全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用
20180701新初二暑期竞赛专题一勾股定理及其应用
新初二暑期竞赛专题一 勾股定理及其应用一.知识链接1、勾股定理: 直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222a b c +=2、勾股定理的逆定理: 如果三角形的三边长a ,b ,c 有关系222a b c +=,那么这个三角形是直角三角形。
3、勾股数:满足不定方程222a b c +=的三个正整数a ,b ,c ,称为勾股数。
如果勾股数a 、b 、c 满足(a, b, c )=1,则a 、b 、c 叫做基本勾股数组。
性质 1.如果a 、b 、c 是一组勾股数,则ka 、kb 、kc(k 是正整数)也是一组勾股数。
性质 2.若a 、b 、c 是一个基本勾股数组,则a 、b 、c 不能同是奇数,也不能同是偶数,c 不能为偶数。
性质3.不定方程222a b c +=的基本勾股数组解a 、b 、c 且a 是偶数的公式为22222,,.a mn b m n c m n ==-=+其中0,(,)1,m n m n >>= m 和n 中一奇一偶。
(罗士琳法则)性质4.如果k 是大于1的奇数,那么k , 212-k ,212+k 是一组勾股数.性质5. 如果k 是大于2的偶数,那么k , 212k ⎛⎫- ⎪⎝⎭,212k ⎛⎫+ ⎪⎝⎭是一组勾股数.常见的勾股数有:(6,8,10)(3,4,5)(5, ,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1)短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如 ( 3, 4, 5),(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n,n 2-1,n 2+1 。
如:(6,8,10)(8,15,17)等。
4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状: a 2 +b 2>c 2锐角~,a 2 +b 2=c 2直角~,a 2 +b 2<c 2钝角~ 直角三角形判定方法:①.找最长边; ②.比较长边的平方与另两条较短边的平方和之间的大小关系; ③.确定形状; (4)构建直角三角形解题。
勾股定理的应用-课件
在实际应用中,可以利用勾股定 理来检验一个三角形是否为直角 三角形,从而确定角度和边长之 间的关系。
勾股定理的逆定理
勾股定理的逆定理是:如果一个三角 形的一组边长满足勾股定理,则这个 三角形一定是直角三角形。
通过勾股定理的逆定理,可以用来判 断一个三角形的角度和边长是否满足 直角三角形的条件,从而确定其是否 为直角三角形。
如何进一步推广和应用勾股定理
跨学科应用
01
鼓励将勾股定理应用于其他学科,以促进跨学科的学习和理解
。
创新教学方法
02
通过创新教学方法,例如使用数字化工具和互动游戏,提高学
生对勾股定理的兴趣和参与度。
实际应用
03
鼓励学生将勾股定理应用于实际问题解决中,例如在建筑、工
程和科学实验等领域。
THANKS
感谢观看
确定直角三角形
勾股定理可以用来确定一个三角形是 否为直角三角形,只需验证三边关系 是否满足勾股定理即可。
计算直角三角形边长
判断三角形的稳定性
勾股定理的应用可以帮助我们判断三 角形的稳定性,因为只有直角三角形 满足勾股定理,所以只有直角三角形 是稳定的。
已知直角三角形两条边的长度,可以 使用勾股定理计算第三边的长度。
。
在气象学中,勾股定理也被用于 计算气象气球上升的高度和速度 ,以了解大气层的结构和变化。
05
勾股定理的未来发展
勾股定理在现代数学中的应用
代数证明
勾股定理可以通过代数方法进行证明,这有助于学生更好地理解 代数和几何之间的联系。
三角函数
勾股定理与三角函数密切相关,通过应用勾股定理,可以解决一些 与三角函数相关的问题。
在海上导航中,勾股定理也用于确定船只的经度和纬度,以确保航行安全和准确 到达目的地。
勾股定理的应用课件
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。
初中数学:勾股定理全章知识点总结大全及重点题型
初中数学:勾股定理全章知识点总结⼤全及重点题型基础知识点1:勾股定理 直⾓三⾓形两直⾓边a、b的平⽅和等于斜边c的平⽅。
(即:a2+b2=c2)要点诠释:勾股定理反映了直⾓三⾓形三边之间的关系,是直⾓三⾓形的重要性质之⼀,其主要应⽤:(1)已知直⾓三⾓形的两边求第三边(2)已知直⾓三⾓形的⼀边与另两边的关系,求直⾓三⾓形的另两边(3)利⽤勾股定理可以证明线段平⽅关系的问题2:勾股定理的逆定理如果三⾓形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三⾓形是直⾓三⾓形。
要点诠释:勾股定理的逆定理是判定⼀个三⾓形是否是直⾓三⾓形的⼀种重要⽅法,它通过“数转化为形”来确定三⾓形的可能形状,在运⽤这⼀定理时应注意:(1)⾸先确定最⼤边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直⾓的直⾓三⾓形(若c2>a2+b2,则△ABC是以∠C为钝⾓的钝⾓三⾓形;若c2<a2+b2,则△ABC为锐⾓三⾓形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直⾓三⾓形的性质定理,⽽其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直⾓三⾓形有关。
4:互逆命题的概念 如果⼀个命题的题设和结论分别是另⼀个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中⼀个叫做原命题,那么另⼀个叫做它的逆命题。
5:勾股定理的证明 勾股定理的证明⽅法很多,常见的是拼图的⽅法 ⽤拼图的⽅法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变②根据同⼀种图形的⾯积不同的表⽰⽅法,列出等式,推导出勾股定理规律⽅法指导1.勾股定理的证明实际采⽤的是图形⾯积与代数恒等式的关系相互转化证明的。
2.勾股定理反映的是直⾓三⾓形的三边的数量关系,可以⽤于解决求解直⾓三⾓形边边关系的题⽬。
3.勾股定理在应⽤时⼀定要注意弄清谁是斜边谁直⾓边,这是这个知识在应⽤过程中易犯的主要错误。
勾股定理及其逆定理的综合应用
Rt△ 直角边a、b,斜边c
Rt△
互逆命题
勾股定理: 直角三角形的两直角边为a ,b , 斜边为 c ,则有
三角形的三边a,b,c满足a2+b2=c2,则这个三角形是直角三角形; 较大边c 所对的角是直角.
逆定理:
a2+ b2=c2
1、下列各组线段中,能够组成直角三角形的是(). A.6,7,8 B.5,6,7 C.4,5,6 D.3,4,5 2.在Rt△ABC中,∠C=90°. (1)如果a=3,b=4, 则c= ; (2)如果a=6,c=10, 则b= ; (3)如果c=13,b=12,则a= ; 3、在△ABC中,∠A=90°,则下列各式中不成立的是( ) A.BC2=AB2+AC2; B.AB2=AC2+BC2; C.AB2=BC2-AC2; D.AC2=BC2-AB2 4、已知直角三角形的两边长为3、2,则第三条边长是 .
第三组练习: 会用勾股定理解决较综合的问题
2.解决折叠的问题. 已知如图,将长方形的一边BC沿CE折叠, 使得点B落在AD边的点F处,已知AB=8, BC=10, 求BE的长.
第三组练习: 会用勾股定理解决较综合的问题
解:设BE=x,折叠,∴△BCE ≌△FCE, ∴BC=FC=10. 令BE=FE=x,长方形ABCD, ∴ AB=DC=8 ,AD=BC=10,∠D=90°, ∴DF=6, AF=4,∠A=90°, AE=8-x , ∴ ,解得 x = 5 .∴BE的长为5.
证明:∵AD是△ABC的高, ∴∠ADB=∠ADC=90°. ∵在Rt△ADB中,AB=10,AD=8, ∴BD=6 . ∵BC=12, ∴DC=6. ∵在Rt△ADC中,AD=8, DC=6. ∴AC=10, ∴AB=AC.即△ABC是等腰三角形.
初三数学勾股定理“一、二”专题辅导
勾股定理“一、二”闫芳勾股定理是人类的宝贵财富,它揭示了直角三角形三边之间的关系,是平面几何中的一个极为重要的定理。
尤其是其体现出来的“数形结合”、“数形统一”思想方法更具有科学创新的重大意义。
一、勾股定理在初中阶段常见错误及应用拓展1、思维定势例1 在直角△ABC 中,已知两边长为3和4,求第三边长.错解:由勾股定理得第三边长为5.错因剖析:这是很多同学在学习勾股定理时屡犯的错误,主要在于受勾3、股4、弦5的影响,不假思索得出以上错误结论.正解:题中已知两边可能为两直角边也可能为一直角边和一斜边,因此应分类讨论:(1)当3和4同时为直角边时,第三边为54322=+;(2)当3为直角边时,4为斜边时,第三边为.73422=-2、生搬硬套例2 已知三角形的三边长a=12,b=20,c=16,这个三角形是直角三角形吗?错解:∵a 2+b 2=122+202=544,c 2=162=256,∴由a 、b 、c 组成的三角形不是直角三角形.错因剖析:本题错在只是表面记住了a 2+b 2=c 2,而没有分析其中的c 应是a 、b 、c 这三边中的最长边.应用勾股定理逆定理判断三角形形状是应先确定较长边,然后计算较短的两条边的平方和是否等于较长边的平方.正解:∵20>16>12,且122+162=202,由a 、b 、c 组成的三角形是直角三角形.3、忽视条件例3 如图,一艘轮船从甲地向南偏西45°方向航行80km 到达乙地,然后又向北航行100km 到达丙地,这时它离甲地多远(精确到1km )?错解:由勾股定理得AB=.6080100AC BC 2222=-=-应用勾股定理的前提条件必须是直角三角形,也就是说只有直角三角形的三边才满足这个关系,题中并未指出该三角形为直角三角形,因此是滥用定理.正解:过A 作AD ⊥BC ,垂足为D ,设AD=xkm ,则BD=100-x (km ),由∠DAC=45°,可得AD=xkm .在Rt △ADC 中,由勾股定理得,AD 2+DC 2=AC 2,即x 2+x 2=802,解得x ≈28.3.在Rt △ADB 中,由勾股定理得,AD 2+BD 2=AB 2,即28.32+(100-x )2=1002,解得x ≈71.这时它离甲地约71km .4、顾此失彼例4 在△ABC 中,AB=13,AC=15,BC 边上的高AD=12,求BC 的长.错解:如图1,由勾股定理得,BD=,91215DC ,512132222=-==-∴BC=9+5=14.错因剖析:错因在于只考虑了AD 在△ABC 内部的情况,忽视了高AD 也可能在△ABC 外部.正解:(1)当∠B 和∠C 为锐角时,解法同上可得BC=14.(2)当∠B 为钝角时如图2所示.在Rt △ADC 中,由勾股定理得DC=9121522=-,同理可得BD=5。
勾股定理知识点总结PPT课件
如果把其中一个叫做原命题, 那么另一个叫做 它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那
么它也是一个定理, 这两个定理叫做互逆定理, 其 中一个叫做另一个的逆定理.
练习:
1.下列说法,正确的是( D ) A.真命题的逆命题是真命题 B.原命题是假命题,它的逆命题也是假命题 C.定理一定有逆定理 D.命题一定有逆命题
练习:
1.若正整数a,b,c是一组勾股数,则下列各组数中,一 定是勾股数的是( C )
A.a+1,b+1,c+1
B.a2,b2,c2
C.2a,2b,2c
D.a-1,b-1,c-1
2.下列几组数:①1,2,3;②30,40,50;③ 3,4 ,1. 55
其中是勾股数的有_____②____(只填序号)
直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。 (10-x)2 - x2 = 62
2a,2b,2c D.
(2)验证c 与a +b 是否具有相等关系,若c =a +b , 2 2 2 直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长为( )
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.钝角三角形
3.若一个三角形的两边长分别为a,b,且a,b满足
a2 6a 9 b 4 0 ,它的第三边长为5,则这个
三角形是___直__角____三角形(按角分类填写)
3. 原命题与逆命题
互逆命题: 两个命题中, 如果第一个命题的题设是第二个
初中数学几何培优第十一讲:勾股定理的应用
初中数学几何培优第十一讲:勾股定理的应用知识解读无论是解决实际问题,还是解决一些数学问题,勾股定理都有着广泛的应用。
典列示范一、在数轴上作出表示的点例1如图3-11-1,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是________【提示】这个点到原点的距离等于线段OB的长,OB是Rt△AOB 的斜边,根据勾股定理可得OB的长,就是这个点表示的实数。
【技巧点评】实数与数轴上的点是一一对应的,有理数在数轴上较易找到它对应的点,若要在数轴上直接标出无理数对应的点较难.由此我们借助勾股定理,将在数轴上表示无理数的问题转化为化长为无理数的线段长问题。
第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点。
二、在网格中作长度为无理数的线段例2如图3-11-3,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形。
(1)使三角形的三边长分别为3,(在图①中画一个即可)(2)使三角形为钝角三角形且面积为4.(在图②中画一个即可)【提示】(1)长度为3的线段很好作,主要考虑如何作出长度为,的线段和把三条线段组合成一个三角形。
由于=8=22+22,因此可以构造一个两直角边分别为2和2的直角三角形,这个直角三角形的斜边长就是.同理要构造一个长度为的线段,可构造一个直角边分别为2和1的直角三角形。
(2)确定三角形的底和高分别为1和8或2和4,然后设法使三角形称为钝角三角形。
【解答】【技巧点评】在网格中作出长的线段的步骤,第一步设法将n表示成两个整数的平方和;第二步构造直角三角形,使得两条直角边等于第一步得出的两个整数的值.三、梯子下滑问题例3如图3-11-5,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时,梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足也将向外移0.4米吗?【提示】本题中出现两个直角三角形,考虑应用勾股定理,在Rt△ABC中,由AB和BC可求出AC,则A1C=AC-AA1,而A1B1与AB均为梯子之长,在Rt△A1B1C中,再次运用勾股定理求出B1C,由此便可求出梯子向外移动的距离BB1.【解答】【技巧点评】梯子下滑问题,实际上是两个直角三角形问题,比如在本题中,两个直角三角形之间的联系是,AC=A1C+0.4,分别在两个直角三角形中应用勾股定理求出AC,A1C,即可解决问题.四、长方体的对角线例4有一根长170cm的木棒,放在长、宽、高分别是40cm,30cm,120cm的木箱中,露在木箱外边的长度至少为cm.【提示】如图3-11-7,和△是直角三角形,先在中应用勾股定理求出A′C′的长,然后在△AA′C′中应用勾股定理求出AC′的长.【技巧点评】长宽高分别为a,b,c的长方体的对角线长.五、立体图形表明的最短路径例5如图3-11-8,正四棱柱的底面边长为1.5cm,侧棱长为4cm,求一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处的最短路程的长.【提示】要求最短路程,需要将正四棱柱展开成平面图形,再利用勾股定理求解,由于从A点到点C1的面上有两种情况,故需分类讨论。
第11讲 勾股定理与锐角三角函数(题型训练)【有答案】-【2022年】中考数学大复习(知识点·易错点
第11讲 勾股定理与锐角三角函数题型一 勾股定理1.(2021·福建·福州十八中九年级期中)若二次函数y =ax 2+bx +c 的图像与x 轴有两个交点A 和B ,顶点为C ,且b 2﹣4ac =12,则∠ACB 的度数为( )A .30°B .45°C .60°D .90°【答案】C【解析】解:令y =0,则ax 2+bx +c =0,∴x =2b a -,∴AB =|. ∵b 2﹣4ac =12,∴C (﹣2b a ,﹣3a).∴AC .由抛物线的对称性可知BC =, ∴AC =BC =AB ,∴∠ACB =60°.故选:C .2.(2021·内蒙古呼和浩特·九年级期中)已知AB ,CD 是⊙O 的两条平行弦,AB =8,CD =6,⊙O 的半径为5,则弦AB 与CD 的距离为( )A .1B .7C .4或3D .7或1【答案】D【解析】①当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB =8,CD =6,∴AE =4,CF =3,∵OA =OC =5,∴由勾股定理得:EO =2254-=3,OF =2253-=4,∴EF =OF ﹣OE =1;②当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,EF =OF +OE =7,所以AB 与CD 之间的距离是1或7.故选:D .3.(2021·河南·洛阳市洛龙区教育局教学研究室九年级期中)如图,在矩形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,连接EF ,G 是EF 的中点,连接DG .在中,2BE =,,若将绕点B 逆时针旋转,则在旋转的过程中,线段DG 长的最大值是( )A 67B .217C .10D .12【答案】C【解析】解:如图,△ BEF 旋转到图中位置,连接BD 、BG ,∵在△BEF 中,∠EBF =90°,BE =2,∠BFE =30°,∴EF =2BE =4,BF 3,∵旋转前点E 是AB 的中点,点F 是BC 的中点,∴AB =CD =4,BC 3∴BD =8.∵在Rt △BEF 中,点G 是EF 的中点,∴BG =12EF =2.在△BEF 的旋转过程中,BG 的长不变,∵在△DBG 中,BG+BD >GD ,∴当D ,B ,G 三点共线且B 点在D 、G 之间时,DG 最大,此时,DG=BG+BD =2+8=10,∴DG 的最大值为10.故选C.4.(2021·浙江·杭州市杭州中学九年级期中)如图,点C ,D 在以AB 为直径的⊙O 上,且CD 平分∠ACB ,若CD =23,∠CBA =15°,则AB 的长是( )A .23B .4C .33D .43【答案】B【解析】解:过点O 作OE CD ⊥交于点E ,连接OC ,则123CE DE CD , ∵OC OB =,15CBA ∠=︒,∴,∵AB 是⊙O 的直径,∴,∵CD 平分ACB ∠,∴1452BCDACB ,∴,设OE =x ,则OC =2x ,在中,由勾股定理得, 222OC OE CE =+222(2)3x x =+ 2243x x =+233x =21x =解得11x =,21x =-(舍),∴OC =2,∴,故选B .5.(2021·浙江台州·九年级期中)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,点P 在△ABC 内一点,连接P A ,PB ,PC ,若∠BAP =∠CBP ,且AP =6,则PC 的最小值是( )A .B .3C .3-3D . 【答案】D【解析】把△BPC 绕点B 逆时针旋转90°得到△ABP ’,连接PP ’则AP ’=PC ,BP =BP ’,∠PBP ’=90°,∠AP ’B =∠CPB故△PP ’B 是等腰直角三角形∴∠PP ’B =45°∵∠BAP =∠CBP∴∠BAP =∠ABP ’∴BP ’∥AP∴∠APB =90°当P ’、P 、C 在同一直线上,且AP ’⊥P ’C 时,AP ’最短∴∠AP ’B =90°+45°=135°∴∠P AP ’=180°-∠AP ’B =45°∴△APP ’是等腰直角三角形∴AP ’=6∴PC =AP故选D .6.(2021·陕西师大附中九年级期中)如图所示,在边长为12的正方形中ABCD 中,有一个小正方形EFGH ,其中点E 、F 、G 分别在线段AB 、BC 、FD 上,若3BF ,则小正方形的边长为( )A .6B .5C .154D .