江苏省常州市七年级(上)期末数学试卷

合集下载

常州市初一上学期数学期末试卷带答案

常州市初一上学期数学期末试卷带答案
31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点 , 所表示的数分别为0,12.将一枚棋子放置在点 处,让这枚棋子沿数轴在线段 上往复运动(即棋子从点 出发沿数轴向右运动,当运动到点 处,随即沿数轴向左运动,当运动到点 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点 开始运动 个单位长度至点 处;第2步,从点 继续运动 单位长度至点 处;第3步,从点 继续运动 个单位长度至点 处…例如:当 时,点 、 、 的位置如图2所示.
22.如图所示, , ,BP平分 则 ______度
23.如果一个数的平方根等于这个数本身,那么这个数是_____.
24.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东61°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是__________°.
25.若α与β互为补角,且α=50°,则β的度数是_____.
33.(1)探究:哪些特殊的角可以用一副三角板画出?
在① ,② ,③ ,④ 中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)
(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线 ,然后将一副三角板拼接在一起,其中 角( )的顶点与 角( )的顶点互相重合,且边 、 都在直线 上.固定三角板 不动,将三角板 绕点 按顺时针方向旋转一个角度 ,当边 与射线 第一次重合时停止.
26.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x人,依题意列方程得_____.
27.已知二元一次方程2x-3y=5的一组解为 ,则2a-3b+3=______.

2010-2023历年江苏省常州市七年级第一学期期末考试数学卷

2010-2023历年江苏省常州市七年级第一学期期末考试数学卷

2010-2023历年江苏省常州市七年级第一学期期末考试数学卷第1卷一.参考题库(共20题)1.(本题8分)小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈趋势(选择“上升”或“下降”);这5个月每月电费呈趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达24 3元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.月用电量(度)电费(元)1月9051.802月9250.853月9849.244月10548.555月2.根据如图所示的计算程序,若输出的值为-1,则输入的值为_ _.3.关于的方程(是一元一次方程,则.4.(本题满分5分)化简后再求值:,其中5.某工厂生产地产品分成n个档次,生产第一档次(即最低档次)的产品,每件利润10元。

每提高一个档次,每件利润增加2元,则当生产的产品为第n个档次(即最高档次)时每件利润为()A.[]元B.()元C.元D.元6.(本题满分6分)阅读以下材料:在做解方程练习时,学习卷中有一个方程“■ ”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当 =3时代数式的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.7.(本题满分6分)右图是由几个小正方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方块的个数,请画出这个几何体的主视图和左视图8.、、、为有理数,现规定一种新的运算:=-,, 那么=14时,x =_______.9.小亮参加冬季长跑,前1000m的速度为a m/min,后1000m的速度为bm/min,则全程的平均速度是()A.m/minB.m/minC.m/minD.m/min10.(本题满分10分)计算(1)(2)11.在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要__________根游戏棒;在空间搭4个大小一样的等边三角形,至少要_________根游戏棒12..实数、在数轴上的位置如图所示,则化简的结果为()A.B.C.D.13.一条1米长的线,小明第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第五次后剩下的线的长度是_____ 米。

江苏省常州市2022-2023学年七年级上学期期末数学试题

江苏省常州市2022-2023学年七年级上学期期末数学试题

江苏省常州市2022-2023学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________二、填空题9.5的相反数是___________.10.心脏是人体最重要的器官之一,它每天大约要向全身输送7600升血液.数据7600用科学记数法表示为___________.11.已知∠A =60°,则∠A 的补角是______度.12.已知7x =是方程()212x a x --=+的解,则=a ___________. 13.若23m a b 与23n a b +-是同类项,则mn =___________.14.某校元旦假期开展“巧手制作包装盒”的实践活动,如图是小芳用硬纸片做成的一个包装盒的展开图.若这个包装盒的体积是3800cm ,则图中的=a ___________.15.已知226A x kx x =+-,21B x kx =-+-.若2A B +的值与x 的取值无关,则k =___________.16.如图,过数轴上表示1的点作数轴的垂线1l ,过数轴上表示2的点作数轴的垂线2l ,过数轴上表示3的点作数轴的垂线3l ,….已知点0A 表示的数为1-,将点0A 沿直线1l 翻折得到点1A ,将点1A 沿直线2l 翻折得到点2A ,将点2A 沿直线3l 翻折得到点3A ,…,则2023A 表示的数为___________.三、解答题1如图,数轴上的点A、B表示的数分别为1-、7,C是线段AB的中点.(1)点C表示的数是___________;(2)若点P、Q分别从点C、B同时出发,以每秒3个单位长度和1个单位长度的速度沿数轴正方向运动,则t秒后,点P、Q表示的数分别是___________、___________(用含t的代数式表示);(3)在(2)的条件下,若P、Q两点之间的距离为2,求t的值.【方法迁移】(4)如图,∠140AOB=︒,OC平分AOB∠.现有射线OP、OQ分别从OC、OB同时出发,以每秒15︒和每秒10︒的速度绕点O顺时针旋转,当OP旋转一周时,这两条射线都停止旋转.问经过几秒后,射线OP、OQ的夹角为30︒?【生活运用】(5)周末的下午,小明看到钟面显示3点整,此时分针与时针的夹角恰好为90︒,经过___________分钟后,分针与时针的夹角首次..变成45°.。

常州市七年级上学期期末数学试题题及答案

常州市七年级上学期期末数学试题题及答案

常州市七年级上学期期末数学试题题及答案 一、选择题 1.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2062.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( )A .9B .327-C .3-D .(3)--3.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-=4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3805.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个 6.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm 8.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 9.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =1310.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 11.如果a ﹣3b =2,那么2a ﹣6b 的值是( )A .4B .﹣4C .1D .﹣1 12.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限 13.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 14.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 15.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题16.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.17.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 18.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.19.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 20.如图,若12l l //,1x ∠=︒,则2∠=______.21.若a a -=,则a 应满足的条件为______.22.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.23.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.24.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)25.若α与β互为补角,且α=50°,则β的度数是_____.26.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.27.方程x +5=12(x +3)的解是________. 28.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.29.已知7635a ∠=︒',则a ∠的补角为______°______′.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.32.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.33.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠.例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.34.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.35.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.36.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.37.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +,根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案.【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D.【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.2.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C;D. (3)--=3,故排除D.故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.3.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.4.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;③假如x=y,得到a无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩ ,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a =⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键6.C解析:C【解析】①∵AD 平分△ABC 的外角∠EAC ,∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB ,∴∠EAD=∠ABC ,∴AD ∥BC ,故①正确.②由(1)可知AD ∥BC ,∴∠ADB=∠DBC ,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC =+,BN=12BC , ∴MN=MB+BN ,=MC-BC+BN ,=1()2AB BC +-BC+12BC , =12AB , =4,同理,当点C 在线段AB 上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4, ,故选:D .【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.D解析:D【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程3x ﹣1=0,移项得:3x =1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.11.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.12.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.13.B解析:B【解析】【分析】延长EP 交CD 于点M ,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP ,继而根据平角定义以及∠BEP=∠GEP 即可求得答案.【详解】延长EP 交CD 于点M ,∵∠EPF 是△FPM 的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD ,∴∠BEP=∠FMP ,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP ,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.14.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.15.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题16.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.18.100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;19.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.21.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.解析:a 0≥【解析】【分析】根据绝对值的定义和性质求解可得.【详解】 解:a a -=,a 0∴≥,故答案为a 0≥.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.22.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.23.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.24.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.25.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.26.18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:118000=1.18×105,故答案为1.18×105.27.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.28.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.29.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题. 30.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.34.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.。

