高中数学人教A版必修2练习第1课时棱柱、棱锥、棱台的结构特征 Word版含解析

合集下载

新人教A版高中数学必修二全册同步课时分层练习

新人教A版高中数学必修二全册同步课时分层练习

新人教A版高中数学必修二全册同步课时分层练习课时分层作业(一) 棱柱、棱锥、棱台的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.观察如下所示的四个几何体,其中判断不正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台B[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.]2.下列说法正确的是( )A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形D[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误:选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.]①②3.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而①④则不同.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.]①②二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.] 7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1­ABC,三棱锥C1­ABB1,三棱锥A­A1B1C1,三个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCD­A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1­AB1D1(答案不唯一).(2)如图②所示,三棱锥B1­ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1­ABD(答案不唯一).①②③[能力提升练]1.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是( )A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10 [在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]课时分层作业(二) 旋转体与简单组合体的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B.]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.] 二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解] 如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底面半径O 1A =2(cm),下底面半径OB =5(cm),又因为腰长为12 cm ,所以高AM =122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 (cm),即截得此圆台的圆锥的母线长为20 cm.[能力提升练]1.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体B [圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.]2.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .则绳子的最短长度的平方f (x )=x 2+16(0≤x ≤4) [将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,所以L =2πr =2π,所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°. 由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).所以f (x )=AM 2=x 2+16(0≤x ≤4).]课时分层作业(三) 中心投影与平行投影 空间几何体的三视图(建议用时:45分钟)[基础达标练]一、选择题1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线A [直线的平行投影可能是直线也可能是点,故选A.]2.下列说法错误的是( )A .正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度B .俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度C .侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度D .一个几何体的正视图和俯视图高度一样,正视图和侧视图长度一样,侧视图和俯视图宽度一样D [正视图和俯视图长度一样;正视图和侧视图高度一样;侧视图和俯视图宽度一样.故3.有下列说法:①从投影的角度看,三视图是在平行投影下画出来的投影图;②平行投影的投影线互相平行,中心投影的投影线相交于一点;③空间图形经过中心投影后,直线变成直线,平行线还是成平行的直线;④空间几何体在平行投影与中心投影下有不同的表现形式.其中正确说法有( )A.1个B.2个C.3个D.4个C[由投影的知识知①②④正确.只有③错误,空间图形经过中心投影后,直线变成直线、平行线有可能变成了相交直线,综上可知正确说法有3个,故选C.]4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )C[正视图中小长方形在左上方,对应俯视图应该在左侧,排除B,D,侧视图中小长方形在右上方,排除A,故选C.]5.如图所示,五棱柱的侧视图应为( )A B C DB[从五棱柱左面看,是2个矩形,上面的小一点,故选B.]二、填空题6.如下图,图①②③是图④表示的几何体的三视图,其中图①是________,图②是________,图③是________(说出视图名称).① ② ③ ④正视图 侧视图 俯视图 [由几何体的位置知,①为正视图,②为侧视图,③为俯视图.]7.若线段AB 平行于投影面,O 是线段AB 上一点,且AO OB =m n,点A ′,O ′,B ′分别是A ,O ,B 在投影面上的投影点,则A ′O ′O ′B ′=________. m n [由题意知AB ∥A ′B ′,OO ′∥AA ′,OO ′∥BB ′,则有A ′O ′O ′B ′=AO OB =m n.] 8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为________.23 [由三视图知可把四棱锥放在一个正方体内部,四棱锥为D ­BCC 1B 1,最长棱为DB 1=DC 2+BC 2+BB 21=4+4+4=2 3.]