医药统计学 第六章 参数假设检验

合集下载

医学统计学-第六章t检验

医学统计学-第六章t检验

t
X1 X2
S
2 C
1 n1
1 n2
n1 n2 2
S
2 C
n1
1S
2 1
n 2
1S
2 2
n1 n2 2
两本均数比较的t检验亦称为成组t检验,又称为独立样本t检验
(independent samples t-test)。 适用于比较按完全随机设计而得到的两组资料,比较的目的是推断它们
各自所代表的总体均数和是否相等。
➢ 假设检验的基本思想
➢ 假设检验的基本思想是小概率反证法思想。
➢ 小概率事件(P≤0.05)是指在一次试验中基本上不大会发生的
事件。 ➢ 小概率事件原理:一个事件如果发生的概率很小,那么它在一次
试验中是实际不会发生的。在数学上,我们称这个原理为小概率 事件原理。 ➢ 反证法思想是先提出假设,再用适当的统计方法确定假设成立的 可能性大小,如可能性小,则认为假设不成立,若可能性大,则还 不能认为假设不成立。
α =0.05
SC2=699.725,t=-3.764
3.确定P值 ,作出推断结论
υ =20+20-2=38 , 查 t 界 值 表 , 得 t0.05/2,38=2.024, 现 |t|=3.764>t0.05/2,23=2.069,故P<0.05。按α=0.05水准,拒绝 H0,,接受H1,差异有统计学意义。
F
S12 (较大) S( 22 较小)
υ1为分子自由度,υ2为分母自由度
F统计量服从F分布,可以查F界值表,附表3-3。F值越大, 对应的P值越小。
1.建立假设,确定检验水准
2.计算统计量
F
S12 (较大)=26.82/26.12 =1.051 S( 22 较小)

