=63,∴CD=23,∴S△OCD=1233=332⨯⨯,∴S阴影=6S△OC D=183.20.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)分别以B、D为圆心,以大于12BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【详解】解:(1)如图:(2)∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠ADB=∠CBD ,∵EF 垂直平分线段BD ,∴BO=DO ,在△DEO 和三角形BFO 中,{ADB CBDBO DO DOE BOF∠=∠=∠=∠,∴△DEO ≌△BFO (ASA ),∴DE=BF .考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.21.(1)∠AED=∠C ,理由见解析;(2)6【解析】【分析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可.【详解】(1)∠AED=∠C ,证明如下:连接BD ,可得∠ADB=90°,∴∠C+∠DBC=90°,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)连接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=32 ADAB=,解得:AB=23,∵E是半圆AB的中点,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=23,∠ADB=90°,∴cos∠EAB=22 AEAB=,解得:AE=6.故答案为6【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.22.(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.23.每台电脑0.5万元;每台电子白板1.5万元.【解析】【分析】先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【详解】设每台电脑x万元,每台电子白板y万元.根据题意,得:3 51017.5 y xx y=⎧⎨+=⎩解得0.51.5 xy=⎧⎨=⎩,答:每台电脑0.5万元,每台电子白板1.5万元.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.24.2m2+2m+5;1;【解析】【分析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.【详解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,2∴2m 2+2m ﹣1=0,即2m 2+2m=1,∴原式=2m 2+2m+5=1.【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.25.(1)详见解析;(2).【解析】∵四边形ABCD 是矩形,∴∠B=∠C=90°,AB=CD,BC=AD ,AD ∥BC,∴∠EAD=∠AFB ,∵DE ⊥AF ,∴∠AED=90°,在△ADE 和△FAB 中, ∴△ADE ≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt △ADE 中,∠ADE=30°,DE=, ∴的长==.26.(1)1502AOD α∠=︒-;(2)7AD =(3)33133122or 【解析】【分析】 (1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒3∵B 为AC u u u r 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:227AO OD +=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x += ∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时:∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1∴AD=31-在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x -= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.27.(1)y =−1x有反向值,反向距离为2;y =x 2有反向值,反向距离是1;(2)①b =±1;②0≤n≤8;(3)当m >2或m≤﹣2时,n =2,当﹣2<m≤2时,n =2.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b 的值;②根据题意和b 的取值范围可以求得相应的n 的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.。
2019年江苏省苏州市届中考数学二模试题含答案
2019江苏省苏州九年级数学中考模拟检测二含答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上.1.﹣的相反数是A .3B .﹣3C .D .﹣2.下列运算正确的是()A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A .B .C .D .4.函数y=3-x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85°6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x =-1C .直线x =-2D .直线x =28.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为A .4B .﹣4C .16D .﹣1612bac)5(题第9.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( ) A .2 B.C .3D .210.如图点A、B在反比例函数y=(k>0,x>0)图象上,BC∥x轴,交y 轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.分解因式:29a -=▲.12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为▲.13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD=4,则腰长为▲.第13题第14题第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是▲.15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为▲.16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲.17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为▲米(结果保留根号).第17题第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AMAD =⋅;③MN=3;④1BE =.其中正确结论的序号是▲.OBCDA三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:202(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x1.22.(本题满分6分)某校学生利用双休时间去距学校10km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线A E 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为▲;(2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3,(1)求反比例函数y =的解析式;(2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于第26题图BAE PODC27.(本题满分10分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,①BC与CF的位置关系为:▲.②BC,CD,CF之间的数量关系为:▲;(将结论直接写在横线上)(2)如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.参考答案一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×10713.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分)解:原式= 3-2 + 1 ························ 3分=2 ····························· 5分20.(本题共5分)解:由①式得:x>3. ························ 2分由②式得:x 4≤. ························ 4分 ∴不等式组的解集为:34x <≤. ··············· 5分21.(本题共6分) 解:原式=211x xx x ÷-- ························ 1分 =1(1)(1)x x x x x-⋅+- ······················ 2分=11x + ··························· 4分当x 1时,原式····················· 5分·························· 6分22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分10x =102x+2060,···············································································3分解得x=15,······················································································4分经检验,x=15是原方程的解,······························································5分2x=2×15=30.答:骑车学生的速度和汽车的速度分别是15 km/h,30 km/h.·························6分23.(本题共8分)(1)证明:∵四边形ABCD为平行四边形∴AD∥BC,AB∥C D,AB=CD,·····································································1分∴∠B+∠C=180°,∠AEB=∠DAE,······························································2分∴AE是∠BAD的角平分线∴∠BAE=∠DAE,∴∠BAE=∠DAE,··················3分∴AB=BE,∴BE=CD················································································4分(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,····························································································5分∵BF⊥AE,∴AF=EF=2,∴BF=············ (6)分∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),·············································7分∴△ADF的面积=△ECF的面积,1AEBF28分24.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分25.(本题共8分)解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分∴反比例函数的解析式为y=.········································3分(2)∵m=1,∴点A的坐标为(4,4),········································4分∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.········································5分(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:. (7)分∴经过C、D两点的一次函数解析式为y=﹣x+3.········································8分26.(本题共10分)证明:⑴如图,连接OC,∵PA切⊙O于A.∴∠PAO=90º.·································1分∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB.∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP.································2分又∵OA=OC,OP=OP,∴△PAO≌△PCO (SAS).∴∠PAO=∠PCO=90 º,又∵OC 是⊙O 的半径,∴PC 是⊙O 的切线. ······························· 3分 ⑵解法不唯一. 解:由(1)得PA ,PC 都为圆的切线,∴PA =PC ,OP 平分∠APC ,∠ADO =∠PAO =90 º,∴∠PAD+∠DAO =∠DAO+∠AOD , ∴∠PAD =∠AOD ,∴△ADO ∽△PDA . ································ 4分 ∴AD DO PD AD =,∴2AD PD DO =⋅,∵AC =8, PD =163, ∴AD =12AC =4,OD =3,AO =5, 5分 由题意知OD 为△ABC 的中位线,∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ·······················6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················· 7分 ∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB=,BE =AB cos450=, ··········· 8分 ∴EM=,∴CE =CM +EM=()cm .