常州市七年级上学期期末数学试题

常州市七年级上学期期末数学试题

常州市七年级上学期期末数学试题一、选择题1.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π2.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或733.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+56.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )A .0B .1C .12D .38.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个 B .2个C .3个D .4个9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -10.如图的几何体,从上向下看,看到的是( )A .B .C .D .11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15013.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+114.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟15.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 20.把5,5,35按从小到大的顺序排列为______. 21.把53°24′用度表示为_____.22.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.23.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________24.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___25.|﹣12|=_____. 26.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号) 29.用“>”或“<”填空:13_____35;223-_____﹣3.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.34.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD的度数(结果用含m n、的代数式表示),请画出图形,直接写出答案.35.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a++|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.36.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.37.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.38.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点,∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D. 【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.2.A解析:A 【解析】 【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可. 【详解】解:(x+3)2=4, x ﹣3=±2, 解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5), 解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ), 解得:m =﹣1, 故选:A . 【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.3.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)mnm na a a a +⋅=>,所以此题结果等于325a a +=,选A ;4.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.6.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.7.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.8.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.11.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.13.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.14.C解析:C【解析】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.19.y=﹣.【解析】【分析】根据题意得出x=﹣(3y﹣2)的值,进而得出答案.【详解】解:∵关于x的一元一次方程①的解为x=2020,∴关于y的一元一次方程②中﹣(3y﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】 根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.20.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.22.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.23.-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261x bx ax x-++-+=(a-1)x2+(b-6)x+1,由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.24.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:121 4【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据213 7SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵213 7S S =,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为121 4.【点睛】本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.25.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.26.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.27.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.28.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.29.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.30.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】 (1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 33.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC +∠BOC +∠AOB =150°;答:由射线OA ,OB ,OC 组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x ,则∠1=3x +30°,∵∠1+∠2=90°,∴x +3x +30°=90°,∴x =15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM =180°﹣45°=135°,∠COM =180°﹣15°=165°,∵OE 为∠BOM 的平分线,OF 为∠COM 的平分线,∴∠MOF =12∠COM =82.5°,∠MOE =12∠MOB =67.5°, ∴∠EOF =∠MOF ﹣∠MOE =15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.34.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°; 图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.35.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.36.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.37.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,。

常州市初一上学期数学期末试卷带答案

常州市初一上学期数学期末试卷带答案

常州市初一上学期数学期末试卷带答案一、选择题1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.若34(0)x y y =≠,则( ) A .34y 0x += B .8-6y=0x C .3+4x y y x =+ D .43x y = 3.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5925.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( )A .3B .4C .5D .66.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -8.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+59.若21(2)0x y -++=,则2015()x y +等于( )A .-1B .1C .20143D .20143-10.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离11.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.14.从一个n边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n的值是___________.15.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,∠的大小为______.那么AOB16.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.17.36.35︒=__________.(用度、分、秒表示)-,10.点P以每秒2个单位长度从A出发沿数18.在数轴上,点A,B表示的数分别是8轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.19.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=______cm.20.如图,将△ABE向右平移3cm得到△DCF,若BE=8cm,则CE=______cm.21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.-2的相反数是__. 23.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?27.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?28.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQ AB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN AB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.29.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t的值;②线段AB上是否存在一点P,满足3BD PA PC-=?若存在,求出点P表示的数x;若不存在,请说明理由.31.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据同类项的定义,单项式和多项式的定义解答.【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n 的系数是25,故本选项错误. C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误.故选C .【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.D解析:D【解析】【分析】根据选项进行一一排除即可得出正确答案.【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错;B 中、8-6y=0x ,可得出43x y =,故B 错;C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y =,交叉相乘得到34x y =,故D 对. 故答案为:D.【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.3.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A .【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n ﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.8.A解析:A【解析】试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A .考点:探寻规律.9.A解析:A【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y)2015=(1﹣2)2015=﹣1.故选A10.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.11.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.【详解】设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n边形的某个顶点出发,可以引(n-3)条对角线,把n边形分为(n-2)的三角形作答.设多边形有n条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.15.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.16.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.17.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.18.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.19.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.20.5【解析】【分析】根据平移的性质可得BC=3cm ,继而由BE=8cm ,CE=BE-BC 即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.21.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.23.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题25.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°∴∠MEN =12×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG∴∠NEF =12∠AEF ,∠MEG =12∠BEG ∴∠NEF +∠MEG =12∠AEF +12∠BEG =12(∠AEF +∠BEG )=12(∠AEB ﹣∠FEG ) ∵∠AEB =180°,∠FEG =30° ∴∠NEF +∠MEG =12(180°﹣30°)=75° ∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.27.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.29.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.30.(1)16;(2)①t的值为3或143秒;②存在,P表示的数为314.【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D表示的数为16,(2)①当运动时间是t秒时,在运动过程中,B点表示的数为3+2t,A点表示的数为2t,C点表示的数为10-t,D点表示的数为16-t,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16 (2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下: 当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤,x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程. 31.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.32.(1)60°;(2)射线OP 是∠A OC 的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP 的度数,再根据角平分线的定义判断;(3)根据∠AOC ,∠AON ,∠NOC ,∠MON ,∠AOM 的和差关系即可得到∠NOC 与∠AOM 之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM 平分∠BOC ,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