三、解答题9.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.[解](1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图:10.某组合体的三视图如图所示,试画图说明此组合体的结构特征.[解]该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体(如图所示).[能力提升练]1.如图所示,画出四面体AB1CD1三视图中的正视图,以AA1D1D为投影面,则得到的正视图可以为( )A B C DA [显然AB 1,AC ,B 1D 1,CD 1分别投影得到正视图的外轮廓,B 1C 为可见实线,AD 1为不可见虚线.故A 正确.]2.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是103,则皮球的直径是________.15 [皮球的直径d =103sin 60°=103×32=15.]课时分层作业(四) 空间几何体的直观图(建议用时:45分钟)[基础达标练]一、选择题1.如图,已知等腰三角形ABC ,则如下所示的四个图中,可能是△ABC 的直观图的是( )① ② ③ ④A .①②B .②③C .②④D .③④D [原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别为在∠x ′O ′y ′成135°和45°的坐标系中的直观图.]2.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是( ) A .三角形的直观图仍然是一个三角形 B .90°的角的直观图会变为45°的角 C .与y 轴平行的线段长度变为原来的一半 D .由于选轴的不同,所得的直观图可能不同B [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B ,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A.]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm ,1 cm ,2 cm ,1.6 cmB .4 cm ,0.5 cm ,2 cm ,0.8 cmC .4 cm ,0.5 cm ,2 cm ,1.6 cmD .2 cm ,0.5 cm ,1 cm ,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm ,1 cm ,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm ,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+ 2A [画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.M′(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.]7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5 [由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.如图所示,水平放置的△ABC在直角坐标系中的直观图,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2 [△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′;(2)在直角坐标系xOy中.在x轴上取二点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.10.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] (1)画轴.画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,如图①. (2)画底面.以O 为中心在xOy 平面内画出正方形水平放置的直观图ABCD . (3)画顶点.在Oz 轴上截取OP ,使OP 的长度是原四棱锥的高.(4)成图.连接PA 、PB 、PC 、PD ,并擦去辅助线,得四棱锥的直观图如图②.① ② [能力提升练]1.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm D [由题意可知其直观图如下图:由图可知两个顶点之间的距离为5 cm.故选D.]2.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA .所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′,又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′,所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]课时分层作业(五) 柱体、锥体、台体的表面积与体积(建议用时:45分钟)[基础达标练]一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .πC [底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C.]2.已知高为3的直棱柱ABC ­A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1­ABC 的体积为( )A .14B .12C .36D .34D [由题意,锥体的高为BB 1,底面为S △ABC =34,所以V =13Sh =13×34×3=34.] 3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8πB [设圆柱的底面半径为r ,则圆柱的母线长为2r , 由题意得S 圆柱侧=2πr ×2r =4πr 2=4π, 所以r =1, 所以V圆柱=πr 2×2r =2πr 3=2π.]4.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A .5πB .6πC .20πD .10πD [用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.]5.