全国初中数学竞赛辅导(八年级)教学案全集第02讲_因式分解(二)

合集下载

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲)

初二数学竞赛辅导资料(共12讲)目录本内容适合八年级学生竞赛拔高使用重点落实在奥赛方面的基础知识和基本技能培训和提高本内容难度适中讲练结合由浅入深讲解与练习同步重在提高学生的数学分析能力与解题能力另外在本次培训中内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容其中《因式分解》为初二下册内容但是考虑到它的重要性和工具性将在本次培训进行具体解读注有标注的为选做内容本次培训具体计划如下以供参考第一讲实数一第二讲实数二第三讲平面直角坐标系函数第四讲一次函数一第五讲一次函数二第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷未装订在内另发第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试未装订在内另发第十四讲试卷讲评第1讲实数一知识梳理一非负数正数和零统称为非负数1几种常见的非负数1实数的绝对值是非负数即a≥0在数轴上表示实数a的点到原点的距离叫做实数a的绝对值用a来表示设a为实数则绝对值的性质①绝对值最小的实数是0②若a与b互为相反数则a=ba=ba=b③对任意实数a则a≥a a≥-a④a·b=ab b≠0⑤a-b≤a±b≤a+b2实数的偶次幂是非负数如果a为任意实数则≥0n为自然数当n=1≥03算术平方根是非负数即≥0其中a≥0算术平方根的性质 a≥0 =2非负数的性质1有限个非负数的和积商除数不为零是非负数2若干个非负数的和等于零则每个加数都为零3若非负数不大于零则此非负数必为零3对于形如的式子被开方数必须为非负数4推广到的化简5利用配方法来解题开平方或开立方时将被开方数配成完全平方式或完全立方例题精讲◆专题一利用非负数的性质解题例1已知实数xyz满足求x+y+z的平方根巩固1已知则的值为______________2若的值拓展设abc是实数若求abc的值◆专题二对于的应用例2已知xy是实数且例3已知适合关系式求的值巩固1已知b=且的算术平方根是的立方根是试求的平方根和立方根2已知则拓展在实数范围内设=求的个位数字◆专题三的化简及应用常用方法利用配方法将被开方数配成完全平方式或者立方式例4化简例5若实数x满足方程那么巩固1若且则2已知实数a满足a+=03设1求y的最小值2求使6<y<7的x的取值范围拓展若求的值课后练习1如果a 0 那么2已知和是数的平方根则求的值3设abc是△ABC的三边的长则=4已知xy是实数且则=5若0 a 1 且则为6代数式的最小值是7已知实数满足=则=8已知△ABC的三边长为和满足求的取值范围9已知求的值10实数满足求的值第2讲实数二知识梳理一实数的性质1设x为有理数y为无理数则x+yx-y都为无理数当x≠0时xy都是无理数当x=0xy 就是有理数了2若xy都是有理数是无理数则要使=0x=y=03xymn都是有理数都是无理数则要使成立须使x=ym=n常用方法直接法利用数轴比较平方法同次根式下比较被开方数法作差法作商法三证明一个数是有理数的方法证明这个数是一个有限小数或无限循环小数或可表示成几个有理数的和差积商的形式例题精讲◆例1比较下列两数的大小1 2 34 5 6巩固设◆例2若的小数部分为的小数部分为则的值为巩固1已知为的整数部分是9的平方根且求的值2设的整数部分为小数部分为试求的值拓展已知的整数部分为m小数部分为n的整数部分为a小数部分为b试计算的值◆例3已知是有理数且求的值巩固1已知ab是有理数且求ab的值2已知是有理数并且满足求的值◆例4设试用的代数式表示巩固已知试用的代数式表示◆例5求证是有理数◆例6a与b是两个不相等的有理数试判断实数是有理数还是无理数并说明理由拓展证明是无理数◆例5若ab满足的取值范围巩固已知求x和y的取值范围课后练习1比较大小2设ab是正有理数且满足求ab的值3设的整数部分为小数部分为试求的值4已知与的小数部分分别是ab求ab-3a+4b+8的值5已知ab为有理数xy分别表示的整数部分和小数部分且求a+b的值6证明是无理数第3讲平面直角坐标系函数知识梳理1平面直角坐标系是在数轴的基础上为了实际问题的需要而建立起来的是学习函数的基础数形结合是本节最显著的特点2坐标平面内任意一点P都有唯一的一对有序实数xy和它对应反过来对于任何一对有序实数xy在平面内都有唯一的点P和它对应与点P相对应的有序实数对xy叫做点P的坐标3平面直角坐标系内的点的特征1若点Pxy在第一象限内2若点Pxy在第二象限内3若点Pxy在第三象限内 4若点Pxy在第四象限内5若点Pxy在x轴上 6若点Pxy在y轴上4对称点的坐标特征1点Pxy关于x轴对称或成轴反射的点的坐标为Px-y2点Pxy关于y轴对称或成轴反射的点的坐标为P-xy3点Pxy关于原点对称的点的坐标为P-x-y5函数的有关定义1函数的定义在一个变化过程中如果有两个变量x与y并且对于每一个x确定的值y都有唯一确定的值与其对应则x是自变量y是的函数2函数关系式用来表示函数关系的等式叫函数关系式也称函数解析式6函数自变量的取值范围自变量的取值范围必须使含自变量的代数式都有意义所以1使分母不为零2开平方时被开方数为非负数3为整式时其自变量的范围是全体实数另外当函数关系表示实际问题时自变量的取值必须使实际问题有意义例题精讲◆例1若点M1+a2b-1在第二象限则点N a-11-2b 在第象限巩固1点Q3-a5-a在第二象限则=2若点P2a+43-a关于y的对称点在第三象限求a的取值范围为◆例2方程组的解在平面直角坐标系中对应的点在第一象限内求m的取值范围巩固已知点Mab在第四象限且ab是二元一次方程组的解求点M关于坐标原点的对称点的坐标◆例3在直角坐标系中已知A11在轴上确定点P使△AOP为等腰三角形则符合条件的点P共有个A1 B2 C3 D4拓展在平面直角坐标系中有一个正方形ABCD它的4个顶点为A100B 010C -100D 0-10 则该正方形内及边界上共有_______个整点即横纵坐标都是整数的点◆例4求下列函数中自变量的取值范围◆例5如图在靠墙墙长为18m的地方围建一个矩形的养鸡场另三边用竹篱笆围成如果竹篱笆总长为35m求鸡场的一边长y m与另一边长x m的函数关系式并求自变量的取值范围巩固1求下列函数中自变量的取值范围①②③2周长为10cm的等腰三角形腰长y cm 与底边长x cm 之间的函数关系式是______________自变量x的取值范围为_________________.拓展若函数y=的自变量x的取值范围为一切实数求c的取值范围◆例6已知函数的图像如图所示求点AB的坐标巩固若点P在函数的图象上那么点P应在平面直角坐标系中的A.第一象限 B.第二象限 C.第三象限 D.第四象限升又知单开进水管20分钟可把空水池注满若同时打开进出水管20分钟可把满水池的水放完现已知水池内有水升先打开进水管分钟再打开出水管两管同时开放直至把水池中的水放完则能确定反映这一过程中水池的水量升随时间分钟变化的函数图象是巩固如图小亮在操场上玩一段时间内沿的路径匀速散步能近似刻画小亮到出发点的距离与时间之间关系的函数图象是课后练习1汽车由北京驶往相距120千米的天津它的平均速度是30千米时•则汽车距天津的路程S千米与行驶时间t时的函数关系及自变量的取值范围是 • AS=120-30t0≤t≤4 BS=30t0≤t≤4CS=120-30tt 0 DS=30tt=42图1是韩老师早晨出门散步时离家的距离与时间之间的函数图象.