·······················9分答:CE的长为. ···························· 10分27.(本题共10分)解:(1)①垂直; ······························· 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF , 在△DAB 与△FAC中,,∴△DAB ≌△FAC ,···························4分∴∠B =∠ACF ,CF =BD ∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD ,∴BC =CF +CD ;···························6分第23题答图B(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,···························7分由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,···························8分∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3, (9)分∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==. (10)分28.(本题共10分)解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;··························2分(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.·········3分设正方形OEFG边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).·························4分②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.··························5分综上所述:点F的坐标为(1,1);··························6分(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.··························7分①当DN=DM时,(﹣t+)2=t2﹣t+2,解得t=;··························8分②当ND=NM时,﹣t+==,解得t=3﹣;··························9分③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.··························10分综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。
江苏省苏州市2019-2020学年中考第二次质量检测数学试题含解析
江苏省苏州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 2.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A .2B .3C .4D .53.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-24.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a|﹣|a+b|的值等于( )A .c+bB .b ﹣cC .c ﹣2a+bD .c ﹣2a ﹣b5.如图,在⊙O 中,O 为圆心,点A ,B ,C 在圆上,若OA=AB ,则∠ACB=( )A .15°B .30°C .45°D .60°6.如图,直线y=x+3交x 轴于A 点,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰落在直线y=x+3上,若N 点在第二象限内,则tan ∠AON 的值为( )A.B.C.D.7.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ8.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)9.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm210.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④11.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE 的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S212.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q14.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.15.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE:S四边形DECA的值为_____.16.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.17.写出一个经过点(1,2)的函数表达式_____.18.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.20.(6分)如图,已知与抛物线C1过A(-1,0)、B(3,0)、C(0,-3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x 轴交于点P,D 为第四象限内的一点,若△CPD 为等腰直角三角形,求出D 点坐标.21.(6分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.22.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2 ﹣1.4 +0.9 ﹣1.8 +0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?23.(8分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)24.(10分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c 为非负数.25.(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C.(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.26.(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?27.(12分)先化简,再求值:(x﹣2﹣52x+)÷2(3)2xx++,其中x=3.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.2.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED∠=∠⎧⎨∠=∠⎩ ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.4.A【解析】【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.A【解析】【分析】过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.7.C【解析】【分析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.8.D【解析】【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.9.D【解析】【分析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出53DEBF=,即53EFBF=,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴10563 DE AEBF BE===,∴53 EFBF=,设BF=3a,则EF=5a,∴BC=3a+5a=8a,AC=8a×53=403a,在Rt△ABC中,AC1+BC1=AB1,即(403a)1+(8a)1=(10+6)1,解得a1=18 17,红、蓝两张纸片的面积之和=12×403a×8a-(5a)1,=1603a1-15a1,=853a1,=853×1817,=30cm1.故选D.【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.10.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE ⊥BD ,故③正确,∴BE 1=BC 1-EC 1=1AB 1-(CD 1-DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1.故④正确,故选A .点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.11.D【解析】【分析】根据题意判定△ADE ∽△ABC ,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC 中,DE ∥BC ,∴△ADE ∽△ABC , ∴2112BDE S AD S S S AB=++V (), ∴若1AD >AB ,即12AD AB >时,11214BDE S S S S ++V >, 此时3S 1>S 1+S △BDE ,而S 1+S △BDE <1S 1.但是不能确定3S 1与1S 1的大小,故选项A 不符合题意,选项B 不符合题意.若1AD <AB ,即12AD AB <时,11214BDE S S S S ++V <, 此时3S 1<S 1+S △BDE <1S 1,故选项C 不符合题意,选项D 符合题意.故选D .【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.12.A 【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.14.1【解析】试题解析:∵总人数为14÷28%=50(人),∴该年级足球测试成绩为D等的人数为47005650⨯=(人).故答案为:1.15.1:1【解析】【分析】根据题意得到BE:EC=1:3,证明△BED∽△BCA,根据相似三角形的性质计算即可.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=(BEBC)2=1:16,∴S△BDE:S四边形DECA=1:1,故答案为1:1.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.16.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.17.y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.18.110【解析】试题解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)30°;(2)海监船继续向正东方向航行是安全的.【解析】【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可. 【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,3PH在Rt△BPH中,∠PBH=30°,BH=33PH∴23解得325,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形20.(1)y = x2-2x-3,(2)D1(4,-1),D2(3,- 4),D3 ( 2,- 2 )【解析】【分析】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入即可求出解析式; (2)根据题意作出图形,根据等腰直角三角形的性质即可写出坐标. 【详解】(1)设解析式为y=a(x-3)(x+1),把点C(0,-3)代入得-3=a×(-3)×1 解得a=1,∴解析式为y= x2-2x-3,(2)如图所示,对称轴为x=1,过D1作D1H⊥x轴,∵△CPD为等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)过点D2F⊥y轴,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,- 4)由图可知CD1与PD2交于D3,此时PD3⊥CD3,且PD3=CD3,PC=2213=10,∴PD3=CD3=5故D3 ( 2,- 2 )∴D1(4,-1),D2(3,- 4),D3 ( 2,- 2 ) 使△CPD 为等腰直角三角形.【点睛】此题主要考察二次函数与等腰直角三角形结合的题,解题的关键是熟知二次函数的图像与性质及等腰直角三角形的性质.21.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.22.(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.【解析】试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.试题解析:(1)星期二收盘价为25+2−1.4=25.6(元/股)答:该股票每股25.6元.(2)收盘最高价为25+2=27(元/股)收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)答:收盘最高价为27元/股,收盘最低价为24.7元/股.(3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益为-51元.23.(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为12.【解析】【分析】(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.【详解】(1)被调查的总人数为25÷50%=50人;则步行的人数为50﹣25﹣15=10人;如图所示条形图,“骑车”部分所对应的圆心角的度数=1550×360°=108°;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为12.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)4;(2)详见解析.【解析】【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.25.(1)C(2,-1),A(1,0);(2)①3,②0<t<1+2,1)或(+2,1)或(-1,0)【解析】【分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP 为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2+2或2+2.∴点P2+2,1)或(2+2,1),当点P(-1,0)时,也满足条件.2,1)或(2+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.26.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人); (3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况, ∴所选两人正好都是甲班学生的概率是:31=124. 点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.2732【解析】【分析】根据分式的运算法则即可求出答案.【详解】 原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+. 当3x =3333-=+32=【点睛】本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.。