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A .54B .54πC .58D .58πA [设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似得r 3r =h -h 1h,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.]二、填空题6.已知圆锥SO 的高为4,体积为4π,则底面半径r =________. 3 [设底面半径为r ,则13πr 2×4=4π,解得r =3,即底面半径为 3.]7.已知一个圆台的正视图如图所示, 若其侧面积为35π, 则a 的值为____.2 [圆台的两底面半径分别为1,2,高为a , 则母线长为1+a 2, 则其侧面积等于π(1+2)·(1+a 2)=35π,解得a 2=4,所以a =2(舍去负值).]8.已知一个圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是________.S2[如图所示, 设圆锥的底面半径为r , 母线长为l .由题意,得⎩⎪⎨⎪⎧12πl 2=S ,πl =2πr ,解得r =S2π.所以圆锥的底面面积为πr 2=π×S 2π=S2.]三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35·157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD ­A 1B 1C 1D 1中,截下一个棱锥C ­A 1DD 1,求棱锥C ­A 1DD 1的体积与剩余部分的体积之比.[解] 已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C ­A 1DD 1的底面积为12S ,高为h ,故三棱锥C ­A 1DD 1的体积为:VC ­A 1DD 1=13⎝ ⎛⎭⎪⎫12S h =16Sh ,余下部分体积为:Sh -16Sh =56Sh .所以棱锥C ­A 1DD 1的体积与剩余部分的体积之比1∶5.[能力提升练]1.三棱锥P ­ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ­ABE 的体积为V 1,P ­ABC 的体积为V 2,则V 1V 2=________.14 [如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E ­ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.] 2.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.8 [如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方体,如图②所示,由图知正方形的边长为22,其面积为8.]课时分层作业(六) 球的体积和表面积(建议用时:45分钟)[基础达标练]一、选择题1.如果三个球的半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .59倍B .95倍 C .2倍 D .3倍 B [设小球半径为1,则大球的表面积S 大=36π,S 小+S 中=20π,36π20π=95.]2.把半径分别为6 cm ,8 cm ,10 cm 的三个铁球熔成一个大铁球,这个大铁球的半径为( )A .3 cmB .6 cmC .8 cmD .12 cmD [由43πR 3=43π·63+43π·83+43π·103,得R 3=1 728,检验知R =12.]3.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )A .2πB .3πC .4πD .6πB [由题意知,该几何体为半球, 表面积为大圆面积加上半个球面积, S =π×12+12×4×π×12=3π.]4.将棱长为2的正方体削成一个体积最大的球,则这个球的体积为( ) A .163πB .4π3C .323πD .4πB [根据题意知,此球为正方体的内切球,所以球的直径等于正方体的棱长,故r =1,所以V =43πr 3=43π.]5.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4B [设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =1-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.] 二、填空题6.若一个球的表面积与其体积在数值上相等,则此球的半径为________. 3 [设此球的半径为R ,则4πR 2=43πR 3,R =3.]7.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.33π [由三视图可知该几何体是上面为半球,下面为圆锥的组合体,所以表面积S =12×4π×32+π×3×5=33π.]8.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.32[设球O 的半径为R , ∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R .∴V 1V 2=πR 2·2R 43πR3=32.] 三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.[解] 该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π.该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.10.已知过球面上A ,B ,C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC=24,AC =30,求球的表面积和体积.[解] 因为AB ∶BC ∶AC =18∶24∶30=3∶4∶5, 所以△ABC 是直角三角形,∠B =90°.又球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt △ABC 的外接圆的圆心,所以斜边AC 为截面圆O ′的直径(如图所示), 设O ′C =r ,OC =R ,则球半径为R ,截面圆半径为r , 在Rt △O ′CO 中,由题设知sin ∠O ′CO =OO ′OC =12, 所以∠O ′CO =30°,所以rR=cos 30°=32,即R =23r ,(*) 又2r =AC =30⇒r =15,代入(*)得R =10 3.所以球的表面积为S =4πR 2=4π×(103)2=1 200π. 球的体积为V =43πR 3=43π×(103)3=4 0003π.[能力提升练]1.