若用黑点表示韩老师家的位置则韩老师散步行走的路线可能是3函数自变量的取值范围为___________________4如图水以恒速即单位时间内注入水的体积相同注入下图的四种底面积相同的容器中下面那种方案能准确体现各容器所对应的水高度和时间的函数关系图象A.1~甲2~乙3~丁4~丙 B.1~乙2~甲3~丁4~丙C.1~乙2~甲3~丙4~丁 D.1~丁2~甲3~乙4~丙5平面直角坐标系内点An1-n一定不在A第一象限 B第二象限 C第三象限 D第四象限6若P a+b-5 与Q 13a-b 关于原点对称则a+b a-b 的值为6已知点P3p-153-p在第三象限如果其坐标为整数点求点M的坐标第4讲一次函数一姓名知识梳理一一次函数和正比例函数的概念若两个变量xy间的关系式可以表示成y=kx+bkb为常数k≠0的形式则称y是x的一次函数x为自变量特别地当b=0时称y是x的正比例函数二一次函数的图象由于一次函数y=kx+bkb为常数k≠0的图象是一条直线所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线因此在今后作一次函数图象时只要描出适合关系式的两点再连成直线即可一般选取两个特殊点直线与y轴的交点0b直线与x轴的交点-0但也不必一定选取这两个特殊点画正比例函数y=kx的图象时只要描出点001k即可三一次函数y=kx+bkb为常数k≠0的性质1k的正负决定直线的倾斜方向①k>0时y的值随x值的增大而增大②k<O时y的值随x值的增大而减小.2k大小决定直线的倾斜程度即k越大直线与x轴相交的锐角度数越大直线陡k越小直线与x轴相交的锐角度数越小直线缓3b的正负决定直线与y轴交点的位置①当b>0时直线与y轴交于正半轴上②当b<0时直线与y轴交于负半轴上③当b=0时直线经过原点是正比例函数.4由于kb的符号不同直线所经过的象限也不同①如图11-181所示当k>0b>0时直线经过第一二三象限直线不经过第四象限②如图11-182所示当k>0b>O时直线经过第一三四象限直线不经过第二象限③如图11-183所示当k<Ob>0时直线经过第一二四象限直线不经过第三象限④如图11-184所示当k<Ob<O时直线经过第二三四象限直线不经过第一象限.5由于k决定直线与x轴相交的锐角的大小k相同说明这两个锐角的大小相等且它们是同位角因此它们是平行的.另外从平移的角度也可以分析例如直线y =x+1可以看作是正比例函数y=x向上平移一个单位得到的.四正比例函数y=kxk≠0的性质1正比例函数y=kx的图象必经过原点2当k>0时图象经过第一三象限y随x的增大而增大3当k<0时图象经过第二四象限y随x的增大而减小.五用函数的观点看方程与不等式1方程2x+20=0与函数y=2x+20观察思考二者之间有什么联系从数上看方程2x+20=0的解是函数y=2x+20的值为0时对应自变量的值从形上看函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解关系由于任何一元一次方程都可转化为kx+b=0kb为常数k≠0的形式.所以解一元一次方程可以转化为当一次函数值为0时求相应的自变量的值从图象上看这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.2解关于xy的方程组从数的角度看•相当于考虑当自变量为何值时两个函数的值相等以及这个函数值是多少从形的角度看相当于确定两条直线y=kx+b与y=mx+n的交点坐标两条直线的交点坐标•就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解3解一元一次不等式可以看作是当一次函数值大于或小于0时求自变量相应的取值范围.解关于x的不等式kx+b mx+n可以转化为当自变量x取何值时直线y=k-mx+b-n上的点在x轴的上方或2求当x 取何值时直线y=kx+b上的点在直线y=mx+n上相应的点的上方.不等号为时是同样的道理例题精讲◆例1已知一次函数则这样的一次函数的图象必经过第象限巩固1一次函数的图象如图则下面结论正确的是A BC D2若直线经过点Am-1B1m其中则这条直线不经过第象限拓展已知≠并且那么一定经过A第一二象限 B第二三象限 C第三四象限 D第一四象限◆例2若直线y=kx+6与两坐标轴所围成的三角形面积是24求常数k的值是多少巩固过点P3作直线使它与两坐标轴围成的三角形面积为5这样的直线可以作几条拓展设直线是正整数与两坐标轴所围成的图形的面积为则◆例3如图所示直线y=x+2与x轴交于点A直线y=-2x+6与x轴交于点B且两条直线的交点为P试求出△PAB的面积巩固1如图在直角坐标系中长方形OABC的顶点B的坐标为 156 直线恰好将长方形OABC分成面积相等的两部分那么2如图所示已知直线y=x+3的图象与x轴y轴交于AB两点直线l经过原点与线段AB交于点C把△AOB的面积分为21的两部分求直线l的解析式.拓展若直线和直线k是正整数及x轴围成的三角形面积为则值为___________◆例4一次函数与一次函数在同一平面直角坐标系中的图象如图所示则下列结论①k1>0b<0②k2>0③关于x的不等式的解集是④关于xy的二元一次方程组的解为其中正确的结论有____________巩固1已知关于x的不等式kx-2 0k≠0的解集是x -3则直线y=-kx+2与x 轴的交点是_______.2如右图直线与直线在同一平面直角坐标系中的图象如图所示则关于的不等式的解集为◆例5一个一次函数的图像与直线平行与轴轴的交点分别为AB并且过点-1-25则线段AB上包括端点AB横坐标纵坐标都是整数的点有几个巩固如图一次函数的图象经过点和则的值为◆例6如图直线的解析式为且与轴交于点D直线经过点AB直线交于点C1求直线的解析式2求△ADC的面积3在直线上存在异于点C的另一点P使得△ADP与△ADC的面积相等请直接写出点P的坐标课后练习1点A为直线上的一点点A到两坐标轴的距离相等则点A的坐标为________ 2直线经过一二四象限那么直线经过象限3一次函数是常数的图象如图所示则不等式的解集是A.B.C.D.4如图一直线L经过不同三点AabB ba C那么直线L经过A.第二四象限 B.第一三象限 C.第二三四象限 D.第一三四象限5设直线为自然数与两坐标轴围成的三角形面积为=1232000 则1+2+3++2000的值为A B C D6如图直线与轴轴分别交于AB两点以线段AB为直角边在第一象限内作等腰直角△ABC∠BAC=90°如果在第二象限内有一点P且△ABP的面积与△ABC的面积相等求a的值第5讲一次函数二知识梳理一次函数的应用就是从给定的材料中抽象出函数关系构建一次函数模型再利用一次函数的性质求出问题的解例题精讲◆例1我市一种商品的需求量y1万件供应量y2万件与价格x元/件分别近似满足下列函数关系式y1=x+60y2=2x36需求量为时即停止供应当y1 = y2 1求该商品的稳定价格与稳定需求量2价格在什么范围该商品的需求量低于供应量3当需求量高于供应量时政府常通过对供应方提供价格补贴来提高供货价格以提高供应量现若要使稳定需求量增加4万件政府应对每件商品提供多少元补贴才能使供应量等于需求量巩固图11-30表示甲乙两名选手在一次自行车越野赛中路程y千米随时间x分变化的图象全程根据图象回答下列问题.1当比赛开始多少分时两人第一次相遇2这次比赛全程是多少千米3当比赛开始多少分时两人第二次相遇◆例2在购买某场足球赛门票时设购买门票数为张总费用为元.