2020-2021学年江苏省常州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省常州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省常州市七年级(上)期末数学试卷一、选择题(本大题共8小题,共16.0分)1.下列各数中,无理数是()A. 0.6⋅B. 227C. π3D. −2.6161161112.下列运算正确的是()A. 2a+3b=5abB. 4a3+2a2=6a5C. 2a2b−2ab2=0D. 3ab−3ba=03.下面的几何体中,哪一个不能由平面图形绕某直线旋转一周得到()A. B. C. D.4.用代数式表示“m的2倍与n平方的差”,正确的是()A. (2m−n)2B. 2(m−n)2C. 2m−n2D. (m−2n)25.如图,从人行横道线上的点P处过马路,下列线路中最短的是()A. 线路PAB. 线路PBC. 线路PCD. 线路PD6.整式ax+2b的值随x的取值不同而不同,如表是当x取不同值时对应的整式的值,则关于x的方程−ax−2b=2的解是()x−2−1012ax+2b20−2−4−6A. x=0B. x=−1C. x=−2D. x=27.图1是一个小正方体的展开图,小正方体从图2的所示位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是()A. 常B. 州C. 越D. 来8.我们知道,式子|x−3|的几何意义是数轴上表示x的点与表示3的点之间的距离,则式子|x−2|+2|x+1|的最小值是()A. 2B. 3C. 4D. 5二、填空题(本大题共8小题,共16.0分)9.−2的绝对值是______.10.截至2020年11月17日凌晨,中国首次火星探测任务“天问一号”探测器已在轨飞行116天,距离地球约63800000千米,请将63800000用科学记数法表示______ .11.如果某天的最高气温是3℃,最低气温是−6℃,则这天的日温差是______ ℃.12.已知∠A=25°,那么∠A的补角是______ °.13.如果关于x的方程x=2x−3和4x−2m=3x+2的解相同,那么m=______ .AB,D、E分别是BC、AB的14.如图,已知AB=6,C是线段AB上一点,且AC=23中点,则DE=______ .15.如图所示,正方形的边长均是a,以图①、②、③呈现的规律类推,图⑩中阴影部分的面积是______ .16.已知(x−1)2021=a0+a1x1+a2x2+a3x3+⋯+a2021x2021,则a1+a2+⋯+a2021=______ .三、解答题(本大题共9小题,共68.0分)17.计算:(1)−8+4−(−2)−3;(2)−14+(−5)×(−8)−(−2)3÷(−4).18.先化简,再求值:2(2a2b−ab2)−3(−2a2b+3ab2),其中a=1,b=−12.19.解方程:(1)4+3(x−3)=x+1;(2)12y−9y−26=2.20.农历新年即将来临,某校书法兴趣班计划组织学生写一批对联,如果每人写6副,则比计划多7副;如果每人写5副,则比计划少13副,求这个兴趣班有多少名学生?(列方程解决)21.如图,每个小方格都是边长为1的小正方形,A、B、C三点都是格点(每个小方格的顶点叫做格点).(1)找出格点D,画AB的平行线CD;(2)找出格点E,画AB的垂线CE;(3)AB______ AC+CB(填“>”、“<”或“=”);△ABC的面积是______ .22.如图,直线AB、CD相交于点O,CD⊥OF,OE平分∠BOD.(1)若∠AOC=72°,求∠EOF的度数;(2)若∠DOE比∠BOF大24°,求∠AOF的度数.23.“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:每户每月用水量单位(元/吨)不超过15吨 3.7超过15吨的部分 5.1另:每吨用水加收污水处理费、水资源费共1.9元(1)某用户1月份用水10吨,1月份应交水费______ 元;(2)某用户7月份共交水费119元,该用户7月份用水多少吨?(列方程解决)24.如图,在平整的地面上,将若干个边长均为1cm的小正方体堆成一个几何体,并放置在墙角.(1)请画出这个几何体的主视图和俯视图(可加阴影突出);(2)若将其露在外面的面涂上一层漆,则其涂漆面积为______ cm2;(3)添加若干个上述小正方体后,所成几何体的左视图和俯视图不变,则有______种添加方式.25.数学中,常对同一个量用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”[探究一]如图1,在边长为a的正方形纸片上剪去一个边长为b(b<a)的正方形,你能表示图中阴影部分的面积吗?阴影部分的面积是______ ;如图2,也可以把阴影部分沿着虚线AB剪开,分成两个梯形,阴影部分的面积是______ ;用两种不同的方法计算同一个阴影部分的面积,可以得到等式______ .[探究二]如图3,一条直线上有n个点,请你数一数共有多少条线段呢?方法1:一路往右数,不回头数.以A1为端点的线段有A1A2、A1A3、A1A4、A1A5、…、A1A n,共有(n−1)条;以A2为端点的线段有A2A3、A2A4、A2A5、…、A2A n,共有(n−2)条;以A3为端点的线段有A3A4、A3A5、…、A3A n,共有(n−3)条;…以A n−1为端点的线段有A n−1A n,共有1条;图中线段的总条数是______ ;方法2:每一个点都能和除它以外的(n−1)个点形成线段,共有n个点,共可形成n(n−1)条线段,但所有线段都数了两遍,所以线段的总条数是______ ;用两种不同的方法数线段,可以得到等式______ .[应用]运用探究一、探究二中得到的等式解决问题.计算:992−982+972−962+952−942+⋯+32−22+12.[迁移]某篮球队共有8名实力相当的队员,现要随机派3名队员参加联队比赛,共有______ 种不同的选择方案.答案和解析1.【答案】C【解析】解:A 、0.6.是循环小数,属于有理数,故本选项不合题意; B 、227是分数,属于有理数,故本选项不合题意; C 、π3是无理数,故本选项符合题意;D 、−2.616116111是有限小数,属于有理数,故本选项不合题意; 故选:C .无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】D【解析】解:A 、2a +3b ,无法合并,故此选项错误; B 、4a 3+2a 2,无法合并,故此选项错误; C 、2a 2b −2ab 2=0,无法合并,故此选项错误; D 、3ab −3ba =0,正确. 故选:D .接利用合并同类项法则计算得出答案.此题主要考查了合并同类项,正确掌握定义是解题关键.3.【答案】B【解析】解:A.将“半圆”绕着其直径所在的直线,旋转一周所形成的几何体是“球”,因此选项A 不符合题意;B .由于正方体的六个面都是“平面”,因此不可能是某个平面图形旋转得到的,因此选项B 符合题意;C .将“直角三角形”绕着一条直角边所在的直线,旋转一周所形成的几何体是“圆锥”,因此选项C不符合题意;D.将“长方体”绕着一条边所在的直线,旋转一周所形成的几何体是“圆柱”,因此选项D不符合题意;故选:B.根据“面动成体”,得出每个几何体是由相应的平面图形旋转得到的,进而得出判断.本题考查点、线、面、体,理解面动成体是正确判断的前提.4.【答案】C【解析】【分析】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.根据题意可以用代数式表示m的2倍与n平方的差.【解答】解:用代数式表示“m的2倍与n平方的差”是:2m−n2,故选:C.5.【答案】C【解析】解:从人行横道线上的点P处过马路,下列线路中最短的是线路PC.故选:C.根据垂线段最短矩形判断.本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.6.【答案】A【解析】解:∵当x=0时,ax+2b=−2,∴2b=−2,b=−1,∵x=−2时,ax+2b=2,∴−2a−2=2,a=−2,∴−ax−2b=2为2x+2=2,解得,x=0.故选:A.根据图表求得一元一次方程−ax−2b=2为2x+2=2,即可得出答案.本题主要考查解一元一次方程,正确得出一元一次方程是解题的关键.7.【答案】B【解析】解:由正方体的表面展开图的“相间、Z端是对面”可知,“常”与“来”是对面,“州”与“好”是对面,“越”与“越”是对面,翻动第1次,第2次时,“好”在前面,“州”在后面,翻动第3次时,“好”在下面,“州”在上面,故选:B.利用正方体的表面展开图的特征判断对面,利用翻转得出答案.本题考查正方体的表面展开图,掌握正方体表面展开图的特征以及翻转的规律是得出正确答案的前提.8.【答案】B【解析】解:x=−1时,|x−2|+2|x+1|取最小值3+2×0=3,故选:B.当0≤x≤2时,|x−2|+|x+1|最小值为3,|x−2|+2|x+1|取最小值x=−1即可.本题考查绝对值,关键是理解绝对值的几何意义:表示数轴上两点间的距离.9.【答案】2【解析】解:−2的绝对值是:2.故答案为:2.直接利用绝对值的定义进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.10.【答案】6.38×107【解析】解:63800000=6.38×107.故答案为:6.38×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】9【解析】解:这天的温差为3−(−6)=3+6=9℃.故答案为:9℃.用最高温度减去最低温度,再根据“减去一个数等于加上这个数的相反数”进行计算即可得解.本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.12.【答案】155【解析】解:∵∠A=25°,∴∠A的补角=180°−25°=155°.故答案为:155°.根据互为补角的两个角的和等于180°列式进行计算即可得解.本题考查补角的定义,和为180°的两个角互为补角.13.【答案】12【解析】解:方程x=2x−3的解为x=3,∵方程4x−2m=3x+2和x=2x−3的解相同,∴方程4x−2m=3x+2的解为x=3,当x=3时,12−2m=9+2,解得m=12.故答案为:12.先求出方程x=2x−3的解,再把方程的解代入方程4x−2m=3x+2中,求出m.本题考查了一元一次方程的解法及方程的同解的含义.理解同解方程是解决本题的关键.14.【答案】2【解析】解:∵AB=6,且AC=23AB.∴AC=4.∴CB=AB−AC=2.∵D、E分别是BC、AB的中点.∴CD=12BC=1,EB=12AB=3.∴EC=EB−BC=1.∴ED=EC+CD=2.故答案为:2.根据线段中点的定义和线段的和差即可得到结论.本题考查了两点间的距离,利用了线段的和差,线段中点的性质.15.【答案】4−π4a2【解析】解:∵图①中阴影部分面积S①=a2−π(12a)2=4−π4a2;图②中阴影部分面积S②=a2−4(14π⋅14a2)=4−π4a2;图③中阴影部分面积S③=a2−9(14π⋅19a2)=4−π4a2;……∴图⑩中阴影部分的面积是4−π4a2.故答案为:4−π4a2.图①中阴影部分的面积=正方形的面积−圆的面积、图②中阴影部分的面积=正方形的面积−4个圆的面积、图③中阴影部分的面积=正方形的面积−9个圆的面积,据此得出它们的面积都相等.本题考查了图形的变化规律,解题时利用了“分割法”来求阴影部分的面积.16.【答案】1【解析】解:当x =1时,a 0+a 1+a 2+a 3+⋯+a 2021=(1−1)2021=0; 当x =0时,a 0=(0−1)2021=−1,a 1+a 2+a 3+⋯+a 2021=0−(−1)=1, 故答案为:1.令x =1代入求值可得a 0+a 1+a 2+a 3+⋯+a 2021=0,令x =0可得a 0=−1,易得结果.本题主要考查了代数式求值,关键是取特殊值代入求解.17.【答案】解:(1)−8+4−(−2)−3=−4+2−3 =−5.(2)−14+(−5)×(−8)−(−2)3÷(−4) =−1+40−(−8)÷(−4) =39−2 =37.【解析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先乘方,然后计算乘除法,最后从左向右依次计算,求出算式的值是多少即可. 此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.【答案】解:原式=4a 2b −2ab 2+6a 2b −9ab 2=10a 2b −11ab 2,当a =1,b =−12时,原式=10×12×(−12)−11×1×(−12)2=−5−114=−314.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)去括号,可得:4+3x−9=x+1,移项,可得:3x−x=1−4+9,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:3y−(9y−2)=12,去括号,可得:3y−9y+2=12,移项,可得:3y−9y=12−2,合并同类项,可得:−6y=10,.系数化为1,可得:y=−53【解析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.【答案】解:设这个兴趣班有x名学生,由题意得:6x−7=5x+13,解得:x=20.答:这个兴趣班有20名学生.【解析】由如果每人写6副,则比计划多7副,知写的总对联数为6x−7,又由如果每人写5副,则比计划少13副,可知写的总对联数5x+13,根据写的总对联数相等即可列出方程.本题考查了一元一次方程的应用,总人数不变是本题的突破口.21.【答案】<9【解析】解:(1)如图,点D,线段CD即为所求;(2)如图,点E,垂线CE即为所求;(3)AB<AC+CB;△ABC的面积是:4×5−12×1×5−12×3×3−12×2×4=9.故答案为:<;9.(1)根据网格即可找出格点D,画AB的平行线CD;(2)根据网格即可找出格点E,画AB的垂线CE;(3)根据两点之间线段最短可得AB<AC+CB;根据网格即可求出△ABC的面积.本题考查了作图−应用与设计作图,线段的性质:两点之间线段最短,全等三角形的判定与性质,解决本题的关键是掌握线段的性质:两点之间线段最短,全等三角形的判定与性质.22.【答案】解:(1)∵CD⊥OF.∴∠DOF=90°.∵∠BOD=∠AOC.∴∠BOD=∠AOC=72°.∵OE平分∠BOD.∴∠DOE=12∠BOD=36°.∴∠EOF=∠DOF−∠DOE=90°−36°=54°.(2)设∠BOF=x°,则∠DOE=(x+24)°.∵OE平分∠BOD.∴∠BOD=2∠DOE=(2x+24)°.∵∠BOD+∠BOF=∠DOF=90°.∴2x+48+x=90.∴x=14即:∠BOF=14°.∴∠AOF=180°−∠BOF=166°.【解析】(1)根据垂直和角平分线定义即可求解.(2)根据角关系∠BOD+∠BOF=90°.建立等量关系,即可求解.本题考查了垂直定义,角平分线的运用,角之间和差关系,属于基础题.23.【答案】56【解析】解:(1)(3.7+1.9)×10=56(元),故答案为:56;(2)设该用户7月份用水x吨,∵5.6×15=84<119,∴x>15,根据题意得84+(x−15)×(5.1+1.9)(x−15)=119,解得x=20.答:该用户7月份用水20吨.(1)1月份用水10吨,没有超过15吨,所以用3.7加污水处理费再乘10即可;(2)设该用户2月份用水x吨,则可判断x>15,利用前15吨按每吨(3.7+1.9)元缴费,超过15吨后按每吨(5.1+1.9)元缴费列方程,然后解方程即可.本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.解决本题的关键是要分段缴费.24.【答案】16 5【解析】解:(1)这个组合体的主视图、俯视图如下:(2)主视图的面积为6cm2,左视图的面积为4cm2,俯视图的面积为4cm2,被挡住的面积为2cm2,因此涂漆部分的面积为6+4+4+2=16(cm2),故答案为:16;(3)这个组合体的左视图、俯视图如下:在俯视图上标注出相应位置增添小立方体的情况,因此有①第1处增添1块,②第1处增添2块,③第2处增添1块,④第1处增添1块,第2处增添1块,⑤第1处增添2块,第2处增添1块,所以共有5种添加方式,故答案为:5.(1)根据简单组合体的三视图的画法画出主视图、俯视图即可;(2)三种视图的面积和再加上被挡住的面积;(3)通过左视图和俯视图,在俯视图上标注增加的个数即可.本题考查简单组合体的三视图,“长对正,宽相等,高平齐”是画三视图的基本原则.25.【答案】a2−b2(a+b)(a−b)a2−b2=(a+b)(a−b)(n−1)+(n−2)+(n−3)+⋯+3+2+1n(n−1)2(n−1)+(n−2)+(n−3)+⋯+3+2+1=n(n−1)256【解析】解:[探究一]:如图1,由阴影部分面积=大正方形的面积−小正方形的面积,可得阴影部分的面积=a2−b2;由梯形的面积公式可得阴影部分的面积=(2a+2b)(a−b)2=(a+b)(a−b);∴a2−b2=(a+b)(a−b),故答案为:a2−b2;(a+b)(a−b);a2−b2=(a+b)(a−b);[探究二]:把不同端点的线段相加可得总条数=(n−1)+(n−2)+(n−3)+⋯+3+2+1;由点和线段的规律,可得线段的总条数=n(n−1)2;∴(n−1)+(n−2)+(n−3)+⋯+3+2+1=n(n−1)2,故答案为:(n−1)+(n−2)+(n−3)+⋯+3+2+1;n(n−1)2;(n−1)+(n−2)+(n−3)+⋯+3+2+1=n(n−1);2[应用]:992−982+972−962+952−942+⋯+32−22+12=(99+98)(99−98)+(97+96)(97−96)+⋯+(3−2)(3+2)+1=99+98+97+⋯+3+2+1=99(99+1)=4950;2[迁移]:由题意可得:共有6+5+4+3+2+1+5+4+3+2+1+4+3+2+1+ 3+2+1+2+1+1=56.[探究一]:如图1,由面积关系可求解;由如图2,由梯形的面积公式可求解;由同一图形的面积不同表示可得等式;[探究二]:由不同的计算方法可求解;[应用]:由上述等式化简式子可求解;[迁移]:由探究二的方法一可求解.本题考查了梯形的面积公式,列代数式,平方差公式的几何背景等知识,灵活运用这些性质解决问题是本题的关键.。