苏州工业园区星海实验中学2019年中考数学二模试卷(解析版)
2019年苏州工业园区星海实验中学中考数学二模试卷一.选择题(共10小题)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109 3.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°4.某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.405.如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°6.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.7.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣18.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 9.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣310.边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2 C.﹣1 D.二.填空题(共8小题)11.分解因式:a2﹣4b2=.12.函数y=中,自变量x的取值范围是.13.如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=度.14.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为名.15.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)16.当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=.17.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB =AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.18.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.三.解答题(共10小题)19.计算:+()﹣1﹣2019020.解不等式组:21.先化简,再求值:﹣÷,其中x=﹣3+2.22.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.23.为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.24.已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.25.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.26.如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD于点G,连接CB 交AE于点H.(1)∠ABC=;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.27.在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.28.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD 交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.62亿=16200 0000=1.62×108,故选:C.3.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选:C.4.某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.40【分析】先将这组数据从小到大重新排列,再根据中位数的概念求解可得.【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.5.如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()A.30°B.45°C.60°D.30°或60°【分析】先证明△OAB为等边三角形得到∠AOB=60°,然后根据圆周角定理求解.【解答】解:∵OA=OB=AB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:A.6.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选:B.7.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1【分析】先根据题意判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+b+1中,k=﹣1<0,∴函数图象经过二、四象限.∵x1<0,y1<0,∴函数图象经过第三象限,∴b+1<0,即b<﹣1.故选:D.8.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m 【分析】将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长,根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:设CG=xm,由图可知:EF=(x+20)•tan45°,FG=x•tan60°,则(x+20)tan45°+30=x tan60°,解得x==25(+1),则FG=x•tan60°=25(+1)×=(75+25)m.故选:C.9.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3【分析】设C(x,y).根据矩形的性质、点A的坐标分别求出B(﹣2,y)、D(x,﹣2);根据“矩形ABCD的对角线BD经过坐标原点”及相似三角形的性质求得xy=4①,又点C 在反比例函数的图象上,所以将点C的坐标代入其中求得xy=k2+2k+1②;联立①②解关于k的一元二次方程即可.【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选:D.10.边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()A.4﹣2B.2﹣2 C.﹣1 D.【分析】首先延长DC与A′D′交于点M,由四边形ABCD是菱形与折叠的性质,易求得CB=CM,△D′FM是含30°角的直角三角形,利用正切函数的知识,即可求得答案.【解答】解:延长FC、A′D′交于M,设CF=x,FD=2﹣x,∵四边形ABCD为菱形,∠A=60°,∴AB∥CD,∠DCB=∠A=60°,∴∠A+∠D=180°,∴∠D=120°,由折叠得:∠BD′F=∠D=120°,∴∠FD′M=180°﹣120°=60°,∵D′F⊥CD,∴∠D′FC=90°,∴∠M=90°﹣60°=30°,在Rt△FOC中,∠DCB=60°,∵∠DCB=∠CBM+∠M,∴∠CBM=60°﹣30°=30°,∵∠BCD=∠CBM+∠M=60°,∴∠CBM=∠M=30°,∴CB=CM=2,由折叠得:D′F=DF=2﹣x,tan M=tan30°===,∴x=4﹣2,∴CF=4﹣2,故选:A.二.填空题(共8小题)11.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).12.函数y=中,自变量x的取值范围是x≤且x≠0 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:由题意得,2﹣3x≥0且x≠0,解得,x≤且x≠0.故答案为:x≤且x≠0.13.如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=270 度.【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠A=90°,∴∠B+∠C=90°.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故答案为:270.14.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60 名.【分析】设被调查的总人数是x人,根据最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,即可列方程求解.【解答】解:设被调查的总人数是x人,则40%x﹣30%x=6,解得:x=60.故答案是:60.15.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为2πcm.(结果保留π)【分析】利用弧长公式是l=,代入就可以求出弧长.【解答】解:弧长是:=2πcm.故答案为:2π.16.当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=0 .【分析】先由已知条件列出方程,求得a+b的值,再整体代入求原式的值.【解答】解:由题意得,a+b+1=5,∴a+b=4,当a+b=4时,原式=4﹣(a+b)=4﹣4=0.故答案为0.17.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB =AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为2.【分析】由∠BAD的度数结合角平分线的定理可得出∠BAC=∠DAC=30°,利用平行线的性质及三角形外角的性质可得出∠FEC=30°、∠DEC=60°,进而可得出∠FED=90°,在Rt△DEF中利用勾股定理可求出DF的长.【解答】解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=∠BAD=30°.∵点E、F分别是AC、BC的中点,∴EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=4,∴DE=EF=2,∴DF===2,故答案为:2.18.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为 5 .【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x 轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB =OE=5.故答案为:5.三.解答题(共10小题)19.计算:+()﹣1﹣20190【分析】直接利用二次根式的性质以及负整指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=3+6﹣1=8.20.解不等式组:【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【解答】解:,解①得:x>﹣1,解②得:x≤6,则不等式的解集为:﹣1<x≤6.21.先化简,再求值:﹣÷,其中x=﹣3+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=﹣•=﹣=﹣,当x=﹣3+2时,原式=﹣=﹣.22.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,∴P(牌面是偶数)==;(2)根据题意,画树状图:由树状图可知,共有16种等可能的结果:其中恰好是4的倍数的共有4种,∴P(4的倍数)==.23.为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.根据以上信息,解答下列问题:(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.【分析】(1)调查村民数=参加合作医疗的人数+未参加合作医疗的人数得到了报销款人数=参加合作医疗的人数×3%;(2)全村参加合作医疗人数=10000×参加合作医疗的百分率设年增长率为x,则8000(1+x)2=9680.【解答】解:(1)400+100=500(人),400×3%=12(人).所以,本次共调查了500人,有12人参加合作医疗得到报销款.(2)参加合作医疗的百分率为,所以该镇参加合作医疗的村民有10000×80%=8000(人).设年增长率为x,由题意:得8000(1+x)2=9680,解得x1=0.1,x2=﹣2.1(舍去),即年增长率为10%.24.已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BE=CF;(2)若AD=DC=2,求AB的长.【分析】(1)由题中可求得AE和AC所在的三角形全等,进而得到BG和FG所在三角形全等的条件;(2)求得AF长即可求得AB长.利用等腰三角形的三线合一定理可得AF=AC=AE,进而求得一些角是30°,主要利用AD长,直角三角形勾股定理来求解.【解答】(1)证明:连接AG,∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.在△ABC和△AFE中,,∴△ABC≌△AFE(AAS),∴AB=AF.∵AE=AC,∴BE=CF;(2)解:∵AD=DC,DF⊥AC,∴F为AC中点,∵AC=AE,∴AF=AC=AE.∴∠E=30°.∵∠EAD=90°,∴∠ADE=60°,∴∠FAD=∠E=30°,∴AF=.∴AB=AF=.25.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.【分析】(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC、延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【解答】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数y=(x<0)的图象上,∴,解得:.