本科《医学统计学》第6版单选题

本科《医学统计学》第6版单选题

《医学统计学》单项选择题摘自:李康,贺佳主编.医学统计学.第6版.北京:人民卫生出版社,2013第一章绪论1. 医学统计学研究的对象是()A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 有变异的医学事物E.疾病的预防与治疗2. 用样本推论总体,具有代表性的样本通常指的是()A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于有序数据的是()A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是()A. 由某些固定因素引起的误差B. 由不可预知的偶然因素引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由操作失误引起的误差5. 系统误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差6. 抽样误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差7. 收集资料不可避免的误差是()A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差8. 统计学中所谓的总体通常指的是()A. 自然界中的所有研究对象B. 概括性的研究结果C. 同质观察单位的全体D. 所有的观察数据E.具有代表性意义的数据9. 医学统计学中所谓的样本通常指的是A. 可测量的生物样品B. 统计量C. 某一变量的测量值D. 数据中有代表性的一部分E.总体中有代表性的部分观察单位10. 医学研究中抽样误差的主要来源是()A. 测量仪器不够准确B. 检测出现错误C. 统计设计不够合理D. 生物个体的变异E.样本量不够答案:1.D 2.E 3.D 4.B 5.A 6.D 7.A 8.C 9.E 10.D第二章定量数据的统计描述1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是()A. 中位数B. 几何均数C. 均数D. P95百分位数E. 频数分布2. 算术均数与中位数相比,其特点是()A.不易受极端值的影响B.能充分利用数据的信息C.抽样误差较大D.更适用于偏态分布资料E.更适用于分布不明确资料3. 将一组计量资料整理成频数表的主要目的是A.化为计数资料 B. 便于计算C. 提供原始数据D. 为了能够更精确地检验E. 描述数据的分布特征4. 6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320,求平均滴度应选用的指标是A. 均数B. 几何均数C. 中位数D. 百分位数E. 倒数的均数5. 变异系数主要用于()A. 比较不同计量指标的变异程度B. 衡量正态分布的变异程度C. 衡量测量的准确度D. 衡量偏态分布的变异程度E. 衡量样本抽样误差的大小6. 对于正态或近似正态分布的资料,描述其变异程度应选用的指标是()A. 变异系数B. 离均差平方和C. 极差D. 四分位数间距E. 标准差7.已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用()A.全距B.标准差C.变异系数D.方差E.四分位数间距8. 一组原始数据呈正偏态分布,其数据的特点是A. 数值离散度较小B. 数值离散度较大C. 数值分布偏向较大一侧D. 数值分布偏向较小一侧E. 数值分布不均匀9. 对于正偏态分布总体,其均数与中位数的关系是()A. 均数与中位数相同B. 均数大于中位数C. 均数小于中位数D. 两者有一定的数量关系E. 两者数量关系不定10. 在衡量数据的变异度时,标准差与方差相比,其主要特点是()A. 标准差小于方差B. 标准差大于方差C. 标准差更容易计算D. 标准差更为准确E. 标准差的计量单位与原始数据相同答案 1. A 2. B 3. E 4. B 5. A 6. E 7. E 8. D 9. B 10. E第三章正态分布与医学参考值范围1. 正态曲线下,横轴上从均数到+∞的面积为()A.50% B.95% C. 97.5% D.99% E.不能确定(与标准差的大小有关)2. 标准正态分布的形态参数和位置参数分别为()A.0,1 B. 1,0 C. µ,σ D. σ,µ E. S,X3. 正态分布的均数、中位数和几何均数之间的关系为()A. 均数与几何均数相等B. 均数与中位数相等C. 中位数与几何均数相等D. 均数、中位数、几何均数均不相等E. 均数、中位数、几何均数均相等4.正常成年男子的红细胞计数近似服从正态分布,已知X =4.78×1012/L ,S=0.38×1012/L ,z=(4.00-4.78)/0.38=-2.05,1-Φ (z)= 1-Φ (-2.05)=0.9798,则理论上红细胞计数为( )A .高于4.78×1012/L 的成年男子占97.98%B .低于4.78×1012/L 的成年男子占97.98%C .高于4.00×1012/L 的成年男子占97.98%D .低于4.00×1012/L 的成年男子占97.98%E .在4.00×1012/L 至4.78×1012/L 的成年男子占97.98%5. 某项指标95%医学参考值范围表示的是( )A. 在此范围 “异常”的概率大于或等于95%B. 在此范围 “正常”的概率大于或等于95%C. 在“异常”总体中有95%的人在此范围之外D. 在“正常”总体中有95%的人在此范围E. 在人群中检测指标有5%的可能超出此范围6. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人7. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人8. 要评价某地区一名5岁男孩的身高是否偏高,其统计学方法是( )A. 用均数来评价B. 用中位数来评价C. 用几何均数来评价D. 用变异系数来评价E. 用参考值范围来评价9.应用百分位数法估计参考值范围的条件是( )A .数据服从正态分布B .数据服从偏态分布C .有大样本数据D .数据服从对称分布E .数据变异不能太大10.某市1974年238名居民的发汞含量(µmol/kg )如下,则该地居民发汞值的95%医学参考值范围是( )发汞值(µmol/kg )15~ 35~ 55~ 75~ 95~ 115~ 135~ 155~ 175~ 195~215 人数 20 66 60 48 18 16 6 1 0 3A .<P 95B .>P 5C .(P 2.5,P 97.5)D .S X 96.1±E .S X 96.1±答案 1. A 2. B 3. B 4. C 5. D 6. D 7. C 8. E 9. B 10. A第四章定性数据的统计描述1. 如果一种新的治疗方法能够使不能治愈的疾病得到缓解并延长生命,则应发生的情况是()A. 该病患病率增加B. 该病患病率减少C. 该病的发病率增加D. 该病的发病率减少E. 该疾病的死因构成比增加2. 计算乙肝疫苗接种后血清学检查的阳转率,分母为()A. 乙肝易感人数B. 平均人口数C. 乙肝疫苗接种人数D. 乙肝患者人数E. 乙肝疫苗接种后的阳转人数3. 计算标准化死亡率的目的是A. 减少死亡率估计的偏倚B. 减少死亡率估计的抽样误差C. 便于进行不同地区死亡率的比较D. 消除各地区内部构成不同的影响E. 便于进行不同时间死亡率的比较4. 已知男性的钩虫感染率高于女性,今欲比较甲乙两乡居民的钩虫感染率,但甲乡女性居民多,而乙乡男性居多,适当的比较方法是()A. 两个率直接比较B. 两个率间接比较C. 直接对感染人数进行比较D. 计算标准化率比较E. 不具备可比性5. 甲县恶性肿瘤粗死亡率比乙县高,经标准化后甲县恶性肿瘤标化死亡率比乙县低,其原因最有可能是()A. 甲县的诊断水平高B. 甲县的肿瘤防治工作比乙县好C. 甲县的人口健康水平高D. 甲县的老年人口在总人口中所占比例更小E. 甲县的老年人口在总人口中所占比例更大6. 相对危险度RR的计算方法是()A. 两个标准化率之比B. 两种不同疾病的发病人数之比C. 两种不同疾病患病率之比D. 两种不同疾病的发病率之比E. 两种不同条件下某疾病发生的概率之比7. 比数比OR值表示的是()A. 两个标准化率的差别大小B. 两种不同疾病的发病率差别程度C. 两种不同疾病患病率差别程度D. 两种不同疾病的严重程度E. 两种不同条件下某疾病发生的危险性程度8. 计算患病率时的平均人口数的计算方法是()A. 年初人口数和年末人口数的平均值B. 全年年初的人口数C. 全年年末人口数D. 生活满一年的总人口数E. 生活至少在半年以上的总人口数9. 死因构成比反映的是()A. 各种疾病发生的严重程度B. 疾病发生的主要原因C. 疾病在人群的分布情况D. 各种死因的相对重要性E. 各种疾病的死亡风险大小10. 患病率与发病率的区别是()A. 患病率高于发病率B. 患病率低于发病率C. 计算患病率不包括新发病例D. 发病率更容易获得E. 患病率与病程有关答案 1. A 2. C 3. D 4. D 5. E 6. E 7. E 8. A 9. D 10. E第五章统计表与统计图1.统计表的主要作用是()A. 便于形象描述和表达结果B. 客观表达实验的原始数据C. 减少论文篇幅D. 容易进行统计描述和推断E. 代替冗长的文字叙述和便于分析对比2.描述某疾病患者年龄(岁)的分布,应采用的统计图是()A.线图B.直条图C.百分条图D.直方图E.箱式图3.高血压临床试验分为试验组和对照组,分析考虑治疗0周、2周、4周、6周、8周血压的动态变化和改善情况,为了直观显示出两组血压平均变动情况,宜选用的统计图是()A.半对数线图B.线图C.直条图D.直方图E.百分条图4.研究三种不同麻醉剂在麻醉后的镇痛效果,采用计量评分法,分数呈偏态分布,比较终点时分数的平均水平及个体的变异程度,应使用的图形是()A. 复式条图B. 复式线图C. 散点图D. 直方图E. 箱式图5. 研究血清低密度脂蛋白LDL与载脂蛋白B-100的数量依存关系,应绘制的图形是()A. 直方图B. 箱式图C. 线图D. 散点图E. 直条图6.下列统计图适用于表示构成比关系的是()A. 直方图B. 箱式图C. 误差条图、条图D. 散点图、线图E. 圆图、百分条图7. 有些资料构成统计表时,下列哪一项可以省略()A. 标题B. 标目C. 线条D. 数字E. 备注8.绘制下列统计图纵轴坐标刻度必须从“0”开始的有()A. 圆图B. 百分条图C. 线图D. 半对数线图E. 直方图9.描述某现象频数分布情况可选择()A. 圆图B. 百分条图C. 箱式图D. 误差条图E. 直方图10.对比某种清热解毒药物和对照药物的疗效,其单项指标为口渴、身痛、头痛、咳嗽、流涕、鼻塞、咽痛和发热的有效率,应选用的统计图是()A. 圆图B. 百分条图C. 箱式图D. 复式条图E. 直方图答案 1. E 2. D 3. B 4. E 5. D 6. E 7. E 8. E 9. E 10. D第六章参数估计与假设检验1. 样本均数的标准误越小说明()A. 观察个体的变异越小B. 观察个体的变异越大C. 抽样误差越大D. 由样本均数估计总体均数的可靠性越小E. 由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是()A. 样本不是随机抽取B. 测量不准确C. 资料不是正态分布D. 个体差异E. 统计指标选择不当3. 要减少抽样误差,通常的做法是()A. 减少系统误差B. 将个体变异控制在一定范围内C. 减小标准差D. 控制偏倚E. 适当增加样本含量4. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为()A. 正偏态分布B. 负偏态分布C. 正态分布D. t分布E. 标准正态分布5. 用某种中成药治疗高血压患者100名,总有效率为80.2%,标准误为0.038,则总有效率的95%可信区间估计为()A. 0.082±1.64×0.083B. 0.082±1.96×0.083C. 0.082±2.58×0.083D. > (0.082-1.64×0.083)E. <(0.082+1.64×0.083)6. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L ~9.1×109/L ,其含义是( )A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%7. 某地抽取正常成年人200名,测得其血清胆固醇的均数为3.64mmol/L ,标准差为1.20 mmol/L ,则该地正常成年人血清胆固醇均数的95%可信区间是( )A. 3.64±1.96×1.20B. 3.64±1.20C. 200/20.196.164.3×±D. 200/20.158.264.3×±E. 3.64±2.58×1.208. 假设检验的目的是A. 检验参数估计的准确度B. 检验样本统计量是否不同C. 检验样本统计量与总体参数是否不同D. 检验总体参数是否不同E. 检验样本的P 值是否为小概率9. 假设检验差别有统计学意义时,P 值越小,说明( )A. 样本均数差别越大B. 总体均数差别越大C. 认为样本之间有差别的统计学证据越充分D. 认为总体之间有差别的统计学证据越充分E. 认为总体之间有差别的统计学证据越不充分10. 关于假设检验,正确的说法( )A. 检验水准必须设为0.05B. 必须采用双侧检验C. 必须根据样本大小选择检验水准D. 