江苏省常州市 七年级上学期期末数学试题(含答案)

江苏省常州市 七年级上学期期末数学试题(含答案)

常州市教育学会学业水平监测七年级数学注意事项:1.本试卷共6页。

全卷满分100分,考试时间为90分钟。

考生应将答案全部填写在答题卡相应的位置上,写在本试卷上无效,考试结束后,请将本试卷和答题卡一并交回。

考试时不允许使用计算器。

2.答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填涂好答题卡上的考生信息.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共8小题,每小题2分,共16分)1.下列各数中,是无理数的是()A.227B.πC.3.14 D.0.0100100012.计算3a2-a2的结果是()A.3 B.2 C.2a2 D.4a23.百米大赛的成绩差异总在毫厘之间,裁判经常会依据视频回放帮助自己作出正确的判断,下图大致反映了场上运动员的()(第3题)A.主视图B.左视图C.右视图D.俯视图4.某地连续四天的天气如下表,其中日温差(最高气温与最低气温的差)最大的一天是()17日18日19日20日-8~5℃多云-4~1℃小雨0~2℃晴2~5℃晴A.17日B.18日C.19日D.20日5.一个两位数的十位数字是a,个位数字是b,这个两位数用代数式表示为()A.10a+b B.10b+a C.a+b D.ab6.下列各选项中的图形绕虚线旋转一周后,得到的几何体为圆柱的是()A.B.C.D.7.有理数a、b在数轴上的对应点的位置如图所示,下列结论中正确的是()(第7题)>A.a>-2 B.ab>0 C.-a<b D.a b8.如图,正方形的边长均是a,以图①、②、③呈现的规律类推,图⑩中所有圆的周长的和是()(第8题)A.πa B.5πa C.10πa D.20πa二、填空题(本大题共8小题,每小题2分,共16分)9.-3的相反数是______.-_______-3(填“>”、“<”或“=”)。