(2)由(1)知反比例函数解析式为y=﹣,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴y=﹣x+2.26.如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD于点G,连接CB 交AE于点H.(1)∠ABC=45°;(2)证明:△CFH∽△CBG;(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.【分析】(1)∠AOC=90°,则∠ABC=45°;(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH=∠GCB,即可求解;(3)设HK=EK=x,则x+=R,OH=x tan∠HKO=(2﹣)R,则CH=CO﹣OH =(﹣1)R,同理可得:FC=R,由△CFH∽△CBG,则=.【解答】解:(1)∵∠AOC=90°,∴∠ABC=45°,故答案为45°(2)如图1,∠CFH=∠CDE+∠AED=(180°﹣∠AOC)=45°=∠ABC,∠FCH=∠GCB,∴△CFH∽△CBG;(3)设∠AOD为∠1,∠COE为∠2,∠OEA=∠OAE=α,圆的半径为R,AO⊥CO,则∠1+∠2=90°,∠1=2α,弧DB为半圆的三分之一,则∠OEA=∠OAE=30°则∠2=60°,α=30°,在△OEH中,∠2=60°,α=30°,OE=R,在OE上取一点K,使HK=EK,则∠HKO=2α=30°,设HK=EK=x,则x+=R,则x=,OH=x tan∠HKO=(2﹣)R,则CH=CO﹣OH=(﹣1)R,在△FHC中,∠DCB=30°,∠HFC=45°,CH=(﹣1)R,同理可得:FC=R,∵△CFH∽△CBG,∴=.27.在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.(1)求经过A、B、C三点的抛物线的解析式;(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD重叠部分面积的最大值.【分析】(1)由旋转,平移得到C(1,1),用待定系数法求出抛物线解析式;(2)先判断出△BEF∽△BAO,再分两种情况进行计算,由面积比建立方程求解即可;(3)先由平移得到A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为(0,t+),再分两种情况进行计算即可.【解答】解:(1)∵A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化得到△BCD,∴BD=OA=2,CD=OB=1,∠BDC=∠AOB=90°.∴C(1,1).设经过A、B、C三点的抛物线解析式为y=ax2+bx+c,则有,∴∴抛物线解析式为y=﹣x2+x+2,(2)如图1所示,设直线PC与AB交于点E.∵直线PC将△ABC的面积分成1:3两部分,∴=或=3,过E作EF⊥OB于点F,则EF∥OA.∴△BEF∽△BAO,∴.∴当=时,,∴EF=,BF=,∴E(﹣,)∴直线PC解析式为y=﹣x+,∴﹣x2+x+2=﹣x+,∴x1=﹣,x2=1(舍去),∴P(﹣,),当时,同理可得,P(﹣,).(3)设△ABO平移的距离为t,△A1B1O1与△B2C1D1重叠部分的面积为S.由平移得,A1B1的解析式为y=2x+2﹣t,A1B1与x轴交点坐标为M(,0).C1B2的解析式为y=x+t+,C1B2与y轴交点坐标为N(0,t+).∴点C1的坐标为(1﹣2t,1),点D1的坐标为(1﹣2t,0).当点C1在线段A1B1上时,重叠部分从四边形变成三角形,把点C1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=;当点D1在线段A1B1上时,就没有重叠部分了,把点D1的坐标代入直线A1B1的解析式y=2x+2﹣t中,得t=,①当0<t<时,△A1B1O1与△B2C1D1重叠部分为四边形.Ⅰ、如图2,当C1D1在y轴右侧时,即0<t<时,重叠部分是现四边形ONQM,设A1B1与x轴交于点M,C1B2与y轴交于点N,A1B1与C1B2交于点Q,连结OQ.由,∴,∴Q(,).∴S=S△QMO+S△QON=××+×(t+)×=﹣t2+t+=﹣(t﹣)2+.∵0<t≤,∴当t=时,S的最大值为.Ⅱ、如图4,当C'D'在y轴左侧,即:≤t<时,点C'在△A'MO内部,其重叠部分是四边形C'QMD',同(Ⅰ)的方法得出:Q(,).∴S=S△QMD'+S△QON=×[﹣(2t﹣1)]×+×1×[﹣(2t﹣1)]=﹣t2+1∵≤t<,∴当t=时,S最大=∴S<<②如图3所示,当≤t<时,△A1B1O1与△B2C1D1重叠部分为直角三角形.设A1B1与x轴交于点H,A1B1与C1D1交于点G.∴G(1﹣2t,4﹣5t),∴D1H=+1﹣2t=,D1G=4﹣5t.∴S=D1H×D1G=××(4﹣5t)=(5t﹣4)2.∴当≤t<时,S的最大值为.综上所述,在此运动过程中△ABO与△BCD重叠部分面积的最大值为.28.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD 交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.【分析】(1)利用矩形性质、勾股定理及三角形面积公式求解;(2)依题意画出图形,如答图2所示.利用平移性质,确定图形中的等腰三角形,分别求出m的值;(3)在旋转过程中,等腰△DPQ有4种情形,如答图3所示,对于各种情形分别进行计算.【解答】解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理得:BD===.∵S△ABD=BD•AE=AB•AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.(2)设平移中的三角形为△A′B′F′,如答图2所示:由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2,∵∠1=∠2,∠5=∠1,∴∠5=∠6,又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD﹣B′D=﹣3=,即m=.(3)存在.理由如下:假设存在,在旋转过程中,等腰△DPQ依次有以下4种情形:①如答图3﹣1所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q,∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q,∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理得:BQ===.∴DQ=BQ﹣BD=﹣;②如答图3﹣2所示,点Q落在BD上,且PQ=DQ,∴∠2=∠P,∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,∵PD∥BC,∴此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′﹣A′Q=4﹣BQ.在Rt△BQF′中,由勾股定理得:BF′2+F′Q2=BQ2,即:32+(4﹣BQ)2=BQ2,解得:BQ=,∴DQ=BD﹣BQ=﹣=;③如答图3﹣3所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°﹣∠2.∵∠1=∠2,∴∠4=90°﹣∠1.∴∠A′QB=∠4=90°﹣∠1,∴∠A′BQ=180°﹣∠A′QB﹣∠1=90°﹣∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q﹣A′F′=5﹣4=1.在Rt△BF′Q中,由勾股定理得:BQ===,∴DQ=BD﹣BQ=﹣;④如答图3﹣4所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD﹣BQ=﹣5=.综上所述,存在4组符合条件的点P、点Q,使△DPQ为等腰三角形;DQ的长度分别为﹣、、﹣或.。
精编2019级江苏省苏州市中考数学二模试卷(有标准答案)
江苏省苏州中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C . D .2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103B.0.4×104C.4×103D.4×1043.(3分)下列运算中,正确的是()A . =3 B.(a+b)2=a2+b2C.()2=(a≠0) D.a3•a4=a124.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19202122232425最低气温/℃24534675.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A.B.C.D.8.(3分)因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A. B.C.D.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3D.310.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A. B.2 C.1 D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4= .12.(3分)若分式的值为0,则x的值等于.13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”).14.(3分)不等式组的最大整数解是.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE 所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n﹣3时多项式x2﹣4x+1的值为.18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.20.(5分)先化简,再求值:,其中a满足a2+3a=5.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n(1)在统计表中,m= ,n= ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?25.(8分)如图,一次函数y=kx﹣4(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(6,b).(1)b= ;k= .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t 的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.江苏省苏州中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C . D .【解答】解:﹣3的相反数是3.故选:B.2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103B.0.4×104C.4×103D.4×104【解答】解:4000=4×103,故选:C.3.(3分)下列运算中,正确的是()A . =3 B.(a+b)2=a2+b2C.()2=(a≠0) D.a3•a4=a12【解答】解:(﹣3)3=﹣27,负数没有平方根,故A错误;(a+b)2=a2+2ab+b2,故B错误;()2=,故C正确;a3•a4=a7,故D错误.故选:C.4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19202122232425最低气温2453467/℃【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4;4出现了2次,故众数为4.故选:A.5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°﹣∠CAB=64°,∵∠E=40°,∴∠D=∠ACD﹣∠E=24°.故选:A.6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限【解答】解:设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选:A.7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A.B.C.D.【解答】解:在2、6,3,4,1这5张卡片中,数字为偶数的有2、6、4这3张,∴得到卡片的数字为偶数的概率为,故选:C.(3分)因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,8.sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A. B.C.D.【解答】解:∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3D.3【解答】解:如图,连接CD交OB于P,连接PA,此时△AD P的周长最小.作BH⊥x轴于H.∵B(9,3),∴OH=9,BH=3,∵∠BHO=90°,∴OB==6,∴OB=2BH,∴∠BOH=30°,∠OBH=60°,∵四边形OABC为菱形,∴设OC=BC=x,∴CH=OH﹣OC=9﹣x,在Rt△BCH中,∠BHC=90°,∴BC2=CH2+BH2,∴x2=(9﹣x)2+27,∴x=6,∴A(3,3),B(9,3),C(6,0),∵D为AB中点,∴D(6,3),∴CD=3,AD=3,∴△ADP的周长的最小值=AD+CD=3+3,故选:B.10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A. B.2 C.1 D.【解答】解:由上图可知,当P在O点时,△AOB1为正三角形,当P在N点时,△ANB2为正三角形,H1,H2分别为AB1与AB2的中点,∵P在直线ON上运动,∴B1B2的运动轨迹也为直线,∵△OAB1为正三角形,∴∠OAB1=∠1+∠2=60°,同理∠NAB2=∠2+∠3=60°,∴∠1=∠3,在△OAN与△B1AB2中,,∴△OAN≌△B1AB2,∴B1B2=ON,∴点A横坐标为,∵AN⊥x轴,∴M(,0),∵直线ON的解析式为:y=﹣x,∴∠MON=45°,∴N(,﹣),∴ON=2=B1B2,∵H1,H2分别为AB1与AB2的中点,∴H1H2=B1B2=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4= (x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.(3分)若分式的值为0,则x的值等于 3 .【解答】解:由题意得:x﹣3=0,且x≠0,解得:x=3,13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=3,S乙2=2.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.14.(3分)不等式组的最大整数解是 2 .【解答】解:,由①得,x<3;由②得,x≥﹣1;∴不等式组的解为﹣1≤x<3,它所包含的整数为﹣1,0,1,2.∴它的最大整数解为2.故答案为2.