【答案】C【解析】解:在△BEF 与△CFD 中∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3∵∠B =∠C =90°,∴△BEF ∽△CFD ,∵BF =3,BC =12,∴CF =BC −BF =12−3=9,又∵DF =222212915CD CF +=+=,∴BF EF CD DF =,即31215EF =, ∴154EF =, 故选:C .7.(2021·江西省临川第二中学九年级期中)如图,在Rt ABC △中,AB AC =,D ,E 是斜边BC 上两点,且,将绕点A 顺时针旋转90°后,得到AFB △,连接EF ,下列结论:①;②ACD ;③BE DC DE +=;④222BE DC DE +=.其中正确的是( )A .1个B .2个C .3个D .4个【答案】B【解析】解:∵△ADC 绕A 顺时针旋转90°后得到△AFB ,∴△ABF ≌△ACD ,∴AF =AD ,∠CAD =∠BAF ,∵在直角三角形ABC 中,AB =AC ,∴∠BAC =90°,即∠CAD +∠BAD =90°,∴∠BAF +∠BAD =90°,即∠F AD =90°,∵∠DAE =45°,∴∠DAE =∠F AE =45°,在△AED 和△AEF 中, DA FA DAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△AED ≌△AEF (SAS ),故①正确,∵AE 与AD 不一定相等,∴AE AD 不一定与1AB AC=相等 ∴△ABE 与△ACD 不一定相似,②错误;∵△AED ≌△AEF ,∴DE =EF ,由旋转可知:△ADC ≌△AFB ,∴BF =CD ,∵BE +BF >EF=DE ,∴BE +DC >DE ,③错误;∵在Rt △ABC 中,AB =AC ,∴∠BAC =90°,∠ABC =∠C =45°,由旋转可知:∠ABF =∠C =45°,∴∠EBF =90°,∴BE 2+BF 2=EF 2,∴BE 2+DC 2=DE 2,④正确;故选B .8.(2021·浙江·杭州市十三中教育集团(总校)九年级期中)如图,⊙O 是以坐标原点O 为圆心,半径的圆,点P 的坐标为(2,2),弦AB 经过点P ,则图中阴影部分面积的最小值为( )A .8πB .323πC .8π﹣16D .323π-【答案】D【解析】解:由题意当OP ⊥A'B'时,阴影部分的面积最小,∵P (2,2),∴OP ,∵OA '=OB '=∴P A'=PB '= ,∴tan ∠A'OP =tan ∠B'OP , ∴∠A'OP =∠B'OP =60°,∴∠A'OB'=120°,∴S阴=S 扇形OA'B'-S △A'OB''=()212042132462236023ππ-=-, 故答案为:D .9.(2021·福建省福州第十九中学九年级期中)如图,在矩形ABCD 中,点E 、F 是对角线AC 上的两点,AB =EF =BC ,点G 是边AB 上的中点,连接GE 、DF .当GE +DF 取最小值时,线段CF 的长是( )A .1BC .43D .【答案】C【解析】解:取BC 的中点H ,连接GH 、HF 、HD ,∵在矩形ABCD 中, AB EF =BC ,∴BC =2,EF =BC =2,∴AC 4,∵点G 是边AB 上的中点,点H 是边BC 上的中点,∴GH =12AC =2,GH ∥AC ,∴GH = EF =2,GH ∥EF ,∴四边形EGHF 是平行四边形,∴EG =HF ,∴GE +DF = HF +DF ≥DH ,∴当H 、F 、D 共线时,GE +DF 有最小值,最小值为DH ,如图:在矩形ABCD 中,CH ∥AD ,CH =12BC =12AD ,∠DAC =∠HCF ,∴△CFH △AFD ,∴12CF CHAF AD ==,∵AC =4,∴CF =43, 故选:C .10.(2021·江苏·无锡市江南中学九年级期中)如图1,若△ABC 内一点P 满足∠P AC =∠PBA =∠PCB ,则点P 为△ABC 的布洛卡点,已知在等腰直角三角形DEF 中,如图2,∠EDF =90°,若点Q 为△DEF 的布洛卡点,DQ EQ +FQ =( )A .4B .C .D .【答案】D【解析】解:如图2,在等腰直角△DEF 中,∠EDF =90°,DE =DF , ∠1=∠2=∠3,∴∠1+∠QEF =∠3+∠DFQ =45°,∴∠QEF =∠DFQ ,且∠2=∠3,∴△DQF ∽△FQE , ∴DQ FQ DF FQ QE EF ===∵DQ∴2,FQ EQ ==∴EQ +FQ =2+,故选:D .11.(2021·广东·深圳市龙岗区百合外国语学校九年级期中)如图,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE =∠ADC ,BE =CE =2,CD =5,AD =kAB (k 为常数),则BD 的长为____.(用含k 的式子表示)【解析】解:如图,连接AC ,∵AE ⊥BC ,BE =CE =2,∴BC =4,AE 垂直平分BC ,AB =AC ,将△ABD 绕点A 逆时针旋转至△ACG ,如图所示,连接DG ,则AD =AG ,BD =CG ,由旋转的性质可得:∠BAC =∠DAG ,∵AB=AC,AD=AG,∴△ABC∽△ADG,∴AD DG AB BC=,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ABC+∠ADC=90°,∵△ABC∽△ADG,∴∠ABC=∠ADG,∴∠ADG+∠ADC=90°,即:∠CDG=90°,∴,∴.12.(2021·四川·中江县凯江中学校九年级期中)在⊙O中,AB、CD是两条弦,AB=6,CD=8,且AB∥CD,⊙O的半径为5,则AB、CD之间的距离是____.【答案】1【解析】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=6,CD=8,∴CE=4,AF=3,∵OA=OC=5,∴由勾股定理得:EO3=,OF4,∴EF=OFOE=1;②当弦AB和CD在圆心异侧时,如图②,过点O 作OE ⊥CD 于点E ,反向延长OE 交AB 于点F ,连接OA ,OC ,EF =OF +OE =7,所以AB 与CD 之间的距离是1或7.故答案为:1或7.13.在等边△ABC 中,AB =6,BD =4,点E 为AC 边上一个动点,连接DE ,将△CDE 沿着DE 翻折得到△FDE ,则点F 到AB 距离的最小值是_____.【答案】2【解析】解:如图,过点D 作DT AB ⊥于T .ABC ∆是等边三角形,,6BC AB ==,90DTB ∠=︒,4BD =,2CD DF ∴==,sin 60DT BD =︒=观察图象可知,当点F 落在DT 上时,点F 到AB 距离的最小,最小值为2,故答案为:2.14.(2021·山东李沧·九年级期中)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,AD DGH 是AF 的中点,那么CH 的长是 __________________.【解析】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,AD =DG =2AC ∴=,CG =, 143CF ∴=,∠ACD =∠GCF =45°, ∴∠ACF =90°,由勾股定理得,2222142582()33AF AC CF =+=+=, ∵H 是AF 的中点,11258582233CH AF ∴==⨯=. 故答案为:583. 15.(2021·浙江·温州市第四中学九年级期中)如图,在中,AD BC ⊥,BE AC ⊥交AD 于点F ,且BD AD =.(1)求证:.(2)若F 为AD 的中点,且1DC =.求AC 的长.【答案】(1)见解析;(2)5AC =【解析】(1)证:∵AD BC ⊥,BE AC ⊥,∴∠BDF =∠ADC =∠FEA =90°,∵∠AFB =∠CAD +∠FEA =∠FBD +∠BDF ,∴∠CAD =∠FBD ,在△BDF 和△ADC 中,∴;(2)∵,∴DF =DC ,∵F 为AD 的中点,1DC =,∴AD =2DF =2DC =2,∴在Rt △ADC 中,225AC AD DC =+=∴5AC =16.(2021·北京教育学院附属中学九年级期中)如图,点M ,N 分别在正方形ABCD 的边BC ,CD 上,且∠MAN =45°.把△ADN 绕点A 顺时针旋转90°得到△ABE .(1)求证:△AEM ≌△ANM .(2)若BM =3,DN =2,求正方形ABCD 的边长.【答案】(1)见解析(2)6【解析】(1)证明:由旋转的性质得,△ADN≌△ABE,∴∠DAN=∠BAE,AE=AN,∠D=∠ABE=90°,∴∠ABC+∠ABE=180°,∴点E,点B,点C三点共线,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x−3,CN=x−2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x−2)2+(x−3)2,解得,x=6或−1(舍弃),∴正方形ABCD的边长为6.17.(2021·天津河西·九年级期中)如图,已知BC为⊙O的直径,BC=5,AB=3,点A点B点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)求AC的长;(Ⅱ)求BD,CD的长..【答案】(Ⅰ)4;(Ⅱ)CD BD【解析】解:(Ⅰ)连接OD,∵BC为直径,∴.在Rt CAB △中, 2222534AC BC AB =-=-=.(Ⅱ)∵ AD 平分CAB ∠,∴ ∠CAD =∠BAD ,∴CD BD =.在中,5BC =,222CD BD BC +=,∴ 522BD CD ==. 18.(2021·河南·永城市实验中学九年级阶段练习)如图,在正方形ABCD 中,点,E F 分别在AB 和BC 上,4BE =.1AE BF ==,将绕点F 顺时针旋转,当点H 落在CD 边上时,得到GHF △.(1)求证:.(2)求,E H 两点之间的距离.【答案】(1)见解析;(2)34【解析】(1)将绕点F 顺时针旋转得到GHF △,,四边形ABCD 是正方形,1AE BF ==, 4CF BE ∴==,22(17)41CH ∴=-=,,在EBF △与FCH △中,,,;(2)如图,连接EH ,作EM CD ⊥交于点M ,,,225334EH ∴+19.(2021·四川江油·九年级期中)如图1,将两块全等的直角三角形纸片和叠放在一起,其中,6BC DE ==,8AC FE ==,顶点D 与边AB 的中点重合.(1)若DE 经过点C ,DF 交AC 于点G ,求重叠部分(DCG △)的面积:(2)合作交流:“希望”小组受问题(1)的启发,将绕点D 旋转,使DE AB ⊥交AC 于点H ,DF 交AC 于点G ,如图2,求DH 的长.【答案】(1)6;(2)154【解析】(1)∵,D 是AB 的中点,∴DC DB DA ==.∴∠B =∠DCB .又∵ABC FDE △≌△,∴FDE B ∠=∠.∴.∴DG BC ∥.∴,∴DG AC ⊥.又∵DC DA =,∴G 是AC 的中点. ∴118422CG AC ==⨯=,116322DG BC ==⨯=. ∴1143622DCG SCG DG =⨯⋅=⨯⨯=.(2)如图2所示:∵ABC FDE △≌△,∴1B ∠=∠.∵90C ∠=︒,ED AB ⊥,∵,,∴2B ∠=∠,∴12∠=∠,∴GH GD =,∵,1390∠+∠=︒,∴3A ∠=∠,∴AG GD =,∴AG GH =,∴点G 为AH 的中点;在Rt ABC △中,10AB ==,∵D 是AB 中点, ∴152AD AB ==, 连接BH .∵DH 垂直平分AB ,∴AH BH =.设AH x =,则BH x =,8CH x =-,由勾股定理得:()22286x x -+=, 解得254x =,∴154DH =. 20.(2021·北京师范大学第二附属中学西城实验学校九年级期中)如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;②用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.【答案】(1)见解析;(2)①见解析;②EF BE =,见解析【解析】(1)如图1,∵,AE BD ⊥,∴,又∵12∠=∠,∴CAE CBD ∠=∠;(2)①补全图形如图2;②EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又∵AC CB =,CAE CBD ∠=∠,∴ACM BCE ∆∆≌,∴CM CE =,,又∵,∴,∴ME =,又∵射线AE 绕点A 顺时针旋转45︒,后得到AF ,且,∴.题型二 锐角三角函数1.(2021·上海市金山初级中学九年级期中)已知在△ABC 中,∠C =90°,∠B <∠A ,设sin B =n ,那么n 的取值范围是( )A .0<n <1B .102n <<C .0n <<D .0n < 【答案】C【解析】解:在△ABC 中,∠C =90°,∠B <∠A ,且,∴0°<∠B <45°,∴0sin B <<,即0n << 故选C .2.(2021·吉林·长春市净月实验中学九年级期中)如图,在△ABC 中,∠C =90°,AB =5,AC =4,下列三角函数表示正确的是( )A .sin A =45B .tan A =43C .cos A =45D .tan B =34【答案】C【解析】解:∵∠ACB =90°,AB =5,AC =4,∴BC3,∴sin A =35,故选项A 错误; tan A =34,故选项B 错误; cos A =45,故选项C 正确; tan B =43,故选项D 错误. 故选:C .3.(2021·安徽省马鞍山市第七中学九年级期中)如图,将AOB ∠放在正方形网格中,则cos AOB ∠的值为( )A .B C .2 D .12 【答案】A【解析】解:如图所示,在直角三角形OBE 中,OE =2,BE =4,∠OEB =90°, ∴OB∴,故选A .4.如图,已知Rt △ABC 中,∠ACB =90°,AC =3,AB =5,则cos A 的值为( )A .35B .43C .34D .45【答案】A 【解析】解:在Rt △ABC 中,∠ACB =90°,∴cos A =35AC AB =.5.(2021·四川·成都嘉祥外国语学校九年级期中)在Rt △ABC 中,∠C =90°,CD ⊥AB ,垂足为点D ,下列四个三角比正确的是( )A .sinA =AC AB B .cosA =AD AC C .tanA =CD BD D .cosA =CD AD【答案】B【解析】解:因为∠ACB =90°,CD ⊥AB ,所以sinA BC AB =,cosA =AD AC AC AB =,tanA =CD AD , 故选:B .6.(2021·陕西师大附中九年级期中)如图所示,在矩形ABCD 中,3AB =,4BC =,点C 沿对角线BD 折叠,点C 的对应点为E ,线段BE 交AD 于点F ,则tan EDF ∠的值为( )A .724B .C .725D .247【答案】A【解析】∵在矩形ABCD 中,3AB =,4BC =,∴AD =BC =4∵点C 沿对角线BD 折叠,得到△EDF∴DE =DC =AB又∠A =∠E =90°,∠AFB =∠EFD∴△ABF ≌△DEF ,∴BF =DF ,AF =EF设EF =x =AF ,则DF =4-x在Rt △DEF 中,DF 2=EF 2+DE 2即(4-x )2=x 2+32解得x =78∴EF =78, ∴tan EDF ∠=778324EF DE ==7.已知a =3,且2(4tan 45)0b -°,则以a 、b 、c 为边长的三角形面积等于( ) A .6B .7C .8D .9【答案】A 【解析】解:∵2(4tan 45)0b -=°, ∴4tan 450,130,2b b c ︒-=⎧⎪⎨+-=⎪⎩ 解得 4,5.b c =⎧⎨=⎩所以a =3,b =4,c =5,即222+=a b c ,∴∠C =90°, 所以162S ab ==. 8.(2021·山东新泰·九年级期中)已知α是锐角,sin cos30α=︒,则α的值为( )A .30°B .60°C .45°D .无法确定 【答案】B【解析】解:α是锐角,sin cos30α=︒,.故选:B .9.(2021·浙江鄞州·九年级期末)角α,β满足045αβ<<<︒︒,下列是关于角α,β的命题,其中错误..的是( )A.0sin α<<B .0tan 1β<<C .cos sin βα<D .sin cos βα<【答案】C【解析】解:角α,β满足045αβ<<<︒︒,sin α随α的增大而增大,cos β随β的增大而减小, tan β随β的增大而增大, A.∵sin 45︒∴0<sin α<,选项A 正确,不合题意; B .∵tan 45=1︒,∴0tan 1β<<,选项B 正确,不合题意;C.sin 45︒,cos 45︒,cos βα><,cos sin βα>,选项C 不正确,符合题意; D.sin 45︒,cos 45︒,cos αβ><sin cos βα<,选项D 正确,不符合题意. 故选择:C .10.(2021·四川乐山·中考真题)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足,则m n +的值为( )A .3B .3或32C .3+3D .3【答案】A 【解析】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫ ⎪⎝⎭,即()1,3A ,()3,1B ∵直线2l 过原点O 和点C∴直线2l :y x =∵(,)P m n 在直线2l 上∴m n =∴PC = 连接PA ,PB ,FB∴PA PB =,线段AB 的中点为点C∴()2,2C ,OC AB ⊥过点C 作x 轴的垂线,垂足为点D∴()2,0D∴AD ==AB =BD = ∴222AD AB BD =+∴∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心∴cos BD ADB AD ∠== ∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠ ∵,且12APB AFB ∠=∠ ∴∴cos cos FC APB BFC FB ∠=∠===∴FC ∴或 当时,APB ∠和ADB ∠位于直线AB 两侧,即∴不符合题意∴PC PF FC =+=2m < ∴)2PC m ==-,∴)2m -=∴32m =∴23m n m +==故选:A .11.(2021·山东·潍坊市寒亭区教学研究室九年级期中)在Rt ABC 中,90C ∠=︒,1sin 3A =,2BC =,则AC =______.【答案】【解析】解:在Rt △ABC 中,∠C =90°,∵1sin 3BC A AB==, 又∵BC =2,∴AB =6,∴,故答案为:12.(2021·上海市松江九峰实验学校九年级期中)如图,折线AB ﹣BC 中,AB =3,BC =5,将折线AB ﹣BC 绕点A 按逆时针方向旋转,得到折线AD ﹣DE ,点B 的对应点落在线段BC 上的点D 处,点C 的对应点落在点E 处,连接CE ,若CE ⊥BC ,则tan ∠EDC =_________________.【答案】247【解析】解:如图,连接AC ,AE ,过点A 作AF ⊥BC 于F ,作AH ⊥EC 于H ,∵CE ⊥BC ,AF ⊥BC ,AH ⊥EC ,∴四边形AFCH 是矩形,∴AF =CH ,∵将折线AB ﹣BC 绕点A 按逆时针方向旋转,得到折线AD ﹣DE ,∴AD =AB =3,BC =DE =5,∠ABC =∠ADE ,∴△ABC ≌△ADE (SAS ),∴AC =AE ,∵AC =AE ,AB =AD ,AF ⊥BC ,AH ⊥EC ,∴BF =DF ,CH =EH ,∵AB 2=AF 2+BF 2,DE 2=DC 2+CE 2,∴9=AF 2+BF 2,25=(5﹣2BF )2+4AF 2,∴BF =95,AF =125, ∴EC =2CH =2AF =245,CD =5﹣2×95=75, ∴tan ∠EDC =EC CD =247, 故答案为:247.13.(2021·重庆南开中学九年级期中)计算:02tan 45)π+︒=___.【答案】3【解析】解:原式=2×1+1=2+1=3,故答案为:3.14.若三个锐角,,αβγ满足sin 48,cos 48,tan 48αβγ===,则,,αβγ由小到大的顺序为________________.【答案】βαγ<<【解析】解:根据锐角三角函数的性质可得:cos48°=sin42°,sin42°<sin48°<1,tan45°<tan48°,tan45°=1,∴cos48°<sin48°<1<tan48°,∴β<α<γ,故答案为β<α<γ.15.