必须建立无效假设E. 要说明无效假设正确,必须计算P 值答案 1. E 2. D 3. E 4. C 5. B 6. E 7. C 8. D 9. D 10. D第七章 t 检验1. 两样本均数之差的标准误反映的是( )A. 两样本数据集中趋势的差别B. 两样本数据的变异程度C. t 分布的不同形状D. 数据的分布特征E. 两样本均数之差的变异程度2. 两样本均数比较,检验结果05.0>P 说明( )A. 两总体均数的差别较小B. 两总体均数的差别较大C. 支持两总体无差别的结论D. 不支持两总体有差别的结论E. 可以确认两总体无差别3. 由两样本均数的差别推断两总体均数的差别, 其差别有统计学意义是指( )A. 两样本均数的差别具有实际意义B. 两总体均数的差别具有实际意义C. 两样本和两总体均数的差别都具有实际意义D. 有理由认为两样本均数有差别E. 有理由认为两总体均数有差别4. 两样本均数比较,差别具有统计学意义时,P 值越小说明( )A. 两样本均数差别越大B. 两总体均数差别越大C. 越有理由认为两样本均数不同D. 越有理由认为两总体均数不同E. 越有理由认为两样本均数相同5. 假设检验中的Ⅱ类错误指的是( )A. 可能出现的误判错误B. 可能出现的假阳性错误C. 可能出现的假阴性错误D. 可能出现的无效假设错误E. 可能出现的备择假设错误6. 减少假设检验的Ⅱ类错误,应该使用的方法是( )A. 减少Ⅰ类错误B. 减少测量的系统误差C. 减少测量的随机误差D. 提高检验界值E. 增加样本含量7. 以下不能用配对检验方法的是( )A. 比较15名肝癌患者癌组织和癌旁组织中的Sirt1基因的表达量B. 比较两种检测方法测量15名肝癌患者组织中Sirt1基因的表达量C. 比较早期和晚期肝癌患者各15例癌组织中的Sirt1基因的表达量D. 比较糖尿病患者经某种药物治疗前后糖化血红蛋白的变化E. 比较15名受试者针刺檀中穴前后的痛阈值8. 两独立样本均数 t 检验,其前提条件是( )A. 两总体均数相等B. 两总体均数不等C. 两总体方差相等D. 两总体方差不等E. 两总体均数和两总体方差都相等9. 若将配对设计的数据进行两独立样本均数 t 检验,容易出现的问题是( )A. 增加出现I 类错误的概率B. 增加出现II 类错误的概率C. 检验结果的P 值不准D. 方差齐性检验的结果不准E. 不满足t 检验的应用条件10.两组定量资料比较,当方差不齐时,应该使用的检验方法是( )A. 配对 t 检验B. Satterthwaite t ′ 检验C. 两独立样本均数t 检验D. 方差齐性检验E. z 检验答案 1. E 2. D 3. E 4. D 5. C 6. E 7. C 8. C 9. B 10. B第八章 方差分析1. 方差分析的基本思想是( )A .组间均方大于组内均方B .组内均方大于组间均方C .不同来源的方差必须相等D .两方差之比服从F 分布E .总变异及其自由度可按不同来源分解2. 方差分析的应用条件之一是方差齐性,它是指( )A. 各比较组相应的样本方差相等B. 各比较组相应的总体方差相等C. 组内方差=组间方差D. 总方差=各组方差之和E. 总方差=组内方差 + 组间方差3. 完全随机设计方差分析中的组间均方反映的是( )A. 随机测量误差大小B. 某因素效应大小C. 处理因素效应与随机误差综合结果D. 全部数据的离散度E. 各组方差的平均水平4. 对于两组资料的比较,方差分析与t 检验的关系是( )A. t 检验结果更准确B. 方差分析结果更准确C. t 检验对数据的要求更为严格D. 近似等价E. 完全等价5.多组均数比较的方差分析,如果0.05P <,则应该进一步做的是( )A .两均数的t 检验B .区组方差分析C .方差齐性检验D .SNK-q 检验E .确定单独效应6.完全随机设计的多个样本均数比较,经方差分析,如果0.05P <,则结论为( )A .各样本均数全相等B .各样本均数全不相等C .至少有两个样本均数不等D .至少有两个总体均数不等E .各总体均数全相等7.完全随机设计资料的多个样本均数的比较,若处理无作用,则方差分析的F 值在理论上应接近于( )A .()21,F νναB .误差处理SS SS / C. 0 D. 1 E. 任意值8.对于多个方差的齐性检验,若P < α,可认为( )A .多个样本方差全不相等B .多个总体方差全不相等C .多个样本方差不全相等D .多个总体方差不全相等E .多个总体方差相等9.析因设计的方差分析中,两因素X 与Y 具有交互作用指的是( )A .X 和Y 的主效应相互影响B .X 与Y 对观察指标的影响相差较大C .X 与Y 有叠加作用D .X 对观察指标的作用受Y 水平的影响E .X 与Y 的联合作用较大10.某职业病防治院测定了年龄相近的45名男性用力肺活量,其中石棉肺患者、石棉肺可疑患者和正常人各15名,其中用力肺活量分别为(1.79±0.74)L 、(2.31±0.87)L 和(3.08±0.65)L ,拟推断石棉肺患者、石棉肺可疑患者和正常人的用力肺活量是否不同,宜采用的假设检验方法是( )A .两组均数比较的 t 检验B .方差齐性检验C .完全随机设计方差分析D .随机区组设计方差分析E .析因设计方差分析答案: 1. E 2. B 3. C 4. E 5. D 6. D 7. D 8. D 9. D 10. C第九章 χ2 检验1. 两样本率比较,差别有统计学意义时,P 值越小说明( )A. 两样本率差别越大B. 两总体率差别越大C. 越有理由认为两样本率不同D. 越有理由认为两总体率不同E. 越有理由认为两样本率相同2.欲比较两组阳性反应率, 在样本量非常小的情况下(如1210,10n n <<), 应采用的假设检验方法是( )A. 四格表χ2检验B. 校正四格表χ2检验C. Fisher 确切概率法D. 配对χ2检验E. 校正配对χ2检验3.进行四组样本率比较的χ2检验,如220.01,3χχ>,可认为( )A. 四组样本率均不相同B. 四组总体率均不相同C. 四组样本率相差较大D. 至少有两组样本率不相同E. 至少有两组总体率不相同4. 从甲、乙两文中,查到同类研究的两个率比较的χ2检验,甲文220.01,1χχ>,乙文220.05,1χχ>,可认为( ) A. 两文结果有矛盾 B. 两文结果完全相同C. 甲文结果更为可信D. 乙文结果更为可信E. 甲文说明总体的差异较大5. 两组有效率比较的检验功效相关因素是( )A. 检验水准和样本率B. 总体率差别和样本含量C. 样本含量和样本率D. 总体率差别和理论频数E. 容许误差和检验水准6. 通常分析四格表需用连续性校正χ2检验的情况是( )A. T < 5B. T < 1或 n < 40C. T < 5且n < 40D. 1≤T< 5且n > 40E. T < 5或n < 407. 当四格表的周边合计数不变时,如果某格的实际频数有变化,则其理论频数是( )A. 增大B. 减小C. 不变D. 不确定E. 随该格实际频数的增加而增减8. 对四种药物进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较,用Bonferroni 方法校正后的检验水准(进行了6次多重比较,校正后的检验水准为0.05/6)应该是( )A. 0.017B. 0.008C. 0.025D. 0.005E. 0.0139. 对药物的四种剂量(0剂量、低剂量、中剂量和高剂量)进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较(多个实验组与对照组比较),用Bonferroni 方法校正后的检验水准(进行了3次多重比较,校正后的检验水准为0.05/3)应该是( )A. 0.050B. 0.010C. 0.025D. 0.005E. 0.01710. 利用χ2检验公式不适合解决的实际问题是( )A. 比较两种药物的有效率B. 检验某种疾病与基因多态性的关系C. 两组有序试验结果的药物疗效D. 药物三种不同剂量显效率有无差别E. 两组病情“轻、中、重”的构成比例答案: 1. D 2. C 3. E 4. C 5. B 6. D 7. C 8. B 9. E 10. C第十章非参数检验1.对医学计量资料成组比较, 相对参数检验来说,非参数秩和检验的优点是()A. 适用范围广B. 检验效能高C.检验结果更准确 D. 充分利用资料信息E. 不易出现假阴性错误2. 对于计量资料的比较,在满足参数法条件下用非参方法分析,可能产生的结果是()A. 增加Ⅰ类错误B. 增加Ⅱ类错误C. 减少Ⅰ类错误D. 减少Ⅱ类错误E. 两类错误都增加3. 两样本比较的秩和检验,如果样本含量一定,两组秩和的差别越大说明A. 两总体的差别越大B. 两总体的差别越小C. 两样本的差别可能越大D. 越有理由说明两总体有差别E. 越有理由说明两总体无差别4. 多个计量资料的比较,当分布类型未知时,应选择的统计方法是()A. 方差分析B.Wilcoxon T检验C. Kruskal-Wallis H检验D. u检验E. 列联表χ2检验5. 两组数据的秩和检验和t检验相比,其优点是()A. 计算简便B. 检验假设合理C. 检验效能高D. 抽样误差更小E. 对数据分布不做限制6. 两样本比较的秩和检验,其检验统计量T是()A. 例数较小的秩和B. 例数较大的秩和C. 较小的秩和D. 较大的秩和E. 任意一组数据的秩和7. 两样本比较的秩和检验,其无效假设是()A. 两样本有相同的秩和B. 两总体有相同的秩和C. 两样本分布相同D. 两总体分布相同E. 两总体分布的位置相同8. 两样本比较的Wilcoxon秩和检验结果为P值小于0.05,判断孰优孰劣的根据是()A. 比较两样本的秩和大小B. P值大小C. 检验统计量T值大小D. 两样本秩和的差别大小E. 比较两样本平均秩(Mean Rank)的大小9.在一项临床试验研究中,疗效分为“痊愈、显效、有效、无效”四个等级,现欲比较试验组与对照组治疗效果有无差别,宜采用的统计方法是A. Wilcoxon 秩和检验B. 24×列联表χ2检验C. 四格表χ2检验D. Fisher 确切概率法E. 计算标准化率10. 两样本比较的秩和检验中,甲组中最小数据有2个0.2,乙组中最小数据有3个0.2,则数据0.2对应的秩次是( )A. 0.2B. 1.0C. 5.0D. 2.5E. 3.0答案 1. A 2. B 3. D 4. C 5. E 6. A 7. E 8. E 9. A 10. E第十一章 线性相关与回归1. 两数值变量相关关系越强,对应的是( )A. 相关系数越大B. 相关系数的绝对值越大B. 回归系数越大C. 回归系数的绝对值越大E. 相关系数检验统计量的t 值越大2. 回归分析的决定系数2R 越接近于1,说明( )A. 相关系数越大B. 回归方程的显著程度越高C. 应变量的变异越大D. 应变量的变异越小E. 自变量对应变量的影响越大3. 对两变量X 和Y 作简单线性相关分析,要求的条件是( )A. X 和Y 服从双变量正态分布B. X 服从正态分布C. Y 服从正态分布D. X 和Y 有回归关系E. X 和Y 至少有一个服从正态分布4. 两组资料作回归分析,直线回归系数b 较大的一组,表示( )A .相关系数r 也较大较大B .假设检验的P 值较小C .决定系数R 2较大D .决定系数R 2较小E .Y 随X 变化其数量关系有更大的变化5. 1~7岁儿童可以用年龄(岁)估计体重(市斤),回归方程为ˆ144YX =+,若将体重换成国际单位kg ,则此方程( )A .常数项改变B .回归系数改变C .常数项和回归系数都改变D .常数项和回归系数都不改变E .决定系数改变6. 对同一资料进行线性回归与相关分析时,下列正确的情形是( )A .ρ=0时,r=0B .ρ>0时,r>0C .r>0时,b<0D .r<0时,b<0E .ρ<0时,r>07. 下列双变量中,适用于进行线性相关分析的是( )A .年龄与体重B .民族与血型C .体重与体表面积D .母亲文化水平与子女智商E .工龄与患病率8. 若直线回归系数的假设检验结果P<0.05,则可认为两变量间( )A .有密切的关系B .有一定的因果关系C .相关关系密切D .存在数量依存关系E .有较强的回归关系9. 作线性相关分析时,当n=12,r=0.767,查r 界值表823.010,2/001.0=r ,795.010,2/002.0=r ,750.010,2/005.0=r ,则P 值范围为( )A .0.001<P<0.002B .P<0.001C .P<0.002D .P>0.005E .0.002<P<0.00510. 通过线性回归分析(n =48),得决定系数R 2=0.49,则下列说法中错误的是( )A .两个变量具有回归关系B .一定有相关系数r=0.70或r= - 0.70C .假设检验的自由度ν=46D .回归平方和大于剩余平方和E .Y 的总变异有49%可以由X 的变化解释答案 1. B 2. E 3. A 4. E 5. C 6. D 7. C 8. D 9. E 10. D第十二章 多元线性回归1. 在疾病发生危险因素的研究中,采用多变量回归分析的主要目的是( )A .节省样本B .提高分析效率C .克服共线影响D .减少异常值的影响E .减少混杂的影响2. 多元线性回归分析中,反映回归平方和在应变量Y 的总离均差平方和中所占比重的统计量是( )A. 简单相关系数 B .复相关系数C. 偏回归系数D. 回归均方E. 决定系数R 23. 对同一资料作多变量线性回归分析,若对两个具有不同个数自变量的回归方程进行比较,应选用的指标是( )A .决定系数 B. 相关系数C. 偏回归平方和D. 校正决定系数E. 复相关系数。