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE 所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为2﹣.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′=BA•AB′=2,S△ABE=1,∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故答案为:2﹣.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n﹣3时多项式x2﹣4x+1的值为﹣2 .【解答】解:∵x=m和x=n时,多项式x2﹣4x+1的值相等,∴y=x2﹣4x+1的对称轴为直线x==﹣,解得m+n=4,∴x=m+n﹣3=4﹣3=1,x2﹣4x+1=12﹣4×1+1=﹣2.故答案为:﹣218.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.【解答】解:原式=2﹣3×﹣4=﹣4.20.(5分)先化简,再求值:,其中a满足a2+3a=5.【解答】解:原式=÷=÷=•=,当a2+3a=5时,原式=.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.【解答】解:画树状图如下:由上面的树状图可知,一共有4种情况,一男一女所占的情况有2种,∴概率为=.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x人数A0≤x<810 B8≤x<1516C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)在统计表中,m= 30 ,n= 20 ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是90°.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【解答】解:(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20..故答案是:30,20;(2)扇形统计图中“C组”所对应的圆心角的度数是:360°×=90°.故答案是:90°;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?【解答】解:设甲、乙两种票各买x张,y张,根据题意,得:,解得:,答:甲、乙两种票各买20张,15张.25.(8分)如图,一次函数y=kx﹣4(k≠0)的图象与y轴交于点A,与反比例函数y=(x >0)的图象交于点B(6,b).(1)b= 2 ;k= 1 .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.【解答】解:(1)∵点B在反比例函数y=(x>0)的图象上,将B(6,b)代入y=,得b=2,∴B(6,2),∵点B在直线y=kx﹣4上,∴2=6k﹣4,解得k﹣1,故答案为:2,1.(2)∵点C的横坐标为3,把x=3代入y=x﹣4,得y=﹣1,∴C(3,﹣1),∵CD∥y轴,∴点D的横坐标为3,把x=3代入y=,可得y=4,∴D(3,4).由平移可得,△OCD≌△O'C'D',设O'(a,),则C'(a+3,﹣1),∵点C'在直线y=x﹣4上,∴﹣1=a+3﹣4,∴=a,∵a>0,∴a=2,∴O'(2,2),∴D'(2+3,2+4).26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2,sin∠BCP=,∴sin∠BCP=sin∠DBC===,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN中,AC==5,又CD=2,∴AD=AC﹣CD=5﹣2=3.∵BD∥CP,∴,∴CP=.在Rt△ACP中,AP==,AC+CP+AP=5++=20,∴△ACP的周长为20.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t﹣1)cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t 的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【解答】解:(1)由勾股定理可知AB==10.∵D 、E 分别为AB 和BC 的中点,∴DE=AC=4,AD=AB=5.∴点P 在AD 上的运动时间==1s , 当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s ,∵DE 段运动速度为1cm/s ,∴DP=(t ﹣1)cm ,故答案为:t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得t >1.∴1<t <4.∵△DFN ∽△ABC , ∴===,∵DN=PN ﹣PD ,∴DN=3﹣(t ﹣1)=4﹣t , ∴=, ∴FN=, ∴FM=3﹣=,S=S 梯形FMHD +S 矩形DHQP ,∴S=×(+3)×(4﹣t )+3(t ﹣1)=﹣t 2+3t+3(1<t <4).(3)①当圆与边PQ 相切时,如下图,当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm,∵r以0.2cm/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=mq+cq=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=s(舍),综上所述,当t=s时,⊙O与正方形PQMN的边所在直线相切.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴=,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.。
2019年苏州市中学中考数学二模试题(及答案)
苏州市中学2019学年第二学期 初三年级数学学科二模考试试卷一、选择题 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上..........1、计算6÷(-3)的结果是 A .- 1 2B .-2C .-3D .-18、下列一元二次方程中,有两个不相等的实数根的方程是A. 2310x x -+=B. 210x +=C. 2210x x -+=D. 2230x x ++=5、为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm ~174.5cm 之间的人数有A .12B .48C .72D .96 6、若点A (m,n )在23y x b =+的图像上,且2m -3n >6,则b 的取值范围为 A. b >2 B. b >-2 C. b <2 D. b <-27、如图,在△ABC 中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2= A .360º B .250º C .180º D .140º8、若二次函数2y ax b =+的图像过点(-2,0),则关于x 的方程()220a x b -+=的实数根为A.1204x x ==,B.123522x x ==, C.1240xx =-=, D.1226x x =-=,9、如图,AB 为⊙O 的直径,点,C D 在⊙O 上.若30AOD ∠=︒,则BCD ∠等于 A. 75° B. 95° C. 100° D. 105°10、如图,边长为4正方形ABCD 中,点E 是AB 边上一点,AE=1将△ADE 沿DE 翻折得到△DEF ,则△BEF 的面积为A.1217B.2DC.2417D. 3二、选择题本大题共8小题,每小题3分,共24分.把答案直接填在答题..卷相应的位置上........11、计算:()32a=12、如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于13、某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自已喜欢的项目,并制成如图所示的扇形统计图.如果该校有1200名学生,则喜爱跳绳的学生约有人.14、因式分解:2mn+6mn+9m=15、如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是16、一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为(结果保留π)17、如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30°,旗杆底部D的俯角为45°.已知楼高9AB=m,则旗杆CD的高度为18、如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=三、解答题本大题共10小题,共76分把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19. (本题满分5分) 101()2cos60(2)2π--︒+-20. (本题满分5分)解不等式组: 20,31 5.x x -≤⎧⎨-⎩<21. (本题满分6分)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根. 22. (本题满分6分) 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.23. (本题满分8分)九年级(1)班和(2)班分别有一男一女共4名学生报名参加学校文艺汇演主持人的选拔.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是 .(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生来自同一个班级的概率.24. (本题满分8分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,:1:2ABC BAD ∠∠=,//BE AC ,//CE BD . (1)求tan DBC ∠的值;(2)求证:四边形OBEC 是矩形.25. (本题满分8分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x =(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .(1)当点M 是边BC 的中点时,求反比例函数的表达式(2)在点M 的运动过程中,试证明:MBNB 是一个定值26、(本题满分10分)形ABCD 中,点F 、点G 、点H 、点E 连接FGHE ,设AF 的长度为x,EF 的长度为w,四边形FGHE 同一个坐标系内分别作出y 和w 关于x 的函数图像,他们发现直线x=2为对称轴的抛物线 (1)、AB= 函数y 图像顶点M 坐标 点N (2)、求五边形EDCBF 的面积S 关于自变量w 的函数关系式27、(本题满分10分)如图1,△ABC 内接于⊙O,AC 上一点,且∠DBC=∠BAC,21tan =∠BAC . (1)求证:BD 是⊙O 的切线; (2)求ACDC的值; (3) 如图2,直径AC=5,»»AF=CF,求△ABF 面积28、(本题满分10分)如图1,二次函数(),交x 轴于点A 、点B ,交y 轴于点C ,连接AC 、BC ,AD 平分∠BAC 分别交y 轴、BC 于点E 、点D (1) 用的代数式表示点A 、点B 和点C 的坐标 (2) 若AD=BD ,求的值 (3) 如图2,在(2)的条件下,能否在直线BC 下方的抛物线上找到一点N 到BC 中点M 的距离MN=OC ,如果能找到,请求出该点的坐标,如不能,请说明理由D。
江苏省苏州市2019学年第二学期中考数学二模试卷【含答案及解析】
江苏省苏州市2019学年第二学期中考数学二模试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的倒数是().A. B. C. D.2. 下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.3. 地球的平均半径约为米,该数字用科学记数法可表示为().A. B. C. D.4. 下列运算正确的是().A. B. C. D.5. 若一个多边形的内角和与它的外角和相等,则这个多边形是().A. 三角形B. 四边形C. 五边形D. 六边形6. 一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖)那么被遮盖的两个数据依次是().A. ,B. ,C. ,D. ,二、选择题7. 对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A. 开口向下B. 对称轴是x=﹣1C. 顶点坐标是(1,2)D. 与x轴有两个交点三、单选题8. 已知一次函数与反比例函数的图象有个公共点,则的取值范围是().A. B. C. 或 D.9. 如图,是边长为的等边三角形,动点从点出发,以的速度沿运动,到达点即停止运动,过点作于点,设运动时间为,的面积为,则能够反应与之间函数关系的图象大致是().A. B. C. D.10. 如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是().A. B. C. D.四、填空题11. 代数式在实数范围内有意义,则x的取值范围是__________.12. 已知关于的方程的一个根是,则__________.13. 在实数范围内分解因式:__________.14. 分式方程:的解是__________.15. 如图,、、是⊙上的三点,,则__________度.16. 若一个圆锥的底面圆半径为,其侧面展开图的圆心角为,则圆锥的母线长是__________ .17. 如图,中,,,,绕点顺时针旋转得,当落在边上时,连接,取的中点,连接,则的长度是__________.18. 如图,线段,为线段上的一个动点,以、为边作等边和等边,⊙外接于,则⊙半径的最小值为__________.五、解答题19. 计算:.20. 解方程:.21. 已知:.()化简.()若满足不等式组,且为整数时,求的值.22. 如图,已知四边形和四边形为正方形,点在线段上,点、、在同一直线上,且,,连接、、,并延长交于点.()求证:.()求线段的长.23. 今年某市高中招生体育考试测试管理系统的运行,将测试完进行换算统分改为计算机自动生成,现场公布成绩,降低了误差,提高了透明度,保证了公平.考前张老师为了解全市初三男生考试项目的选择情况(每人限选一项),对全市部分初三男生进行了调查,将调查结果分成五类:、实心球();、立定跳远;、米跑;、半场运球;、其它.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:()将上面的条形统计图补充完整.()假定全市初三毕业学生中有名男生,试估计全市初三男生中选米跑的人数有多少人?()甲、乙两名初三男生在上述选择率较高的三个项目:、立定跳远;、米跑;、半场运球中各选一项,同时选择半场运球、立定跳远的概率是多少?请用列表法或画树形图的方法加以说明并列出所有等可能的结果.24. 某小区为了绿化环境,计划分两次购进、两种花草,第一次分别购进、两种花草棵和棵,共花费元;第二次分别购进、两种花草棵和棵.两次共花费元(两次购进的、两种花草价格均分别相同).()、两种花草每棵的价格分别是多少元?()若购买、两种花草共棵,且种花草的数量少于种花草的数量的倍,请你给出一种费用最省的方案,并求出该方案所需费用.25. 如图,在平面直角坐标中,正比例函数的图象与反比例函数的图象经过点.()分别求这两个函数的表达式.()将直线向上平移个单位长度后与轴交于点,与反比例函数图象在第四象限内的交点为,连接、,求点的坐标及的面积.26. 如图,已知⊙的半径为,为直径,为弦.与交于点,将沿着翻折后,点与圆心重合,延长至,使,链接.()求的长.()求证:是⊙的切线.()点为的中点,在延长线上有一动点,连接交于点,交于点(与、不重合).则为一定值.请说明理由,并求出该定值.27. 在平面直角坐标系中,点为原点,点的坐标为.如图,正方形的顶点在轴的负半轴上,点在第二象限.现将正方形绕点顺时针旋转角得到正方形.()如图,若,,求直线的函数表达式.()若为锐角,,当取得最小值时,求正方形的面积.()当正方形的顶点落在轴上时,直线与直线相交于点,的其中两边之比能否为?若能,求出的坐标;若不能,试说明理由.28. 如图,二次函数的图象与一次函数的图象交于,两点,点的坐标为,点在第一象限内,点是二次函数图象的顶点,点是一次函数的图象与轴的交点,过点作轴的垂线,垂足为,且.()求直线和直线的解析式.(2)点是线段上一点,点是线段上一点,轴,射线与抛物线交于点,过点作轴于点,于点,当与的乘积最大时,在线段上找一点(不与点,点重合),使的值最小,求点的坐标和的最小值.()如图,直线上有一点,将二次函数沿直线平移,平移的距离是,平移后抛物线使点,点的对应点分别为点,点;当是直角三角形时,求t的值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2019年最新江苏省中考数学第二次模拟试卷2及答案解析