(2021·福建·泉州五中九年级期中)如果α是锐角,且22sin cos 481α+︒=,那么α= _________度【答案】48【解析】∵α是锐角,22sin cos 481α+︒=,又∵22sin cos 1αα+=,∴α=48°.故答案是48.16.(2021·陕西·西北工业大学附属中学九年级阶段练习)如图,在边长为4的正方形ABCD 内有一动点P ,且BP .连接CP ,将线段PC 绕点P 逆时针旋转90°得到线段PQ .连接CQ 、DQ ,则12DQ +CQ 的最小值为 ___.【答案】5【解析】解:如图,连接AC 、AQ ,∵四边形ABCD 是正方形,PC 绕点P 逆时针旋转90°得到线段PQ ,∴∠ACB =∠PCQ =45°,∴∠BCP =∠ACQ ,cos ∠ACB =BC AC cos ∠PCQ =PC QC = ∴∠ACB =∠PCO ,∴△BCP ∽△ACQ ,∴AQ BP =∵BP ,∴AQ =2,∴Q 在以A 为圆心,AQ 为半径的圆上,在AD 上取AE =1, ∵12AE AQ =,12AQ AD =,∠QAE =∠DAQ , ∴△QAE ∽△DAQ , ∴12EQ QD =即EQ =12QD , ∴12DQ +CQ =EQ +CQ ≥CE ,连接CE , ∴5CE =, ∴12DQ +CQ 的最小值为5.故答案为:5.17.(2021·河北·广平县第二中学九年级期中)(1)(1﹣sin45°)0﹣tan60°+.(2)cos30°﹣3tan60°﹣2sin45°•cos45°.【答案】(1)(2)1. 【解析】解:(1)(1﹣sin45°)0﹣tan60°+,,(2)cos30°﹣3tan60°﹣2sin45°•cos45°,3222-⨯,1-,=1.18.(2021·四川·(﹣2014)0﹣(12)−2+|2sin45°﹣2|.【答案】−2(﹣2014)0﹣(12)﹣2+|2sin45°﹣2|4+=−2.19.(2021·广东·佛山市华英学校九年级期中)计算:tan60cos30 2sin60tan45-︒-︒︒︒【答案】3 2【解析】解:tan60cos30 2sin60tan45--1-3=2.20.(2021·吉林·长春市净月实验中学九年级期中)图①、图②均是边长为1的小正方形组成的5×5网格,每个小正方形的顶点称为格点,线段AB的端点均在格点上.(要求:借助网格,只用无刻度的直尺,不要求写出画法)(1)在图①中的线段AB上画出点M,使AB=3AM.(2)在图②中作出△ABN,使点N在格点上,且tan∠BAN=12.【答案】(1)见解析;(2)见解析【解析】解:(1)如图,点M即为所求.(2)如图,点N即为所求.BN=AN=AB=∵222BN AN AB+=,∴△ABN是直角三角形,且∠ANB=90°,∴1tan2BNBANAN∠===.21.如图所示,△ABC 中,D 为AB 的中点,DC ⊥AC ,且∠BCD =30°,求∠CDA 的正弦值、余弦值和正切值.【答案】sin CDA ∠=cos 7CDA ∠=,tan CDA ∠= 【解析】解:过D 作DE ∥AC ,交BC 于点E .∵AD =BD ,∴CE =EB ,∴AC =2DE .又∵ DC ⊥ AC ,DE ∥AC ,∴DC ⊥DE ,即∠CDE =90°.又∵∠BCD =30°,∴EC =2DE ,DC .设DE =k ,则CD ,AC =2k .在Rt △ACD 中,.∴sinAC CDA AD ∠==cos CD CDA AD ∠===tanAC CDA CD ∠==22.(2021·上海市松江九峰实验学校九年级期中)如图1,已知在等腰△ABC 中,AB =AC =tan ∠ABC =3,BF ⊥AC ,垂足为F .点D 是边AB 上一点(不与A ,B 重合).(1)求边BC 的长;(2)如图2,联结DF ,DF 恰好经过△ABC 的重心,求线段AD 的长;(3)过点D 作DE ⊥BC ,垂足为E ,DE 交BF 于点Q .联结DF ,如果△DQF 和△ABC 相似,求线段BD 的长.【答案】(1)10;(2(3)BD BD 【解析】解(1)如图1,过点A 作AH ⊥BC 于H ,∴∠AHB =90°,∵AB =AC =∴BC =2BH ,在Rt △AHB 中,tan ∠ABC =AH BH=3, ∴AH =3BH , 根据勾股定理得,AH 2+BH 2=AB 2,∴(3BH )2+BH 2=(2,∴BH =5,∴BC =2BH =10;(2)∵BC =10,tan ∠ABC =3,∴CF BF =2,作BN ⊥BC ,CM ⊥BC ,∵G 为重心,∴AG =10,GH =5,∵AH ⊥BC ,CM ⊥BC∴CM AG ∥,∴∠ACM =∠CAG ,∠GMC =∠AGM∴△CMF ∽△AGF 则CM CF AG AF ==14, ∴CM =14AG =52, ∵AH ⊥BC ,CM ⊥BC ,BN ⊥BC∴CM AG BN ∥∥∴∴G 为MN 中点∴HG 为梯形CMNB 的中位线,∴BN =2GH ﹣CM =152, ∵NB AG ∥,∴∠DAG =∠NBD ,∠AGD =∠BND∴△ADG ∽△BDN ∴43AD AG BD BN ==,∴AD =47AB (3)∵BF ⊥AC ,DE ⊥BC ,∴∠BFC =∠DEB =90°,∴∠BQE =∠ACB (同角的余角相等)∵∠BQE =∠DQF ,∴∠DQF =∠ACB∵△DQF 和△ABC 相似,∴或DQ FQ BC AC=, ∵tan ∠BQE =tan ∠ACB =tan ∠ABC =3, ∴3BE QE =,3DE BE= 设QE =x ,BE =3x ,则DE =9x ,∴BQ BD =DQ =8x ,∵BF =3CF =∴QF =,(ⅰ解得x =1513,∴BD =(ⅱ)当DQ FQ BC AC =时,则,810x = 解得x 35=,∴BD ==,综上所述,BD BD 23.(2021·北京市第三中学九年级期中)如图,在△ABC 中,AC =BC ,∠ACB =90°,D 为AC 上一点(与点A ,C 不重合),连接BD ,过点A 作AE ⊥BD 的延长线于E .(1)①在图中作出△ABC 的外接圆⊙O ,并用文字描述圆心O 的位置;②连接OE ,求证:点E 在⊙O 上;(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,根据题意补全图形;②用等式表示线段CF 与AB 的数量关系,并证明.【答案】(1)①见祥解,圆心O 在斜边AB 的中点;②见详解;(2)①见详解;②AB ,见详解.【解析】解:(1)①作AC 的垂直平分线GH 与AB 的交点O 为圆心O ,以点O 为圆心,以OA 为半径画圆,则⊙O 是△ABC 的外接圆,∵GH 为AC 的垂直平分线,OI ⊥AC ,AI =CI ,∠ACB =90°,连OC ,∴IO ∥CB , ∴1AI AO IC OB==, ∴AO =OB ,∴点O 为AB 中点,∴OC 为斜边中线,∴OC =OA =OB ,∴⊙O 是△ABC 的外接圆,圆心O 在斜边AB 的中点;②∵AE ⊥BD ,AO=BO ,∴OE 为斜边中线,∴OE =OA =OB ,∴点E 在⊙O 上;(2)①延长线段BD 至点F ,使EF =AE ,连接CF ,如图;②AB ,理由如下:∵AC =BC ,∠ACB =90°,∴∠BAC =∠ABC =()1180452ACB ︒-∠=︒, ∴∠CEB =∠CAB =45°,∴∠AEC =∠CEB +∠AEB =45°+90°=135°,∴∠FEC =180°-∠CEB =180°-45°=135°=∠AEC ,在△FEC 和△AEC 中,FE AE FEC AEC EC EC =⎧⎪∠=∠⎨⎪=⎩,∴△FEC ≌△AEC (SAS ),∴FC =AC∵AC =AB sin45°AB , ∴FC =ACAB ,∴AB .24.(2021·陕西·西安高新第一中学初中校区九年级期中)问题提出:西安市为迎接“十四运”计划实施扩大城市绿化面积.现有一块四边形空地(如图2,四边形ABCD )需要铺上草皮,但由于规划图纸被污损,仅能看清两条对角线AC ,BD 的长度分别为40cm ,30cm 及夹角∠BEC =60°,你能利用这些数据,帮助工作人员求出这块空地的面积吗?建立模型:我们先来解决较为简单的三角形的情况.(1)如图1,△ABC 中,D 为AB 上任意一点(不与A ,B 两点重合),连接CD ,CD =a ,AB =b ,∠ADC =α(α为CD 与AB 所夹的锐角),则△ABC 的面积为 .(用a ,b ,α表示)问题解决:请你解决工作人员的问题.(2)如图2,四边形ABCD 中,E 为对角线AC ,BD 的交点,已知AC =40cm ,BD =30cm ,∠BEC =60°,求四边形ABCD 的面积.(写出必要的解答过程)新建模型:(3)若四边形ABCD 中,E 为对角线AC ,BD 的交点,已知AC =a ,BD =b ,∠BEC =α(α为AC 与BD 所夹的锐角),直接写出四边形ABCD 的面积为 .(用a ,b ,α表示)模型应用:(4)如图3,四边形ABCD 中,AD +BC =AB ,∠BAD =∠ABC =60°.已知BD =a ,求四边形ABCD 的面积.(“新建模型”中的结论可直接利用)【答案】(1)12ab sinα;(2)2;(3)12ab sinα;(4)a 2.【解析】解:(1)过点C 作CM ⊥AB 于点M ,如图1所示:∴△CMD为直角三角形.又∵∠ADC=α,∴sinα=CMCD,∴CM=CD•sinα,∴S△ABC=12AB•CM=12AB•CD•sinα=12ab sinα,故答案为:12ab sinα;(2)过点D作DF⊥AC于F,过点B作BN⊥AC于N,如图2所示:∵∠BEC=60°,∴∠AED=60°,同(1)得:S△ACD=12AC•DE•sin60°=AC•DE,S△ABC=12AC•BE•sin60°=AC•BE,∴S四边形ABCD=S△ACD+S△ABC=AC•DE+AC•BE=AC(DE+BE)=AC•BD=×40×30=cm2);(3)如图2,过点D作DF⊥AC于F,过点B作BN⊥AC于N,∵∠BEC=α,∴∠AED=α,同(1)得:S△ACD=12AC•DE•sinα,S△ABC=12AC•BE•sinα,∴S四边形ABCD=S△ACD+S△ABD=12AC•DE•sinα+12AC•BE•sinα=12AC•(DE+BE)•sinα=12AC•BD•sinα=12ab sinα,故答案为:12ab sinα;(4)在AB上取BG=BC,连接DG、AC、CG,AC分别交DG、BD于H、P,如图3所示:∵AD+BC=AB,AG+BG=AB,∴AD=AG,∵∠BAD=∠ABC=60°,∴△ADG与△BCG均为等边三角形,∴DG=AG,CG=BG,∠AGD=∠BGC=60°,∴∠DGC=60°=∠BGC,∴∠AGC=∠DGB=120°,∴△AGC ≌△DGB (SAS ),∴AC =BD ,∠GAC =∠GDB ,∵∠DHC =∠AHG ,∴∠DPH =∠AGD =60°,∴S 四边形ABCD =12•a •a •sin60°=12•a •a •=a 2. 题型三 解直角三角形1.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =10m ,且tan ∠CEF =43,那么矩形ABCD 的面积为( )cm ;A .280B .300C .320D .360【答案】C【解析】解:在Rt △EFC 中,tan ∠CEF=CF CE =43, ∴设3CE k =,则4CF k =,根据勾股定理得到5EF k =,由折叠的性质知,∴8DC AB k ==,∵,,∴,∴,∴6BF k =,,在Rt AEF 中,由勾股定理可得:,∴2k =,∴,20BC =,∴矩形ABCD 的面积为;故选C .2.(2021·重庆八中九年级期中)如图,垂直于地面的通信基地AB 建在陡峭的山坡BC 上,该山坡的坡度i =1:2.4.小明为了测得通信基地AB 的高度,他首先在C 处测得山脚与通信基地AB 的水平距离CD =156米,然后沿着斜坡走了52米到达E 处,他在E 处测得通信基地顶端A 的仰角为60°,则通信基地AB 的高度约为( )≈1.414)A .136米B .142米C .148米D .87米【答案】B【解析】解:如图,作EH ⊥CD 于H ,EF ⊥AD 于F .在Rt △ECH 中,∵EH :CH =1:2.4,EC =52m ,设EH=x ,则CH =2.4x ,222EH CH EC +=,即()2222.452x x +=, 解得x=20(负值舍去),∴EH =DF =20m ,CH =48m ,∴EF =DH =CD ﹣CH =156﹣48=108m ,在Rt △AEF 中,∵∠AEF =60°,∴AF =EF •tan60°=∴AD =AF +DF =m ,在Rt △BCD 中,∵BD :CD =1:2.4,∴BD =65m ,∴AB =AD ﹣BD =207﹣65=142m ,故选:B .3.如图,在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( )A B . C D 【答案】D【解析】解:如图所示,过点C 作CD ⊥AB 于D ,∵ ∠BAC =120°,∴ ∠CAD =60°,又∵ AC =2,∴ AD =1,CD∴ BD =BA +AD =5,在Rt △BCD 中,BC =∴ sin CD B BC ==.故选:D .4.(2021·天津河西·九年级期中)如图,在⊙O 中,点A ,B 在圆上,∠AOB =120°,弦AB 的长度为则半径OA 的长度为( )A .B .4C .D .【答案】B【解析】过点O 作OD ⊥AB ,垂足为D ,∵OA =OB ,∠AOB =120°,AB∴AD =BD =12AB ∠AOD =60°, ∵AD OA =sin ∠AOD = sin 60°=, ∴OA ==4,故选B .5.(2021·山东东昌府·九年级期中)如图所示,某拦水大坝的横断面为梯形ABCD ,AE ,DF 为梯形的高,其中迎水坡AB 的坡角α=45°,坡长AB =米,背水坡CD 的坡度i =则背水坡的坡长CD 为( )米.A .20B .C .10D .【答案】A【解析】解:∵迎水坡AB 的坡角α=45°,坡长AB 米,∴AE sin45°=10(米),∴DF =AE =10,∵背水坡CD 的坡度i =1∠DFC =90°,∴tan ∠C =DF FC = ∴∠C =30°,∴DC=2DF=2AE=20(米),故选A.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.1 B.1.2 C.3 D.5【答案】B【解析】解:如下图:以点F为国心,以2为半径作圆F,过点F作AB的垂线,垂足为Q,FQ交圆F于P0,故点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FQ⊥AB时,点P到AB的距离最短,在Rt△AFQ和Rt△ABC中,∵sin∠A=FQAF,sin∠A=BCAB,∴FQAF=BCAB,∵AC=6,BC=8,CF=2,∴AB=10,∴8 410 FQ=,∴FQ=3.2,∵FP0=2,∴P0Q=3.2-2=1.2.故选:B.7.(2021·山东沂源·九年级期中)在Rt△ABC中,AB是斜边,AB=10,BC=6,tan A=_________.【答案】3 4【解析】如图,∵Rt△ABC中,AB是斜边,AB=10,BC=6,∴∠C=90°,AC,∴tanA =68BC AC ==34, 故答案为:34. 8.(2021·上海市金山初级中学九年级期中)在△ABC 中,AB =6,BC =8,∠B =60°,则△ABC 的面积是 ___.【答案】123【解析】解:如图,过点A 作AD BC ⊥于点D ,在Rt ABD △中,sin AD B AB =,即3sin 6062AD =︒=, 解得33AD =, 则的面积是1183312322BC AD ⋅=⨯⨯ 故答案为:39.(2021·浙江·宁波市镇海蛟川书院九年级期中)如图,在菱形ABCD 中,tan ∠DAB =43,AB =3,点P 为边AB 上一个动点,延长BA 到点Q ,使AQ =2AP ,且CQ 、DP 相交于点T .当点P 从点A 开始向右运动到点B 时,求点T 运动路径的长度为__________.385 【解析】解:连接AT 并延长交CD 于N ,如图:∵CD ∥BQ ,∴AP DN=AT NT =AQ CN , ∴ AP AQ =12=DN CN , ∴点N 是CD 上靠近D 的三等分点,∴点T 在线段AN 上运动,当P 从点A 开始向右运动到点B ,即P 与B 重合时,如图:点T 运动路径即为AT ,过D 作DH ⊥AB 于H ,过T 作TM ⊥AB 于M ,在Rt△ADH中,tan∠DAB=43,设DH=4k,则AH=3k,AD=5k,∵AD=AB=3,∴5k=3,∴k=35,∴DH=125,AH=95,∴BH=AB﹣AH=65,∵DTPT=CDPQ=APAP AQ+=13,∴PTPD=34,∵DH⊥AB,TM⊥AB,∴TM∥DH,∴PTPD=TMDH=BMBH,即34=125TM=65BM,∴TM=95,BM=910,∴AM=AB﹣BM=21 10,在Rt△ATM中,AT,.10.(2021·广东·广州六中九年级期中)如图,△ABCAB=AC,∠BAC=120°,P为⊙O中优弧BC上一点,连接P A,PB,PC,则P A+PB+PC的最大值___.【答案】6+【解析】延长PC至F,使CF=BP,连接AF,∵四边形ABPC是圆内接四边形,∴∠ACF=∠ABP,在△ACF和△ABP中,AC AB ACF ABP CF BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABP (SAS ),∴AF =AP ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,∴∠APC =30°,过点A 作AE ⊥PF 于E ,∵AF =AP ,∴△APF 是等腰三角形,则PF =2PE ,在Rt △AEP 中,cos ∠APC =PE AP, ∴PE =AP •cos ∠APC =AP •cos 30°= AP ,∴PF =2PE,∵PF =PC +CF =PC +BP,即PC +PB,∴P A +PB +PC =(AP而AP 为⊙O∴AP 最大=∴P A +PB +PC 的最大值为(×故答案为:.11.(2021·山东泰山·九年级期中)在学习解直角三角形以后,数学兴趣小组测量了学校旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3.8米,AB ⊥BC ,同一时刻,光线与水平面的夹角为60°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1).【答案】旗杆的高度约为8.8米【解析】解:如图,过C 作CM ∥AB 交AD 于点M ,过M 作MN ⊥AB 于点N .则四边形BCMN 是矩形,∴MN =BC =4米,BN =CM , 由题意得:CM PQ CD QR =, 即13.82CM =, 解得:CM =1.9(米),在Rt △AMN 中,∠ANM =90°,MN =BC =4米,∠AMN =60°,∴tan60°=AN MN =4AN∴AN =.∵BN =CM =1.9米,∴AB =AN +BN =(米),答:旗杆的高度约为8.8米.12.(2021·广东·佛山市华英学校九年级期中)全球最长跨海大桥——港珠澳大桥连接香港、澳门、珠海三地,总长55千米.大桥某段采用低塔斜拉桥桥型,图2是从图1引申出的平面图.假设你站在桥上测得拉索AB 与水平桥面的夹角是30,拉索CD 与水平桥面的夹角是60︒,两拉索顶端的距离BC 为2米,两拉索底端距离AD 为20米,请求出立柱BH 的长.(结果精确到0.1 1.732).【答案】立柱BH 的长约为16.3米【解析】解:设DH 的长为x 米,由题意得∠AHB =90°,∵∠CDH =60°,∠AHB =90°,∴米∴()2BH CH BC =+=米,∵∠A =30°,∴米,∵AH=AD+DH,∴320=+,x x∴10x=∴米,答:立柱BH的长约为16.3米.13.(2021·山东阳谷·九年级期中)如图,小杰在高层楼A点处,测得多层楼CD最高点D的俯角为30°,小杰从高层楼A处乘电梯往下到达B处,又测得多层楼CD最低点C的俯角为10°,高层楼与多层楼CD之间的距离为CE,已知AB=CE=30米,求多层楼CD的高度.(结果精确到1米),sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【答案】18米【解析】解:如图所示,延长CD至F点,使得AF⊥CD,则四边形AECF为矩形,AF=CE=30,AE=CF,由题意,∠F AD=30°,在Rt△ADF中,,∵在B处测得最低点C的俯角为10°,∴∠BCE=10°,在Rt△BCE中,,∵AE=CF,∴AB+BE=DF+CD,即:30+5.4CD=,∴米,∴CD的高度约为18米.14.