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为( )A .4∶3B .3∶1C .3∶2D .9∶4C [作圆锥的轴截面,如图,设球半径为R ,则圆锥的高h =3R ,圆锥底面半径r =3R ,则l =(h 2+r 2)=23R ,所以S 圆锥侧S 球 =πrl 4πR 2=π×3R ·23R 4πR 2=32.] 2.在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球. 若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________.9π2[当球的半径最大时,球的体积最大. 在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC ,AB =6,BC =8,所以AC =10,底面的内切圆的半径即为此时球的半径r =6+8-102=2,直径为4>侧棱. 所以球的最大直径为3,半径为32,此时体积V =9π2.]课时分层作业(七) 平面(建议用时:45分钟)[基础达标练]一、选择题1.已知点A ,直线a ,平面α,以下命题表述正确的个数是( )①A ∈a ,a ⊄α⇒Aα;②A ∈a ,a ∈α⇒A ∈α;③Aa ,a ⊂α⇒A α;④A ∈a ,a ⊂α⇒A ⊂α.A .0B .1C .2D .3A [①不正确,如a ∩α=A ;②不正确,∵“a ∈α”表述错误;③不正确,如图所示,A a ,a ⊂α,但A ∈α;④不正确,“A ⊂α”表述错误.]2.下列命题中正确命题的个数是( ) ①三角形是平面图形; ②四边形是平面图形;③四边相等的四边形是平面图形; ④圆是平面图形. A .1个 B .2个 C .3个D .4个B [根据公理2可知①④正确,②③错误.故选B.] 3.两个平面若有三个公共点,则这两个平面( ) A .相交 B .重合C .相交或重合D .以上都不对C [若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.]4.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行B[两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面,选B.] 5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1C.0或1 D.1或3D[当三条直线是同一平面内的平行直线时,确定一个平面,当三条直线是三棱柱侧棱所在的直线时,确定三个平面,选D.]二、填空题6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.∈[因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.] 7.在长方体ABCD­A1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.5[由题图可知,既与AB共面又与CC1共面的棱有CD、BC、BB1、AA1、C1D1共5条.] 8.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.1或2或3 [当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.]三、解答题9.已知:A∈l,B∈l,C∈l,D l,如图所示.求证:直线AD,BD,CD共面.[证明]因为D l,所以l与D可以确定平面α,因为A∈l,所以A∈α,又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α,所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1­ABC三条侧棱延长后相交于一点.[证明]如图,延长AA1,BB1,设AA1∩BB1=P,又BB1⊂面BC1,∴P∈面BC1,AA1⊂面AC1,∴P∈面AC1,∴P为平面BC1和面AC1的公共点,又∵面BC1∩面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.[能力提升练]1.如图,α∩β=l,A∈α,C∈β,C l,直线AD∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点DD[A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.]2.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.共线[∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α. 又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.]课时分层作业(八) 空间中直线与直线之间的位置关系(建议用时:45分钟)[基础达标练]一、选择题1.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.异面或平行B.异面或相交C.异面D.相交、平行或异面D[异面直线不具有传递性,可以以长方体为载体加以说明,a、b异面,直线c的位置可如图所示.]2.分别和两条异面直线平行的两条直线的位置关系是( )A.一定平行B.一定相交C.一定异面D.相交或异面D[可能相交也可能异面,选D.]3.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是( )A.相交B.异面C.平行D.垂直A[如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.]4.如图所示,在正方体ABCD­A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30° B.45°C.60°D.90°C[连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.]5.设P是直线l外一定点,过点P且与l成30°角的异面直线( )A.有无数条B.有两条C.至多有两条D.有一条A[如图,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.因此,这样的异面直线有无数条.]二、填空题6.如图所示,在三棱锥P­ABC的六条棱所在的直线中,异面直线共有________对.3 [PA与BC,PB与AC,PC与AB互为异面直线,∴共3对.]7.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.②④[①错,可以异面;②正确,公理4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.]8.如图所示,正方体ABCD­A1B1C1D1中,AC与BC1所成角的大小是________.。