现有两种购买方案方案一若单位赞助广告费10000元则该单位所购门票的价格为每张60元总费用=广告赞助费+门票费方案二购买门票方式如图所示.解答下列问题1方案一中与的函数关系式为方案二中当时与的函数关系式为当时与的函数关系式为2如果购买本场足球赛超过100张你将选择哪一种方案使总费用最省请说明理由3甲乙两单位分别采用方案一方案二购买本场足球赛门票共700张花去总费用计58000元求甲乙两单位各购买门票多少张.元一月用水超过10吨的用户10吨水仍按每吨元收费超过10吨的部分按每吨元收费设一户居民月用水吨应收水费元与之间的函数关系如图13所示1求的值某户居民上月用水8吨应收水费多少元2求的值并写出当时与之间的函数关系式3已知居民甲上月比居民乙多用水4吨两家共收水费46元求他们上月分别用水多少吨◆例3抗震救灾中某县粮食局为了保证库存粮食的安全决定将甲乙两个仓库的粮食全部转移到具有较强抗震功能的AB两仓库已知甲库有粮食100吨乙库有粮食80吨而A库的容量为70吨B库的容量为110吨从甲乙两库到AB两库的路程和运费如下表表中元吨·千米表示每吨粮食运送1千米所需人民币1若甲库运往A库粮食吨请写出将粮食运往AB两库的总运费元与吨的函数关系式2当甲乙两库各运往AB两库多少吨粮食时总运费最省最省的总运费是多少巩固我市某乡两村盛产柑桔村有柑桔200吨村有柑桔300吨.现将这些柑桔运到两个冷藏仓库已知仓库可储存240吨仓库可储存260吨从村运往两处的费用分别为每吨20元和25元从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨两村运往两仓库的柑桔运输费用分别为元和元.1请填写下表并求出与之间的函数关系式总计吨200吨300吨总计240吨260吨500吨2试讨论两村中哪个村的运费较少3考虑到村的经济承受能力村的柑桔运费不得超过4830元.在这种情况下请问怎样调运才能使两村运费之和最小求出这个最小值.◆例4我国铁路第六次大提速在甲乙两城市之间开通了动车组高速列车.已知每隔1h有一列速度相同的动车组列车从甲城开往乙城.如图所示OA是第一列动车组列车离开甲城的路程s 单位在km 与运行时间t 单位h 的函数图象BC 是一列从乙城开往甲城的普通快车距甲城的路程s 单位km 与运行时间t 单位h 的函数图象.请根据图中信息解答下列问题1点B的横坐标05的意义是普通快车发车时间比第一列动车组列车发车时间_________h点B的纵坐标300的意义是_______________________ 2请你在原图中直接画出第二列动车组列车离开甲城的路程s与时间t的函数图象3若普通快车的速度为100 kmh①求BC的解析式并写出自变量t的取值范围②求第二列动车组列车出发后多长时间与普通列车相遇③直接写出这列普通列车在行驶途中与迎面而来的相邻两列动车组列车相遇的间隔时间.巩固某物流公司的快递车和货车每天往返于AB两地快递车比货车多往返一趟图中表示快递车距离A地的路程y 单位千米与所用时间x 单位时的函数图象.已知货车比快递车早1小时出发到达B地后用2小时装卸货物然后按原路原速返回结果比快递车最后一次返回A地晚1小时.1请在图中画出货车距离A地的路程y 千米与所用时间x 时的函数图象2求两车在途中相遇的次数直接写出答案3求两车最后一次相遇时距离A地的路程和货车从A地出发了几小时课后练习1某车站客流量大旅客往往需长时间排队等候购票.经调查统计发现每天开始售票时约有300名旅客排队等候购票同时有新的旅客不断进入售票厅排队等候购票新增购票人数人与售票时间分的函数关系如图所示每个售票窗口票数人与售票时间分的函数关系如图所示.某天售票厅排队等候购票的人数人与售票时间分的函数关系如图所示已知售票的前分钟开放了两个售票窗口.1求的值2求售票到第60分钟时售票厅排队等候购票的旅客人数3该车站在学习实践科学发展观的活动中本着以人为本方便旅客的宗旨决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票以便后来到站的旅客能随到随购请你帮助计算至少需同时开放几个售票窗口2如图工地上有AB两个土墩洼地E和河滨F两个土墩的土方数分别是781方1584方洼地E填上1025方河滨F可填上1390方要求挖掉两个土墩把这些土先填平洼地E余下的图填入河滨F填入F实际只有1340方如何安排运土方案才能使劳力最省提示把土方米作为运土花费劳力的单位第6讲全等三角形知识梳理1全等三角形全等三角形能够完全重合的两个三角形2全等三角形的判定方法有SASASAAASSSSHL3 全等三角形的性质1全等三角形的对应角相等对应线段边高中线角平分线相等2全等三角形的周长面积相等4全等三角形常见辅助线的作法有以下几种遇到等腰三角形可作底边上的高利用三线合一的性质解题思维模式是全等变换中的对折.遇到三角形的中线倍长中线使延长线段与原中线长相等构造全等三角形利用的思维模式是全等变换中的旋转.遇到角平分线可以自角平分线上的某一点向角的两边作垂线利用的思维模式是三角形全等变换中的对折所考知识点常常是角平分线的性质定理或逆定理.过图形上某一点作特定的平分线构造全等三角形利用的思维模式是全等变换中的平移或翻转折叠截长法与补短法具体做法是在某条线段上截取一条线段与特定线段相等或是将某条线段延长是之与特定线段相等再利用三角形全等的有关性质加以说明.这种作法适合于证明线段的和差倍分等类的题目.特殊方法在求有关三角形的定值一类的问题时常把某点到原三角形各顶点的线段连接起来利用三角形面积的知识解答.例题精讲◆例1已知如图△ABC中AB=5AC=3则中线AD的取值范围是_________巩固如图所示已知在△ABC中AD是BC边上的中线E是AD上一点且BE=AC 延长BE交AC于F求证 AF=EF◆例2已知等腰直角三角形ABC中AC=BCBD平分∠ABC求证AB=BC+CD巩固1已知△ABC中AD平分∠BACAB>AC求证AB-AC=BD-DC2如图所示已知四边形ABCD中AB=AD∠BAD=60°∠BCD=120°求证 BC+DC=AC◆例3如图已知在△ABC中∠B=60°△ABC的角平分线ADCE相交于点O求证OE=OD◆例4如图在△ABC中∠BAC的平分线与BC的垂直平分线PQ的垂直平分线PQ相交于点P过点P分别作PN⊥AB于NPM ⊥AC于点M求证BN=CM◆例5AD为△ABC的角平分线直线MN⊥AD于AE为MN上一点△ABC周长记为△EBC周长记为求证>拓展正方形ABCD中E为BC上的一点F为CD上的一点BE+DF=EF求∠EAF 的度数课后练习1如图∠BAC=60°∠C=40°AP平分∠BAC交BC于PBQ平分∠ABC交AC于Q求证AB+BP=BQ+AQ2如图△ABC中EF分别在ABAC上DE⊥DFD是中点试比较BE+CF与EF的大小3如图△ABC中AD平分∠BACDG⊥BC且平分BCDE⊥AB于EDF⊥AC于F1说明BE=CF的理由2如果AB=AC=求AEBE的长第7讲直角三角形与勾股定理知识梳理一直角三角形的判定1有两个角互余的三角形是直角三角形2勾股定理逆定理二直角三角形的性质1直角三角形两锐角互余.2直角三角形中30°所对的直角边等于斜边的一半.。