江苏省中考数学二模试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.132.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)3.下列图形中不是中心对称图形的是()A.B.C.D.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×1065.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,76.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.187.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=58.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.110.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= .12.计算:3a3•a2﹣2a7÷a2= .13.若使二次根式有意义,则x的取值范围是.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是(填序号)三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.20.解不等式组:.21.先化简,再求值:,其中.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.计算(﹣4)+(﹣9)的结果是()A.﹣13 B.﹣5 C.5 D.13【考点】有理数的加法.【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(4+9)=﹣13,故选A.2.把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)【考点】因式分解﹣提公因式法.【分析】原式提取公因式得到结果,即可做出判断.【解答】解:原式=a(a﹣2),故选A.3.下列图形中不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.4.某市在一次扶贫助残活动中,共捐款8310000元,将8310000用科学记数法表示为()A.0.831×108B.8.31×106C.8.31×107D.83.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将8310000用科学记数法表示为8.31×106,故选:B.5.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的众数和极差分别是()A.5,7 B.7,5 C.4,7 D.3,7【考点】极差;众数.【分析】根据众数的定义和极差的计算方法分别进行解答即可.【解答】解:4出现了2次,出现的次数最多,则众数是4;极差是:10﹣3=7;故选C.6.直线y=2x+6与两坐标轴围成的三角形面积是()A.2 B.4.5 C.9 D.18【考点】一次函数图象上点的坐标特征.【分析】先根据直线解析式求得直线y=2x+6与坐标轴交点坐标,再计算围成的三角形面积即可.【解答】解:在直线y=2x+6中,当x=0时,y=6;当y=0时,x=﹣3;∴直线y=2x+6与坐标轴交于(0,6),(﹣3,0)两点,∴直线y=2x+6与两坐标轴围成的三角形面积=×6×3=9.故选(C)7.若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5【考点】抛物线与x轴的交点.【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.9.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B.C.D.2【考点】切线的性质;坐标与图形性质.【分析】利用点C的坐标可判断点C在直线y=﹣x上,在确定AB的中点D的坐标为(4,﹣2)过D点作DC垂直直线y=﹣x于点C,利用两点之间线段最短得到此时CD为过点C的圆的最小半径,再求出直线CD的解析式为y=x﹣6,通过解方程组得C点坐标为(3,﹣3),然后利用两点的距离公式计算CD 的长即可.【解答】解:∵C(a,﹣a),∴点C在直线y=﹣x上,设AB的中点D,则D(4,﹣2)过D点作DC垂直直线y=﹣x于点C,此时CD为过点C的圆的最小半径,∵CD⊥直线y=﹣x,∴直线CD的解析式可设为y=x+b,把D(4,﹣2)代入得4+b=﹣2,解得b=﹣6,∴直线CD的解析式为y=x﹣6,解方程组得,此时C点坐标为(3,﹣3),∴CD==,即这个圆的半径的最小值为.故选B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在答题卷相对应的位置上.)11.计算:|﹣5|= 5 .【考点】绝对值.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.计算:3a3•a2﹣2a7÷a2= a5.【考点】整式的混合运算.【分析】根据整式的混合运算顺序,首先计算乘法和除法,然后计算减法,即可求出算式3a3•a2﹣2a7÷a2的值是多少.【解答】解:3a3•a2﹣2a7÷a2=3a5﹣2a5=a5故答案为:a5.13.若使二次根式有意义,则x的取值范围是x≥2 .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式有意义,∴2x﹣4≥0,解得x≥2.故答案为:x≥2.14.如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.15.已知3是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是菱形ABCD的两条对角线的长,则菱形ABCD的面积为 4.5 .【考点】菱形的性质;一元二次方程的解;根与系数的关系.【分析】首先利用一元二次方程的解得出m的值,再利用根与系数的关系得出方程的两根之积,再结合菱形面积公式求出答案.【解答】解:∵3是关于x的方程x2﹣2mx+3m=0的一个根,∴32﹣6m+3m=0,解得:m=3,∴原方程为:x2﹣6x+9=0,∴方程的两根之积为:9,∴菱形ABCD的面积为:4.5.故答案为:4.5.16.如图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6的概率是.【考点】列表法与树状图法.【分析】先画树状图展示所有12种等可能的结果数,再找出两个转盘停止后指针所指区域内的数字之和小于6的结果数,然后根据概率公式计算即可.【解答】解:画树状图为:共有12种等可能的结果数,两个转盘停止后指针所指区域内的数字之和小于6的结果数为6,所以两个转盘停止后指针所指区域内的数字之和小于6的概率==.故答案为.17.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .【考点】线段垂直平分线的性质;解直角三角形.【分析】根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cosC.【解答】解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.18.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是③④(填序号)【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y乙=100t﹣100,令y甲=y乙,可得:60t=100t﹣100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知不正确是:③④,故答案为:③④.三、解答题(本大题共10题,共76分.解答时应写出文字说明、证明过程或演算步骤.19.计算:.【考点】实数的运算.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=9+2﹣4=11﹣4=720.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了,确定不等式组的解集.【解答】解:解不等式2(x+2)>x+7,得:x>3,解不等式3x﹣1<5,得:x<2,故不等式组无解.21.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先算括号里面的,再算乘法,最后把m的值代入进行计算即可.【解答】解:原式=•=•(﹣)=,当m=+1时,原式==﹣.22.为了迎接扬州烟花三月经贸旅游节,某学校计划由七年级(1)班的3个小组(每个小组人数都相等)制作240面彩旗.后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务,这样这两个小组的每一名学生就要比原计划多做4面彩旗.如果每名学生制作彩旗的面数相等,那么每个小组有多少学生?【考点】分式方程的应用.【分析】关键描述语是:“这两个小组的每一名学生就要比原计划多做4面彩旗”.等量关系为:实际每个学生做的彩旗数﹣原来每个学生做的旗数=4.【解答】解:设每个小组有x名学生.﹣=4,解得x=10,经检验x=10是原方程的解.答:每个小组有10名学生.23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【考点】条形统计图;扇形统计图;加权平均数;中位数.【分析】(1)由得10分的人数除以占的百分比求出乙校参赛的总人数,即可得出8分的人数;由于两校参赛人数相等,根据总人数减去其他人数求出甲校得9分的人数;(2)根据平均数求法得出甲的平均;把分数从小到大排列,利用中位数的定义解答.【解答】解:(1)5÷=20(人),20×=3(人),20﹣11﹣8=1(人),填表如下:如下尚不完整的统计图表.(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,故中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.故答案为:1.24.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【考点】平行四边形的性质;全等三角形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;(2)易求得∠MND=∠CND=∠2=30°,然后由含30°的直角三角形的性质求解即可求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,∵在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∠END+∠CNP+∠2=180°﹣∠CEN=90°又∵∠END=∠CNP=∠2∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==2,∵∠MNC=60°,CN=MN=MD,∴△CNM是等边三角形,∵△ABN≌△CDM,∴AN=CM=2.25.如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数的图象经过点B、D,且.(1)求:k及点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值.【考点】反比例函数图象上点的坐标特征;翻折变换(折叠问题).【分析】(1)先根据AO:BC=3:2,BC=2得出OA的长,再根据点B、C的横坐标都是3可知BC∥AO,故可得出B点坐标,再根据点B在反比例函数y=(x>0)的图象上可求出k的值,由AC∥x轴可设点D(t,3)代入反比例函数的解析式即可得出t的值,进而得出D点坐标;(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OAA1,根据AC∥x轴可知∠A1ED=∠A1FO=90°,由相似三角形的判定定理得出△DEA1∽△A1FO,设A1(m,n),可得出=,再根据勾股定理可得出m2+n2=9,于是得到结论.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)过点A1作EF∥OA交AC于E,交x轴于F,连接OA1,∵AC∥x轴,∴∠A1ED=∠A1FO=90°,∵∠OA1D=90°,∴∠A1DE=∠OA1F,∴△DEA1∽△A1FO,∵A1(m,n),∴=,∴m2+n2=m+3n,∵m2+n2=OA12=OA2=9,∴m+3n=9.26.如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且AB=AC.(1)求证:DE平分∠CDF;(2)若AC=3cm,AD=2cm,求DE的长.【考点】相似三角形的判定与性质;圆周角定理.【分析】(1)由∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,推出∠CDE=∠ABC,由∠EDF=∠ADB=∠ACB,以及AB=AC,推出∠ABC=∠ACB,即可推出∠EDF=∠CDE解决问题.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出DE的值.【解答】(1)证明:∵∠ABC+∠ADC=180°,∠CDE+∠ADC=180°,∴∠CDE=∠ABC,∵∠EDF=∠ADB=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠EDF=∠CDE,∴DE平分∠CDF.(2)解:∵∠ADB=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB∴=,∵AB=AC=3,AD=2∴AE==,∴DE=﹣2=(cm).27.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发1秒后,点Q从点C出发,并以1cm/s速度向点B运动,当点P到达点C时,点Q也停止运动.设点P的运动时间为t秒.(1)求DC的长;(2)当t取何值时,PQ∥CD?(3)是否存在t,使△PQC为直角三角形?【考点】四边形综合题.【分析】(1)过D点作DF⊥BC于F,得出四边形ABFD是矩形,那么DF=AB=8,BF=AD=12,CF=BC﹣BF=6,然后在直角△CDF中利用勾股定理即可求出DC;(2)由于AD∥BC,所以当PQ∥CD时,四边形PDCQ是平行四边形,根据平行四边形的对边相等得出PD=QC,依此列出关于t的方程,求解即可;(3)因为∠C<90°,所以△PQC为直角三角形时,分两种情况:①∠PQC=90°;②∠CPQ=90°;分别求解即可.【解答】解:(1)过D点作DF⊥BC于F,∵AD∥BC,∠B=90°,∴四边形ABFD是矩形,∴DF=AB=8,BF=AD=12,∴CF=BC﹣BF=18﹣12=6,∴DC===10(cm);(2)当PQ∥CD时,四边形PDCQ是平行四边形,此时PD=QC,∴12﹣2t=t﹣1,∴t=4.∴当t=4时,四边形PQDC是平行四边形;(3)△PQC为直角三角形时,因为∠C<90°,分两种情况:①当∠PQC=90°时,则AP=BQ,即2t=18﹣(t﹣1),解得t=6,不合题意舍去;②当∠CPQ=90°,此时P一定在DC上,∵CP=10+12﹣2t=22﹣2t,CQ=t﹣1,易知,△CDF∽△CQP,∴=,即=,解得:t=8,符合题意;综上所述,当t=8秒时,△PQC是直角三角形.28.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x 轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD 相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).。