高中数学(人教A版)必修第二册课后习题:棱柱、棱锥、棱台的结构特征【含答案及解析】

高中数学(人教A版)必修第二册课后习题:棱柱、棱锥、棱台的结构特征【含答案及解析】

第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征课后篇巩固提升必备知识基础练1.(多选题)关于简单几何体的结构特征,下列说法正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等,棱锥的侧棱相交于一点但长度不一定相等.2.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个,知这4个图都满足.3.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台A'-BCC'B'.4.下列说法错误的有()①有一个面是多边形,其余各面都是三角形,由这些面围成的多面体是棱锥;②如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥;③如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体.A.0个B.1个C.2个D.3个,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥,即其余各面的三角形必须有公共的顶点,故①错误;当棱锥的各个侧面的共顶点的角之和是360°时,各侧面构成平面图形,故②错误;若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,故③正确.5.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是(),看哪一个可以折叠围成正方体即可.6.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定.∵平面AA1D1D∥平面BB1C1C,∴有水的部分始终有两个平面平行,而其余各面都是平行四边形(水面与两平行平面的交线),因此呈棱柱形状.7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.8.一个几何体的平面展开图如图.(1)该几何体是哪种几何体;(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?该几何体是四棱台.(2)与“祝”字面相对的面是“前”字面,与“你”字面相对的面是“程”字面.9.按下列条件分割三棱台ABC-A1B1C1(不需要画图,各写出一种分割方法即可).(1)一个三棱柱和一个多面体;(2)三个三棱锥.在AC上取点D,使DC=A1C1,在BC上取点E,使EC=B1C1,连接A1D,B1E,DE,则得三棱柱A1B1C1-DEC与一个多面体A1B1BEDA.(答案不唯一)(2)连接AB1,AC1,BC1,则可分割成三棱锥A-A1B1C1,三棱锥A-BCC1,三棱锥A-BB1C1.(答案不唯一)关键能力提升练10.(多选题)(2021江苏宜兴期中)一个多面体的所有棱长都相等,那么这个多面体一定不可能是()A.三棱锥B.四棱台C.六棱锥D.六面体,满足题意,所以A可能.棱台的上底面与下底面的边长不相等,所以不满足题意,所以B不可能.假设六棱锥的所有棱长都相等,则它的每个侧面均为等边三角形,每个侧面的顶角均为60°,所以六棱锥的顶点会在底面上,所以C不可能.当六面体是正方体时,满足题意,所以D 有可能.故选BC.11.设集合M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这四个集合之间的关系是()A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P,正方体是特殊的正四棱柱,正四棱柱是特殊的长方体,长方体是特殊的直四棱柱,所以{正方体}⊆{正四棱柱}⊆{长方体}⊆{直四棱柱},故选B.12.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是(),变成正方体后的图形中,相邻的平面中三条线段是平行线,排除A,C;相邻平面只有两个是空白面,排除D;故选B.13.下列说法正确的有个.①棱台的侧棱都相等;②正棱锥的侧面是等边三角形;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.错误,根据棱台的定义可知,棱台的侧棱不一定都相等,故此说法是错误的;②错误,正棱锥的侧面都是等腰三角形,不一定是等边三角形,故错误;③错误,由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD,满足底面△BCD为等边三角形,三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等,故错误.14.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形.(3)S △PEF =12a 2,S △DPF =S △DPE =12×2a×a=a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE =(2a )2-12a 2-a 2-a 2=32a 2.学科素养创新练15.如图,在长方体ABCD-A 1B 1C 1D 1中,AB=3,BC=4,A 1A=5,现有一只甲壳虫从点A 出发沿长方体表面爬行到点C 1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC 1的长分别为√90,√74,√80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB 1A 1内由A 到E BE=157,再在长方形BCC 1B 1内由E 到C 1,也可以先在长方形AA1D1D内由A到F D1F=15,再在长方形DCC1D1内由F到C1,其最短路程为7√74.。

(教案)8.1基本立体图形(1)Word版含解析

(教案)8.1基本立体图形(1)Word版含解析

8.1 基本几何图形第1课时棱柱、棱锥、棱台本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第八章《立体几何初步》,本节课是第1课时,本节课主要学习棱柱、棱锥、棱台的概念及结构特征。

教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.空间几何体是新课程立体几何部分的起始课程,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用,新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面.这种安排降低了立体几何学习入门难的门槛,强调几何直观,淡化几何论证,可以激发学生学习立体几何的兴趣。

课程目标学科素养A.能根据几何结构特征对空间物体进行分类;B.从实物中概括出棱柱、棱锥、棱台的几何结构特征;C.会用语言概述棱柱、棱锥、棱台的结构特征;D.会表示有关几何体以及棱柱、棱锥、棱台的分类。

1.数学抽象:棱柱、棱锥、棱台的几何结构特征;2.逻辑推理:从实物中概括出棱柱、棱锥、棱台的几何结构特征;3..直观想象:棱柱、棱锥、棱台的分类;1.教学重点:让学生感受大量空间实物及模型、概括出棱柱、棱锥、棱台的结构特征;2.教学难点:棱柱、棱锥、棱台的结构特征的概括。