初中数学竞赛辅导教案

初中数学竞赛辅导教案

初中数学竞赛辅导教案年级学科:八年级数学教材内容:勾股定理及其应用教学目标:1. 理解勾股定理的证明过程,掌握勾股定理的应用方法。

2. 提高学生的逻辑思维能力和解决问题的能力。

3. 培养学生的竞赛意识,提高学生的数学素养。

教学重点:勾股定理的证明和应用教学难点:勾股定理的灵活运用和解决实际问题教学过程:一、导入(5分钟)1. 利用多媒体展示勾股定理的发现和历史背景。

2. 引导学生思考勾股定理的意义和应用。

二、自主学习(10分钟)1. 让学生阅读教材,理解勾股定理的证明过程。

2. 学生互相讨论,解答教材中的例题。

三、课堂讲解(15分钟)1. 讲解勾股定理的证明过程,引导学生理解证明的逻辑关系。

2. 讲解勾股定理的应用方法,举例说明如何解决实际问题。

四、练习巩固(10分钟)1. 让学生独立完成教材中的练习题。

2. 教师挑选一些典型的题目进行讲解和分析。

五、拓展提高(10分钟)1. 引导学生思考勾股定理在实际生活中的应用。

2. 给出一些竞赛题,让学生尝试解决。

六、总结反思(5分钟)1. 让学生回顾本节课的学习内容,总结勾股定理的证明和应用。

2. 鼓励学生积极参与数学竞赛,提高自己的数学素养。

教学评价:1. 课后收集学生的练习作业,评估学生对勾股定理的掌握程度。

2. 在下一节课开始时,进行简单的测验,检验学生对勾股定理的应用能力。

教学反思:本节课通过讲解勾股定理的证明过程和应用方法,让学生掌握了勾股定理的基本知识。

在教学过程中,注意引导学生思考和讨论,提高学生的逻辑思维能力和解决问题的能力。

同时,通过拓展提高环节,培养学生的竞赛意识,提高学生的数学素养。

在今后的教学中,要继续注重学生的主体地位,引导学生主动探索和发现,培养学生的创新精神。

同时,加强对学生的个别辅导,提高学生的学习效果。

因式分解教案_2

因式分解教案_2

因式分解教案因式分解教案篇1教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4x2-x中的公因式是x,在xy2-yz-y 中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)23a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)23a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.因式分解教案篇2教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解.什么叫因式分解?知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

八年级数学竞赛辅导培训讲义设计

八年级数学竞赛辅导培训讲义设计

培训讲义(数学)第一讲 计算技巧例1、规定运算yx Axy y x 54+=*,且121=*,求32*的值. 解:易见125142121=⨯+⨯⨯⨯=*A ,解得7=A , ∴y x xy y x 547+=* ∴23191352432732=⨯+⨯⨯⨯=* 例2、求=S ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++99989997992991434241323121ΛΛ的值. 解: 将括号内各项反序排列,则有⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=99199299979998414243313221ΛΛS 两式相加,得99983212+++++=ΛS 4950299)991(=⨯+= 试一试:计算:⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛++++602524232601413121ΛΛ+ 6059605859586035343+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++ΛΛ (答案885) 例3、计算:1091981871761651541431321211⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 解:因为 2111211-=⨯, 3121321-=⨯, 4131431-=⨯, 可见,原式109101110191413131212111=-=-++-+-+-=Λ 这种方法叫分项相消法.一般地n n n n 111)1(1--=-试一试: ∴计算: 4213012011216121----- ∴计算:200019981531421311⨯++⨯+⨯+⨯Λ 答案∴71,∴79960005993001 例4、计算:20003222221+++++Λ解:设20003222221+++++=ΛS ,两边乘2得2001200032222222+++++=ΛS ,两式相减,得122001-=S例5、计算:=S 10210164834221+++++Λ 解:在原式两边乘以21得,111021029163824121+++++=ΛS ,与原式相减得 11102102116181412121-+++++=ΛS , 设 10/21161814121+++++=ΛS , 则 1110/2121161814121+++++=ΛS ,∴11/212121-=S ,10/211-=S ,111021021121--=S 10112612121-=-= ∴8232-=S 2562531= 试一试:∴计算:2005327777++++Λ∴计算:111032222221-++-+-Λ (答案: ∴6772006-,∴1365-.)第二讲 绝对值例1、化简:1213-++x x解:当31-<x 时,原式x x x 5)12()13(-=--+-= 当2131<≤-x 时,原式2)12()13(+=--+=x x x 当21≥x 时,原式x x x 5)12()13(=-++= 试一试:化简x x ---212思考练习1、数a 、b 、c 在数轴上的位置如图所示,化简:b a c b a --++2、若2=a ,5=b ,且0>ab ,求=-b a ?答案: 1、a c 2-. 2、3.例2、(1) 求21++-x x 的最小值 解:1-x 表示数轴上一点x 与1之间的距离,2+x 表示数轴上一点x 与2-之间的距离.求21++-x x 的最小值,就是在数轴上找一点x ,使x 到-2与1两点的距离之和最小.从图可知,x 可取-2与1当中的任一点,其和的最小值是3,即21++-x x 的最小值是3.(2) 求321-+-+-x x x 的最小值解:本题实际上就是在数轴上找一点x ,使得该点到1、2、3的距离之和最小,从图可知,当x 与2重合时,距离之和最小,这个最小值是2.思考练习:∴求4321-+-+-+-x x x x 的最小值.∴求54321-+-+-+-+-x x x x x 的最小值. (答案: ∴4 ∴6)例3、含绝对值的一元一次方程∴解方程413=+x ∴解方程3112=--x ∴解方程x x -=-515解:∴∴413±=+x ,∴由413=+x ,得1=x ,由413-=+x ,得35-=x . ∴1=x 35-=x 是原方程的解 ∴∴3112±=--x ,∴412=-x ,或212-=-x (舍去) 即412=-x ,得412±=-x ,由412=-x ,得25=x , 由412-=-x ,得23-=x . ∴25=x 、23-=x 是原方程的解. ∴)5(15x x -±=-, 由x x -=-515,得1=x ;由)5(15x x --=-, 得1-=x ,∴1,1-==x x 是原方程的解.思考练习: 解下列方程1、232=-x2、413=+x3、3121-=-x x 4、x x -=-515 5、 x x x +=--+113 6、3112=--x答案;1、21,25==x x ; 2、1、1=x ,35-=x ; 3、4=x 4、1±=x ; 5、(用零点分段法法讨论去掉绝对值) 3,1,5=-=-=x x x , 6、25=x ,23-=x ;第三讲 数的大小比较例1 设a 、b 、c 的平均数为M, a 、b 的平均数为N ,N 、C 的平均数为P,若c b a >>. 讨论M 与P 的大小关系. 解:122423c b a c b a c b a P M -+=++-++=-(c b a >>) ∴0122122=-+>-+c c c c b a , 故0>-P M ,即P M >. 例2 已知d c b a ,,,是四个不相等的正数,其中a 最大,d 最小,且满足条件d c b a =,试比较d a +与c b +的大小关系. 解:设k dc b a ==,则bk a =,dk c =,∴a 最大,d 最小,且d c b a ,,,都为正数, ∴k >1,b >d ,)1)(()()(--=--+=+-+k d b dk b d bk c b d a >0,∴d a +>c b +.思考练习1、已知1=ab ,b a m +++=1111, bb a a n +++=11, 试讨论m 、n 的大小关系. 2、已知c b a ,,都是实数,并且a >b >c ,给出四个式子:“∴ab >bc ;∴b a +>c b +;∴b a ->c b -;∴c a >cb .试判断哪个是正确的. 3、553=a ,444=b ,335=c ,比较c b a ,,的大小. 4、若b a ,是正数且满足)111)(111(12345b a -+=,比较a 与b 的大小关系.5、已知12-=a ,622-=b ,26-=c ,比较a 、b 、c 的大小.6、已知0<a <b <1,且1=+b a ,比较a ,b ,22b a +,21 的大小 答案提示 1、∴0)1)(1(221111=++-=+-++-=-b a ab b b a a n m , ∴n m =. 2、∴ c a c b b a -=+-+)()(>0, ∴b a +>c b +.3、11115243)3(==a ,11114256)4(==b ,11113125)5(==c ,∴c <a <b4、∴0,0>>b a ,由)111)(111(12345b a -+=,得11124ab b a +=->0,b a > 5、∴3>22, ∴2133216--+=--=-b a >21223--+=21)12(2--+=0又b a a c -=--=-216>0, ∴ b <a <c.6、∴a <b ,∴2)(b a ->0,∴22b a +>ab 2,不等式两边同加上22b a +,得)(222b a +>1)(2=+b a ,∴22b a +>21;又∴0<a <b ,∴2a <ab ,而 1=+b a ,∴2)(b ab b a b b +=+=>22b a +, ∴a <21<22b a +<b第四讲 奇偶分析基本原理奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数.奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数.b a ,为整数,若b a ±为偶数,则b a ,奇偶性相同;b a ,为整数,若b a ±为奇数,则b a ,奇偶性相异.例1 若q p ,为质数,且2975=+q p ,求22q p +的值.解:若q p ,都为奇质数,则q p 75+是偶数,若q p ,都为偶质数2,则q p 75+≠29,所以q p ,中必有一个为偶质数2,另一个为奇质数,若2=p ,则q 不是整数,故只有2=q ,此时3=p ,22q p +=13. 例2 若19962-a 是整数,求整数a 的最小值. 解:m a =-19962(m 是正整数),则221996m a =-,199622=-m a , ∴1996))((=-+m a m a ,∴m a +与m a -有相同的奇偶性,而1996是偶数,∴m a +与m a -同为偶数,又499221996⨯⨯=,499是质数,∴⎩⎨⎧=-=+2998m a m a 解得 500=a ,∴整数a 的最小值是500. 例3 若正整数y x ,满足方程199722=+y x ,求y x +的值. 解:因为199722=+y x 为奇数, 所以y x ,为一奇一偶,不妨设x 为奇数,y 为偶数,又因为22y x +的个位数字是7, 所以2x 的个位数字必为1,2y 的个位数字必为6. 从而x 的个位数字是1或9,y 的个位数字是4或6.又2x <1997,故x <45. 因此x 的可能值是1, 9, 21, 29,41.经检验, 仅当34,29==y x 有时,使1997342922=+, 所以633429=+=+y x .思考练习:1、如果质数q p ,满足关系式3153=+q p ,则=),(q p _______.2、王、李两人卖了m 只猪,每头卖价又恰是m 元钱,两人分钱方法是,先由王拿10元,再由李拿10元,如此轮流,拿到最后剩下不足10元,轮到李拿,为平均分配,王应补回李多少元钱?3、在21,22,23,…,295这95个数中,十位数字为奇数的数共有多少个?答案提示:1、p 3和q 5中恰有一个偶数,故q p ,中恰有一个为2,∴(2,5),(7,2).2、令b a m +=10,则222)5(210)10(b b a a b a m ++⨯=+=,因王先拿10元,而李最后一次取钱不足10元,所以2m 中有奇数个10元,而)5(210b a a +⨯中含有偶数个10元,故2b 中必会有奇数个10元,因b <10,所以2b 只可能是1、4、9、16、25、36、49、64、81,而这9个数中只有16和36会有奇数个10元,因此2b =16或36,这两个数的个位数都是6,这就是说,李最后所拿的钱是6元,由此可知,王比李多拿了4元钱,王应补回李2元钱.3、在21,22,23,……,210中,十位数字是奇数的只有366,16422==, 而一个两位数22220100)10(b ab a b a ++=+,2)10(b a +与2b 的十位数字的奇偶性相同,b 只能取4、6两个数,∴在21,22,23,......,290这90个数中,十位数字为奇数的数共有1892=⨯个,在291, (2)95中,十位数字为奇数的数有1个,总共有19个.第五讲 整数的讨论例1 当a 取遍0到5的所有实数时,求满足)83(3-=a a b 的整数b 的个数.解: ∴916)34(3822--=-=a a a b ,又50≤≤a , ∴b 的最小值是916-, 又当0=a 时,0=b ,当5=a 时,3211=b , ∴3211916≤≤-b ,故b 取到的整数是-1, 0, 1, 2, …, 11,共13个.例2 若两个数的平方和为637,最大公约数与最小公倍数之和为49,求这两个数. 解:∴两个数的平方和为637,∴这两个数不可能是1,49,∴7749⨯=∴所求的两数的最大公约数是7,最小公倍数是42, 设两数为a ,b ,则m a 7=,n b 7=,(m <n ,m 、n 是自然数,(m ,n )=1)由[]b a b a ab ,),(=得,42749⨯=mn ,∴6=mn ,∴m <n ,(m ,n )=1,∴m =2,n =3,∴14=a ,21=b ,经检验,637211422=+,∴所求的两数是14,21.例3 某校在向“希望工程”捐款活动中,甲班的m 个男生和11个女生的捐款总数与乙班9个男生和n 个女生的捐款总数相等,都是145119+++n m mn 元,已知每人的捐款数相同,且都是整数元。