医学统计:参数假设检验

医学统计:参数假设检验
误诊
α
病人 效能检验
power
1-β

错误和 错误的关系
和的关系就像 翘翘板,小就 大, 大就小
你不能同时减 少两类错误!
2021/3/17
五、双侧检验与单侧检验
✓1 双侧检验:用于推断两总体有无差别时, 对两总体间可能存在的两种位置关系均考虑。 ✓2 单侧检验:用于推断两总体有无差别时, 仅考虑两总体间可能存在的两种位置关系的一 种。
给定α=0.05,因为P=0.013<0.05,所以拒绝H0
2021/3/17
单侧检验 【例6-3】一药厂生产的药品的某项指标服从正态
分布N(60,42).经工艺革新后,随机抽取容量 为30的样本,算得样本均值为64.如果方差不变, 能否认为工艺革新提高了药品该项指标的均值μ? (α=0.01)
故配对t 检验可看成差值d 的样本均数所代表的 未知总体均数与已知总体均数µ0=0的比较, 即 = µ0=0.。
2021/3/17
【案例解析】
➢ 资料类型:数值资料; ➢设计类型:配对设计;
➢ 检验目的:类似于单样本的检验,其实质就
是检验差值的均数(或中位数)是否等于零,即 µ=0。
2021/3/17
2021/3/17
确定适当的检验统计量
1、根据设计的类型及研究目的选择合适的 检验方法并计算出对应统计量。
2、此步骤的目的是把样本信息以检验统计 量的方式反映出来,用于计算H0成立的 概率。
2021/3/17
作出统计结论
1. 根据给定的显著性水平,查表得出相应的 临界值
2. 将检验统计量的值与 水平的临界值进行比 较
3. 得出拒绝或不拒绝无效假设的结论
2021/3/17