(2021·浙江·宁波市镇海蛟川书院九年级期中)校内数学兴趣小组组织了一次测量探究活动.如图,大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=12米,AE=24米.(测角器的高度忽略不计,结果精确到0.1米,参考数据:2 1.41≈,3≈1.73,sin53°≈45,34cos53,tan 5353︒︒≈≈) (1)求点B 距水平地面AE 的高度;(2)求广告牌CD 的高度.【答案】(1)点B 距水平地面AE 的高度为6米;(2)广告牌CD 的高约8.4米【解析】解:(1)如图,过点B 作BM AE ⊥,BN CE ⊥,垂足分别为M N 、,由题意可知,45CBN ∠︒=,53DAE ∠︒=,13i =:,12AB =米,24AE =米,∵13BM i tan BAM AM∠=:==, ∴30BAM ∠︒=,∴162BM AB ==(米), 即点B 距水平地面AE 的高度为6米;(2)在中,∴162NE BM AB ===(米), 3632AM AB ==(米), ∴()6324ME AM AE ++==米,∵45CBN ∠︒=,∴()6324CN BN ME +===米,∴()6330CE CN NE ++==米,在中,53DAE ∠︒=,24AE =米, ∴4·5324323DE AE tan ︒≈⨯==(米), ∴CD CE DE -=33032-=32=8.4≈(米)答:广告牌CD的高约8.4米.15.(2021·山东任城·九年级期中)如图,在小山的东侧A庄,有一热气球,由于受西风的影响,以每分钟35m的速度沿着与水平方向成75°角的方向飞行,40min时到达C处,此时气球上的人发现气球与山顶P点及小山西侧的B庄在一条直线上,同时测得B庄的俯角为30°.又在A庄测得山顶P的仰角为45°,求A庄与B≈1.4≈2.45,结果精确到个位).【答案】A庄与B庄的距离是1960米,山高是735米.【解析】如图,过点A作AD BC⊥于D,△中,,在Rt ACDAC=35×40=1400(米),则(米).△中,∠B=30°,在Rt ABD∴(米).过点P作PE AB⊥,垂足为E,则AE=PE•tan45°=PE,BE=PE•tan60°,∴,∴)1PE=PE=≈.解得:700735综上可得:A庄与B庄的距离是1960米,山高是735米.16.(2021·山东任城·九年级期中)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°.若已知旗杆的高度AB=5米,求建筑物BC的高度.(参考数据:sin50°≈0.8,tan50°≈1.2)【答案】建筑物BC的高度为25米.【解析】设BC=x米,则AC=(x+5)米,在Rt△BDC中,∠BDC=45°,∴DC=BC=x米,在Rt△ADC中,tan∠ADC=ACDC,即5xx+=1.2,解得:x=25,答:建筑物BC的高度为25米.17.(2021·上海交通大学附属第二中学九年级期中)交大二附中地下车库出口处“两段式栏杆”如图1所示,点A是栏杆转动的支点.点E是栏杆两段的连接点.当车辆经过时,栏杆AEF升起后的位置如图2所示,其示意图如图3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,(1)求当车辆经过时,栏杆EF段距离地面的高度(即直线EF上任意一点到真线BC的距离).(2)为了增加安全性,在保持车辆经过时栏杆EF段距离地面的高度不变的前提下.在图2中把连接点向右移动.若移动后∠EAB减小16°,则改进后栏杆平行地面时,图1中E向右移动的距离是多少?(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin37°=0.60,cos 37°=0.80,tan 37°=0.75)【答案】(1)2.2米;(2)0.6米【解析】解:(1)如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB-∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°-∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度约为2.2米.(2)把连接点E向右移动到E',连接A E',过点E'作E K AG'⊥,垂足为K,∴∴四边形EHKE'是矩形,∴EE HK'=,米∵∠EAH= =53°,.∴。
全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用
第十一讲 勾股定理 应用在课内 们学过了勾股定理及它的逆定理.勾股定理 直角 角形两直角边a,b的 方和等于斜边c的 方,即a2+b2称c2.勾股定理逆定理 如果 角形 边长a,b,c有 面关系a2+b2称c2那么 个 角形是直角 角形.早在3000 前, 已有 勾广 ,股修四,径阳五 的说法.关于勾股定理,有很多证法,在 它们都是用拼 形面 方法来证明的. 面的证法1是欧几里得证法.证法1 如 2-16所示.在Rt△ABC的外侧,以各边为边长分别作 方形ABDE,BCH图,ACFG,它们的面 分别是c2,a2,b2. 面证明,大 方形的面 等于两个小 方形的面 之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB称AE,AC称AG,∠CAE称∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML称b2.理可证 S BLMD称a2.+ 得S ABDE称S AEML+S BLMD称b2+a2,即 c2称a2+b2.证法2 如 2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD称a,BF称b.完 方形CDEF(它的边长为a+b),又在DE 截取DG称b,在EF 截取EH称b,连接AG,GH,HB.由作 易知△ADG≌△GEH≌△HFB≌△ABC,所以AG称GH称HB称AB称c,∠BAG称∠AGH称∠GHB称∠HBA称90°,因 ,AGHB为边长是c的 方形.显然, 方形CDEF的面 等于 方形AGHB的面 四个全等的直角 角形(△ABC,△ADG,△GEH,△HFB)的面 和,即化简得 a2+b2称c2.证法3 如 2-18.在直角 角形ABC的斜边AB 向外作 方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作D图⊥CB延长线于图,又作AF,DH分别垂直EG于F,H.由作 难证明, 述各直角 角形均 Rt△ABC全等△AFE≌△EHD≌△B图D≌△ACB.设五边形AC图DE的面 为S,一方面S称S ABDE+2S△ABC,另一方面S称S ACGF+S HG图D+2S△ABC.由 ,所以 c2称a2+b2.关于勾股定理,在 古代 有很多类似 述拼 求 的证明方法, 们将在习题中展示其中一小部分,它们都以中 古代数学家的 字命 .利用勾股定理,在一般 角形中,可以得到一个更一般的结论.定理 在 角形中,锐角(或钝角)所对的边的 方等于另外两边的 方和, 去(或加 ) 两边中的一边 另一边在 边(或其延长线) 的射影的乘 的2倍.证 (1)设角C为锐角,如 2-19所示.作AD⊥BC于D, 则CD就是AC在BC 的射影.在直角 角形ABD中,AB2称AD2+BD2,在直角 角形ACD中,AD2称AC2-CD2,又BD2称(BC-CD)2,, 代入 得AB2称(AC2-CD2)+(BC-CD)2称AC2-CD2+BC2+CD2-2BC·CD称AC2+BC2-2BC·CD,即c2称a2+b2-2a·CD.(2)设角C为钝角,如 2-20所示.过A作AD BC延长线垂直于D,则CD就是AC在BC(延长线) 的射影.在直角 角形ABD中,AB2称AD2+BD2,在直角 角形ACD中,AD2称AC2-CD2,又BD2称(BC+CD)2,将 , 代入 得AB2称(AC2-CD2)+(BC+CD)2称AC2-CD2+BC2+CD2+2BC·CD称AC2+BC2+2BC·CD,即c2称a2+b2+2a·cd.综合 , 就是 们所需要的结论特别地,当∠C称90°时,CD称0, 述结论 是勾股定理的表述c2称a2+b2.因 , 们常又 定理为广勾股定理(意思是勾股定理在一般 角形中的推广).由广勾股定理 们可以自然地推导出 角形 边关系对于角的影响.在△ABC中,(1)若c2称a2+b2,则∠C称90°(2)若c2 a2+b2,则∠C 90°(3)若c2 a2+b2,则∠C 90°.勾股定理及广勾股定理深刻地揭示了 角形内部的边角关系,因 在解决 角形(及多边形)的问题中有着广泛的应用.例1 如 2-21所示.已知 在 方形ABCD中,∠BAC的 分线交BC 于E,作EF⊥AC于F,作FG⊥AB于G.求证 AB2称2FG2.分析 注意到 方形的特性∠CAB称45°,所以△AGF是等腰直角 角形,从而有AF2称2FG2,因而应有AF称AB, 启发 们去证明△ABE≌△AFE.证 因为AE是∠FAB的 分线,EF⊥AF,又AE是△AFE △ABE的公共边,所以Rt△AFE≌Rt△ABE(AAS),所以 AF称AB.在Rt△AGF中,因为∠FAG称45°,所以AG称FG,AF2称AG2+FG2称2FG2.由 , 得AB2称2FG2.说明 事实 ,在审题中,条件 AE 分∠BAC 及 EF⊥AC于F 应使 们意识到两个直角 角形△AFE △ABE全等,从而将AB 过渡到AF,使AF(即AB) FG处于 一个直角 角形中,可以利用勾股定理进行证明了.例2 如 2-22所示.AM是△ABC的BC边 的中线,求证AB2+AC2称2(AM2+BM2).证 过A引AD⊥BC于D( 妨设D落在边BC内).由广勾股定理,在△ABM中,AB2称AM2+BM2+2BM·MD.在△ACM中,AC2称AM2+MC2-2MC·MD.+ ,并注意到MB称MC,所以AB2+AC2称2(AM2+BM2).如果设△ABC 边长分别为a,b,c,它们对应边 的中线长分别为m a,m b,m c,由 述结论 难推出关于 角形 条中线长的公式.推论 △ABC的中线长公式说明 角形的中线将 角形分为两个 角形,其中一个是锐角 角形,另一个是钝角 角形(除等腰 角形外).利用广勾股定理恰好消去相反项,获得中线公式. ′, ′, ′中的m a,m b,m c分别表示a,b,c边 的中线长.例3 如 2-23所示.求证 任意四边形四条边的 方和等于对角线的 方和加对角线中点连线 方的4倍.分析 如 2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论, 难证明本题.证 设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ 中,即2BQ2+2DQ2称4PQ2+BD2.在△ABC中,BQ是AC边 的中线,所以在△ACD中,QD是AC边 的中线,所以将 , 代入 得称4PQ2+BD2,即AB2+BC2+CD2+DA2称AC2+BD2+4PQ2.说明 本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法. 面, 们再看两个例题,说明 种转化方法的应用.例4 如 2-24所示.已知△ABC中,∠C称90°,D,E分别是BC,AC 的任意一点.求证 AD2+BE2称AB2+DE2.分析 求证中所述的4条线段分别是4个直角 角形的斜边,因 考虑从勾股定理入手.证 AD2称AC2+CD2,BE2称BC2+CE2,所以AD2+BE2称(AC2+BC2)+(CD2+CE2)称AB2+DE2例5 求证 在直角 角形中两条直角边 的中线的 方和的4倍等于斜边 方的5倍.如 2-25所示.设直角 角形ABC中,∠C称90°,AM,BN分别是BC,AC边 的中线.求证4(AM2+BN2)称5AB2.分析 由于AM,BN,AB均可看作某个直角 角形的斜边,因 ,仿例4的方法可从勾股定理入手,但如果 们能将本题看 例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.证 连接MN,利用例4的结论, 们有AM2+BN2称AB2+MN2,所以 4(AM2+BN2)称4AB2+4MN2.由于M,N是BC,AC的中点,所以所以 4MN2称AB2.由 ,4(AM2+BN2)称5AB2.说明 在证明中,线段MN 为△ABC的中位线,以 会知道中位线的基本性质 MN∥AB且MN称2-26所示.MN是△ABC的一条中位线,设△ABC的面 为S.由于M,N分别是所在边的中点,所以S△ACM称S△BCN,两边 去公共部分△CMN 得S△AMN称SAB必 MN 行.又S△△BMN,从而高相ABM称,而S△ABM称2S△BMN,所以AB称2MN.练习十一1.用 面各 验证勾股定理(虚线代表辅助线)(1)赵君卿 ( 2-27)(2)项 达 (2-28)(3)杨作枚 ( 2-29).2.已知矩形ABCD,P为矩形所在 面内的任意一点,求证PA2+PC2称PB2+PD2.(提示 应分 种情形加以讨论,P在矩形内、P在矩形 、P在矩形外,均有 个结论.)3.由△ABC内任意一点O向 边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证AF2+BD2+CE2称FB2+DC2+EA2.4.如 2-30所示.在四边形ADBC中,对角线AB⊥CD.求证AC2+BD2称AD2+BC2.它的逆定理是否 立 证明你的结论.5.如 2-31所示.从锐角 角形ABC的顶点B,C分别向对边作垂线BE,CF.求证BC2称AB·BF+AC·CE.。
初中数学勾股定理(精选课件)
初中数学勾股定理聚智堂学科教师辅导讲义年级:课时数:学科教师:学员姓名:辅导科目:数学辅导时间:课题勾股定理教学目的1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
3、满足的三个正整数,称为勾股数。
教学内容一、日校回顾二、知识回顾1。
勾股定理如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方。
说明:(1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。
(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。
在没有特殊说明的情况下,直角三角形中,a,b是直角边,c是斜边,但有时也要考虑特殊情况。
(3)除了利用a,b,c表示三边的关系外,还应会利用AB,BC,CA表示三边的关系,在△ABC中,∠B=90°,利用勾股定理有。
2. 利用勾股定理的变式进行计算ﻩ由,可推出如下变形公式:(1);(2)(3)(4)(5)(平方根将在下一章学到)说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。
三、知识梳理1、勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系。
求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2、如何判定一个三角形是直角三角形(1)先确定最大边(如c)(2)验证与是否具有相等关系(3)若=,则△ABC是以∠C为直角的直角三角形;若≠则△ABC不是直角三角形。
_勾股定理及应用(含解答)-[1]
第17章 勾股定理点击一:勾股定理勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2+b2 = c2. 即直角三角形两直角的平方和等于斜边的平方.因此,在运用勾股定理计算三角形的边长时,要注意如下三点:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形; (2)注意分清斜边和直角边,避免盲目代入公式致错;(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边,可求第三边长. 即c2= a2+b2,a2= c2-b2,b2= c2-a2.点击二:学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.如上图示,在图(1)中,利用图1边长为a ,b ,c 的四个直角三角形拼成的一个以c 为边长的正方形,则图2(1)中的小正方形的边长为(b -a ),面积为(b -a )2,四个直角三角形的面积为4×21ab = 2ab .由图(1)可知,大正方形的面积 =四个直角三角形的面积+小正方形的的面积,即c2 =(b -a )2+2ab ,则a2+b2 = c2问题得证.请同学们自己证明图(2)、(3). 点击三:在数轴上表示无理数将在数轴上表示无理数的问题转化为化长为无理数的线段长问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中一条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.点击四:直角三角形边与面积的关系及应用直角三角形有许多属性,除边与边、边与角、角与角的关系外,边与面积也有内的联系.设a 、b 为直角三角形的两条直角边,c 为斜边,S为面积,于是有:(图1)(2)(3)ABC222()2a b a ab b +=++,222a b c +=,12442ab ab S ∆=⨯=, 所以22()4a b c S ∆+=+.即221[()]4S a b c ∆=+-.也就是说,直角三角形的面积等于两直角边和的平方与斜边平方差的四分之一.利用该公式来计算直角三角形的有关面积、周长、斜边上的高等问题,显得十分简便. 点击五:熟练掌握勾股定理的各种表达形式.如图2,在Rt ABC ∆中,90=∠C 0,∠A 、∠B 、∠C 的对边分别为a 、b 、c,则c2=a2+b2, a2=c2-b2 , b2=c2-a2, 点击六:勾股定理的应用(1)已知直角三角形的两条边,求第三边; (2)已知直角三角形的一边,求另两条边的关系; (3)用于推导线段平方关系的问题等.(4)用勾股定理,在数轴上作出表示2、3、5的点,即作出长为n 的线段. 针对练习:1.下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a2+b2=c2B .若 a 、b 、c 是Rt △ABC 的三边,则a2+b2=c2C .若 a 、b 、c 是Rt △ABC 的三边,90=∠A ,则a2+b2=c2 D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a2+b2=c22.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为203.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A . 0B . 1C . 2D . 34.如图,数轴上的点A 所表示的数为x,则x2—10的立方根为( ) A-10 B . C .2 D .-25.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍B . 4倍C . 6倍D . 8倍6.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) A .8cmB .10cmC .12cmD .14cm7.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 338.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) (A)4(B)6(C)16(D)559.已知直角三角形的周长为2,斜边上的中线为1,求它的面积.10.直角三角形的面积为120,斜边长为26,求它的周长.11.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AB=13cm ,AC 于BC 之和等于 17cm ,求CD 的长.类型之一:勾股定理例1:如果直角三角形的斜边与一条直角边的长分别是13cm 和5cm ,那么这个直角三角形的面积是 cm2.解析:欲求直角三角形的面积,已知一直角三角形的斜边与一条直角边的长,则求得另一直角边的长即可. 根据勾股定理公式的变形,可求得. 解:由勾股定理,得132-52=144,所以另一条直角边的长为12.所以这个直角三角形的面积是21×12×5 = 30(cm2).