初二数学竞赛辅导资料(共12讲)讲义

初二数学竞赛辅导资料(共12讲)讲义

目录本内容适合八年级学生竞赛拔高使用。

重点落实在奥赛方面的基础知识和基本技能培训和提高。

本内容难度适中,讲练结合,由浅入深,讲解与练习同步,重在提高学生的数学分析能力与解题能力。

另外,在本次培训中,内容的编排和讲解可以根据学生的具体状况由任课教师适当的调整顺序和增删内容。

其中《因式分解》为初二下册内容,但是考虑到它的重要性和工具性,将在本次培训进行具体解读。

注:有(*)标注的为选做内容。

本次培训具体计划如下,以供参考:第一讲实数(一)第二讲实数(二)第三讲平面直角坐标系、函数第四讲一次函数(一)第五讲一次函数(二)第六讲全等三角形第七讲直角三角形与勾股定理第八讲株洲市初二数学竞赛模拟卷(未装订在内,另发)第九讲竞赛中整数性质的运用第十讲不定方程与应用第十一讲因式分解的方法第十二讲因式分解的应用第十三讲考试(未装订在内,另发)第十四讲试卷讲评第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数 1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b ③对任意实数a ,则|a |≥a , |a |≥-a ④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b |(2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0(3)算术平方根是非负数,即a ≥0,其中a ≥0.算术平方根的性质:()a a =2(a ≥0)||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数 (2)若干个非负数的和等于零,则每个加数都为零 (3)若非负数不大于零,则此非负数必为零 3的式子,被开方数必须为非负数; 4a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。

八年级数学(竞赛)因式分解

八年级数学(竞赛)因式分解

第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。

全国初中数学竞赛辅导(初二分册) - 副本

全国初中数学竞赛辅导(初二分册) - 副本

初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。

关于初二数学因式分解教案6篇

关于初二数学因式分解教案6篇

关于初二数学因式分解教案6篇关于初二数学因式分解教案6篇数学课件是非常重要的。

学习可以说很枯燥,记公式做题,做大量的类型题。

这时候,如果教师有一份明确的说课稿,将会大大提升教学效率,下面小编给大家带来关于初二数学因式分解教案,希望会对大家的工作与学习有所帮助。

初二数学因式分解教案(篇1)1、 shouldshould是情态动词,意为“应当,应该”。

表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。

其主要用法有:(1)表示责任和义务,意为“应该”。

You should take your teacher’s advice.你应该听从你老师的建议。

You shouldn’t be late for class.你不应该上课迟到。

(2)表示推断,意为“可能,该”。

The train should have already left.火车可能已经离开了。

(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to更加委婉。

You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。

2、 need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。

sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。

You didn’t need to come so early.你不必来这么早。

The flowers need watering.花需要浇水。

(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训(2):因式分解(2)

初中数学竞赛专题培训第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;=(x-5y+3)(x-3y-1) =(x-1)(x-y+3) (3)3x2-11xy+6y2-xz-4yz-2z2.=(3x-2y+2z)(x-3y-z)2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;=(x-3)(x^2+4x+2) =(x+2)(x-2)(x^2+3x+1)(3)4x4+4x3-9x2-x+2.=(x-1)(2x+1)(2x-1)(x+2)3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.= (2x-3y+4)(x+3y+5) =(x^2+3)(x^2+5x-3)。

初中八年级数学竞赛培优讲义全套专题04 和差化积----因式分解的方法(2)