第六章 假设检验1

第六章 假设检验1
1. 给定显著性水平α,查表得出相应的临界值 α 查表得出相应的临界值z 或zα/2, tα或tα/2 2. 将检验统计量的值与α 水平的临界值进行比较 3. 作出决策 – 双侧检验:I统计量 > 临界值,拒绝 0 双侧检验: 统计量 临界值,拒绝H 统计量I – 左侧检验:统计量 < -临界值,拒绝 0 左侧检验: 临界值, 临界值 拒绝H – 右侧检验:统计量 > 临界值,拒绝 0 右侧检验: 临界值,拒绝H
二,假设检验的过程
1,提出假设 3,作出决策
拒绝假设 别无选择
总体
我认为人口的 平均年龄是50 50岁 平均年龄是50岁
2,抽取随机样本
均值 X = 20
二,假设检验的过程 假设检验的具体步骤: 假设检验的具体步骤: 第一,提出原假设 第一,提出原假设(null hypothesis)和备择假设 和备择假设 (alternative hypothesis); ; 第二,确定合适的检验统计量; 第二,确定合适的检验统计量; 第三,规定显著性水平 ; 第三,规定显著性水平α; 第四,根据数据计算检验统计量的实现值; 第四,根据数据计算检验统计量的实现值; 第五,统计决策. 第五,统计决策.
原假设
(null hypothesis)
1. 2. 3. 4. 研究者想收集证据予以反对的假设 又称"0假设" 总是有符号 =, ≤ 或 ≥ 表示为 H0
– – –
H0 : = 某一数值 指定为符号 =,≤ 或 ≥ ≤ 例如, H0 : = 10cm
备择假设
(alternative hypothesis)
什么是P 值?
(P-value)
1.p值(p-value)是在零假设下, 1.p值(p-value)是在零假设下,检验统计量取其实现 是在零假设下 值及(沿着备择假设的方向)更加极端值的概率. 值及(沿着备择假设的方向)更加极端值的概率.

统计学第六章假设检验

统计学第六章假设检验

10
即 z 拒绝域,没有落入接受域,所以没有足够理由接受原假设H0, 同
时,说明该类型电子元件的使用寿命确实有了显著的提高。
第六章 假设检验
1. 正态总体均值的假设检验
(2) 总体方差 2 未知的情形
双侧举例:【例 6-6】某厂用生产线上自动包装的产品重量服从正态
分布,每包标准重量为1000克。现随机抽查9包,测得样本平均重量为
100个该类型的元件,测得平均寿命为102(小时), 给定显著水平α=0.05,
问,该类型的电子元件的使用寿命是否有明显的提高?
解:该检验的假设为右单侧检验 H0: u≤100, H1: u>100
已知 z z0.05 1.645
zˆ x u0 n 100 (102 100 ) 2 1.645
986克,样本标准差是24克。问在α=0.05的显著水平下,能否认为生产线
工作正常? 解:该检验的假设为双侧检验 H0: u=0.5, H1: u≠0.5
已知 t /2 (n 1) t0.025 (9 1) 2.306, 而 tˆ x u 986 1000 1.75 可见 tˆ 1.75 2.306
设H0, 同时,说明该包装机生产正常。
其中 P( Z 1.8) 1 P( Z 1.8) 1 0.9281 0.0719 0.05。
第六章 假设检验
单侧举例:【例 6-4】某电子产品的平均寿命达到5000小时才算合格,
现从一批产品中随机抽出12件进行试验,产品的寿命分别为
5059, 3897, 3631, 5050, 7474, 5077, 4545, 6279, 3532, 2773, 7419, 5116
的显著性水平=0.05,试测算该日生产的螺丝钉的方差是否正常?

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
16
公式:t
自由度:对子数 - 1
适用条件:两组配对计量资料。 例题:p. 34, 例8
三、两个小样本均数比较的 t 检验
▲目的:由两个样本均数的差别推断两样本
所代表的总体均数间有无差别。 ▲计算公式及意义: t 统计量: 自由度:n1 + n2 –2
18
▲ 适用条件:
(1)已知/可计算两个样本均数及它们的标准差 ;
38
(2)当不能拒绝
II 类错误的概率 β 值的两个规律:
1. 当样本量一定时, α 愈小, 则 β 愈大,反之…; 2.当 α 一定时, 样本量增加, β 减少.
39
4. 正确理解P值的意义, P值很小时“拒绝H0 ”,P值的
大小不要误解为总体参数间差异的大小; 拒绝H0 只是说 差异不为零。 统计学中的差异显著或不显著,和日常生活中所说的差 异大小概念不同. (不仅区别于均数差异的大小,还区别 于均数变异的大小)
统计推断
用样本信息推论总体特征的过程。
包括:
参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节
▲显著性检验;
假设检验
▲科研数据处理的重要工具;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
45
41
是非判断: ( )1.标准误是一种特殊的标准差,其 表示抽样误差的大小。 ( )2.N一定时,测量值的离散程度越 小,用样本均数估计总体均数的抽样误差 就越小。 ( )3.假设检验的目的是要判断两个样 本均数的差别有多大。

第6章 假设检验的基本概念

第6章 假设检验的基本概念

第四节 假设检验需注意的问题
1.要有严密的研究设计 要有严密的研究设计 2.正确理解α 水准和 值的意义 正确理解 水准和P值的意义 3.正确理解结论的统计学意义 正确理解结论的统计学意义 4.假设检验的结论不能绝对化 假设检验的结论不能绝对化
【例6-4】某人想研究小剂量干扰素加三氮唑核苷治疗 】 流行性乙型脑炎的疗效。 流行性乙型脑炎的疗效。治疗组为在一般治疗的基础 上加用小剂量干扰素及三氮唑核苷治疗流行性乙型脑 上加用小剂量干扰素及三氮唑核苷治疗流行性乙型脑 同期的接受一般治疗的73例该病患者作 炎99例,采用同期的接受一般治疗的 例该病患者作 例 采用同期的接受一般治疗的 为对照。治疗组中轻型29例 ),普通型 为对照。治疗组中轻型 例(占29%),普通型 例 ),普通型40例 ),重型 ),极重型 (占41%),重型 例(占22%),极重型 例(占 ),重型22例 ),极重型8例 8%);对照组中轻型 例(占25%),普通型 例 轻型18例 ),普通型 ) 对照组中轻型 ),普通型32例 44%),重型17例 ),重型 23%),极重型6例 ),极重型 (占44%),重型17例(占23%),极重型6例(占 8%)。两组病人均采用传统降温、镇静、降颅内压、 ) 两组病人均采用传统降温、镇静、降颅内压、 肾上腺皮质激素及抗生素预防感染等对症治疗。 肾上腺皮质激素及抗生素预防感染等对症治疗。在此 基础上治疗组选择发病在 病人, 治疗组选择发病在5d病人 基础上治疗组选择发病在 病人,加用干扰素和三氮 唑核苷静滴,疗程5~ 。 唑核苷静滴,疗程 ~7d。两组比较疗效差别具有统计 学意义, 学意义,结论是在一般治疗的基础上加用小剂量干扰 素及三氮唑核苷治疗流行性乙型脑炎的疗效优于一般 治疗的疗效。 治疗的疗效。
x − µ 0 123.5 − 125 t= = = −0.6466 sx 11.6 25