2019-2020学年最新江苏省苏州市九年级二模数学试题及答案解析
A .B .C .D .苏州市第二学期初三年级数学学科二模考试试卷(本试卷共三大题,29小题,满分130,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的班级、姓名、考试号用0.5毫米黑色签字笔写在答题卷的相应位置上.2.除作图可使用2B 铅笔作答外,其余各题请按题号用0.5毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格,超出答题区域的答案无效. 3.考试结束,只需交答题卷.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置....上) 1、2-的绝对值是( )A .2-B .2C .12D .4 2、下列运算正确的是 ( )A . 325()a a = B .325a a a += C .32()a a a a -÷=D . 331a a ÷=3、下列图形中,既是轴对称图形,又是中心对称图形的是( )4、将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情 ( )A .可能发生B .不可能发生C .很可能发生D .必然发生考场号______________ 座位号____________ 班级__________ 姓名____________ 成绩____________ ————————————————————————装订线————————————————————————————5、已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足( ) A .9d >B . 9d =C . 39d <<D .3d =6、已知锐角A 满足关系式:(2sin 1)(3sin 1)0,A A +-=,则sinA =( )A .12-或13 B .12- C .13 D .30°7、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ( ) A .220cmB .220cm πC .210cm πD .25cm π8、如图,△ABC 内接于⊙O ,OD ⊥BC ,垂足为点D ,∠A =50°则∠OCD 的度数是( ) A .40° B .45° C .50° D .60°9、已知:直线y=111n x n n -+++(n 为正整数)与两坐标轴围成的三角形面积为n S , 则=+⋅⋅⋅⋅⋅⋅+++2014321S S S S ( ) . A .20132014 B .201322014⨯ C .20142015 D .201422015⨯ 10、如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 、E 、D 、F 四点在同一个圆上,且该圆的面积最小为4π.⑤DE DF CE CF +的值是定值为8,其中正确结论的个数第8题第10题是( )A.1B.2C.3D.4 二、填空题(本大题共8小题,每小题3分,共24分,把答案填在相应横线上) 11、分解因式:228x -= . 12、函数5y x =-中,自变量x 的取值范围是 .13、“五一”黄金周,某商场收入创历史新高,达126000元,用科学记数法表示为 元. 14、抛物线223y x x =--的顶点坐标为( , ). 15、若实数a 满足a 2-2a -1=0,则2a 2-4a +5=________. 16、已知△ABC 内接于⊙O ,若∠BOC=100°,则∠BAC=________°.17、如图,正方形ABCD 的面积为4,点F ,G 分别是AB ,DC 的中点,将点A 折到FG 上的点P 处,折痕为BE ,点E 在AD 上, 则AE 长为 .18、已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移10米,半圆的直径为2米,则圆心O 所经过的路线长是 米.三、解答题(本大题共有11小题,共76分,解答过程请写在相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题5分)计算:113220143tan 303-⎛⎫-+--+︒ ⎪⎝⎭.FGP BA第17题第18题20.(本题5分)先化简,再求值:2225241244a a aa a a⎛⎫-+-+÷⎪+++⎝⎭,其中a=2+3.21.(本题5分)解方程:解方程:x2-6x+9=(5-2x)2.22.(本题5分)解不等式组62021xx x->⎧⎨>+⎩并把解集在数轴上表示出来............23、(本题8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24、(本题8分)如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.(1)求证:①AE=DF ②AM⊥DF;(2)若M为DF中点,连接EF,直接写出EFDC= .HEMFOBA第24题25、(本题6分)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即350米/秒),并在离该公路100米处设置了一个监测点A .在如图所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段. (1)求点B 和点C 的坐标(保留根号);(2)汽车从点B 匀速行驶到点C 所用的时间是15秒,计算说明该汽车在这段限速路上是否超速?(参考数据:7.13 )第25题26、(本题8分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润y (万元)和月份n 之间满足函数关系式:21424y n n =-+-. (1)若一年中某月的利润为21万元,求n 的值; (2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?27、(本题8分)如图,已知:C 是以AB 为直径的半圆O 上一点,CF ⊥AB 于点F ,直线AC 与过B 点的切线相交于点D ,E 为BD 中点,连接AE 交CF 于点H ,连接CE. (1)求证:点H 是CF 中点; (2)求证:CE 是⊙O 的切线;(3)若⊙O 的半径为2,BE=3,求CF 的长.28、(本题10分)如图,已知线段AB 长为6,点A 在x 轴负半轴,B 在y 轴正半轴,绕A 点顺时针旋转60°,B 点恰好落在x 轴上D 点处,点C 在第一象限内且四边形ABCD 是平行四边形.(1)求点C 、点D 的坐标HF CEBAOD第27题(2)若半径为1的⊙P 从点A 出发,沿A —B —D —C 以每秒4个单位长的速度匀速移动,同时⊙P 的半径以每秒0.5个单位长的速度增加,运动到点C 时运动停止,当运动时间为t 秒时,①t 为何值时,⊙P 与y 轴相切?②在运动过程中,是否存在一个时刻,⊙P 与四边形ABCD 四边都相切,若存在,说出理由;若不存在,问题中⊙P 的半径以每秒0.5个单位长速度增加改为多少时就存在; (3)若线段AB 绕点O 旋转一周,线段AB 扫过的面积是多少?6422465101520ODBAyx642246551015ODCBAyx第28题29、(本题10分)如图,在平面直角坐标系中,开口向下的抛物线(2)(4)y a x x =-+与直线34y x b =+交于A 、B 两点,点A 在x 轴正半轴上,点B 的横坐标为-6. (1)填空:A 点坐标( ,0 ), b = , a = ;(2)点P 是直线AB 上方..的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE⊥AB 于点E.①当△PDE 的周长与△ADC 的周长相等时,求点C 的坐标并求出此时△PDE 的周长;②设点Q 为y 轴上一点,G 为坐标系内一点,作矩形PAQG .随着点P 的运动,矩形的大小、位置也随之改变.当矩形的邻边之比为1︰4时,直接写出对应的点P 的坐标.第29题苏州市第二学期________————————数学二模答案 注意:26题分值为6分一、选择题(每题3分) BDCDD CCADB二、填空题(每题3分) 11、2(2)(2)x x +-;12、x ≥5;13、51.2610⨯;14、(1,4)-如错一个扣1分;15、7;16、50或130°如少一个扣1分;17、233;18、(10)π+如少括号扣1分 三、19、6;每个化简正确1分,结果1分. 20、2a -,4分,原式=3,1分 21、1282,3x x == 22、13x <<,每个不等式1分,结论2分,图1分 23、(1)600人 ,1分;(2)120,20﹪,30﹪,每个1分;(3)3200人,2分;(4)图或表1分,14P =,1分. 24、(1)证明3分一题,(221,2分25、(1)B (3,0)-,C (100,0),1分一个(2100100318+≈,2分 , 50183>,1分, ∴超速,1分 26、(1)5或9,两个答案1分一个,共2分(2)n=7时,y 最大=25,1分一个,共2分(3)令y=0,解出n=2或12; 1分由图像,得停产是1,2,12月. 1分27、(1)3分 (2)3分 (3)2413,2分 28、(1)(6,33)C ,(3,0)D ,1分一个,共2分(2)①45t =或83,2分一个,共4分;②不存在,1分 1分 (3)814π. 2分 29、(1)33(2,0),,82A a b =-=-,1分一个,共3分 (2)①8(,0)3C -,2分,周长为14,2分②111(1,),(1),(1)323232-+-----,1分一个,共3分。
江苏省苏州市工业园区2019年中考数学模拟试卷
2019年江苏省苏州市工业园区中考数学模拟试卷一.选择题(满分30分,每小题3分)1.若a=﹣π,b=﹣3,c=﹣,则下列结论正确的是()A.a<b<c B.c<a<b C.a>b>c D.c>b>a2.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是()A.0.1326×107B.1.326×106C.13.26×105D.1.326×107 3.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°4.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.485.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°6.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()A.B.C.D.7.已知一次函数y=kx+3(k≠0)的图象经过点A,且函数值y随x的增大而增大,则点A 的坐标可能是()A.(﹣2,﹣4)B.(1,2)C.(﹣2,4)D.(2,﹣1)8.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD. +9.如图,矩形AOBC的面积为4,反比例函数y=(k≠0)的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣10.如图,在菱形纸片ABCD中,AB=8,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、O分别在边A,AD上,则EG的长为()A.B.C.4 D.4二.填空题(满分24分,每小题3分)11.若多项式x2﹣(m﹣1)x+16能用完全平方公式进行因式分解,则m=.12.在函数y=中,自变量x的取值范围是.13.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于度.14.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为.15.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.16.若a﹣2b+3=0,则2019﹣a+2b=.17.如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC=7cm,AC=6cm,则△AED的周长等于cm.18.如图,点E、F分别是▱ABCD对角线BD上的两点,要使△ADE≌△CBF,需添加一个条件(只需添加一个即可)三.解答题(共10小题,满分76分)19.(5分)计算: +20﹣|﹣3|+(﹣)﹣1.20.(5分)解不等式组:并将解集在数轴上表示.21.(6分)先化简,再求值:,其中x=3.22.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.23.(8分)为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市某县体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了720名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2)根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2007年该市中小学生约32万人,按此调查,可以估计2007年全市中小学生每天锻炼超过1h的约有万人;(3)如果计划2009年该市中小学生每天锻炼未超过1h的人数降到6万人,求2007年至2009年锻炼未超过1h人数的年平均降低的百分率.24.(8分)如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB,求证:AC=AE.25.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.26.(10分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC 上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.27.(10分)如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.28.(10分)如图,△ABC和△ADE是有公共顶点的直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点.(1)如图1,若△ABC和△ADE是等腰三角形,求证:∠ABD=∠ACE;(2)如图2,若∠ADE=∠ABC=30°,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,若AB=3,AD=2,若把△ADE绕点A旋转,当∠EAC=90°时,求PB的长.。