初中八年级数学竞赛培优讲义全套专题04 和差化积----因式分解的方法(2)

专题04 和差化积----因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法 1.主元法所谓主元法,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式按降幂排列重新整理成关于这个字母的多项式,使问题获解的一种方法. 2.待定系数法即对所给的数学问题,根据已知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在已知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构中去,得出需求问题的解.例题与求解【例l 】xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .()()()z x y x z y -+-B .()()()z x y x z y +--C .()()()z x y x z y +-+D .()()()z x y x z y -++(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幂排列,改变原式结构,寻找解题突破口.【例2】分解因式:(1)bc ac ab c b a 54332222+++++;(“希望杯”邀请赛试题)(2)z y xy xyz y x z x x 222232242-++--.(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多、次数高,给分解带来一定的困难,不妨考虑用主元法分解.【例3】分解因式1)12()12(2223-+-++++a x a a x a x .(“希望杯”邀请赛试题)解题思路:因a 的最高次数低于x 的最高次数,故将原式整理成字母a 的二次三项式.【例4】k 为何值时,多项式k y x y xy x +++-+108222有一个因式是?22++y x(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,因此不能先分解,再求值,只能从待定系数法入手.【例5】把多项式12544234+-+-x x x x 写成一个多项式的完全平方式.(江西省景德镇市竞赛题)解题思路:原多项式的最高次项是44x ,因此二次三项式的一般形式为b ax x ++22,求出b a 、即可.【例6】如果多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +,)(c x +的乘积(c b ,为整数),则a 的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于a c b ,,的方程组,通过消元、分解因式解不定方程,求出a c b ,,的值.能力训练A 级1.分解因式:222449c bc b a -+-=___________________________.(“希望杯”邀请赛试题)2.分解因式:22635y y x xy x ++++=_______________________(河南省竞赛试题)3.分解因式:)(3)(322y x y y x x -+-+++=____________________________.(重庆市竞赛试题)4.多项式78622++-+y x y x 的最小值为____________________.(江苏省竞赛试题)5.把多项式822222--++-y x y xy x 分解因式的结果是( )A .)2)(4(+---y x y xB .)8)(1(----y x y xC . )2)(4(--+-y x y xD .)8)(1(--+-y x y x6.已知122-+ax x 能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( ).A .3 个B .4 个C .5 个D .6个 7.若4323+-kx x 被13-x 除后余3,则k 的值为( ). A .2 B .4 C .9 D .10(“CASIO 杯”选拔赛试题)8.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值是( ). A .92 B .32 C .54D .0(大连市“育英杯”竞赛试题)9.分解因式:(1)ac bc ab b a 2222++--;(吉林省竞赛试题)(2)))((4)(2b ac b a c ----;(昆明市竞赛试题)(3)a x a x x 2)2(323-++-;(4)12267222--++-y x y xy x ;(四川省联赛试题)(5)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy(天津市竞赛试题)10.如果1)4)((---x a x 能够分割成两个多项式b x +和c x +的乘积(c b 、为整数),那么a 应为多少?(兰州市竞赛试题)11.已知代数式24322-+---by x y xy x 能分解为关于y x ,的一次式乘积,求b 的值.(浙江省竞赛试题)B 级1.若k x x x +-+3323有一个因式是1+x ,则k =_______________.(“希望杯”邀请赛试题)2.设y kx xy x x 42323---+可分解为一次与二次因式的乘积,则k =_____________.(“五羊杯”竞赛试题)3.已知4+-y x 是4322+++-y mx y x 的一个因式,则m =________________________. (“祖冲之杯”邀请赛试题) 4.多项式6522++-++y x by axy x 的一个因式是2-+y x ,则b a +的值为__________.5.若823+++bx ax x 有两个因式1+x 和2+x ,则b a +=().A .8B .7C . 15D .21E .22(美国犹他州竞赛试题)6.多项式251244522+++-x y xy x 的最小值为( ). A .4 B .5 C .16 D .25(“五羊杯”竞赛试题)7.若136498322++-+-=y x y xy x M (y x ,为实数),则M 的值一定是().A .正数B .负数C .零D .整数(“CASIO 杯”全国初中数学竞赛试题) 8.设n m ,满足016102222=++++mn n m n m ,则),(n m =()A .(2,2)或(-2,-2)B .(2,2)或(2,-2)C .(2,-2)或(-2,2)D .(-2,-2)或(-2,2)(“希望杯”邀请赛试题)9.k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?(天津市竞赛试题)10.证明恒等式:222444)(2)(b ab a b a b a ++=+++.(北京市竞赛试题)11.已知整数c b a ,,,使等式)1)(11()10())((+-=-+++x x x c b x a x 对任意的x 均成立,求c 的值.(山东省竞赛试题)12.证明:对任何整数y x ,,下列的值都不会等于33.543223451241553y xy y x y x y x x ++--+(莫斯科市奥林匹克试题)。

八年级数学竞赛教案

八年级数学竞赛教案

八年级数学竞赛教案教案标题:八年级数学竞赛教案教学目标:1. 熟悉八年级数学竞赛的题型和要求。

2. 提高学生解题的思维能力和数学应用能力。

3. 培养学生的合作与竞争意识。

教学内容:1. 数的性质与变化2. 代数表达式3. 方程与不等式4. 几何图形的性质与变化5. 数据分析与统计教学步骤:第一课:数的性质与变化1. 导入:通过一个有趣的数学谜题引起学生的兴趣。