例2: 如图3(1),一只蚂蚁沿棱长为a 的正方体表面从顶点A 爬到 顶点B,则它走过的最短路程为( )A .a 3B .a )21(+C .3aD .a 5解析:本题显然与例2属同种类型,思路相同.但正方体的 各棱长相等,因此只有一种展开图. 解:将正方体侧面展开得,如图3⑵. 由图知AC=2a,BC=a .根据勾股定理得.a 5a 5a )a 2(AB 222==+=故选D .类型之二:在数轴上表示无理数 例3l∙ ∙AB C图3⑵∙∙AB 图3⑴后即可在数轴上作出.3和1,所以需在数轴上找出两段分别长为3和1的线下面的问题是关于数学大会会标设计与勾股定理知识的综合运用例5:阅读材料,第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,解:2;3;2;5;6;7;22;3;这8条线段的长的乘积是7072 例6:2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么()2b a +的值为( )(A )13 (B )19 (C )25 (D )169解析:由勾股定理,结合题意得a2+b2=13 ①. 由题意,得 (b-a)2=1 ②. 由②,得 a2+b2-2ab =1 ③. 把①代入③,得 13-2ab=1 ∴ 2ab=12.∴ (a+b)2 = a2+b2+2ab =13+12=25. 因此,选C.说明:2002年8月20日~28日,我国在首都北京成功举办了第24届国际数学家大会. 这是在发展中国家举行的第一次国际数学家大会,也是多年来在我国举行的最重要的一次国际会议. 它标志着我国数学已度过了六百多年的低谷,进入了数学大国的行列,并向着新世纪成为数学强国迈开了步伐. 这次大会的会标如下图所示:它取材于我国三国时期(公元3世纪)赵爽所著的《勾股圆方图注》. 类型之四:勾股定理的应用 (一)求边长例1: 已知:如图,在△ABC 中,∠ACB =90º,AB =5cm ,BC =3cm ,CD ⊥AB 于D ,求CD 的长..(二)求面积例2:(1)观察图形思考并回答问题(图中每个小方格代表一个单位面积)①观察图1-1.正方形A中含有__________个小方格,即A的面积是__________个单位面积;正方形B中含有__________个小方格,即B的面积是__________个单位面积;正方形C中含有__________个小方格,即C的面积是__________个单位面积.②在图1-2中,正方形A,B,C中各含有多少个小方格?它们的面积各是多少?③你能发现图1-1中三个正方形A,B,C的面积之间有什么关系吗?图1-2中的呢?(2)做一做:①观察图1-3、图1-4,并填写下表:②三个正方形A,B,C的面积之间有什么关系?(3)议一议:①你能用三角形的边长表示正方形的面积吗?②你能发现直角三角形三边长度之间存在什么关系吗?③分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度,②中的规律对这个三角形仍然成立吗?解析:注意到图中每个小方格代表一个单位面积,通过观察图形不能得到答案:①99991818;②A中含4个,B中含4个,C中含8个,面积分别为4,4,8;③A与B的面积之和等于C,图1-2中也是A与B的面积之和等于C.(2)①答案:②答案:.(3)答案:①设直角三角形三边长分别为a,b,c(如图);②,.③成立.(三)作线段例3作长为、、的线段.解析:作法:1.作直角边长为1(单位长)的等腰直角三角形ACB(如图);2.以斜边AB为一直角边,作另一直角边长为1的直角三角形ABB1;3.顺次这样作下去,最后作到直角三角形AB2B3,这时斜边AB、AB1、AB2、AB3的长度就是、、、.证明:根据勾股定理,在Rt△ACB中,∵AB>0,∴AB=.其他同理可证.点评由勾股定理,直角边长为1的等腰直角三角形,斜边长就等于,直角边长为三角形的斜边长就是.类似地也可作出请你试试看.(四)证明平方关系例4:已知:如图,在ABC∆中,=∠E的中线,ABDE⊥于E,求证:22AEAC=解析:根据勾股定理,在ACDRt∆中,2AC在ADERt∆中,222DEAEAD+=,在Rt∆222BEBDDE-=,∴222222BDAECDDEAEAC-+=-+=又∵CD BD =,∴222BE AE AC -=.点评 证明线段的平方差或和,常常要考虑到运用勾股定理;若无直角三角形,则可通过作垂线的方法,构成直角三角形,以便为运用勾股定理创造必要的条件. (五)实际应用例5: 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C 移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响. (1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级?解析 (1)由点A 作AD ⊥BC 于D , 则AD 就为城市A 距台风中心的最短距离 在Rt △ABD 中,∠B=30º,AB =220,∴AD=21AB=110.由题意知,当A 点距台风(12-4)20=160(千米)时,将会受到台风影响. 故该城市会受到这次台风的影响.(2)由题意知,当A 点距台风中心不超过60千米时,将会受到台风的影响,则AE =AF =160.当台风中心从E 到F 处时, 该城市都会受到这次台风的影响. 由勾股定理得∴EF =2DE =6015.因为这次台风中心以15千米/时的速度移动,所以这次台风影响该城市的持续时间为154151560=小时.(3)当台风中心位于D 处时,A 城市所受这次台风的风力最大,其最大风力为12-20110=6.5级.选择题1、有六根细木棒,它们的长度分别是2、4、6、8、10、12(单位:cm ),从中取出三根首尾顺次连结搭成一个直角三角形,则这三根细木棒的长度分别为( )(A )2、4、8 (B )4、8、10 (C )6、8、10 (D )8、10、122、木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据?( )A.25,48,80 B .15,17,62 C .25,59,74 D .32,60,68 3、如果直角三角形的三条边2,4,a ,那么a 的取值可以有( ) (A )0个 (B )1个 (C )2个 (D )3个4、已知直角三角形中30°角所对的直角边长是2厘米,则斜边的长是( ) (A )2厘米(B )4厘米(C )6厘米(D )8厘米5、如图,直角三角形三边上的半圆的面积依次从小到大记作S 1、S 2、S 3,则S 1、S 2、S 3之间的关系是( )(A )S 1+S 2>S 3 (B )S 1+S 2<S 3 (C )S 1+S 2=S 3 (D )S 12+S 22=S 32二、填空题1、若直角三角形斜边长为6,则这个三角形斜边上的中线长为______.2、如果直角三角形的两条直角边的长分别是5cm 和12cm ,那么这个直角三角形斜边上的中线长等于 cm .3、如图,CD 是Rt ⊿ABC 斜边AB 上的中线,若CD=4,则AB= .4、在△ABC 中,∠A :∠B :∠C =1:2:3.已知BC =3cm ,则AB = cm .5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.7、如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得∠BAC =90°,∠ABC =30°,又量得BC =160 m ,则A 、B 两点之间的距离为m (结果保留根号)第6题图第5题图8、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而 c2= + .化简后即为c2= .9、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为 . 10、2002年8月20~28日在北京召开了第24届国际数学家大会.大会会标如图所示,它是由四个相同的直角三角形拼成的(直角边长分别为2和3),则大正方形的面积是 .11、已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是 .12、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的距离为7米.现将梯子的底端A 向外移动到A′,使梯子的底端A′ 到墙根O 的距离等于3米,同时梯子的顶端B 下降至B′,那么BB′等于1米;②大于1米;③小于1米.其中正确结论的序号是________________.13、观察下面各组数:(3,4,5)、(5,12,13)、(7,24,25)、(9,40,41)、…,可发现:4=2132-,12=2152-,24=2172-,…,若设某组数的第一个数为k ,则这组数为(k , , ). 三、解答题1分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n>1)的代数式表示: a = ,b = ,c =(2)猜想:以a 、b 、c 为边的三角形是否为直角三角形?并证明你的猜想.2、若正整数a 、b 、c 满足方程a2+b2=c2 ,则称这一组正整数(a 、b 、c )为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:abc根据以上规律,回答以下问题:商高数的三个数中,有几个偶数,几个奇数? 写出各数都大于30的两组商高数.用两个正整数m 、n (m >n )表示一组商高数,并证明你的结论. 3、阅读并填空: 寻求某些勾股数的规律:⑴对于任何一组已知的勾股数都扩大相同的正整数倍后,就得到了一组新的勾股数.例如:222543=+,我们把它扩大2倍、3倍,就分别得到2221086=+和22215129=+,……若把它扩大11倍,就得到 ,若把它扩大倍,就得到 . ⑵对于任意一个大于1的奇数,存在着下列勾股数: 若勾股数为3,4,5,因为222453-=,则有5432+=; 若勾股数为5,12,13,则有131252+=; 若勾股数为7,24,25,则有 ;……若勾股数为m (m 为奇数),n , ,则有=2m ,用m 来表示n = ; 当17=m 时,则n = ,此时勾股数为 . ⑶对于大于4的偶数:若勾股数为6,8,10,因为2228106-=,则有……请找出这些勾股数之间的关系,并用适当的字母表示出它的规律来,并求当偶数为24的勾股数.4、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD 倒下到AB C D '''的位置,连结CC ',设,,AB a BC b AC c ===,请利用四边形BCC D ''的面积证明勾股定理:222a b c +=.5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EF 都是正方形. 证:△ABF ≌△DAEaD 'B 'DC ' ABC b c 第4题图ABCDEFGH6、仔细观察图形,认真分析各式,然后解答问题.;23,4)3(;22,31)2(;21,21)1(322212==+==+==+S S S(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA10的长; (3)求出210232221S S S S ++++ 的值.一、选择题如图,字母A 所代表的的正方形的面积为(数字表示该正方形的面积)( ) A 、13B 、85C 、8D 、都不对在Rt △ABC 中,有两边的长分别为3和4,则第三边的长( ) A 、5B 、7C 、5或7D 、5或11等腰三角形底边上的高是8,周长是32,则三角形的面积是( ) A 、56B 、48C 、40D 、32 若线段a 、b 、c 能构成直角三角形,则它们的比为( ) A 、2:3:4B 、3:4:6C 、5:12:13D 、4:6:7一个长方形的长是宽的2倍,其对角线的长是5cm ,则长方形的面积( ) A 、25cmB 、225cmC 、210cmD 、275cm一个三角形三个内角之比为1:2:1,其相对应三边之比为( ) A 、1:2:1B 、1:2:1C 、1:4:1D 、12:1:2斜边长25,一条直角边长为7的直角三角形面积为( ) A 、81B 、82C 、83D 、848、若直角三角形中,有一个锐角为︒30,且斜边与较短直角边之和为18,则斜边长为( ) A 、4cmB 、6cmC 、8cmD 、12cm9、如图△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,下面等式错误的是( ) A 、AC2+DC2=AD2B 、AD2-DE2=AE2C 、AD2=DE2+AC2D 、BD2-BE2=41BC21……S1A 2S 2A 3S 3S 4S 5A 6A 5A 4A 1O 1111110.图是2002年8 月北京第24届国际数学家大会会标,由4 个全等的直角三角形拼合而成.若图中大小正方形面积分别是6221和4,则直角三角形的两条直角边长分别为( )A 、6,4B 、6221,4C 、6221,421D 、6, 421二、填空:1、在△ABC 中, ∠C =90°,a ,b ,c 分别为∠A ∠B ∠C 的对边 (1)若a=6,c=10则b= (2)若a=12,b=5 则c= (3)若c=25,b=15则a= (4)若a =16,b=34则b=2、三边长分别为1,1,1的三角形是 角三角形.3、在△ABC 中,AB=10,AC=8,BC=6,则△ABC 的面积是4、如图要修一个育苗棚,棚宽a=3m ,高b=4m ,底d=10m ,覆盖顶上的塑料薄膜的面积为 2m5、如图点C 是以为AB 直径的半圆上的一点,4,3,90==︒=∠BC AC ACB 则图中阴影部分的面积是6、在Rt △ABC 中,3:5:,90=︒=∠AC AB C 且BC=136则AC=7、直角三角形的一直角边为8cm ,斜边为10cm ,则这个直角三角形的面积是 斜边上的高为 △ABC 中, ︒=∠︒=∠30,90a C 则a:b:c=三角形三个内角之比为1:2:3,它的最长边为a ,那么以其余两边为边所作的正方形面积分别 为10、有两根木条,长分别为60cm 和80cm ,现再截一根木条做一个钝角三角形,则第三根木条x 长度的取值范围 三解答题1、如如图要建一个苗圃,它的宽是a=4.8厘米,高b=3.6米.苗圃总长是10米 (1)求苗圃的占地面积(2)覆盖在顶上的塑料薄膜需要多少平方米?2、如图在四边形ABCD中,12,3,4,90,90===︒=∠︒=∠BCABADCBDBAD求正方形DCEF的面积3、如图在锐角△ABC中,高AD=12,AC=13,BC=14求AB的长4、八年级学生准备测量校园人工湖的深度,他们把一根竹竿插到离湖边1米的水底,只见竹竿高出水面1尺,把竹竿的顶端拉向湖边(底端不变)竿顶和湖沿的水面刚好平齐,求湖水的深度和竹竿的长.5、如图己知在△ABC中,DEBC,15,90︒=∠︒=∠垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.6、某校要把一块形状是直角三角形的废地开发为生物园,如图80,90=︒=∠ACACB米,BC=60米,若线段CD为一条水渠,且D在边AB上,己知水渠的造价是10元/米,则点D在距A点多远,水渠的造价最低,最低价是多少?勾股定理及应用勾股定理是数学史上一颗璀璨的明珠,在西方数学史上称之为“毕达哥拉斯定理”.例1 已知一直角三角形的斜边长是2,周长是,求这个三角形的面积.分析由斜边长是2,周长是,又由勾股定理可知两直角边的平方和为4,列关于两直角边的方程,只需求出两直角边长的积,即可求得三角形的面积.本题中用到数学解题中常用的“设而不求”的技巧,要熟练掌握.练习11.已知:如图2-1,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,•求图形中阴影部分的面积.2-12.已知:长方形ABCD,AB∥CD,AD∥BC,AB=2,AD≠DC,长方形ABCD的面积为S,沿长方形的对称轴折叠一次得到一个新长方形,求这个新长方形的对角线的长.3.若线段a、b、c能组成直角三角形,则它们的比值可以是()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13例2 如图2-2,把一张长方形纸片ABCD折叠起来,使其对角顶点A、C重合,•若其长BC为a,宽AB 为b,则折叠后不重合部分的面积是多少?分析图形沿EF折叠后A、C重合,可知四边形AFED′与四边形CFED全等,则对应边、角相等,∴AF=FC,且FC=AE,则△ABF≌△AD′E,•由三角形面积公式不难求出不重合部分的面积.练习21.如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.2.如图2-4,一架长2.5m的梯子,斜放在墙上,梯子的底部B•离墙脚O•的距离是0.7m,当梯子的顶部A向下滑0.4m到A′时,梯子的底部向外移动多少米?2-43.如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为()A.3.74 B.3.75 C.3.76 D.3.772-5例3 试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n为正整数)•的三角形是否是直角三角形?分析先确定最大边,•再利用勾股定理的判定定理判断是否为直角三角形.解:∵n为正整数,∴(2n2+2n+1)-(2n2+2n)=2n2+2n+1-2n2-2n=1>0,(2n2+2n+1)-(2n+1)=2n2+2n+1-2n-1=2n2>0.∴2n2+2n+1为三角形中的最大边.又(2n2+2n+1)2=4n4+8n3+8n2+4n+1,(2n2+2n)2+(2n+1)2=4n4+8n3+8n2+4n+1.∴(2n2+2n+1)2=(2n2+2n)2+(2n+1)2.∴这个三角形是直角三角形.练习31.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形2.如图2-6,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=14BC,猜想AF•与EF的位置关系,并说明理由.2-63.△ABC中的三边分别是m2-1,2m,m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为m2+1.B.△ABC是直角三角形,且斜边长为2m.C.△ABC是直角三角形,但斜边长由m的大小而定.D.△ABC不是直角三角形.例4 已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5.求证:△ABC是直角三角形.分析欲证△ABC是直角三角形,在已知两边AC、BC的情况下求边AB的长,比较困难;但注意到CD是边AB的中线,我们延长CD到E,使DE=CD,•从而有△BDE•≌△ADC,这样AC、BC、2CD 就作为△BCE的三边,再用勾股定理的逆定理去判定.练习41.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a2-b2,试判断△ABC的形状.先阅读下列解题过程:解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.④问:(1)上述推理过程,出现错误的一步是________;(2)本题的正确结论是________.2.如图2-8,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求折痕AD的长.3.如图2-9,△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,满足PA=3,PB=1,•PC=2,求∠BPC的度数.例5 如图2-10,△ABC中,AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.分析若作AE⊥BC于E,如图2-11,利用勾股定理可求出AE=12,AD是Rt•△ADC的直角边.∴AD=CD-AC,若设DE=x,借助于AD这个“桥”可以列出方程.练习51.如图2-12,△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D.求证:AD2=AC2+BD2.2-122.如图2-13,AB ⊥AD ,AB=3,BC=12,CD=13,AD=4,求四边形ABCD 的面积.2-133.如图2-14.长方体的高为3cm ,底面是正方形,边长为2cm ,现有绳子从A 出发,沿长方形表面到达C 处,问绳子最短是多少厘米?2-14勾股定理及应用 答案: 练习11.24(提示:利用勾股定理即可求出) 2.