应用统计学第六章参数假设检验

应用统计学第六章参数假设检验

•临界值
•样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•置信水平
•1 - a •接受域
•拒绝域
•a
•H0值
•样本统计量 •临界值
•观察到 的样本 统计量
•4 给出拒绝域
•在确定显著性水平后,可以确定检验的拒绝域W. 如在上面例1中, 取α=0.05, 要使对任意的θ≥110 有
•P155
•临界值
•H0值
•观察
到的样
本统计
•临界值
•样本统计量
双侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•拒绝域 •a/2
•1 - a •接受域
•置信水平 •拒绝域 • a/2
•临界值
•H0值
•临界值 •样本统计量
•观察 到的样 本统计
双侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•拒绝域 •a/2
•假设检验的思想:
•1、有一个明确的命题或假设 H;
•2、当 H 成立时,考虑某一变量 X 的性质,在女 士品茶问题中,考虑 X 为该女士说对的杯数,注意 此时 X 的分布已知;
•3、以 x 表示 X 的观测值,考虑 P(X=x)=px,px 越 小,试验结果越不利于 H;
•4、根据规定的小概率事件,做出最后的决策。
•若该女士只说对了 3 杯,又会得到怎样的结论?
•参数假设检验举例
例1:根据1989年的统计资料,某地女性新生儿的平 均体重为3190克。为判断该地1990年的女性新生儿 体重与1989年相比有无显著差异,从该地1990年的 女性新生儿中随机抽取30人,测得其平均体重为 3210克。从样本数据看,1990年女新生儿体重比 1989年略高,但这种差异可能是由于抽样的随机性 带来的,也许这两年新生儿的体重并没有显著差异 。究竟是否存在显著差异?可以先假设这两年新生 儿的体重没有显著差异,然后利用样本信息检验这 个假设能否成立。这是一个关于总体均值的假设检 验问题。

统计学原理-假设检验

统计学原理-假设检验

两独立样本均值之差的抽样分布
(1)正态总体,总体方差已知
两个正态总体

中分别独立地抽取容
量为n1和n2的样本,x1、x2分别为其样本均值, 则x1-x2也服从正态分布,那么
第六章 假设检验
Excel操作
l运用函数NORMSDIST计算Z检验的P值 l运用函数TDIST计算t检验的P值
37*/6
第六章
第三节 两总体参数的假设检验 假设检验 学习要点
l 1. 两独立样本均值的抽样分布 l 2. 两独立总体均值之差的假设检验
38*/6
1. 两独立样本均值的抽样分布
第六章 假设检验
9*/6
2. 假设检验的步骤
第六章 假设检验
例6-3
分析:以前的产品废品率在1%以上,改进生产工艺可以使产 品废品率下降是需要支持的命题,故,
予以否定的命题 予以支持的命题
10*/6
2. 假设检验的步骤
第六章 假设检验
(2)检验统计量
检验统计量需要满足以下两个条件
l一是检验统计量中必须含有要检验的总体参数 l二是检验统计量的概率分布必须是明确可知的
31*/6
1. 总体均值的假设检验
检验规则:
条件 原假设与备择假设 检验统计量及其分布
第六章 假设检验
拒绝域
小样本 (n<30)σ2已

小样本 (n<30)σ2未

32*/6
1. 总体均值的假设检验
第六章 假设检验
例6-9 小样本,总体方差未知
设立原假设和备择假设分别为:H0:μ=5600; H1:μ≠5600 检验统计量为:
标准化检验统计量
11*/6
2. 假设检验的步骤

统计学第六章 参数估计和假设检验

统计学第六章 参数估计和假设检验

n
2
2
x
26
【例】为估计市场上某产品的平均日销售额, 计划进行一次抽样调查。历史资料反映该产 品日销售额的标准差为20万元。如果要求这 次估计的可靠性为95%,估计允许的误差为5 万元。应抽取多少天的销售额进行调查?
nZ /22 22 1.962 5 2 202 61.46 x
因为n为整数,为保证目的调查天数应为62。
n
100
结论:统计量的值落在接受域内,所以不能 认为合格率不足98%。
49
用Excel进行参数估计
• Excel提供了抽样极限误差的计算方法。根 据抽样极限误差,可以自己定义函数求出 置信区间
50
样本均值服从正态分布情况
• Excel中的“CONFIDENCE”函数可以计算 样本均值服从正态分布条件下的抽样极限 误差
30
小概率事件原理
➢在一次试验中,小概率事件是不可能发生 的
➢显著性水平α:即小概率的大小界定。
31
原假设和备择假设
• 在参数检验中,首先要对某一总体参数提 出一个假设,然后通过抽样调查来验证其 可信与否。这一假设被称为原假设(零假 设、无效假设),记为H0。如果抽样调查 的结果拒绝了原假设,就必须接受另一个 假设——备择假设,记为H1。
样本
部分—整体 随机原则
总体
统计量
总体参数
4
参数估计的优良标准
1.无偏性。估计统计量的数学期望等于被估计参 数的真值。
2.一致性。当样本单位数充分大时,样本指标充 分靠近总体指标。
3.有效性。估计的方差比其他估计量小
5
点估计
➢也叫定值估计,就是根据总体指标的结构 形式设计样本指标,并直接以一个样本统 计量实现值来估计总体参数。

06参数估计与假设检验(医学统计学)

06参数估计与假设检验(医学统计学)

三、总体均数的区间估计
(一) 已知
95%可信区间:
一般情况
其中 为标准正态分布的双侧界值。
(二) 未知
Confidence interval
通常未知,这时可以用其估计量S 代替,但
已不再服从标准正态分布,而是服从
著名的t 分布。
William Gosset
图6-1 不同自由度的 t 分布图
t分布
四、两总体均数差的区间估计
实际中,有时需要计算两个总体均数差值的可信 区间,例如通过计算两种降压药物平均降压的差 值比较两种药物的差别,其双侧 100(1 )%可信 区间的计算公式为 ( X1 X 2 ) t /2, SX1X2 其中, n1 n2 2 为自由度,SX1X2 为两样本均数之 差的标准误。
样本率来代替总体率,其估计值为:
p(1 p)
Sp
n
二、参数估计
点估计: 是使用单一的数值直接作为总体参数的估 计值,如用估计相应的,用估计相应的。该法表 达简单,但未考虑抽样误差的影响,无法评价参 数估计的准确程度。
区间估计(interval estimation)是指按预先给定的概 率,计算出一个区间,使它能够包含未知的总体 均数。事先给定的概率称为可信度,计算得到的 区间称为可信区间(confidence interval,CI)。
n
250
六、两总体率差值的区间估计
在大样本情况下,可采用正态近似法对两总体率 差值进行可信区间估计,其计算公式为:
( p1 p2 ) z S /2 )( n1
1 n2
),pc =
X1 n1
X2 n2
X1和X2分别表示两组中某事件发生的例数。
例6-7 某医院口腔科医生用极固宁治疗牙本质过 敏症,以双氟涂料作对照,进行了1年的追踪观察 ,结果见表6-1所示,试估计两组有效率差别95% 的可信区间。