2. 讲解:复习数的性质,如整数的分类、有理数的性质等。

3. 练习:提供一些数的性质相关的练习题,让学生巩固理解。

第二课:代数表达式1. 导入:通过实际生活中的例子引出代数表达式的概念。

2. 讲解:介绍代数表达式的基本概念和运算规则。

3. 练习:提供一些代数表达式的练习题,让学生练习转化和简化代数表达式。

第三课:方程与不等式1. 导入:通过一个实际问题引出方程与不等式的概念。

2. 讲解:介绍方程与不等式的基本概念和解题方法。

3. 练习:提供一些方程与不等式的练习题,让学生练习解方程和不等式。

第四课:几何图形的性质与变化1. 导入:通过几何图形的变换引起学生的兴趣。

2. 讲解:介绍几何图形的基本性质和变换规律。

3. 练习:提供一些几何图形的性质和变换的练习题,让学生巩固理解。

第五课:数据分析与统计1. 导入:通过一个实际数据的分析引出数据分析与统计的概念。

2. 讲解:介绍数据分析与统计的基本方法和技巧。

3. 练习:提供一些数据分析与统计的练习题,让学生练习应用统计方法解决问题。

教学评估:1. 在每节课结束时进行小测验,检查学生对所学内容的掌握情况。

2. 设计一套模拟数学竞赛试题,让学生在课后完成,以评估他们的竞赛水平。

教学资源:1. 数学竞赛教材和习题集。

2. 数学竞赛模拟试题。

3. 多媒体投影仪和电脑。

教学建议:1. 鼓励学生积极参与课堂讨论和练习,提高他们的数学思维能力。

2. 组织学生进行小组合作学习,培养他们的合作与竞争意识。

3. 鼓励学生参加校内外的数学竞赛,提高他们的数学应用能力和竞赛技巧。

初二数学竞赛辅导共30讲

初二数学竞赛辅导共30讲

第一讲:因式分解(一) (1)第二讲:因式分解(二) (4)第三讲实数的若干性质和应用 (7)第四讲分式的化简与求值 (10)第五讲恒等式的证明 (13)第六讲代数式的求值 (16)第七讲根式及其运算 (18)第八讲非负数 (22)第九讲一元二次方程 (26)第十讲三角形的全等及其应用 (29)第十一讲勾股定理与应用 (33)第十二讲平行四边形 (36)第十三讲梯形 (39)第十四讲中位线及其应用 (42)第十五讲相似三角形(一) (45)第十六讲相似三角形(二) .............................................. 48 第十七讲* 集合与简易逻辑. (51)第十八讲归纳与发现 (56)第十九讲特殊化与一般化 (59)第二十讲类比与联想 (63)第二十一讲分类与讨论 (67)第二十二讲面积问题与面积方法 (70)第二十三讲几何不等式 (73)第二十四讲* 整数的整除性 (77)第二十五讲* 同余式 (80)第二十六讲含参数的一元二次方程的整数根问题 (83)第二十七讲列方程解应用问题中的量 (86)第二十八讲怎样把实际问题化成数学问题 (90)第二十九讲生活中的数学(三) ——镜子中的世界 (94)第三十讲生活中的数学(四)──买鱼的学问 (99)第一讲:因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n 为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n 为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n 为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c >0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n 的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x 2-2x+2).说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x 4-3x 3+7x 2-3x-2.分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1)说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x 2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例4 分解因式:x 2+3xy+2y 2+4x+5y+3. 分析 由于(x 2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x +y +n 的形式,应用待定系数法即可求出m 和n ,使问题得到解决. 解 设x 2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n)=x 2+3xy+2y 2+(m+n)x+(m+2n)y+mn , 比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明 本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x 4-2x 3-27x 2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得:由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a 有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证 ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y 和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以 a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x 2y 2z 2=1.分析 本题x ,y ,z 具有轮换对称的特点,我们不妨先看二元的所以x 2y 2=1.三元与二元的结构类似. 证 由已知有①×②×③得x 2y 2z 2=1.说明 这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.第六讲 代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x 的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解 已知条件可变形为3x 2+3x -1=0,所以 6x 4+15x 3+10x 2=(6x 4+6x 3-2x 2)+(9x 3+9x 2-3x)+(3x 2+3x -1)+1 =(3x 2+3x -1)(2z 2+3x+1)+1 =0+1=1.说明 在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a ,b ,c 为实数,且满足下式: a 2+b 2+c 2=1,①求a+b+c 的值.解 将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则(a+b+c)2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1,所以 a+b+c=±1.所以a+b+c 的值为0,1,-1. 说明 本题也可以用如下方法对②式变形:。

陈锦星八年级数学教案3因式分解(二)

陈锦星八年级数学教案3因式分解(二)

旭博教育一对一个性化辅导教案讲义:课题—分解因式(二)学生:陈锦星学科:数学教师:麦明秀日期: 2012-8-20 ★考点分析:1、掌握分解配方法、公式法、十字相乘法的灵活运用:2、培养学生分析式子,总结规律的能力3、培养学生归纳总结的能力,拓展学生的视野。

★重难点重点:配方法、公式法的灵活运用难点:配方法★教学过程:一、复习导入1、因式分解(1)x2+3x-10 (2)5x2-8x-13(3)4x2+15x+9 (4)15x2+x-2二、新知识讲解:(一)预备知识例1、配方:填上适当的数,使下列等式成立:(1)x2+12x+ =(x+6)2(2)x2―12x+ =(x―)2(3)x2+8x+ =(x+ )2从上可知:常数项配上一次项系数的一半的平方。

例2、用配方法解方程x2+2x-1=0时分析:先把它变成(x+m)2=n (n≥0)的形式再用直接开平方法求解。

解:①移项得__________________②配方得__________________(两边同时加上一次项系数一半的平方)即(x+_____)2=__________③x+__________=__________或x+__________=__________④x1=__________,x2=__________配方法:通过配成的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。

3、解方程(1)x2-4x+3=0 (2)x2+6x+9=8同步练习1、将下列各方程写成(x+m) 2=n的形式(1)x2-2x+1=0 (2)x2+8x+4=02、解下列方程(1) x2一l0x十25=7;(2) x2十6x=1.(二)中考应用(必做题)解方程:在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?(一)知识点1:配方法例3、分解因式1.x 2-2xy-35y 2 2.x 2-12x-15 3.x 2-9xy+4y 2同步练习 1、x 2-10x+5 2.x 2-12x+6 3.x 2+7xy-28y 2例4、因式分解1. 3x 2-12x-15 2.2x 2-4xy-35y 2 3.2x 2-9xy+4y 2同步练习1. 4x 2-12x-18 2.3x 2-9xy-35y 2 3.4x 2-9xy+4y 2例3、分解因式1、52+-bx x2、c bx x +-23、c bx ax +-2小结:对于任意的c 、、b a )0(≠a ,c bx ax +-2=))((21x x x x --其中a ac b a b x 24221-+-=,aac b a b x 24222---=,另ac b 42-=∆ 以上就是分解因式的公式法,(解方程也可以应用),但前提是0>∆例4、用公式法分解因式1.2552--x x 2.7622--x x 3.5432--x x同步练习1.2852--x x 2.7922--x x 3.2432+-x x三、巩固练习1、20x 2+( )+14y 2=(4x-7y)(5x-2y). 2.x 2-3xy-( )=(x-7y)(x+4y).3.x 2+( )-28y 2=(x+7y)(x-4y). 4.x 2+( )-21y 2=(x-7y)(x+3y).5.kx 2+5x-6=(3x-2)( ),k=______.6.6x 2+5x-k=(3x-2)( ),k=______.7.6x 2+kx-6=(3x-2)( ),k=______.8.18x 2-19x+5=(9x+m)(2x+n),则m=_____,n=_____.9.18x 2+19x+m=(9x+5)(2x+n),则m=_____,n=_____.10.已知()223f x x x =++,⑴求()f x 的最值;⑵若[]3,2x ∈--,求()f x 的最值。

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义全册(213页)

初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。

人教版数学八级培优和竞赛教程2、运用公式法进行因式分解.docx

人教版数学八级培优和竞赛教程2、运用公式法进行因式分解.docx

2、运用公式法进行因式分解【知识精读】把乘法公式反过来,就可以得到因式分解的公式。

主要有:平方差公式 a 2 b 2(a b)(a b)完全平方公式a22ab b2(a b)2立方和、立方差公式 a 3b3(a b)( a2ab b2 )补充:欧拉公式:a3 b 3c33abc( a b c)(a 2b2c2ab bc ca)1(a b c)[( a b) 2(b c) 2(c a) 2 ]2特别地:( 1)当a b c0 时,有 a 3b3c33abc( 2)当c0 时,欧拉公式变为两数立方和公式。

运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。

但有时需要经过适当的组合、变形后,方可使用公式。

用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。

因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。

下面我们就来学习用公式法进行因式分解【分类解析】1. 把a22a b22b 分解因式的结果是()A.(a b)(a 2)(b2)B.( a b)(a b2)C. (a b)(a b)2D. ( a22b)(b 22a)分析: a 22a b 22b a 22a1b22b1(a1)2(b 1) 2。

再利用平方差公式进行分解,最后得到( a b)(a b2) ,故选择B。

说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。

同时要注意分解一定要彻底。

2.在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用例:已知多项式 2x3x 2m 有一个因式是 2 x 1,求 m的值。

分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出 m的值。

解:根据已知条件,设 2 x3x2m (2 x1)( x 2ax b)则 2 x3x 2m 2 x3(2a 1) x2(a 2b) x b 2a11(1)由此可得a2b0(2)m b(3)由( 1)得a1把 a1代入( 2),得b 1 2把 b 1代入( 3),得m1 223.在几何题中的应用。

初中八年级册数学 13.5因式分解(二)教学案(华东师大版)

初中八年级册数学 13.5因式分解(二)教学案(华东师大版)