长方形的对称轴有2条,要分别讨论: (1)以A 、B 为对称点(如图) ∵S=AB ×BC ,AB=2,∴BC=AD=2S.根据对称性得DF=12AB=1.由于∠D=90°,据勾股定理得:=12(2)以A 、D 为对称点(如图)∴BF=12BC=4S.由∠B=90°,据勾股定理得:AF===. 3.D练习21.214(提示:利用Rt △ABE 的勾股定理即可求出) 2.0.8m 3.B练习31.B 2.AF ⊥EF (提示:连结AE ,设正方形的边长为a ,则DF=FC=2a ,EC=4a,在Rt △ADF 中,由勾股定理得:AF2=AD2+DF2=a2+(2a )2=54a2.同理:在Rt △ECF 中,EF2=(2a )2+(4a )2=516a2, 在Rt △ABE 中,BE=34a ,则AE2=a2+916a2=2516a2. ∵54a2+516a2=2516a2,∴AF2+EF2=AE2. ∴∠AFE=90°. ∴AF ⊥EF .3.A (点拨:利用勾股定理的逆定理来判定) 练习41.(1)③、④(2)△ABC 为直角三角形或等腰三角形. 2.∵AC2+BC2=52+122=132=AB2, ∴∠C=90°.将△ABC 沿AD 折叠,使AC 落在AB 上,C 的对称点为E (如图) ∴CD=DE , AC=AE=5. 则△ACD ≌△AED . 又BE=AB-AE=8.设CD 为x ,则x2+82=(12-x )2.解之得x=103. ∴AD2=52+(103)2. ∴AD=3.3.过点C 作CE ⊥CP ,并截CE=CP=2,连结PE ,BE .(如图) ∵∠ACB=∠PCE=90°, ∴∠ACB-∠PCB=∠PCE-∠PCB . 即∠ACP=∠BCE .∴△PCA ≌△ECB (SAS ). ∴BE=AP=3. 在Rt △PCE 中, PE2=PC2+CE2=8.又∵BP2=1,BE2=9, ∴BE2=BP2+PE2.∴△PBE 是直角三角形,其中∠BPE=90° 在Rt △PCE 中,PC=CE , ∴∠CPE=∠CEP=45°.∴∠BPC=∠CPE+∠BPE=45°+90°=135°. 练习5 1.连结AM . ∵M 为CB 的中点, ∴CM=MB .又∵AC2=AM2-CM2,BD2=BM2-MD2, ∴AC2+BD2=AM2-MD2. 又∵AD2=AM2-DM2, ∴AD2=AC2+BD2.2.36(提示:连结BD ,利用勾股定理及逆定理即可求出). 3.5cm (提示:将该长方体的右面翻折,使它与前面在同一平面, 连结AC (如图),此时线段AC 的长度即为最短距离.∴(cm ).勾股定理的逆定理1班级 姓名 号次 一.选择题(本题有10小题,每题3分,共30分) 1.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且abc b a 2)(22+=+,则( )A.A ∠为直角B.B ∠为直角C.C ∠为直角D.不能确定 2.如图,下列三角形中是直角三角形的是( )3.下列各命题的逆命题不成立的是( ) A.两直线平行,内错角相等 B.若ba =,则b a =C.对顶角相等D.如果a=b,那么a2=b24.下面四组数中,其中有一组与其他三组规律不同,这一组是()D51213 C467 B7 58 A73 5A. 4,5,6B. 6,8,10C. 8,15,17D. 9,40,415.如图有五根小木棒,其长度分别为7、15、20、24、25,现想把它们摆成两个直角三角形,则摆放正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D6.放学后,斌斌先去同学小华家玩了一回,再回到家里。
中考数学专题训练第11讲勾股定理与锐角三角函数1(解析版)
勾股定理与锐角三角函数(压轴题组)1.(2021·广东佛山·九年级期中)如图1.有一张矩形纸条ABCD .边AB 、BC 的长分别是方程27100x x -+=的两个根()AB BC >.E 为CD 上一点.1CE =. (1)连接AE .BE .试说明90AEB =︒∠.(2)如图2.M 为边AB 上一个动点.将四边形BCEM 沿ME 折叠.使点B .C 分别落在点B ′.C '上.边MB '与边CD 交于点N .①如图3.当点M 与点A 重合时.求N 到ME 的距离.②在点M 从点A 运动到点B 的过程中.求点N 相应运动的路径长(路程).【答案】(1)见解析.(2)①52.②352-【详解】解:(1)证明:如图1.解方程27100x x -+=得5x =或2x =.5AB ∴=.2BC =.四边形ABCD 是矩形.90C D ∴∠=∠=︒.2AD BC ==.5CD AB ==.514DE CD CE ∴=-=-=.222222420AE AD DE ∴=+=+=.22222215BE BC CE =+=+=.222AE BE AB ∴+=.ABE ∴∆是直角三角形.90AEB =︒∠.(2)解:①四边形ABCD 是矩形.//AB CD ∴.NEM BAE ∴∠=∠.由折叠的性质得:BAE B AE '∠=∠.NEA B AE '∴∠=∠.AN EN ∴=.设AN EN x ==.则4DN DE EN x =-=-.在Rt ADN ∆中.由勾股定理得:222AD DN AN +=. 即2222(4)x x +-=. 解得:52x =. 52EN ∴=. 在Rt ADE ∆中.由勾股定理得:22222425AE AD DE =+=+=. 设N 到ME 的距离为h . 则1122ANE S AE h EN AD ∆=⋅=⨯.5252225EN AD h AE ⨯⨯∴===. 即N 到ME 的距离为52.②当M 与点A 重合时.如图3所示:此时52EN =. 当MB AB '⊥时.如图4所示.此时2EN AD ==.当B '在CD 上.N 与B '重合.如图5所示:此时2222125EN C E B C ''=+=+=.∴点N 相应运动的路径长为:53(1)(52)522-+-=-.2.(2021·上海市奉贤区育秀实验学校九年级期中)如图.在Rt △ABC 中.∠BAC =90°.AB =3.AC =4.AD 是BC 边上的高.点E 、F 分别是AB 边和AC 边上的动点.且∠EDF =90°. (1)(图1)求DE :DF 的值.(2)(图2)连结EF .射线DF 与射线BA 相交于点G .当△EFG 是等腰三角形时.求CF 的长度.(3)(图3)连结EF .设点B 与点E 间的距离为x .△DEF 的面积为y .求y 关于x 的函数解析式.并写出x 的取值范围.【答案】(1)34.(2)165.(3)()2236540332525y x x x =-+≤≤【详解】解:(1)∵在Rt △ABC 中.∠BAC =90°.AB =3.AC =4. ∴225BC AB AC =+=. ∵AD 是BC 边上的高.∴11=22ABC S AB AC AD BC ⋅=⋅△.∠ADC =∠ADB =90°.∴125AB AC AD BC ⋅==. ∴22165CD AC AD =-. ∵∠EDF =∠ADC =90°.∴∠EDF -∠ADF =∠ADC -∠ADF 即∠ADE =∠CDF . ∵∠B +∠C =180°-∠BAC =90°.∠B +∠EAD =180°-∠ADB =90°.∴∠EAD =∠C . ∴△EAD ∽△FCD .∴12351645DE AD DF CD ===. (2)如图所示.∵∠EFG =∠FDE +∠FED >90°. ∴当△EFG 是等腰三角形的时候.只存在EF =GF 这种情况. ∵EF =GF .F A ⊥EG . ∴A 为EG 的中点.∵在直角三角形EDG 中.A 为EG 的中点.∴11225AE AD AG EG ====.∵△AED ∽△CFD . ∴34AE AD CF CD ==. ∴41635CF AE ==.(3)∵BE x =.AB =3. ∴3AE AB BE x =-=-. ∵△AED ∽△CFD . ∴34AE AD DE CF CD DF ===. ∴()44333CF AE x ==-.34DE DF =. ∴()444333AF AC CF x x =-=--=.在直角三角形AEF 中.222EF AE AF =+.∴()222242536939EF x x x x ⎛⎫=-+=-+ ⎪⎝⎭在直角三角形DEF 中.222EF DE DF =+.∴22234EF DF DF ⎛⎫=+ ⎪⎝⎭.∴45DF EF =. ∴35DE EF =.∴()2216236540322532525DEF S DE DF EF x x x =⋅==-+≤≤△.∴()2236540332525y x x x =-+≤≤3.(2021·北京师范大学实验华夏女子中学九年级期中)在平面直角坐标系xoy 中.⊙O 的半径为1.给出如下定义:记线段AB 的中点为M .当点M 不在⊙O 上时.平移线段AB .使点M 落在⊙O 上.得到线段''A B (''A B 分别为点,A B 的对应点).线段'A A 长度的最小值称为线段AB 到O 的“平移距离”.(1)已知点A 的坐标为(-1.0).点B 在x 轴上.①若点B 与原点O 重合.则线段AB 到⊙O 的“平移距离”为________. ②若线段AB 到⊙O 的“平移距离”为2.则点B 的坐标为________.(2)若点,A B 都在直线334y x =-+上.AB =2.记线段AB 到⊙O 的“平移距离”为1d .求1d 的最小值.(3)若点A 的坐标为(-4.-2).AB =2.记线段AB 到⊙O 的“平移距离”为2d .直接写出2d 的取值范围.【答案】(1)①12.②(-5.0)或(7.0).(2)75.(3)225225d -≤≤ 【详解】(1)①当B 与原点O 重合时.AB 中点为1(,0)2-.移动最小距离为向左平移12到⊙O 上.故答案为:12.②当“平移距离”为2时.如图:有12,M M 两种情况:①当1M 为3,0时.12AM =.AB =4.B ∴ 为()5,0-.②当2M 为3,0时.24AM =.AB =8.B 为()7,0. 故答案为:()5,0- 或()7,0. (2)如图:直线334y x =-+如图l .当l 平移到m 位置时.1d 最小.即平移到直线m 与⊙O 相切时.1d 最小. 过点O 作OE l ⊥于E . 则1d OE R =-, 设直线OE 为y =kx.OE l ⊥.∴413k ⨯=-.即43k =. ∴43y x =. 联立方程组33434y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩. 解得:3648,2525x y ==. ∴E 为3648(,)2525. ∴125OE =. ∴1127155d =-=. (3)∵2AB =. ∴AM =1.即M 点在以A 为圆心.半径为1的圆上.如图所示:连接OA 交⊙A 于E 、F .可知:当M 在点F 时.2d 最小.在点E 时.2d 最大. 当M 在F 时.222(4)(2)11252d OA AF R =--=-+---=-.当M 在E 时.222(4)(2)11251125d OE R OA AE R =-=+-=-+-+-=+-=. ∴225225d -≤≤.4.(2021·吉林·长春市净月实验中学九年级期中)在△ABC 中.AB =BC =5.AD ⊥BC 于D .AD =4.动点P 从点B 出发.沿折线BA →AC 运动(点P 不与B 、C 重合).点P 在边BA 上运动的速度为2.5个单位长度.在边AC 上的运动速度为52个单位长度.过P 作PQ ⊥BC 于点Q .以PQ 为边向右作矩形PQFE .使PQ =2PE .点F 在线段BC 上.设点P 运动的时间为t .(1)点P 在BA 上时.则PQ = .(用含t 代数式表示) (2)点P 在AC 上时.则PQ = .(用含t 代数式表示) (3)连结DE .当△DEF 与△ADC 相似时.求t 的值.(4)设矩形PQFE 的对角线相交于点O .当点O 在△ACD 边上时.直接写出t 的取值范围.【答案】(1)2t .(2)6﹣t .(3)67或613或2或5.(4)t =32或2≤t <6 【详解】解:(1)点P 在BA 上时.点P 在边BA 上运动的速度为2.5个单位长度.BP =2.5t , ∵四边形PQFE 是矩形. ∴PQ ⊥QF .∵点F 在线段BC 上. ∴PQ ⊥BC . ∵AD ⊥BC . ∴PQ ∥AD . ∴∠BPQ =∠BAD . ∵∠B =∠B . ∴△BPQ ∽△BAD . ∴BP PQAB AD=. ∵BP =2.5t .AB =5.AD =4. ∴2.554t PQ=. ∴PQ =2t . 故答案为:2t .(2)如图2.点P 在AC 5个单位长度.由题意得:AP 5(t ﹣2).∵AD ⊥BC .AB =5.AD =4. ∴BD 2222543AB AD -=-. ∴CD =BC ﹣BD =5﹣3=2.∴AC 22224225AD CD +=+∴CP =AC ﹣AP =)555235t -=. ∵PQ ∥AD .∴∠QPC =∠DAC .∠PQC =∠ADC .∴△CPQ∽△CAD.∴PQ CPAD AC=.即5352425tPQ-=.∴PQ=6﹣t.故答案为:6﹣t.(3)分两种情况:①如图3.当点P在边BA上运动时.∵四边形PQFE是矩形.∴QF=PE=t.EF=PQ=2t.在Rt△BPQ中.BQ=BP•cos∠B=BP×32.5 1.55BDt t AB=⨯=.∴DF=3﹣2.5t.当△EFD∽△ADC时.DF CD EF DA=∴3 2.52 24tt-=.∴t=6 7 .经检验符合题意.当△DFE∽△ADC时. DF AD EF CD=.∴3 2.54 22tt-=.∴t=6 13.经检验符合题意.②如图4.当点P在边AC上运动时.∵四边形PQFE是矩形.∴QF=PE=t.EF=PQ=6﹣t.∴DF=DC=2.当△EFD∽△ADC时.则DF DC EF AD=.即22 64t=-.∴t=2.经检验符合题意.当△DFE∽△ADC时.DF AD EF CD=.∴24 62t=-.∴t=5.经检验符合题意.综上所述.t的值为67或613或2或5.(4)分三种情况讨论:①当矩形PQFE的对角线交点O在AD上时.如图5.∴QD=12QF=0.5t.∵BQ=1.5t.BQ+QD=BD=3. ∴1.5t+0.5t=3.∴t=3 2 .②当矩形PQFE的对角线交点O在AC上时.∵点F始终与点C重合.点P从点A运动到点C.55254AC==∴点P在AC上运动时间为2≤t<6.∴当2≤t<6时.矩形PQFE的对角线交点O在AC上.③由题意知.矩形PQFE的对角线交点O不可能在CD上.综上所述.t的取值范围t=32或2≤t<6.5.(2021·黑龙江龙沙·九年级期中)综合与实践动手操作:某数学课外活动小组利用图形的旋转探究图形变换中蕴含的数学奥秘.如图1.△ACB是等腰直角三角形.AC=BC=4.∠ACB=90°.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.过点A′作A′D⊥CB交CB延长线于点D.思考探索:(1)在图1中:①CD=.②△A′BC的面积为.拓展延伸:(2)如图2.若△ACB为任意直角三角形.∠ACB=90°.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.过点A′作A′D⊥CB交CB延长线于点D.猜想三条线段AC、CD、A′D的数量关系.并证明.(3)如图3.在△ACB中.AB=AC=5.BC=6.将边AB绕点B顺时针旋转90°得到线段A′B.连接A′C.①△A′BC的面积为.②若点D是△ACB的边BC的高线上的一动点.连接A′D、DB.则A′D+DB的最小值是.【答案】(1)①8.②8.(2)CD AC A D '=+.证明见解析.(3)①9.109【详解】解:(1)①∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴BA AB '=.90ABA '∠=︒.∵AC =BC =4.90ACB ∠=︒.∴45CAB CBA ∠=∠=︒.∴18045DBA CBA ABA ''∠=︒-∠-∠=︒.∴DBA CAB '∠=∠.∵A D CB '⊥.∴90BDA '∠=︒.∴90BDA ACB '∠=∠=︒.∴()BDA ACB AAS '△≌△.∴BD =AC =4.∴CD =BC +BD =8.故答案为:8.②∵BDA ACB '△≌△.∴4A D BC '==. ∴182A BC S BC A D ''=⋅=△.故答案为:8.(2)CD AC A D '=+.证明如下:∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴BA AB '=.90ABA '∠=︒.∴90CBA DBA '∠+∠=︒.∵90ACB ∠=︒.∴90CAB CBA ∠+∠=︒.∴DBA CAB '∠=∠.∵A D CB '⊥.∴90BDA ACB '∠=∠=︒.∴()BDA ACB AAS '△≌△.∴A D BC '=.BD =AC .∴CD BD BC AC A D '=+=+.(3)如下图所示.过点A '作A F CB '⊥交CB 延长线于点F .过点A 作AE CB ⊥交CB 于点E .交线段A C '于点M .再连接DC .①∵AB =AC =5.BC =6.且AE CB ⊥. ∴132BE CE BC ===.90AEB =︒∠.∴90EAB EBA ∠+∠=︒.∵边AB 绕点B 顺时针旋转90︒得到线段A B '.∴5BA AB '==.90ABA '∠=︒.∴90EBA FBA '∠+∠=︒.∴FBA EAB '∠=∠.∵A F CB '⊥.∴90BFA '∠=︒.∴90BFA AEB '∠=∠=︒.∴()BFA AEB AAS '△≌△.∴3A F BE '==. ∴192A BC S BC A F ''=⋅=△. 故答案为:9.②∵AE CB ⊥.且BE =CE .∴AE 垂直平分CB .∴DC =DB .∴A D DB A D DC ''+=+.∵点D 在AE 上.∴当点D 与点M 重合时.A D DB '+有最小值.此时最小值为A C '.∵5BA '=.3A F '=. ∴224BF BA A F ''=-=.∵BC =6.∴CF =BC +BF =10. ∴22109A C CF A F ''=+=.∴A D DB '+的最小值为109.故答案为:109.6.如图.在平面直角坐标系xOy 中.点A 与点B 的坐标分别是(1.0).(7.0).(1)对于坐标平面内的一点P .给出如下定义:如果∠APB =45°.则称点P 为线段AB 的“等角点”.显然.线段AB 的“等角点”有无数个.且A 、B 、P 三点共圆.①设A 、B 、P 三点所在圆的圆心为C .直接写出点C 的坐标和⊙C 的半径.②y 轴正半轴上是否有线段AB 的“等角点”?如果有.求出“等角点”的坐标.如果没有.请说明理由.(2)当点P 在y 轴正半轴上运动时.∠APB 是否有最大值?如果有.说明此时∠APB 最大的理由.并求出点P 的坐标.如果没有请说明理由.【答案】(1)①(4.3)或(4,−3).半径为2.②存在2或(0.2).见解析.(2)有.见解析7【详解】(1)①如图1中.在x 轴的上方.作以AB 为斜边的等腰直角三角形△ACB .易知A .B .P 三点在⊙C 上. 圆心C 的坐标为(4,3).半径为32.根据对称性可知点C (4,−3)也满足条件.②y 轴的正半轴上存在线段AB 的“等角点“。
全国初中数学竞赛辅导(初2)第11讲 勾股定理与应用 教师卷