多媒体教学过程教学设计意图核心素养目标一、复习回顾,温故知新1.通过生活中的图片引入,初步感受空间几何体。

二、探索新知观察1:观察生活的具体实物,你能抽象出它们的空间图形吗?空间几何体的定义:如果我们只考虑这些物体的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.思考1:如图,下面这些图片中的物体具有怎样的形状?在日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?【答案】纸箱、金字塔、茶叶盒、水晶萤石、储物箱等物体围成它们的面都是平面图形,并且都是平面多边形;纸杯、腰鼓、奶粉罐、篮球和足球、铅锤围成它们的面不全是平面图形,有些面是曲面。

人教A版高中数学必修二:全书word

人教A版高中数学必修二:全书word

1.1.1棱柱、棱锥、棱台的结构特征课前自主预习知识点一空间几何体的定义、分类及相关概念1.空间几何体的定义2.空间几何体的分类3.相关概念知识点二棱柱的结构特征1.棱柱的定义、图形及相关概念2.棱柱的分类(1)依据:□6底面多边形的边数.(2)举例:三棱柱(底面是三角形)、四棱柱(底面是四边形)……知识点三棱锥的结构特征1.棱锥的定义、图形及相关概念2.棱锥的分类(1)依据:□6底面多边形的边数.(2)举例:□7三棱锥(底面是三角形)□8四棱锥(底面是四边形)……知识点四棱台的结构特征1.棱台的定义、图形及相关概念2.棱台的分类(1)依据:□5由几棱锥截得.(2)举例:□6三棱台(由三棱锥截得)、四棱台(由四棱锥截得)……判断棱柱、棱锥、棱台形状的方法(1)棱柱:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)棱锥:①只有一个面是多边形,此面即为底面;②侧棱相交于一点.(3)棱台:①两个互相平行的面,即为底面;②侧棱延长后相交于一点.1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.()(2)各面都是三角形的多面体是三棱锥.()(3)(教材改编,P8,T1(2))棱台的上下底面互相平行,且各侧棱延长线相交于一点.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)面数最少的多面体的面的个数是________.(2)三棱锥的四个面中可以作为底面的有________个.(3)四棱台有________个顶点,________个面,________条边.答案(1)四(2)四(3)八六十二3.(教材改编,P7,T2)有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错答案 B课堂互动探究探究1对棱柱、棱锥、棱台概念的理解例1下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案①②④⑤拓展提升关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练1】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.探究2对棱柱、棱锥、棱台的识别与判断例2如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?解(1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABF A1-DCED1.[条件探究]若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.拓展提升棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练2】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.探究3空间几何体的展开图问题例3如下图是三个几何体的侧面展开图,请问各是什么几何体?解由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.拓展提升空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练3】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.1.正确理解多面体的概念对多面体概念的理解,注意以下两个方面:(1)多面体是由平面多边形围成的,不是由圆面或其他曲面围成,也不是由空间多边形围成.(2)我们所说的多边形包括它内部的部分,故多面体是一个“封闭”的几何体.2.正确理解棱柱的定义可以从以下三个方面理解棱柱:(1)棱柱的两个主要结构特征:①有两个面平行;②各侧棱都平行,各侧面都是平行四边形.通俗地讲,棱柱“两头一样平,上下一样粗”.(2)有两个面互相平行,并不表明只有两个面互相平行,如长方体,有三组对面互相平行,其中任意一组对面都可以作为底面.(3)从运动的观点来看,棱柱也可以看成是一个平面多边形从一个位置沿一条不与其共面的直线运动到另一位置时,其运动轨迹所形成的几何体.3.正确认识棱锥的结构特征棱锥是一种非常重要的多面体,它有两个本质特征:(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.4.正确认识棱台的结构特征(1)上底面与下底面是互相平行的相似多边形;(2)侧面都是梯形;(3)侧棱延长线必相交于一点.5.立体图形的展开和平面图形的折叠立体图形的展开或平面图形的折叠是培养空间立体感的较好方法,解此类问题可以结合常见几何体的定义和结构特征,进行空间想象或亲自动手制作侧面展开图进行实践.课堂达标自测1.下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是()答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④答案 B解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.答案12解析由n棱柱有2n个顶点,于是知此棱柱为五棱柱,故有5条侧棱.又每条侧棱长都相等,且和为60 cm,可知每条侧棱长为12 cm.课后课时精练A级:基础巩固练一、选择题1.下列几何体中,柱体有()A.1个B.2个C.3个D.4个答案 D解析根据棱柱的定义知,这4个几何体都是棱柱.2.下列图形经过折叠可以围成一个棱柱的是()答案 D解析图A缺少一个面;图B有五个侧面而两底面是四边形,多了一个侧面;图C也是多一个侧面,故选D.3.