13.5因 式 分 解(二)【知识要点】1.因式分解概念:把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算.2.提公因式法;(1)多项式各项都含有的相同因式,叫做这个多项式各项的公因式.(2)公因式的构成:①系数:各项系数的最大公约数;②字母:各项都含有的相同字母;③指数:相同字母的最低次幂.3.公式法:(1)常用公式 平 方 差: )b a )(b a (b a 22-+=-完全平方: 222)b a (b 2ab a ±=+±(2)常见的两个二项式幂的变号规律:①22()()n n a b b a -=-;②2121()()n n a b b a ---=--.(n 为正整数)【课前热身】1.计算下列各式:(1)(4)(4)m m +-= (2)2(3)y -= (3)3(1)x x -= (4)()m a b c ++=2.根据上题填空:(1)233x x -= (2)216m -=(3)ma mb mc ++= (4)269y y -+=【典型例题】例1 把下列各式分解因式(1)324(1)2(1)q p p -+- (2)3()()m x y n y x ---(3)(51)(31)m ax ay m ax ay +---- (4)22311(2)(2)24a x a a a x --- 例2 把下列各式分解因式(1)22516x -= (2)22194a b -= (3)229()()m n m n +--= (4)328x x -=例3 把下列各式分解因式(1)2()6()9m n m n +-++= (2)22363ax axy ay ++= (3)2244x y xy --+= (4)2234293m n mn n ++= 例4 计算(1)123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯(2)222111111234⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭…22111199100⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭例5 求证:111631125255--能被19整除.【练 习】 A 组一、选择题1.下列各式:①22623x y x y =;②243(2)(2)3x x x x x --=+--;③22(2)ab ab ab b -=-;④221(1)(1)1a a a a -+=-+=-,其中从左至右的变形是因式分解的有( )A .4个B .3个C .2个D .1个2.下列各式中,没有公因式的是( )A .33a b -与b a -B .mx y +与x my +C .2()x y +与x y --D .2x xy -与()()x y x y +-3.观察下列各组式子,其中有公因式的是( )①2y x +与x y +;②3()a m n -与m n -+;③a b -与2()a b +;④22x y -与2()y x -A .①③B .②③C .②④D .③④4.多项式2n n b b -提公因式n b 后,另一个因式是( )A .1n b -B .211n b --C .21n b -D .n b5.下列多项式中,在有理数范围内不能用平方差公式分解因式的是( )A .22x z -+B .216x -C .20.369a --D .2249n m -+6.多项式22222225()16()m n m n +--分解因式的结果是( )A .2222(9)(9)m n n m ++B .22(3)(3)(3)m n m n m n ++-C .22(9)(3)(3)m n m n n m ++-D .(3)(3)(3)(3)m n m n m n m n +-+-二、分解因式1.231115255n n n x x x ++--+(1n >且是整数)=2.(2)(23)2(2)(32)a b a b a b a b a -----=3.222()4()a b m b a ---=4.212n n x xy +-=5.()()2222224c b d a ab cd -+---=B 组 一、因式分解:1.220041(1)(1)(1)x x x x x x x ++++++++ 2.22(161)(116)a x y b y x -++-- 3.22222()2()()x a b x a b a b ++-+- 4.2221()()2()2a b a b ab b a ab b a -+-+-三、计算:(1)1998 5.219987.4199.826⨯+⨯-⨯ (2)4.4513.74450.88944.50.26⨯+⨯-⨯(3)1(2)2(2)n n --+- (4)43937133⨯-⨯ 四、解答1.求证:对于任意的正整数22,3232n n n n n ++-+-一定是10的倍数.2.大小两个圆,这两个圆的圆心是同一个,它们围成的图形叫做环形,若两个同心圆的半径分别是17.25cm 和7.25cm ,求它们围成的环形的面积.(π取3.14)作业1.已知3271-能被40至50之间的整数整除,则这个数可以是( )A .46B .47C .48D .492.分解因式(1)221222x xy y ++ (2)4222n n a a b b -+ (3)22211()()216x x x x -+-+ (4)23(2)36x y x y --+ 3.解下列方程:(1)()()()244812x x x ----= (2)()()()()147253871235250x x x x +-++-=4.计算21234567890123456789112345678901234567892-⨯ 5.证明791381279--能被45整除.【趣数什锦】公园奇遇公元2000年5月1日,是我国新规定的第一长假的第一天,一大早,不少游客便携老扶幼来到公园,打太极拳的打太极拳,跳舞的跳舞,可热闹啦.这时,有两位看起长年龄已经不小但仍然精神抖擞的白发老者,正在缓慢地练着太极拳,不一会两位老人坐下来稍事休息,两位老人便互问姓名,通报年龄.“啊呀!我俩年龄的平方差是195呀!”语音未落,一双路过的中年夫妇听见了,便嘻嘻笑道:“真巧!我俩年龄的平方差也是195.”旁边两位青年人更是笑得前仰后合:“哈哈,哪有这样的巧事,我们两个年龄的平方差也是195,看来,我们俩也会像你们两位老人家这样高寿的啦!”这是怎么一回事呢?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国初中数学竞赛辅导(八年级)教学案全集
第二讲因式分解(二)
1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解
所以
原式=[x+(2y-3)][2x+(-11y+1)]
=(x+2y-3)(2x-11y+1).
上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:
它表示的是下面三个关系式:
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3.
这就是所谓的双十字相乘法.
用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.
例1 分解因式:
(1)x2-3xy-10y2+x+9y-2;
(2)x2-y2+5x+3y+4;
(3)xy+y2+x-y-2;
(4)6x2-7xy-3y2-xz+7yz-2z2.
解 (1)
原式=(x-5y+2)(x+2y-1).
(2)
原式=(x+y+1)(x-y+4).
(3)原式中缺x2项,可把这一项的系数看成0来分解.
原式=(y+1)(x+y-2).
(4)
原式=(2x-3y+z)(3x+y-2z).
说明 (4)中有三个字母,解法仍与前面的类似.
2.求根法
我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
定理2
的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.
我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.
例2 分解因式:x3-4x2+6x-4.
分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有
f(2)=23-4×22+6×2-4=0,
即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.
解法1 用分组分解法,使每组都有因式(x-2).
原式=(x3-2x2)-(2x2-4x)+(2x-4)
=x2(x-2)-2x(x-2)+2(x-2)
=(x-2)(x2-2x+2).
解法2 用多项式除法,将原式除以(x-2),
所以
原式=(x-2)(x2-2x+2).
说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.
例3 分解因式:9x4-3x3+7x2-3x-2.
分析因为9的约数有±1,±3,±9;-2的约数有±1,±
为:
所以,原式有因式9x2-3x-2.
解 9x4-3x3+7x2-3x-2
=9x4-3x3-2x2+9x2-3x-2
=x2(9x3-3x-2)+9x2-3x-2
=(9x2-3x-2)(x2+1)
=(3x+1)(3x-2)(x2+1)
说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式
可以化为9x2-3x-2,这样可以简化分解过程.
总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.
3.待定系数法
待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.
在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.
例4 分解因式:x2+3xy+2y2+4x+5y+3.
分析由于
(x2+3xy+2y2)=(x+2y)(x+y),
若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.
解设
x2+3xy+2y2+4x+5y+3
=(x+2y+m)(x+y+n)
=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,
比较两边对应项的系数,则有
解之得m=3,n=1.所以
原式=(x+2y+3)(x+y+1).
说明本题也可用双十字相乘法,请同学们自己解一下.
例5 分解因式:x4-2x3-27x2-44x+7.
分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原
式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.
解设
原式=(x2+ax+b)(x2+cx+d)
=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,
所以有
由bd=7,先考虑b=1,d=7有
所以
原式=(x2-7x+1)(x2+5x+7).
说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.
本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.
练习二
1.用双十字相乘法分解因式:
(1)x2-8xy+15y2+2x-4y-3;
(2)x2-xy+2x+y-3;
(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:
(1)x3+x2-10x-6;
(2)x4+3x3-3x2-12x-4;
(3)4x4+4x3-9x2-x+2.
3.用待定系数法分解因式:
(1)2x2+3xy-9y2+14x-3y+20;
(2)x4+5x3+15x-9.。

相关文档
最新文档