10.比较大小:π11.2023年10月29日,常州地铁5号线宣布开工,地铁5号线全长约为30900米。

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题(满分30分) (共10题;共30分)1. (3分)大于 -4.8而小于2.5的整数共有()A . 7个B . 6个C . 5个D . 4个2. (3分)据中新社北京报道2011年中国粮食总产量达到546 400 000吨,数据546 400 000用科学记数法表示为()A . 5.464×107B . 5.464×108C . 5.464×109D . 5.464×10103. (3分) (2018七上·廉江期中) 已知是八次单项式,则m的值是()A . 4B . 3C . 2D . 14. (3分) (2019七上·诸暨期末) 下列计算正确的是()A .B .C .D .5. (3分) (2017七下·淅川期末) 若关于x的方程x﹣2+3k= 的解是正数,则k的取值范围是()A . k>B . k≥C . k<D . k≤6. (3分) (2017七下·门头沟期末) 如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为()A . 10°B . 15°C . 20°D . 25°7. (3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A . 文B . 明C . 城D . 国8. (3分) (2019七上·武汉月考) 下列语句准确规范的是()A . 延长射线AO到点B(A是端点)B . 延长直线ABC . 直线a,b相交于一点mD . 直线AB,CD相交于点M9. (3分)(2019·冷水江模拟) 某商店库存清仓,将最后两件羽绒服特价出售,甲款羽绒服卖出1200元,盈利20%,乙款羽绒服同样卖1200元,但亏损20%,该商店在这两笔交易中()A . 盈利100元B . 亏损125元C . 不赔不赚D . 亏损100元10. (3分)(2013·南京) 设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A . ①④B . ②③C . ①②④D . ①③④二、填空题(满分24分) (共6题;共24分)11. (4分)(2019·双柏模拟) ﹣2019的倒数是________.12. (4分) (2016七上·大悟期中) 物体向右运动4m记作+4m,那么物体向左运动3m,应记作________ m.13. (4分) (2019七上·包河期中) 一元一次方程3x-6=0的解是x=________.14. (4分) (2019七下·包河期末) 当k= 时,有k2+k-1=0,则k3=________.15. (4分) (2020七下·西安期末) 如图,已知点C在点A的北偏东19°,在点B的北偏西71°,若CB=9,AC=12,则AB=________.16. (4分) (2017七上·拱墅期中) 观察下列一组数:,,,,,,根据该组数的排列规律,可推出第个数是________.三、解答题(一)(满分18分) (共3题;共18分)17. (6分)(2017七上·云南期中) 计算:(1)(2)18. (6分) (2017七上·乐清月考) 解方程:(1)(2)19. (6分)如图,已知中,,请用尺规作出AB边的高线请留作图痕迹,不写作法四、解答题(二)(满分21分) (共3题;共21分)20. (7分) (2020·吉林) 先化简,再求值:,其中.21. (7.0分)(2019·广西模拟) 已知一组数据x1,x2,…x6的平均数为1,方差为 .(1)求:;(2)若在这组数据中加入另一个数据x7 ,重新计算,平均数无变化,求这7个数据的方差.(结果用分数表示)22. (7.0分) (2018七上·宁城期末) 如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?(用含a的代数式表示)并说明理由.五、解答题(三)(满分27分) (共3题;共27分)23. (9.0分) (2019七上·禅城期末) 如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是________,点P表示的数是________(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?24. (9分)(2020·吉林模拟) 甲,乙两人合作加工一批三条腿和四条腿两种型号的凳子(如图所示).加工完后,甲说:“我做了40条凳子腿”,乙说:“我做了12个凳子面”,求三条腿凳子和四条腿凳子各有多少个.25. (9.0分) (2019七下·梁子湖期末) 如图1,在平面直角坐标系中,已知点A(0,a),B(0,b)在y 轴上,点 C(m,b)是第四象限内一点,且满足,△ABC的面积是56;AC交x轴于点D,E是y轴负半轴上的一个动点.(1)求C点坐标;(2)如图2,连接DE,若DE AC于D点,EF为∠AED的平分线,交x轴于H点,且∠DFE=90°,求证:FD平分∠ADO;(3)如图3,E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM于M点,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,的大小是否发生变化,若不变,求出其值;若变化,请说明理由.参考答案一、单项选择题(满分30分) (共10题;共30分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(满分24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一)(满分18分) (共3题;共18分) 17-1、17-2、18-1、18-2、19-1、四、解答题(二)(满分21分) (共3题;共21分) 20-1、21-1、21-2、22-1、22-2、五、解答题(三)(满分27分) (共3题;共27分) 23-1、23-2、24-1、25-1、25-2、25-3、。

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)如果规定收入为正,支出为负.收入500元记作+500元,那么支出400元应记作()A . ﹣500元B . ﹣400元C . 500元D . 400元【考点】2. (2分)下列说法:①所有有理数都能用数轴上的点表示;②若两个有理数的绝对值相等,则这两个数互为相反数;③如果一个数的绝对值是它的相反数,那么这个数一定是负数;④两数相加,和一定大于任何一个加数;⑤如果三个有理数的积为负数,则这三个有理数中恰有一个或三个负数.其中正确的个数为()A . 1个B . 2个C . 3个D . 4个【考点】3. (2分) (2019七上·象山期末) 如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道哪个正方形的边长即可A .B .C .D .【考点】4. (2分) (2020七下·内江期中) 长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A . 200sB . 205sC . 210sD . 215s【考点】5. (2分)如图,小于平角的角共有()A . 10个B . 9个C . 8个D . 4个【考点】6. (2分) (2019七上·黄岩期末) 如图,按大拇指,食指,中指,无名指,小指,再无名指,中指……的顺序数数,当数到2018时,对应的手指是()A . 食指B . 中指C . 无名指D . 小指二、填空题 (共8题;共8分)7. (1分) (2019七上·微山期中) 比较下列有理数的大小:﹣5________0(填<、=或>)【考点】8. (1分)(2017·鹤岗) 在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示________.【考点】9. (1分)若+|b+1|+(c+1)2=0,则a+b﹣c=________.【考点】10. (1分) (2017七上·绍兴月考) 一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是________元.【考点】11. (1分) (2017七上·海南期中) 若关于x的方程的解为,则m的值为________.【考点】12. (1分)如图,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC=________cm.【考点】13. (1分)(2017·冷水滩模拟) 若∠α补角是∠α余角的3倍,则∠α=________.【考点】14. (1分) (2019七上·甘南月考) 已知|-a|=-(-4),那么a=________.三、解答题 (共10题;共68分)15. (5分) (2018七上·合浦期中) 计算【考点】16. (5分) (2020七上·桂林期末) 解下列一元一次方程:(1)(2)【考点】17. (5分) (2020七上·西城期末) 已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为________【考点】18. (5分) (2019七上·海淀期中) 已知,求的值.【考点】19. (5分) (2018七上·河南月考) 已知关于x的方程2(x-1)=3m-1与3x+2=-2(m+1)的解互为相反数,求m 的值.【考点】20. (5分)甲乙两地之间相距30km,A同学从甲地骑自行车去乙地,B同学从乙地骑自行车去甲地,两人同时出发,相向而行,经过2小时相遇;相遇后,A同学就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有4km.求:A、B骑车的速度各是多少?21. (10分) (2019七上·沭阳期末) 如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)图中与∠AOF互余的角是________,与∠COE互补的角是________;(把符合条件的角都写出来)(2)如果∠AOC= ∠EOF,求∠EOF的度数.【考点】22. (10分) (2020七上·罗湖期末) 如图,点A、B分别在数轴原点O的两侧,且 OB+8=OA,点A对应数是20.(1)求B点所对应的数;(2)动点P、Q、R分别从B、O、A同时出发,其中P、Q均向右运动,速度分别为2个单位长度/秒,4个单位长度/秒,点R向左运动,速度为5个单位长度/秒,设它们的运动时间为t秒,当点R恰好为PQ的中点时,求t 的值及R所表示的数;(3)当时,BP+ AQ的值是否保持不变?若不变,直接写出定值;若变化,试说明理由.【考点】23. (15分)某市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.估计小明家下月总用电量为200度.(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)到下月付费时,小明发现那月总用电量为200度,用峰谷电费付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?24. (3分) (2019七上·中期中) 观察下列式子:;;;;……(1)请你找出规律并计算: ________ .(2)用含n的式子表示上面的规律:________.(3)用找到的规律计算:.【考点】参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共8题;共8分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共10题;共68分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷

江苏省常州市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·洛阳模拟) 的相反数是()A .B .C . ﹣5D . 52. (2分)地球上的陆地面积约为149000000平方千米,将149000000用科学记数法表示应为()A .0.149×109B . 1.49×107C . 1.49×108D . 1.49×1093. (2分)如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计,单位:mm)()A . 112 000 mm3B . 294 000 mm3C . 144 000 mm3D . 168 000 mm34. (2分) (2020七上·平桂期末) 下列语句错误的是().A . 两点之间线段最短B . 射线AB与射线BA 是同一条射线C . 直线AB与直线BA是同一条直线D . 两点确定一条直线5. (2分)下列各式中,是3a2b的同类项的是()A . 2x2yB . ﹣2ab2C . a2bD . 3ab6. (2分)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C 点.这时,∠ABC的度数是()A . 120°B . 135°C . 150°D . 160°7. (2分)有理数a、b在数轴上对应点的位置如图所示,则下列判断正确的是()A . a>0B . b<0C . ab<0D . a﹣b>08. (2分) (2019七上·仪陇期中) 现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(2*5)*4等()A . 28B . -28C . -31D . 319. (2分)观察下列算式:21=2 22=4 23=8 24=1625=32 26=64 27=128 28=256……通过观察,用你所发现的规律得出227的末位数是()A . 2B . 4C . 8D . 610. (2分)甲、乙二人按2:5的比例投资开办了一家公司,约定除去各项开支外,•所得利润按投资比例分成.若第一年赢得14000元,那么甲、乙二人分别应分得()A . 2000元,5000元B . 5000元,2000元C . 4000元,10000元D . 10000元,4000元二、填空题 (共5题;共5分)11. (1分)化简:(﹣ y2)+(﹣4y2)﹣(﹣ y2)﹣(﹣3y)=________.12. (1分) (2019七上·德阳月考) 若x=3是关于x的方程的解,则a=________.13. (1分) (2019七上·南关期末) 如图,∠AOB=72°32′,射线OC在∠AOB内,∠BOC=30°40′,则∠AOC =________.14. (1分) (2018七上·崆峒期末) 如图,AB=12,C为线段AB的中点,点D在线段AC上,且 ,则BD的长度为________。

江苏省常州市七年级上学期数学期末试卷

江苏省常州市七年级上学期数学期末试卷

江苏省常州市七年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七·南通期末) 下列各式中结果为负数的是()A .B .C .D .2. (2分) (2019七上·渭源月考) 下列方程中是一元一次方程的是()A .B .C .D .3. (2分)下列命题错误的是()A . 四边形内角和等于外角和B . 相似多边形的面积比等于相似比C . 点P(1,2)关于原点对称的点的坐标为(-1,-2)D . 三角形的中位线平行于第三边,且等于第三边的一半4. (2分)下列说法正确的是()A . “向东5米”与“向西10米”不是相反意义的量.B . 如果气球上升25米记作+25米,那么-15米的意义就是下降-15米.C . 如果气温下降6℃,那么+80C的意义就是下降零上8℃D . 若将高1米设为标准0,高.1.20米记作+1.20,那么-0.05米所表示的高是0.95米.5. (2分)(2019·江苏模拟) 下列运算结果正确的是()A .B .C .D .6. (2分) (2015七上·寻乌期末) 已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A .B . ﹣C .D . ﹣7. (2分)某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A . 5B . 6C . 7D . 88. (2分) (2020七上·济宁月考) 如图,是一个正方体,它的展开图是下列四个展开图中的()A .B .C .D .9. (2分)现在的时间是2点30分,此时钟面上的时针与分针的夹角是()A . 150°B . 105°C . 162°D . 165°10. (2分) (2020七上·蚌埠期末) 已知整数a1 , a2 , a3 ,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为()A . -1010B . -1009C . -2020D . -2019二、填空题 (共5题;共5分)11. (1分) (2020七上·博白期末) 单项式的系数为________.12. (1分)据《本溪日报》报道:本溪市高新区2015年1月份公共财政预算收入完成259 610 000元,首月实现税收收入“开门红”.将259 610 000用科学记数法表示为________.13. (1分) (2018七上·恩阳期中) 绝对值小于5的整数有________个.14. (1分)(2019·河池) a1 , a2 , a3 , a4 , a5 , a6 ,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是________.15. (1分) (2020七上·泰兴期中) 甲、乙两地间的铁路经过技术改造后,列车在两地间的运行速度从100 km/h 提高到120 km/h,运行时间缩短了2 h.设甲、乙两地间的路程为x km,可得方程________.三、解答题 (共11题;共88分)16. (10分) (2016七上·潮南期中) 先化简,再求值:﹣(a2+2a)+3(a2﹣3a﹣),其中a=﹣2.17. (10分) (2018七上·高安期中) 解方程:18. (5分) (2019七上·鼓楼期末) 先化简,再求值:求的值,其中,.19. (10分) (2018七上·靖远月考) 如图是一些小正方体搭成的几何体俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出它的主视图,左视图.20. (5分) (2019七下·平川月考) 已知A=-4a3-3+2a2+5a,B=3a3-a-a2,求:A-2B.21. (2分) (2019七下·马山月考) 如图,直线AB、CD相交于点O,OE平分∠BOD,∠BOE=36°.求∠AOC的度数.22. (5分)某班将举行演讲比赛,班长安排小强购买奖品,下面两图是小强买回奖品时与班长的对话:请根据上面的信息,试求两种笔记本各买了多少本?23. (5分)如图,点C为线段AB上一点,若线段AC=12cm,AC:CB=3:2,D、E两点分别为AC、AB的中点,求DE的长.24. (11分) (2020七上·诸城期末) 为了更好地利用“大课间”加强学生的体育锻炼,调动学生运动的积极性,某初中学校围绕着“你最喜欢的体育活动项目是什么(只写一项)?”的问题,对在校学生进行了随机抽样调查,得到一组数据,绘制如图所示统计图表:(1)该校对多少名学生进行了抽样调查?(2)求图2中“抖空竹”运动项目所对应的图形区域的圆心角度数,并分别在图1和图2中将“抖空竹”部分的图形补充完整;(3)已知该校八年级学生占全校总学生数的,九年级学生占全校学生数的,七年级的有520名学生请你利用样本数据统计全校学生中最喜欢踢毽子运动的人数约为多少?25. (10分) (2020七上·灌南月考) 俄罗折特技飞行队在名胜风景旅游区﹣﹣张家界天门洞特技表演,其中一架飞机起飞后的高度变化如表:高度变化记作上升5km+5km下降3km﹣3km上升1km+1km下降1km﹣1km(1)此时这架飞机比起飞点高了多少千米?(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?26. (15分) (2020七上·邓州期末) 推理与计算:(1)如图所示,已知线段,点在线段上,,是的中点,那么线段的长为多少?(2)如图所示,射线的方向是北偏东,射线的方向是北偏西,若,则射线的方向是北偏东多少度?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共11题;共88分)答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。