第十一讲勾股定理与应用基础知识勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.勾股定理逆定理如果三角形三边长a,b,c有下面关系:a2+b2=c2探索证明证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.证明:过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS.而所以 SAEML=b2.①同理可证 SBLMD=a2.②1 +②得SABDE=SAEML+SBLMD=b2+a2;即 c2=a2+b2.证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH 分别垂直EG于F,H.下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=SABDE+2S△ABC,①另一方面S=SACGF+SHGKD+2S△ABC.②由①,②所以 c2=a2+b2.定理在三角形中,锐角(或钝角所对的边的平方等于另外两边的平方和,减去(或加上这两边中的一边与另一边在这边(或其延长线上的射影的乘积的2倍.证 (1设角C为锐角,如图2-19所示.作AD⊥BC于D,则CD就是AC在BC上的射影.在直角三角形ABD中,AB2=AD2+BD2,①在直角三角形ACD中,AD2=AC2-CD2,②又BD2=(BC-CD2,③2 ③代入①得AB2=(AC2-CD2+(BC-CD2=AC2-CD2+BC2+CD2-2BC·CD=AC2+BC2-2BC·CD,即c2=a2+b2-2a·CD.④(2设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC在BC(延长线上的射影.在直角三角形ABD中,AB2=AD2+BD2,⑤在直角三角形ACD中,AD2=AC2-CD2,⑥又BD2=(BC+CD2,⑦将⑥,⑦代入⑤得:AB2=(AC2-CD2+(BC+CD2=AC2-CD2+BC2+CD2+2BC·CD=AC2+BC2+2BC·CD,即c2=a2+b2+2a·cd.⑧综合④,⑧就是我们所需要的结论特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:c2=a2+b2.由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC 中,(1若c2=a2+b2,则∠C=90°;(2若c2<a2+b2,则∠C<90°;(3若c2>a2+b2,则∠C>90°.勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形的问题中有着广泛的应用.例题精讲例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.证因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以Rt△AFE≌Rt△ABE(AAS,所以 AF=AB.①在Rt△AGF中,因为∠FAG=45°,所以AG=FG,AF2=AG2+FG2=2FG2.②由①,②得AB2=2FG2.例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2.证过A引AD⊥BC于D(不妨设D落在边BC内.由广勾股定理,在△ABM中,AB2=AM2+BM2+2BM·MD.①在△ACM中,AC2=AM2+MC2-2MC·MD.②①+②,并注意到MB=MC,所以AB2+AC2=2(AM2+BM2.③如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为ma,mb,mc,由上述结论不难推出关于三角形三条中线长的公式.推论△ABC的中线长公式:说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外.利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的ma,mb,mc分别表示a,b,c边上的中线长.例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.分析如图2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论,不难证明本题.证设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ中,即2BQ2+2DQ2=4PQ2+BD2.①在△ABC中,BQ是AC边上的中线,所以在△ACD中,QD是AC边上的中线,所以将②,③代入①得=4PQ2+BD2,即AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.证 AD2=AC2+CD2,BE2=BC2+CE2,所以AD2+BE2=(AC2+BC2+(CD2+CE2=AB2+DE2例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC 边上的中线.求证:4(AM2+BN2=5AB2.分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N 分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.证连接MN,利用例4的结论,我们有AM2+BN2=AB2+MN2,所以 4(AM2+BN2=4AB2+4MN2.①由于M,N是BC,AC的中点,所以所以 4MN2=AB2.②由①,②4(AM2+BN2=5AB2.说明在证明中,线段MN称为△ABC的中位线,以后会知道中位线的基本性质:“MN//AB,且MN=0.5AB”这个结论也可以不用书上的办法证明,而用面积方法证明,如图2-26所示.MN 是△ABC的一条中位线,设△ABC的面积为S.由于M,N分别是所在边的中点,所以S△ACM=S△BCN,两边减去公共部分△CMN后得S△AMN=S△BMN,从而AB必与MN平行.又S△ABM=高相同,而S△ABM=2S△BMN,所以AB=2MN.练习十一1.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.2.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.3.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.4.如图2-31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:BC2=AB·BF+AC·CE.。
专题211勾股定理的应用-2021-2022学年八年级数学上(解析版)【浙教版】
2021-2022学年八年级数学上册尖子生同步培优题典【浙教版】专题2.11勾股定理的应用(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021春•长沙期中)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解析】如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD=√AE2+DE2=√0.92+1.22=1.5(米)故选:B.2.(2021春•东湖区期中)如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面,求水的深度是()尺.A.8B.10C.13D.12【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理列方程可解答.【解析】设水深x尺,则芦苇长(x+1)尺,由勾股定理得:52+x2=(x+1)2,解得:x=12,答:水的深度是12尺,故选:D.3.(2020秋•和平区期末)如图,有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是()尺.A.26B.24C.13D.12【分析】先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.【解析】设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,答:水深12尺,故选:D.4.(2020秋•化州市期末)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m【分析】水池的深、竹竿的长、离岸的距离三者构成直角三角形,作出图形,根据勾股定理即可求解.【解析】在直角△ABC中,AC=1.5cm.AB﹣BC=0.5m.设水池BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2∴1.52+x2=(x+0.5)2解得:x=2.故选:A.5.(2020•巴中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.6.(2020秋•历城区期中)古代数学的“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,AB+AC=25尺,BC=5尺,则AC等于()尺.A.5B.10C.12D.13【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(25﹣x)尺,利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(25﹣x)尺,根据勾股定理得:x2+52=(25﹣x)2.解得:x=12,答:折断处离地面的高度为12尺.故选:C.7.(2020春•南岗区校级期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm【分析】当筷子的底端在A点时,筷子浸没在杯子里面的长度最长;当筷子的底端在D点时,筷子浸没在杯子里面的长度最短.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解析】如图,当筷子的底端在D点时,筷子浸没在杯子里面的长度最短,∴h=BD=8(cm);当筷子的底端在A点时,筷子浸没在杯子里面的长度最长,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.8.(2021春•海珠区校级月考)如图,一根垂直于地面的旗杆在离地面5m的B处撕裂折断,旗杆顶部落在离旗杆底部12m的A处,则旗杆折断部分AB的高度是()A.5m B.12m C.13m D.18m【分析】在Rt△ABC中,利用勾股定理即可直接求出AB.【解析】旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形,在Rt△ABC中,BC=5m,AC=12m,根据勾股定理得,AB=√BC2+AC2=√52+122=13(m),即旗杆折断部分AB的高度是13m,故选:C.9.(2020春•钦州期末)如图,甲船以20海里/时的速度从港口O出发向西北方向航行,乙船以15海里/时的速度同时从港口O出发向东北方向航行,则2小时后,两船相距()A.40海里B.45海里C.50海里D.55海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了40,30.再根据勾股定理,即可求得两条船之间的距离.【解析】∵两船行驶的方向是西北方向和东北方向,∴∠BOC=90°,两小时后,两艘船分别行驶了20×2=40海里,15×2=30海里,根据勾股定理得:√302+402=50(海里).故选:C.10.(2020秋•历城区期末)如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是()A.12B.13C.15D.24【分析】设旗杆的高度为xm,则AC=xm,AB=(x+1)m,BC=5m,利用勾股定理得到52+x2=(x+1)2,然后解方程求出x即可.【解析】如图,设旗杆的高度为xm,则AC=xm,AB=(x+1)m,BC=5m,在Rt△ABC中,52+x2=(x+1)2,解得x=12,答:旗杆的高度是12m.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m 以内都会受到噪音的影响,请你算出该学校受影响的时间为24秒.【分析】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【解析】设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB=√1002−802=60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.12.(2020秋•成华区校级月考)将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值11cm,h的最大值12cm.【分析】当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,据此可以得到h 的取值范围.【解析】当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内部分=√122+52=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12.故答案为:11cm;12cm.13.(2021•宜兴市模拟)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为 4.5米.【分析】作AF⊥BO于F,CG⊥BO于G,根据AAS可证△AOF≌△OCG,根据全等三角形的性质可得OG=4米,在Rt△AFO中,根据勾股定理可求AO,可求OB,再根据线段的和差关系和等量关系可求点C与点B的高度差CE.【解析】作AF⊥BO于F,CG⊥BO于G,∵∠AOC=∠AOF+∠COG=90°,∠AOF+∠OAF=90°,∴∠COG=∠OAF,在△AOF与△OCG中,{∠AFO =∠OGC∠OAF =∠COG AO =OC,∴△AOF ≌△OCG (AAS ),∴OG =AF =BD =4米,设AO =x 米,在Rt △AFO 中,AF 2+OF 2=AO 2,即42+(x ﹣1)2=x 2,解得x =8.5.则CE =GB =OB ﹣OG =8.5﹣4=4.5(米).故答案为:4.5.14.(2021•杭州一模)如图,小明想要测量学校旗杆AB 的高度,他发现系在旗杆顶端的绳子垂到了地面,从而测得绳子比旗杆长a 米,小明将这根绳子拉直,绳子的末端落在地面的点C 处,点C 距离旗杆底部b 米(b >a ),则旗杆AB 的高度为 b 2−a 22a 米(用含a ,b 的代数式表示).【分析】设旗杆的高为x 米,在Rt △ABC 中,由AC 2=AB 2+BC 2,推出(x +a )2=b 2+x 2,可得x =b 2−a 22a ,由此即可解决问题.【解析】设旗杆的高为x 米.在Rt △ABC 中,∵AC 2=AB 2+BC 2,∴(x +a )2=b 2+x 2,∴x =b 2−a 22a , 故答案为:b 2−a 22a 米.15.(2020秋•新都区期末)如图,有一直立旗杆,它的上部被风从点A 处吹折,旗杆顶点B 落地,离杆脚6米,修好后又被风吹折,因新断处点D 比上一次高1米,故杆顶E 着地点比上次近2米,则原旗杆的高度为 10 米.【分析】由题中条件,可设原标杆的高为x ,进而再依据勾股定理建立方程组,进而求解即可.【解析】依题意得BC =6,AD =1,CE =6﹣2=4,AB =DE +1设原标杆的高为x 米,∵∠ACB =90°,∴由题中条件可得BC 2+AC 2=AB 2,即AC 2+62=(x ﹣AC )2,整理,得x 2﹣2ACx =36①,同理,得(AC +1)2+42=(x ﹣AC ﹣1)2,整理,得x 2﹣2ACx ﹣2x =16②,由①②解得x =10,∴原来标杆的高度为10米,故答案为:10.16.(2021•宿迁)《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC 生长在它的中央,高出水面部分BC 为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C 恰好碰到岸边的C '处(如图),水深和芦苇长各多少尺?则该问题的水深是 12 尺.【分析】我们可将其转化为数学几何图形,如图所示,根据题意,可知EC′的长为10尺,则C′B=5尺,设芦苇长AC=AC′=x尺,表示出水深AB,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解析】依题意画出图形,设芦苇长AC=AC′=x尺,则水深AB=(x﹣1)尺,∵C′E=10尺,∴C′B=5尺,在Rt△AC′B中,52+(x﹣1)2=x2,解得x=13,即芦苇长13尺,水深为12尺,故答案为:12.17.(2020秋•仪征市期末)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC 长分别为13米、20米,主梁AD的高度为12米,则固定点B、C之间的距离为21米.【分析】根据勾股定理即可得到结论.【解析】∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB、AC长分别为13米、20米,AD的高度为12米,∴BD=√AB2−AD2=√132−122=5(米),DC=√AC2−AD2=√202−122=16(米)∴BC=BD+DC=5+16=21(米),故答案为:21.18.(2021•盂县一模)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是101寸.【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【解析】取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•长春期末)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A正前方30米的C处,过了2秒后,小汽车行驶至B处,若小汽车与观测点间的距离AB为50米,请通过计算说明:这辆小汽车是否超速?【分析】求出BC的距离,根据时间求出速度,从而可知道是否超速.【解析】由勾股定理可得:BC=√AB2−AC2=√502−302=40,40米=0.04千米,2秒=11800小时.0.04÷11800=72>70.所以超速了.20.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【解析】(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=12AB•BC=12AC•BD,所以AB•BC=AC•BD.所以BD=AB⋅BCAC=30×4050=24(米),即点B到直线AC的距离是24米.21.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.【分析】根据勾股定理解答即可.【解析】∵点P为BC中点,∴BP=CP=12BC=12(cm),∵∠B=90°,在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,162+122=AP2,解得:AP=20(cm),同理可得:DP=15(cm),∵152+202=252,∴AP2+DP2=AD2,∴△APD是直角三角形,∠APD=90°.22.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B点时第一台已经影响小学50米,直到第二台到D点噪音才消失.【解析】如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=12OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=√AB2−AC2=√1002−802=60(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t=1205=24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.【解析】设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.24.(2020秋•惠来县期末)如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑0.5米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,可以得出,梯子底端水平方向上滑行的距离.【解析】(1)根据勾股定理:所以梯子距离地面的高度为:AO=√AB2−OB2=2(米);(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2﹣0.5)=1.5(米),根据勾股定理:OB′=√A′B′2−OA′2=2(米),所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5(米),答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.。
初中数学课件 勾股定理的应用(二)
积。 A
D
B C
*如图,铁路上A,B两点相距25km,C,D为两村
庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km, CB=10km,现在要在铁路AB上建一个土特产品收 购站E,使得C,D两村到E站的距离相等,则E站 应建在离A站多少km处?