具有下列哪个条件的多面体是棱台()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体答案 D解析棱台是由棱锥截得的,因此一个几何体要是棱台应具备两个条件:一是上、下底面平行,二是各侧棱延长后必须交于一点,选项C只具备一个条件,选项A,B则两条件都不具备.4.某同学制作了一个对面图案相同的正方体礼品盒(如图),则这个正方体礼品盒的表面展开图应该为()答案 A解析两个☆不能并列相邻,B、D错误;两个※不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.5.下列三种叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③有两个面互相平行,其余四个面都是梯形的六面体是棱台.A.0个B.1个C.2个D.3个答案 A解析①不正确,因为不能保证各侧棱的延长线交于一点;②不正确,因为侧棱延长后不交于一点;③不正确,因为它们的侧棱延长后不一定交于一点,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台.二、填空题6.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形;②所有的棱长都相等;③棱柱中至少有2个面的形状完全相同;④相邻两个面的交线叫做侧棱.答案①③解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上的棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.7.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.答案三棱锥(或四面体)解析此多面体由四个面构成,故为三棱锥,也叫四面体.8.长方体AC1的长、宽、高分别为3、2、1,从A到C1沿长方体的表面的最短距离为________.答案3 2解析如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.如图(1)所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=52+12=26,即经过侧面ABB1A1和侧面BCC1B1时的最短距离是26;如图(2)所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1=32+32=32,即经过侧面ABB1A1和底面A1B1C1D1时的最短距离是32;如图(3)所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1=42+22=25,即经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2 5.由于32<25,32<26,所以由A到C1在长方体表面上的最短距离为3 2.三、解答题9.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.解(1)上海世博园中国馆,其主体结构是四棱台.(2)法国卢浮宫,其主体结构是四棱锥.(3)国家游泳中心“水立方”,其主体结构是四棱柱.(4)美国五角大楼,其主体结构是五棱柱.B级:能力提升练10.在一个长方体的容器中,里面装有少量水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解(1)不对;水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对;水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.故此时(1)对,(2)不对.1.1.2圆柱、圆锥、圆台、球和简单组合体的结构特征课前自主预习知识点一圆柱、圆锥和圆台的结构特征1.圆柱的定义、图形及表示2.圆锥的定义、图形及表示3.圆台的定义、图形及表示知识点二球的结构特征知识点三组合体1.概念:由□1简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体□2拼接而成的简单组合体;另一种是由简单几何体□3截去或□4挖去一部分而成的简单组合体.1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会并运用空间几何平面化的思想.1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.()(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.()(3)(教材改编,P9,T2)用平面截球,无论怎么截,截面都是圆面.()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)(教材改编,P9,T3)图②的组合体是由________和________构成.(3)图③中的几何体有________个面.答案(1)球球心半径直径(2)圆柱圆锥(3)三3.圆锥的母线有()A.1条B.2条C.3条D.无数条答案 D课堂互动探究探究1旋转体的概念例1下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3解析根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.答案 A[条件探究]若本例中(2)改为以直角梯形的各边为轴旋转,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.拓展提升平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练1】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.探究2简单组合体的结构特征例2描述下图几何体的结构特征.解图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.拓展提升简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练2】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.探究3旋转体的计算问题例3一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解(1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l -12l =25,所以l =20(cm).故截得此圆台的圆锥的母线长为20 cm. 拓展提升旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R ,截面圆的半径为r ,球心到截面的距离为d ,则R 2=d 2+r 2.