初中数学练习题 2022-2023学年江苏省常州市七年级(上)期末数学试卷

初中数学练习题 2022-2023学年江苏省常州市七年级(上)期末数学试卷

2022-2023学年江苏省常州市七年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)A .①②③B .①②④C .①③④D .②③④1.(3分)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )A .(-3,4)B .(-3,-4)C .(3,-4)D .(4,3)2.(3分)平面直角坐标系内与点P (3,4)关于原点对称的点的坐标是( )A .2:1B .1:2C .4:1D .1:43.(3分)若△ABC ∽△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .通常加热到100℃时,水沸腾B .篮球队员在罚球线上投篮一次,未投中C .掷一次骰子,向上一面的点数是6D .经过有交通信号灯的路口,遇到红灯4.(3分)下列事件不是随机事件的是( )A .y 1B .y 2C .y 3D .y 45.(3分)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =4x图象上,则y 1,y 2,y 3,y 4中最小的是( )A .2B .4C .6D .86.(3分)如图,D 、E 分别是△ABC 边AB ,AC 上的点,∠ADE =∠ACB ,若AD =4,AB =12,AC =8,则AE 的长是( )二、填空题(本题共6小题,每小题3分,共18分)A .80°B .100°C .110°D .120°7.(3分)如图,四边形ABCD 内接于⊙O ,若∠A =80°,则∠C 的度数是( )A .4B .33C .23D .38.(3分)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 为( )√√√A .15B .23C .49D .259.(3分)如图,以点O 为位似中心,将△OAB 放大后得到△OCD ,OA =2,AC =3,则AB CD的值为( )A .60πB .65πC .90πD .120π10.(3分)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )11.(3分)某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0.900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率(结果保留两位小数)约是.12.(3分)在反比例函数y =m −5x的图象每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是 .13.(3分)抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是 .14.(3分)如图,OA,OB是⊙O的半径,点C在⊙O上,∠AOB=40°,∠OAC=30°,则∠B的度数为°.15.(3分)如图,将△ABC绕点A逆时针旋转50°得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为°.16.(3分)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交A D,BC于点E,F.若BD=4,∠CAB=50°,则图中阴影部分的面积为.(结果保留π)三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.(9分)如图,在△ABC和△ACD中,∠BDC+∠ACB=180°.求证:△ABC∽△ACD.18.(10分)如图,已知△ABC,∠C=90°,BC=3,AC=4,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(2)求弧AA1的长.(结果保留π)19.(10分)石拱桥是中国传统桥梁四大基本形式之一,如图,某石拱桥的桥拱是圆弧形.如果桥顶到水面的距离CD=8m,桥拱的半径OC=5m.求此时水面的宽AB长.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)20.(10分)小明要测量一座钟塔的高CD ,他在与钟塔底端处在同水平面上的地面放置一面镜子,并在镜子上做一个标记E ,当他站在离镜子E 处1.5m 的B 处时,看到钟塔的顶端在镜子中的像与标记E 重合.已知B ,E ,D 在同直线上,小明的眼睛离地面的高度AB =1.6m ,DE =15m ,求钟塔的高度CD .21.(9分)为庆祝二十大胜利召开,中山区教育系统拔河比赛于2022年10月26日至11月2日在东港第一中学成功举办.本次比赛共进行三场,分别为:A .10月26日初赛,B .10月28日半决赛,C .11月2日决赛.李老师和张老师都是裁判员,他们被随机分配到这三场比赛中的任意一场进行裁判的可能性相同.(1)求李老师被分配到C 做裁判员的概率;(2)利用画树状图或列表的方法,求李老师和张老师同时被分配到同一场比赛做裁判员的概率.22.(10分)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,当R =9Ω时,I =4A .(1)求蓄电池的电压;(2)若I ≤10,求可变电阻R 的变化范围.23.(10分)如图1,AB 为⊙O 的直径,C ,D 为⊙O 上两点,∠ABD =∠BCD .(1)求∠ACD 的度数;(2)如图2,过点A ,B 分别作CD 的垂线,垂足为点E ,F ,求证:CE =D F .24.(11分)反比例函数y =kx的图象经过点A (2,6).(1)求k 的值;(2)点C 在x 轴的负半轴上,将点A 绕点C 顺时针旋转90°,其对应点B 落在此反比例函数第三象限的图象上,求点C 的坐标.的切线互的长.。

常州市七年级上学期期末数学试卷

常州市七年级上学期期末数学试卷

常州市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)五个有理数的积为负数,则五个数中负数的个数是()A . 1B . 3C . 5D . 1或3或52. (2分)单独一个字母一定不是()A . 一次单项式B . 单项式C . 多项式D . 整式3. (2分)只用一副三角板不能画出来的角度是()A . 30°B . 75°C . 105°D . 125°4. (2分)若∠1=50°5′,∠2=50.5°,则∠1与∠2的大小关系是()A . ∠1=∠2B . ∠1>∠2C . ∠1<∠2D . 无法确定5. (2分) (2020七上·德城期末) 下列说法中:①若,则;②若,则;③若,则;④若与是同类项,则;⑤若、互为相反数,那么、的商必等于 1;其中说法符合题意数有()个.A . 2B . 3C . 4D . 56. (2分)如图所示,一只纸杯放置在一个长方体盒子上,则其主视图是()A .B .C .D .7. (2分)﹣(﹣3)的相反数是()A .B .C . ﹣3D . 38. (2分)如图,将一副三角尺按不同位置摆放,∠α与∠β互余的是()A .B .C .D .9. (2分)下列说法错误的是()A . 过直线外一点有且仅有一条直线与它平行B . 相交的两条直线只有一个交点C . 经过一点有且只有一条直线与已知直线垂直D . 经过两点有且只有一条直线10. (2分)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1 ,第二个三角数记为a2 ,…,第n个三角数记为an ,则an﹣1+an=()A .B .C .D .二、耐心填一填,一锤定音! (共6题;共6分)11. (1分) (2015七上·深圳期末) 一条船停留在海面上,从船上看灯塔位于北偏东30°,那么从灯塔看船位于灯塔的西偏南________°.12. (1分) (2020七上·建邺期末) 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为________个.13. (1分) (2018七上·东台月考) 若│x+1│+│y-2│=0,则x=________ , y=________;14. (1分) (2018七上·深圳期末) 9点20分,钟表上时针与分针所表示的钝角是________度.15. (1分)某商店一套夏装进价为300元,按标价的90%销售可获利80元,若设该服装的标价为x元,则可列方程为________.16. (1分) (2018七上·兴隆台期末) 在植树节活动中,A班有30人,B班有16人,现要从A班调一部分人去支援B班,使B班人数为A班人数的2倍,那么应从A班调出多少人?如设从A班调x人去B班,根据题意可列方程:________三、用心做一做,马到成功! (共8题;共80分)17. (10分) (2015七上·番禺期末) 解方程:(1) 9﹣3x=7+5x;(2)﹣ =1.18. (5分) (2018七上·阜宁期末) 计算(1)(2).19. (5分) (2020七上·兴安盟期末) 化简(1)(2)20. (20分) (2017七上·北海期末) 如图,已知线段b:(1)借助圆规和直尺作一条线段AB使AB=3b (保留作图痕迹,不要求写出做法) .(2)若点C,D分别为第(1)问所作的线段AB的三等分点,点E为线段CD上的任一点,且AE=8,CE=2,求AB的长.21. (5分) (2017七上·徐闻期中) 如图,已知线段AB,反向延长AB到点C,使AC= AB,D是AC的中点,若CD=2,求AB的长.22. (5分)某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.问:生产螺栓和螺母各安排多少人才能使每天生产的螺栓螺母刚好配套?23. (10分) (2016七上·仙游期中) 如图,在一块长为a,宽为2b的长方形铁皮中,以2b为直径分别剪掉两个半圆,(1)求剩下铁皮的面积(用含a,b的式子表示);(2)当a=4,b=1时,求剩下铁皮的面积是多少?(π取3.14)24. (20分) (2020七下·新乡期中)(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作EH∥AB,∴∠FEH=∠BFE(▲ ),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲ ),∴∠HEG=180°-∠CGE(▲ ),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、耐心填一填,一锤定音! (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、用心做一做,马到成功! (共8题;共80分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、24-3、。

2023年江苏省常州市七年级上期末数学试卷及答案解析

2023年江苏省常州市七年级上期末数学试卷及答案解析

2023年江苏省常州市七年级上期末数学试卷
一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给出的四个选项中,恰有一项是符合目要求的,请将正确选项的的字母代号填涂在答题卡相应的位罩上)1.(2分)数据1080000用科学记数法表示为()
A.10.8×105B.1.08×105C.1.08×106D.0.108×107 2.(2分)下列计算正确的是()
A.2a+3b=5ab B.5a2b﹣2a2b=3a2b
C.5a﹣3a=2D.6a+a=6a2
3.(2分)下列图形中,不是三棱柱的表面展开图是()
A .
B .
C .
D .
4.(2分)如图,小强用5个相同的小立方体搭成的立体图形研究几何体的三视图的变化情

况,若由图1变到图2,不改变的是(
A.主视图B.主视图和左视图
C.主视图和俯视图D.左视图和俯视图
5.(2分)如图,在一张透明的纸上画一条直线l,在l外任取一点Q并折出过点Q且与l