江苏省苏州市2019年中考数学二模试卷(无答案)
一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.2-的倒数是A .2B .12-C .–2D .122.2018年苏州市GDP (国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为 A .1860×109B .186×1010C .18.6×1011D .1.86×10123.有一组数据:1, 3, 3, 6, 7, 8,这组数据的中位数是A .3B .3.5C .4D .4.5 4.下列运算结果正确的是A .235()a a = B .222()a b a b -=- C .22232a b a b a b --=- D .22a b a b -÷=-5.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为A .90°B .100°C .110°D .120°6.若点(,)A a b 在反比例函数2y x=的图象上,则代数式4ab -的值为 A .0 B .–2 C .2 D .– 6 7.如图,AB 为⊙O 的直径,点,C D 在⊙O 上.若30AOD ∠=︒,则BCD ∠等于 A .75° B .95° C .100° D .105°8.如图,在边长为1的小正方形网格中,ABC ∆的三个顶点均在格点上,若向正方形网格中投针,落在ABC ∆内部的概率是A .12 B .34 C .38 D .7169.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan∠DAC 的值为CBA第5题第7题第8题A .23+B .3C .23-D .3310.已知R t△ACB 中,点D 为斜边AB 的中点,连接CD ,将△DCB 沿直线DC 翻折,使点B 落在点E 的位置,连接DE 、CE 、AE ,DE 交AC 于点F ,若BC =6,AC =8,则AE 的值为A .1425 B .145 C .125 D .11225二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.-5的相反数是 .12.若代数式2x -有意义,则x 满足的条件是 . 13.已知2x y +=,则5x y --的值是 .14.若一个多边形的内角和是540°,则这个多边形是 .15.一圆锥的母线长为3,底面半径为1,则该圆锥的侧面积为 .16.如图,OC 是圆O 的半径,弦AB ⊥OC 于点D ,∠OBA =30°,AB =43,则S 阴影= .17.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是 .18.如图将R t△ACB 绕斜边中点O 旋转一定的角度得到△FAE ,已知AC =8,BC =6,则cos∠CAE = . 三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分5分)计算: 2012cos 60()(3)2π-︒+--F CBADGFOAE第9题第10题第16题 第17题第18题 OD CBAGF EDCB A20.(本题满分5分)解不等式组: 341312x x x x -≤⎧⎪⎨+>-⎪⎩21.(本题满分5分) 先化简,再求值:221(1)211x x x x -÷--+-,其中1x =.22.(本题满分7分)某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,若要保证获利不低于1000元,则甲商品最多能购进多少件?23.(本题满分8分) 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列间题: (1)在表中:m = ,n = ; (2)补全频数分布直方图;(3)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A 、C 两组学生的概率是多少?并列表或画树状图说明.24.(本题满分8分) 已知:如图,在Rt ACB ∆中,90ACB ∠=︒,点D 是AB 的中点,点E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F . (1)求证: ADE FCE ∆≅∆;(2)若120DCF ∠=︒,2DE =,求BC 的长.FE DCBA25.(本题满分8分) 如图,矩形ABCD 的边AD ,AB 的长分别为3,8,点E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于F . (1)若点B 的坐标为(6,0)-,求点E 的坐标及m 的值;(2)连接AE ,若2AF AE -=,求反比例函数的表达式.26.(本题满分10分) 如图,ACB ∆内接于圆O ,AB 为直径, CD ⊥AB 与点D ,E 为圆外一点,EO ⊥AB ,与BC 交于点G ,与圆O 交于点F ,连接EC ,且EG =EC . (1)求证:EC 是圆O 的切线; (2)当22.5ABC ∠=︒时,连接CF , ①求证:AC =CF ;②若AD =1,求线段FG 的长.27.(本题满分10分) 正方形ABCD 中,M 是AD 中点,点P 从点A 出发沿A-B-C-D 的路线匀速运动,到点D 停止,点Q 从点D 出发,沿D-C-B-A 路线匀速运动,P 、Q 两点同时出发,点P 的速度是点Q 速度的m倍(m >1),当点P 停止时,点Q 也同时停止运动,设t 秒时,正方形ABCD 与∠PMQ 重叠部分的面积为y ,y 关于t 的函数关系如图2所示,则(1)求正方形边长AB ; (2)求m 的值; yxOFEDCBAGOD CBAFExyxyABCDC'EABCDEC'FGM 图1图2O O28.(本题满分10分) 已知抛物线经过点A (-1,0)、点B (3,0)、点C (0,3),点D 为抛物线在第一象限内图像上一动点,连接AD ,交y 轴于点E ,将点C 关于线段AD 作轴对称,对称点为'C ,连接'AC . (1)求抛物线的解析式;(2)如图1如果点'C 落在x 轴,求点E 坐标;(3)如图2,连接AC 、BC ,BC 与AD 交于点F ,拖动点D ,点'C 落在第四象限,作FG ∥AC ,交x 轴于点M ,交'AC 于点G ,若∠AGF =90°,求点M 的横坐标.。
2019年苏州市中考数学模拟试卷(二)
2019年苏州市中考数学模拟试卷一、选择题:本大题共10小题,毎小题3分,共30分 1.计算2–(–3)×4的结果是 A .20;B .–10;C .14;D .–202.据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为 A .1.05×105;B .0.105×10–4;C .1.05×10–5;D .105×10–73.一元二次方程222350x x -+=的根的情况是 A .方程没有实数根B .方程有两个相等的实数根C .方程有两个不相等的实数根D .无法判断方程实数根情况4.下列运算正确的是 A .2a –a =2B .2a +b =2abC .–a 2b +2a 2b =a 2bD .3a 2+2a 2=5a 45.如图,⊙O 中,弦 A B 、CD 相交于点 P ,若∠A=30°,∠APD=70°,则∠B 等于 A .30°; B .35°; C .40°; D .50°6.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x 2﹣2x+kb+1=0 的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是 0第5题(第6题)7.将抛物线 y =x 2﹣6x+21 向左平移 2 个单位后,得到新抛物线的解析式为A .y=(x ﹣8)2+5 B .y=(x ﹣4)2+5 C .y=(x ﹣8)2+3D .y=(x ﹣4)2+38.如图,四边形 O ABC 是矩形,四边形 A DEF 是正方形,点 A 、D 在 x 轴的负半轴上,点 C 在 y 轴的A .4;B .-4;C .6;D .-6。
9.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为 (3,0)-,M 是圆上一点,∠BMO=120°.⊙C 圆心C 的坐标是A .31(,)22; B .31(,)22-; C .31(,)22-; D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年江苏省苏州市工业园区星海实验中学中考数学二模试卷
一.选择题(共10小题)
1.在0,1,﹣,﹣1四个数中,最小的数是()
A.0 B.1 C.D.﹣1
2.移动互联网已经全面进入人们的日常生活,截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()
A.1.62×104B.1.62×106C.1.62×108D.0.162×109
3.如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()
A.40°B.60°C.80°D.100°
4.某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45
则这组数据的中位数是()
A.44 B.43 C.42 D.40
5.如图,点A、B、C是⊙O上的点,OA=AB,则∠C的度数为()
A.30°B.45°C.60°D.30°或60°
6.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()
A.B.C.D.
7.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1
8.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点测得该塔顶端F的仰角分别为45°和60°,矩形建筑物宽度AD=20m,高度DC=30m则信号发射塔顶端到地面的高度(即FG的长)为()
A.(35+55)m B.(25+45)m C.(25+75)m D.(50+20)m
9.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()
A.1 B.﹣3 C.4 D.1或﹣3
10.边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为()
A.4﹣2B.2﹣2 C.﹣1 D.
二.填空题(共8小题)
11.分解因式:a2﹣4b2=.
12.函数y=中,自变量x的取值范围是.
13.如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=度.
14.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为名.
15.一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)
16.当x=1时,代数式ax3+bx+1的值为5,则代数式4﹣a﹣b的值=.
17.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F 分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.
18.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.
三.解答题(共10小题)
19.计算:+()﹣1﹣20190
20.解不等式组:
21.先化简,再求值:﹣÷,其中x=﹣3+2.
22.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面(1)从中随机抽出一张牌,试求出牌面数字是偶数的概率;
(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
23.为了提高农民抵御大病风险的能力,全国农村推行了新型农村合作医疗政策,农民只需每人每年交10元钱,就可以加入合作医疗.若农民患病住院治疗,出院后到新型农村合作医疗办公室按一定比例报销医疗费.小军与同学随机调查了他们镇的一些村民,根据收集到的数据绘制成了如图所示的统计图.
根据以上信息,解答下列问题:
(1)本次共调查了多少村民被调查的村民中,有多少人参加合作医疗得到了报销款?
(2)若该镇有村民10000人,请你计算有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年增长率相同,求这个年增长率.
24.已知:如图,四边形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
(1)求证:BE=CF;
(2)若AD=DC=2,求AB的长.
25.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
26.如图1,DE是⊙O的直径,点A、C是直径DE上方半圆上的两点,且AO⊥CO.连接AE,CD相交于点F,点B是直径DE下方半圆上的任意一点,连接AB交CD于点G,连接CB交AE于点H.
(1)∠ABC=;
(2)证明:△CFH∽△CBG;
(3)若弧DB为半圆的三分之一,把∠AOC绕着点O旋转,使点C、O、B在一直线上时,如图2,求的值.
27.在直角坐标系xOy中,A(0,2)、B(﹣1,0),将△ABO经过旋转、平移变化后得到如图1所示的△BCD.
(1)求经过A、B、C三点的抛物线的解析式;
(2)连结AC,点P是位于线段BC上方的抛物线上一动点,若直线PC将△ABC的面积分成1:3两部分,求此时点P的坐标;
(3)现将△ABO、△BCD分别向下、向左以1:2的速度同时平移,求出在此运动过程中△ABO与△BCD 重叠部分面积的最大值.
28.已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,直接写出相应的m的值.
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.。