D
C
A
B
E
你能解决吗?
* 印度数学家什迦逻
(1141年-1225年)曾提 出过“荷花问题”:
如图,在平静的湖面上,有一 荷花,高出湖水面1米;一阵 风吹来,荷花吹到一边,花朵 齐及水面,已知荷花移动的 水平距离为2米,求这里的水 深是多少米?
勾股定理的应用(二)
旧知回顾 勾股定理的内容是什么?
直角三角形两直角边的平方和等于斜边的平方
A AC2 BC2 AB2或a2 b2 c2
b
c
C
a
B
还可以变形为:
a2 c2 b2或b2 c2 a2
*已知,如图,四边形ABCD草坪中,
AB=3cm,AD=4cm,BC=13cm,
CD=12cm,且∠A=90°,求草坪ABCD的面
“平平湖水清可鉴,面上 半尺生红莲;出泥不染 亭亭立,忽被强风吹一 边,
渔人观看忙向前,花 离原位二尺远;能算诸 君请解题,湖水如何知 深浅?”
请用学过的数学知识回 答这个问题。
例题精讲:
例1 如图等边 三角形ABC的边
解:过A作BC的高线AD,因为△ABC是等边
三角形,根据等边三角形的性质得
BD=DC= 1 BC 1 6 3cm
2
2
长为6,
在Rt △ABD中,AB=6,BD=3根据勾股定
(1)求△ABC的高;
理得 AD2 AB2 BD2 及
中考数学第一轮综合要点复习同步讲义:第11课勾股定理
第11课 勾股定理⎪⎪⎩⎪⎪⎨⎧勾股定理逆定理:,,,,,勾股组数:勾股定理:勾股定理 中考真题练习 1.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 长度为( )A.5B.6C.7D.25第1题图 第2题图 第3题图2.如图,在Rt ΔABC 中,∠ACB=900,BC=3,AC=4,AB 的垂直平分线DE 交BC 延长线于E,则CE 长为( )A. B. C. D.23.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC,则ΔDEF 的面积与ΔABC 的面积之比等于( )A.1:3B.2:3C.3:2D.3:34.下列各三角形中,面积为无理数的是( )5.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D.则BD 的长为( )A.532B.543C.554D.553 第5题图 第6题图 第7题图6.如图,在Rt △ABC 中,∠ACB=900,D 是AB 中点,且CD=25,若Rt △ABC 面积为1,则它的周长为( ) A.215+ B.15+ C.25+ D.35+ 7.如图,O ⊙的直径AB 垂直弦CD 于P,且P 是半径OB 的中点,CD=6cm,则直径AB 的长是( )3276256ADB E CA. B. C. D.8.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8,则边BC 的长为( )A.21B.15C.6D.以上答案都不对第8题图 第9题图 第10题图9.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( ) A.(4,0) B.(1,0) C.)0,22(- D.(2,0)10.如图,已知△ABC 中,∠ABC=900,AB=BC,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( ) A.172 B.52 C.24 D.711.在△ABC 中,若AB=AC=15,BC=24,若P 是△ABC 所在平面内的点,且PB=PC=20,则AP 长为( )A.7B.5C.7或25D.5或1412.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b,那么2)(b a +的值为( )A.49B.25C.13D.1第12题图 第13题图 第14题图13.将一个有450角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成300角,如图,则三角板的最大边的长为( ) A.3cm B.6cm C.23cm D.26cm14.一渔船在海岛A 南偏东200方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西800方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西100方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.海里/小时B.30海里/小时C.海里/小时D.海里/小时31032033015.如图,Rt △ABC 中,∠ACB=900,∠ABC=600,BC=2cm,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5第15题图 第16题图16.如图,在等腰直角△ABC 中,∠ACB=900,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=900,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC 的面积等于四边形CDOE 面积的2倍;(3);(4).其中正确的结论有( )A.1个B.2个C.3个D.4个17.已知直角三角形的两边的长分别是3和4,则第三边长为18.若直角三角形两直角边长为a 、b,且满足04962=-++-b a a ,则该直角三角形斜边长为 .19.如图,△ABC 中,CD ⊥AB 于D,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 .第19题图 第20题图 第21题图20.如图,D 是△ABC 内一点,BD ⊥CD,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .21.如图,在边长为1的等边△ABC 中,中线AD 与中线BE 相交于点O ,则OA 长度为 .22.等腰三角形一腰上的高与另一腰的夹角为300,腰长为4cm,则其腰上的高为 cm .23.等腰△ABC 中,AB=AC=10cm,BC=12cm,则BC 边上的高是 cm .24.在△ABC 中,AB=AC=12cm ,BC=6cm,D 为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿的方向运动.设运动时间为t ,那么当t= 秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.CD CE +=222AD BE OP OC +=⋅B A C →→25.如图,四边形ABCD 中,AB ∥DC ,∠B=900,连接AC ,∠DAC=∠BAC .若BC=4cm ,AD=5cm ,则AB= cm . 第25题图 第26题图 第27题图26.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E,DF ⊥AC 于点 F.若BC=2,则DE+DF=_____________.27.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形M 的边长是3,则正方形A 、B 、C 、D 、E 、F 的面积之和是 .28.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=900,AB=3,AC=4,点D,E,F,G,H,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为29.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里,杯口外面至少要露出4.6cm ,问吸管要做 cm. 第29题图 第30题图 第31题图 第32题图30.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________米.31.如图,在△ABC 中,CE 平分∠ACB,CF 平分∠ACD,且EF ∥BC 交AC 于M,若EF=5,则CE 2+CF 2=___32.如图,AB=5,AC=3,BC 边上的中线AD=2,则△ABC 的面积为______33.在平面直角坐标系中,已知点)0,5( A ,)0,5(A ,点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 .34.如图,水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.35.如图,△ABC 中,AB=AC=20,BC=32,D 是BC 上一点,且AD ⊥AC,求BD 的长.36.如图,△ABC 的三边分别为AC=5,BC=12,AB=13,将△ABC 沿AD 折叠,使AC 落在AB 上,求折痕AD 的长.37.如图,已知四边形ABCD 中,AB ⊥BC,AB=1,BC=2,CD=2,AD=3.求四边形ABCD 的面积.38.如图,△ABC 中,∠B=450,∠C=300,AB=2.求AC 的长.39.在450的Rt △ABC 中,∠A=900,DE ⊥BC,BD 是∠ABC 的平分线,且BD=13,AB=12.求△DEC 的周长.40.如图,Rt △ABC 中,∠ACB=900.在AB 的同侧分别以AB 、BC 、AC 为直径作三个半圆.图中阴影部分的面积分别记作为S 1和S 2.(1)求证:S 1+S 2=S △ABC ;(2)若Rt △ABC 的周长是62 ,斜边长为2,求图中阴影部分面积的和.41.已知a,b,c 为△ABC 三边,且满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.42.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即米/秒),并在离该公路100米处设置了一个监测点A.在如图所示的直角坐标系中,点A 位于轴上,测速路段BC 在轴上,点B 在A 的北偏西600方向上,点C 在A 的北偏东450方向上,另外一条高等级公路在轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?350y xy日期:月日满分:100分时间:20分钟姓名:得分:1.下列四组线段中,可以构成直角三角形的是()A. 4,5,6 B. 1.5,2,2.5 C. 2,3,4 D. 1,2,32.一副三角板有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°第2题图第3题图第4题图3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.如图,在Rt△ABC中,∠ACB=900,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16B.18C.24D.325.如图,AC=AD,BC=BD,则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB第5题图第6题图第7题图第8题图6.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5B.4C.3D.27.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和 4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )A.12B.14C.15D.1108.如图,△ABC 中,AB=AC=6,BC=8,AE 平分么BAC 交BC 于点E,点D 为AB 的中点,连结DE,则△BDE 的周长是( )A.7+5B.10C.4+25D.129.如图,等腰△ABC 中,AB=AC,AD 是底边上的高,若AB=5,BC=6,则AD= cm .第9题图 第10题图 第11题图 第12题图10.如图,在平面直角坐标系中,点A,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交正半轴于点C,则点C 的坐标为 .11.长为4m 的梯子搭在墙上与地面成450角,作业时调整为600角(如图所示),则梯子的顶端沿墙面升高了 m .12.如图,直线l 上有三个正方形a,b,c,若a,c 的面积分别为5和11,则b 的面积为 .13.如图,OP=1,过P 作PP 1⊥OP,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2015= .14.如图,Rt △ABC 中,∠C=900,AD 平分∠CAB,DE ⊥AB 于E,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.15.如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC,滑到C 处,另一只猴子从D 处滑到地面B,再由B 跑到C,已知两猴子所经路程都是15m,求树高AB.16.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=900,D 为AB 边上一点.求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.x。
初中数学勾股定理应用
3、如图,一棵大树在离地面 3m,5m 两处折成三段,中间一段 AB 恰好与地
A 面平行,大树顶部落在离大树底部 6m 处,则大树折断前的高度是( )
A.9m
B.14m
C.11m
D.10m
4、如图,要为一段高 5m,长 13m 的楼梯铺上红地毯,至少需要红地毯
__1_7___m.
5、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度 不得超过 70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻 刚好行驶到路对面车速检测仪 A 处的正前方 30m 的 C 处,过了 2s 后,测得 小汽车与车速检测仪间距离为 50m,这辆小汽车超速了吗?(参考数据转换: 1m/s=3.6km/h)
07 回顾总结
回顾总结
勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a 2+b2= C2,即 直角三角形两直角边的平方和等于斜边的平方。 勾股定理逆定理:如果三角形的三边a、b、c满足 a 2+b2= c2,那么这个三角形是 直角三角形、 勾股数:满足条件a 2+b2= c2的三个正整数,称为勾股数,常见的数组有3,4,5; 5,12,13;8,15,17等等、这些数组的倍数仍然是勾股数组。
∵AF AD 10 ∴由勾股定理得 BF AF 2 AB2 6 , FC BC BF 4 . 设 EC x ,则 EF DE 8 x . ∴由勾股定理得 EC2 CF 2 EF 2
∴ x2 42 8 x2
解得 x 3 ∴EC 的长为 3.
题型(考点)四:折叠问题
【变式 4-1】如图,在三角形纸片 ABC 中,∠C=90°,AC=18,将∠A 沿 DE 折叠,使点 A 与点 B 重合,折痕和 AC 交于点 E,BC=12,则 EC 的长为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲勾股定理与应用在课内我们学过了勾股定理及它的逆定理.勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.勾股定理逆定理如果三角形三边长a,b,c有下面关系:a2+b2=c2那么这个三角形是直角三角形.早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法.证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2.①同理可证 S BLMD=a2.②①+②得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知△ADG≌△GEH≌△HFB≌△ABC,所以AG=GH=HB=AB=c,∠BAG=∠AGH=∠GHB=∠HBA=90°,因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即化简得 a2+b2=c2.证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF,DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,①另一方面S=S ACGF+S HGKD+2S△ABC.②由①,②所以 c2=a2+b2.关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名.利用勾股定理,在一般三角形中,可以得到一个更一般的结论.定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.证 (1)设角C为锐角,如图2-19所示.作AD⊥BC于D,则CD就是AC在BC上的射影.在直角三角形ABD中,AB2=AD2+BD2,①在直角三角形ACD中,AD2=AC2-CD2,②又BD2=(BC-CD)2,③②,③代入①得AB2=(AC2-CD2)+(BC-CD)2=AC2-CD2+BC2+CD2-2BC·CD=AC2+BC2-2BC·CD,即c2=a2+b2-2a·CD.④(2)设角C为钝角,如图2-20所示.过A作AD与BC延长线垂直于D,则CD就是AC在BC(延长线)上的射影.在直角三角形ABD中,AB2=AD2+BD2,⑤在直角三角形ACD中,AD2=AC2-CD2,⑥又BD2=(BC+CD)2,⑦将⑥,⑦代入⑤得AB2=(AC2-CD2)+(BC+CD)2=AC2-CD2+BC2+CD2+2BC·CD=AC2+BC2+2BC·CD,即c2=a2+b2+2a·cd.⑧综合④,⑧就是我们所需要的结论特别地,当∠C=90°时,CD=0,上述结论正是勾股定理的表述:c2=a2+b2.因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广).由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响.在△ABC中,(1)若c2=a2+b2,则∠C=90°;(2)若c2<a2+b2,则∠C<90°;(3)若c2>a2+b2,则∠C>90°.勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用.例1 如图2-21所示.已知:在正方形ABCD中,∠BAC的平分线交BC 于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,从而有AF2=2FG2,因而应有AF=AB,这启发我们去证明△ABE≌△AFE.证因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以Rt△AFE≌Rt△ABE(AAS),所以 AF=AB.①在Rt△AGF中,因为∠FAG=45°,所以AG=FG,AF2=AG2+FG2=2FG2.②由①,②得AB2=2FG2.说明事实上,在审题中,条件“AE平分∠BAC”及“EF⊥AC于F”应使我们意识到两个直角三角形△AFE与△ABE全等,从而将AB“过渡”到AF,使AF(即AB)与FG处于同一个直角三角形中,可以利用勾股定理进行证明了.例2 如图2-22所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).证过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中,AB2=AM2+BM2+2BM·MD.①在△ACM中,AC2=AM2+MC2-2MC·MD.②①+②,并注意到MB=MC,所以AB2+AC2=2(AM2+BM2).③如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为m a,m b,m c,由上述结论不难推出关于三角形三条中线长的公式.推论△ABC的中线长公式:说明三角形的中线将三角形分为两个三角形,其中一个是锐角三角形,另一个是钝角三角形(除等腰三角形外).利用广勾股定理恰好消去相反项,获得中线公式.①′,②′,③′中的m a,m b,m c分别表示a,b,c边上的中线长.例3 如图2-23所示.求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍.分析如图2-23所示.对角线中点连线PQ,可看作△BDQ的中线,利用例2的结论,不难证明本题.证设四边形ABCD对角线AC,BD中点分别是Q,P.由例2,在△BDQ 中,即2BQ2+2DQ2=4PQ2+BD2.①在△ABC中,BQ是AC边上的中线,所以在△ACD中,QD是AC边上的中线,所以将②,③代入①得=4PQ2+BD2,即AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.说明本题是例2的应用.善于将要解决的问题转化为已解决的问题,是人们解决问题的一种基本方法,即化未知为已知的方法.下面,我们再看两个例题,说明这种转化方法的应用.例4 如图2-24所示.已知△ABC中,∠C=90°,D,E分别是BC,AC 上的任意一点.求证:AD2+BE2=AB2+DE2.分析求证中所述的4条线段分别是4个直角三角形的斜边,因此考虑从勾股定理入手.证 AD2=AC2+CD2,BE2=BC2+CE2,所以AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.如图2-25所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:4(AM2+BN2)=5AB2.分析由于AM,BN,AB均可看作某个直角三角形的斜边,因此,仿例4的方法可从勾股定理入手,但如果我们能将本题看成例4的特殊情况——即M,N分别是所在边的中点,那么可直接利用例4的结论,使证明过程十分简洁.证连接MN,利用例4的结论,我们有AM2+BN2=AB2+MN2,所以 4(AM2+BN2)=4AB2+4MN2.①由于M,N是BC,AC的中点,所以所以 4MN2=AB2.②由①,②4(AM2+BN2)=5AB2.说明在证明中,线段MN称为△ABC的中位线,以后会知道中位线的基本性质:“MN∥AB且MN=图2-26所示.MN是△ABC的一条中位线,设△ABC的面积为S.由于M,N分别是所在边的中点,所以S△ACM=S△BCN,两边减去公共部分△CMN后得S△AMN=SAB必与MN平行.又S△△BMN,从而高相ABM=同,而S△ABM=2S△BMN,所以AB=2MN.练习十一1.用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27);(2)项名达图(2-28);(3)杨作枚图(图2-29).2.已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论.)3.由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.4.如图2-30所示.在四边形ADBC中,对角线AB⊥CD.求证:AC2+BD2=AD2+BC2.它的逆定理是否成立?证明你的结论.5.如图2-31所示.从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF.求证:BC2=AB·BF+AC·CE.初中数学学科网()初中数学学科网()。