垂直的直线.这样的直线能折出(
A.0条B.1条C.2条D.3条

6.(2分)如图,射线OA⊥OC,射线OB⊥OD,则图中与∠AOD互为补角的是(
A.∠AOB B.∠COD C.∠BOC D.不存在
第1页共15页。

江苏省常州市七年级上期末数学试卷及答案解析

江苏省常州市七年级上期末数学试卷及答案解析
A.48×108B.4.8×109C.4.8×108D.4.8×1010
解:4800000000=4.8×109,
故选:B.
2.下列各式,运算正确的是( )
A.5a﹣3a=2B.2a+3b=5ab
C.7a+a=7a2D.10ab2﹣5b2a=5ab2
解:∵5a﹣3a=2a,∴选项A不符合题意;
∵2a+3b≠5ab,∴选项B不符合题意;
A. B.
C. D.
解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C的图形符合题意,
(1)12﹣(﹣6)+(﹣9);
(2)(﹣48)×( );
(3)﹣32÷(﹣2)2×|﹣1 |×6+(﹣2)3.
20.(8分)先化简,再求值
(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a 、b ;
(2)4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x 、y .
21.(6分)先化简再求值
2020-2021学年江苏省常州市七年级上期末数学试卷
一.选择题(共8小题,满分16分)
1.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4800000000人,将4800000000用科学记数法表示为( )
A.48×108B.4.8×109C.4.8×108D.4.8×1010
①求线段OP的长.
②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.
25.(8分)如图1,在表盘上12:00时,时针,分针都指向数字12,我们将这一位置称为“标准位置”(图中OA)小文同学为研究12点t分(0<t<60)时,时针与分针的指针位置,将时针记为OB,分针记为OC.如:12:30时,时针,分针的位置如图2所示,试解决下列问题:

常州市七年级上学期期末数学试题

常州市七年级上学期期末数学试题

常州市七年级上学期期末数学试题一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2 C .3 D .4 3.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 6.计算:2.5°=( ) A .15′B .25′C .150′D .250′7.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0B .1C .12D .310.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒ C .115︒ D .95︒11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………15.|-3|=_________; 16.若523m xy +与2n x y 的和仍为单项式,则n m =__________.17.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 20.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 21.计算7a 2b ﹣5ba 2=_____. 22.3.6=_____________________′23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.三、解答题25.解不等式组()355232x x x +≤⎧⎨+>-⎩,并在数轴上表示解集.26.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 27.如图,O 为直线AB 上一点,130BOC ∠=︒,OE 平分BOC ∠,DO OE ⊥.(1)求BOD∠的度数.(2)试判断OD是否平分AOC∠,并说明理由.28.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.29.小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元)股票每股净赚(元)股票招商银行+23500浙江医药﹣(﹣2.8)1000晨光文具﹣1.51500金龙汽车﹣1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?30.解方程:5711232x x-+-=+.四、压轴题31.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省常州市七年级(上)期末数学试卷
一、选择题(本大题共8小题,每小题2分,共16分)
1.(2分)下列各数中,比﹣4小的数是()
A.﹣2.5B.﹣5C.0D.2
2.(2分)下列各数中,是无理数的是()
A.B.C.3.14D.0.
3.(2分)下列式子中,正确的是()
A.﹣1+2=﹣1B.﹣2×(﹣3)=﹣6C.(﹣1)2=2
D.3÷(﹣)=﹣9
4.(2分)一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A.xy B.x+y C.x+10y D.10x+y
5.(2分)下图中的图形绕虚线旋转一周,可得到的几何体是()
A.B.C.D.
6.(2分)七年级1班有女生m人,女生占全班人数的40%,则全班人数是()A.B.40%m C.D.(1﹣40%)m 7.(2分)观察下面的一列数:﹣,,﹣,,…,按此规律,第2018个数是()
A.B.﹣
C.D.﹣
8.(2分)如图,线段AB和CB是正方体表面两正方形的对角线,将此正方体沿部分棱剪开,展成一个平面图形后,AB和CB可能出现下列关系中的哪几
种:①AB⊥CB②AB∥CB③AB和CB在同一直线上()
A.①B.②C.①②D.①②③
二、填空题(本大题共8小题,每小题2分,共16分)
9.(2分)﹣3的相反数是.
10.(2分)已知∠A=50°,则∠A的余角是度.
11.(2分)常州地铁2号线一期工程西起青枫公园,东至五一站,途经市中心文化宫,全线19700m,这个长度用科学记数法可表示为m.12.(2分)已知关于x的一元一次方程x+2m=﹣1的解是x=1,则m的值是.
13.(2分)请列举一个单项式,使它满足系数为2,次数为3,含有字母a、b,单项式可以为.
14.(2分)若2a﹣b=2,则6﹣4a+2b=.
15.(2分)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.那么需要多少张餐桌拼在一起可坐90人用餐?若设需要这样的餐桌x张,可列方程为.
16.(2分)如图,已知纸面上有一数轴,折叠纸面,使表示﹣2的点与表示5的点重合,则3表示的点与表示的点重合.
三、解答题(本大题共9小题,共68分,第17,19,22,32,4题每题8分,
第18、20、21题每题6分,第25题10分)
17.(8分)计算:
(1)﹣1+8﹣4﹣(﹣6)
(2)﹣7×(﹣8)﹣13×2÷(﹣)
18.(6分)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=﹣3,n=﹣.
19.(8分)解方程:
(1)x﹣2(3x﹣1)=6x
(2)(x﹣3)﹣2=(2x+3)
20.(6分)甲乙两个旅游团共80人,甲团比乙团人数的2倍多5人,甲乙两团各有多少人?
21.(6分)一个由若干小正方体堆成的几何体,它的主视图和左视图如图①所示
(1)这个几何体可以是图②甲、乙、丙中的;
(2)这个几何体最多由个小正方体构成,最少由个小正方体构成.请在图③中画出符合最少情况的一个俯视图.
22.(8分)如图,已知CA⊥BA
(1)画图:①延长BA到D,使AD=BA,连接CD;
②过点A画AE∥BC,AE与CD相交于点E;
③过点B画BF⊥CD,交DC的延长线于点F.
思考:图中有条线段,它们的长度表示点到直线的距离;
(2)度量:
①你度量的哪些量?;
②通过度量你发现:.(写一条发现即可)
23.(8分)如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE 内.
(1)若∠COE=∠AOE,求∠AOC的度数;
(2)若∠BOC﹣∠AOC=72°,则OB与OC有怎样的位置关系?为什么?
24.(8分)常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km
(1)求“挑战型路线”的总长;
(2)当甲组到达终点时,乙组离终点还有多少路程?
25.(10分)如图,已知点O在直线AB上,将一副直角三角板的直角顶点放在点O处,其中∠OCD=60°,∠OEF=45°.边OC、OE在直线AB上.(1)如图(1),若CD和EF相交于点G,则∠DGF的度数是°;(2)将图(1)中的三角板OCD绕点O顺时针旋转30°至图(2)位置
①若将三角板OEF绕点O顺时针旋转180°,在此过程中,当∠COE=∠EOD
=∠DOF时,求∠AOE的度数;
②若将三角板OEF绕点O以每秒4°的速度顺时针旋转180°,与此同时,将
三角板OCD绕点O以每秒1°的速度顺时针旋转,当三角板OEF旋转到终点位置时,三角板OCD也停止旋转.设旋转时间为t秒,当OD⊥EF时,求t的值.
江苏省常州市七年级(上)期末数学试卷
参考答案
一、选择题(本大题共8小题,每小题2分,共16分)
1.B;2.A;3.D;4.C;5.C;6.A;7.C;8.D;
二、填空题(本大题共8小题,每小题2分,共16分)
9.3;10.40;11.1.97×104;12.﹣1;13.2a2b;14.2;15.4x+2=90;16.0;
三、解答题(本大题共9小题,共68分,第17,19,22,32,4题每题8分,
第18、20、21题每题6分,第25题10分)
17.;18.;19.;20.;21.乙、丙;9;7;
22.7;线段BC,线段CD,;BC=CD;23.;24.;25.15;。

相关文档
最新文档