第六章 假设检验

第六章 假设检验

第一步:建立假设 第一步:
H0 : µ = 8000; H1 : µ > 8000
原假设的选取原则: 原假设的选取原则:没有充分理由 不能轻易否定的命题。 不能轻易否定的命题。
对立假设的选取原则:没有把握不 对立假设的选取原则: 能轻易肯定的命题。 能轻易肯定的命题。
第二步:寻找检验统计量 第二步:
2
第三步:给定显著性水平和临界值 第三步:
• 在原假设 H0 为真时,X 应该接近8000。 为真时, 如果 X 远离8000 ,就有理由怀疑原 假设为真。 假设为真。 • 例中,8300与8000之间算近还是算远? 例中, 之间算近还是算远? • 需要定一个界限,记此界限为c。 需要定一个界限,记此界限为c
假设检验是要根据样本的观测值对原假作 出判断,接受原假设或者拒绝。 出判断,接受原假设或者拒绝。 由于样本的随机性,客观情况未知, 由于样本的随机性,客观情况未知,有可 能犯错误。 能犯错误。 例:产品验收,有时面对的整批产品是合 产品验收, 格的,有时面对的整批产品是不合格的。 格的,有时面对的整批产品是不合格的。 拒收了合格率高的产品或者接受了合格率 低的产品都是犯了错误。 低的产品都是犯了错误。
例:餐厅的营业额问题: 餐厅的营业额问题:
H0 : µ = 8000; H1 : µ பைடு நூலகம் 8000
N(µ0 ,σ )
2 0
N(µ,σ )
2
在原假设成立的条件下,新菜单挂出后, 在原假设成立的条件下,新菜单挂出后, 每天营业额仍然服从正态分布
N(8000,640 )
如今获得了一个容量为9的样本, 如今获得了一个容量为9的样本,此时样 服从: 本均值 X 服从: 1 2 N(8000, ×640 ) 9

《卫生统计学》第6章假设检验

《卫生统计学》第6章假设检验

配对设计(paired design)是一种比较特殊 的设计方式,能够很好地控制非实验因素对 结果的影响,有自身配对和异体配对之分。
配对设计资料的分析着眼于每一对观察值之 差,这些差值构成一组资料,用检验推断差 值的总体均数是否为“0”。
.
1. 建立检验假设,确定检验水准
H0 : d 0 H1 : d 0 2. 计算统计量
方差不相等。
.
第三节 大样本资料的z检验
1.单样本资料的 Z 检验(非正态、大样本)
X 近似地服从正态分布,
X

N
,
2
n
H0: μ=μ0

H0 成立时,统计量
H1: μ≠μ0 (双侧) H1:μ>μ0 (单侧) H1:μ<μ0 (单侧)
Z X 0 ~ N ( 0,1 )
S/ n
.
2.两独立样本资料的 Z 检验(非正态、大样本)
t' X1 X2 S12 S22 n1 n2
0.5592 0.1467
2.733
0.51102 0.11072
12
12
( S12 n1
( S12 )2
S22 )2 n2
(
S
2 2
)2
( 0.51102 0.11072 )2
12
12
( 0.65102 )2 ( 0.11072 )2
12.03 12
.
4. Poisson分布资料的z检验
Z X1 X2 X1 X2
Z X1 X2 X1 X2 n1 n2
.
例 6-10 某市在对不同性别成年人(18 岁以上)意外伤害死亡情况有 无差异的研究中,监测数据显示该市 2002 年男女疾病监测各 10 万人,因 意外伤害死亡的人数男女分别为 51 人和 23 人。试问,2002 年不同性别每 10 万人口意外伤害死亡平均人数是否相等?

第六章假设检验基础

第六章假设检验基础

表1 12名儿童分别用两种结核菌素的皮肤浸润反应结果(mm)
编号
1 2 3 4 5 6 7 8 9 10 11 12
标准品
12.0 14.5 15.5 12.0 13.0 12.0 10.5
7.5 9.0 15.0 13.0 10.5
新制品
10.0 10.0 12.5 13.0 10.0
5.5 8.5 6.5 5.5 8.0 6.5 9.5
解析:已知μ0=20mg/L, n=11, X 2 0 .9 8 4 m g / L
S 1.068m g / L
一个总体: N(μ,σ2),检验μ是否不同于20mg/L。 建立检验假设并确定检验水准 H0:μ=20mg/L H1:μ≠ 20mg/L α=0.05
21
一、单组样本资料的t 检验
出在零假设的前提下,出现目前样本数据对应的统计 量数值乃至比它更极端数值的概率P值; 如果P ≤α,则结论为:按所取的检验水准拒绝H0,接 受H1,认为差异有统计学意义; 如果P >α ,则结论为:按所取的检验水准不拒绝H0, 尚不能认为差异有统计学意义。
15
统计决策 不拒绝H0
实际情况
H0为真
H0为假
例5 两组小白鼠分别饲以高蛋白和低蛋白饲料, 四周后记录小白鼠体重增加量(g)如下表所示 ,问两组动物体重增加量的均数是否相等?
编号 1 2 3 4 5 6 7 8 9 10 11 12
高蛋白组(X1) 50 47 42 43 39 51 43 48 51 42 50 43
X 45.750 S12 17.659
Sta tterXStnh1112wXaSni2t222e~近t 似(法( S(n1S211/2n/11n)12

医药数理统计第六章习题(检验假设和t检验)

医药数理统计第六章习题(检验假设和t检验)

第四章抽样误差与假设检验练习题一、单项选择题1. 样本均数的标准误越小说明A. 观察个体的变异越小B. 观察个体的变异越大C. 抽样误差越大D. 由样本均数估计总体均数的可靠性越小E. 由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是A. 样本不是随机抽取B. 测量不准确C. 资料不是正态分布D. 个体差异E. 统计指标选择不当3. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为A. 正偏态分布B. 负偏态分布C. 正态分布D. t分布E. 标准正态分布4. 假设检验的目的是A. 检验参数估计的准确度B. 检验样本统计量是否不同C. 检验样本统计量与总体参数是否不同D. 检验总体参数是否不同E. 检验样本的P值是否为小概率5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L~9.1×109/L,其含义是A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%答案:E D C D E二、计算与分析1.为了解某地区小学生血红蛋白含量的平均水平,现随机抽取该地小学生450人,算得其血红蛋白平均数为101.4g/L,标准差为1.5g/L,试计算该地小学生血红蛋白平均数的95%可信区间。

[参考答案]样本含量为450,属于大样本,可采用正态近似的方法计算可信区间。

101.4X=, 1.5S=,450n=,0.07S===95%可信区间为下限:/2.101.4 1.960.07101.26 XX u Sα=-⨯=-(g/L)上限:/2.101.4 1.960.07101.54 XX u Sα+=+⨯=(g/L)即该地成年男子红细胞总体均数的95%可信区间为101.26g/L~101.54g/L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 60
0.05
2)选择检验方法,计算统计量
u x 0 64 60 5.48 n 4 30
3)查u 界值表得,u0.01 2.33 ,本例的统计量u 值为5.48,
则 u u ,因此,P 0.05,按 0.05水准,拒绝H 0 ,
接受 H1 ,可认为工艺革新提高了药品该项指标的均值。
1-
0
不拒绝H0
1


拒绝H0
I 型错误和 II 型错误图示
1-
0
界 值 不拒绝H0
1
拒绝H0
与 间的关系
减少(增加)I型错误,将会 增加(减少)II型错误
增大n 同时降低 与
eg:
检验药品外观指标时,制定较小,目的是控制第一类错误的
概率;
检验药品质量指标时,制定较大 ,目的是控制第二类错误的
属于同一总体, ≠72次/分,所测量的25名男子的平均
脉搏数(x )之所以不等于72次/分,是由于实质性差异
所致。
(二)假设检验的基本原理 运用概率性质的反证法。
1、对所研究的总体作某种假设:
eg: =90, 2=15,1 2 ,X ~ N (, 2 )等。
2、通过抽样的样本值来检验是否拒绝假设?
第六章 参数假设检验
假设检验的基本概念 单个正态总体参数的假设检验 两个正态总体参数的假设检验 非正态总体参数的假设检验 假设检验中的注意事项
学习目的和要求
掌握假设检验的概念和基本原理和基本步骤、两类错误 及各种资料的假设检验;
熟悉并正确应用单、双侧检验。
1、假设检验(test of hypothesis):亦称显著性检验(test of statistical significance)
<注>: 单侧检验比双侧检验更易获得“拒绝,接受”的结

二、 σ2未知时正态总体均值的t 检验
(一)适用条件:样本来自正态总体,但σ2未知,且n 较小
t -test :
t x 0
sn
df n 1
式中, x为样本均数; 0为已知的总体均数;s为总体标
准差;n 为样本含量。
解:
1) 建立假设
H
0.05
2) 选择检验方法计算统计量
t x 0 74.2 72 2.115
s n 5.2 25
df n 1 25 1 24
3) 查 t 界值表,确定P 值,以 24 查 t 界值表得,
t0.05,24 2.064 ,本例的统计量 t 值为2.115,大于界值, 2
因此,P
0.05
eg:双侧 u =1.96;
拒绝域(region2 of rejection):拒绝 H 0的区域。 eg: { u 1.96 }。
eg: = 0.05
拒绝域
不拒绝域
拒绝域
0.05/ 2
0.05/ 2
-1.96
0
1.96
4、选择检验统计方法,计算检验统计量(test statistic): 根据统计资料的类型、变量的分布类型、研究设计方案和 研究目的(统计推断目的),选择检验方法,并计算统计
– “存伪”,其概率通常用β表示。
<注>:
可取单尾,也可取双尾,假设检验时研究者可以根据需 要确定 值大小,一般规定 =0.05或 =0.01
意义:假设检验中如果拒绝H0 时,发生Ⅰ型错误的概率为 5%或1%,即100次拒绝 H 0 的结论中,平均有5次或1次是 错误的。
只取单尾,假设检验时 值一般不知道,在一定情况下
检验水准(size of test):亦称显著性水平(significant
level),用 表示,是预先规定的小概率值,通常选
0.05或0.01,是肯定或否定 H 0 的概率标准,为拒绝原假 设时,犯第一类错误的概率;
临界值(critical value):根据 ,查表获得对应的 u界
值,即拒绝 H 0 或接受 H 0 的界限值。
概念:根据研究目的,对样本所属的总体(参数或分布)进行 假设,然后根据样本所提供的信息,计算某统计量,获得 P 值,最后,对该假设作出拒绝或不拒绝的判断。
2、分类: 参数检验(parametric statistics):假定随机样本来自可用 有限个实参数刻划的总体(如正态分布),并对总体分布的 参数(如总体均数)进行估计或检验。即已知总体分布类 型,由样本统计量对总体未知参数进行统计推断的方法。
:四乙基铅中毒患者的脉搏与正常人相等,即
0
0=
72
H1:四乙基铅中毒患者的脉搏与正常人不等,即 0= 72
0.05
2) 选择检验方法,计算统计量
t x 0 63.50 72 6.788
s n 5.60 20
df n 1 19
3) 查 t 界值表得, t0.05 2.093,本例的统计量u 值为-6.788, ,19 2
H0
双侧检验:
| t | t 2
| t | t 2
P 不P 拒 绝
拒绝 H,0 接受 H1
H0
P(| t | ≥2.064)=0.05 P=P(| t | ≥2.841)<0.05
df 24
0.05/ 2
0.05 / 2
-2.064
0
2.064
③ 结论:
若P ,则按 水准,拒绝H0,接受H1,认为有差别; 若P ,则按 水准,不拒绝H0,根据现有样本信息不足
不拒绝的标准:在假设条件下,发生抽样结果的事件是否
为小概率事件
是,拒绝 假设
不是,不 拒绝假设
eg:
上例,假设①成立,那么,根据抽样理论, x很可能在总体 均数( =72)的附近,远离 的可能性很小。如果将 变换x
为t 值,则t 值很可能在0的附近,而远离0的可能性很小,为
一小概率事件,在一次观察中近似不会发生。但是,如果根据
,按
0.05
水准,拒绝
H
,受
0
H
1

可认为该山区男子的脉搏数与一般地区的男子不同。
本例中P 值的确切值为 0.05 P 0.02
一、假设检验问题及基本原理
(一)假设检验问题
a
b
假如事先不知道 A 和 B 是不是同一个总体
抽样误差
A=B
a -b

本质差别
A≠B
假设检验的目的:检验两个样本是属于一个总体或两 个不同的总体。
eg: 医生在某山区随机测量了25名健康成年男子的脉搏,平均脉搏 次数为74.2次/分钟,标准差为5.2次/分钟,但是根据医学常识, 一般男子的平均脉搏次数为72次/分钟,问该山区男子脉搏数与 一般男子是否不同?
2、P值法(P- value method):计算机软件应用较多。
解:
1) 建立假设
H 0:药膏的平均含甘草酸量无变化,即 0 = 4.45
H
:药膏的平均含甘草酸量有变化,即
1
0
=
4.45
0.05
2) 选择检验方法,计算统计量
u x 0 4.33 4.45 2.485 n 0.108 5
概率,因为,此时:
:H合0格
:不合H格1
制定较大 ,可避免不合格药物损害人类健康。
第二节 单个正态总体参 数的假设检验
一、σ2已知时正态总体均值的u 检验
适用条件:样本来自正态总体,且σ2已知
u-test(z-test): u x 0 n
式中, 为x样本均数; 为已0 知的总体均数;σ为总体标准
先假定该山区所有男子脉搏数数值组成一个总体,其总体
均数和标准差均为未知数,分别以 、 表示。那么,可
能存在两种情况
① 如果该山区男子的脉搏数与一般地区的男子相同,即属于
同一总体, =72次/分,所测量的25名男子的平均脉搏
数( x)之所以不恰好等于72次/分,是由于随机抽样误
差所致。
② 如果该山区男子的脉搏数与一般地区的男子不相同,即不
eg:t 检验、方差分析等。
非参数检验(nonparametric statistics):又称任意分布 检验(distribution-free test),对总体分布不作严格规 定,不依赖于总体分布类型,由样本推断总体的分布、 分布位置或随机变量独立性的假设检验。
eg:2 检验、秩和检验等。
第一节 假设检验的 基本概念
2)备择假设(alternative hypothesis/对立假设):拒绝检验假
设时的备选假设,即总体参数不等。
H

1
0
若接受 H1 ,说明现有差别是由于两总体的本质性差异引 起的。
2、选择单/双侧(边)检验: 原则:根据专业知识和研究目的确定。
<注>:专业知识不明确时,双侧检验较稳妥。
3、确定检验水准和拒绝域:
≈2(1-0.99343)
= 0.013
因此,P 0.05,按 0.05水准,拒绝 H 0 ,接受H1 ,可
认为该药膏的平均含甘草酸量有变化。
(二)单侧检验(one-sided test):根据专业知识和研究目的确 定。
解: 1)建立假设
H 0 :工艺革新后药品该项指标的均值与革新前相等,
即 0 = 60 H1 :工艺革新提高了药品该项指标的均值,即 0

t
t
,因此,P
,(n1)
0.05,按
0.05
水准,拒绝
H

0
2
接受 H1 ,可认为四乙基铅中毒患者的脉搏与正常人不等。
eg2: 以第一节例题资料为例,比较某山区男子的脉搏数与一 般地区的男子是否相同? 解: 1) 建立假设,确定检验水准。
H0:该山区男子脉搏数与一般地区男子相等,即 0 H1:该山区男子脉搏数与一般地区男子不等,即 0
相关文档
最新文档