(3)用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练3】 圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,设上底面的面积为S 1,半径为r 1,则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49,截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧ h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧ h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1. 探究4 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为 80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且P A =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解 将圆柱侧面沿母线AA 1展开,得如图所示矩形.则=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A 1B 1=10π(cm).∴PQ =PS 2+QS 2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.拓展提升求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练4】 国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.1.透析圆柱的结构特征(1)圆柱有两个互相平行的面且这两个面是等圆;(2)有无数条母线,长度相等且都与轴平行;(3)圆柱上底面圆周上一点和下底面圆周上一点的连线不一定是圆柱的母线,只有这两点连线平行于轴时才是母线.2.透析圆锥的结构特征(1)底面是圆面;(2)侧面是由无数条母线组成的,且母线长均相等.3.透析圆台的结构特征(1)圆台上、下底面是相似的圆;(2)有无数条母线且等长,各母线的延长线交于一点.圆台可以由直角梯形以垂直于底边的腰所在直线为旋转轴,旋转而形成.4.透析球的概念球也是旋转体,球的表面是旋转形成的曲面,球是由球面及其内部空间组成的几何体.根据球的定义,铅球是一个球,而足球、乒乓球、篮球、排球等,虽然它们的名字中有“球”字,但它们是空心的,不符合球的定义,都不是真正的球.5.柱体、锥体、台体之间的关系课堂达标自测1.下列几何体中不是旋转体的是()答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是()A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥,故选D.3.下列几何体中是旋转体的是()①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①C.③和④D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2,5,母线长是310,求其轴截面的面积.解 如图,在轴截面内过点A 作AB ⊥O 1A 1,垂足为B .由已知OA =2,O 1A 1=5,AA 1=310,∴A 1B =3.∴AB =AA 21-A 1B 2=90-9=9.∴S 轴截面=12(2OA +2O 1A 1)·AB =12×(4+10)×9=63(cm 2).故圆台轴截面的面积为63 cm 2.课后课时精练A 级:基础巩固练一、选择题1.下列几何体是简单组合体的是( )答案 D解析 A 项中的几何体是圆锥,B 项中的几何体是圆柱,C 项中的几何体是球,D 项中的几何体是一个圆台中挖去一个圆锥,是简单组合体.2.给出下列命题:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行.其中正确命题的个数为( )A .1B .2C .3D .4答案 B解析 本题的判断依据是圆柱的定义及结构特征.①中圆柱的底面是圆面,而不是圆,故①错;②和④中,圆柱有无数条母线,它们平行且相等,并且母线都与底面垂直,②和④正确;③中连接圆柱上、下底面圆周上两点的线段不一定与圆柱的轴平行,故③错.故选B.3.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体。

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

2019-2020学年高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征 含解析

1.1。

1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.如长方体形的盒子外表面是长方体.(×)2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8想一想1。

如何判断一个几何体是否为棱柱?提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.下面四个几何体中,是棱台的是( )答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1。

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

高中数学人教a版必修二讲义:第一章 1.1 第一课时 棱柱、棱锥、棱台的结构特征

空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征预习课本P2~4,思考并完成以下问题[新知初探] 1.空间几何体2.空间几何体的分类3.棱柱、棱锥、棱台的结构特征[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台()(2)棱柱中两个互相平行的面一定是棱柱的底面()(3)棱台的底面是两个相似的正方形()(4)棱台的侧棱延长后必交于一点()答案:(1)×(2)×(3)×(4)√2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的有________(填序号).(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱;(2)棱柱的侧棱长相等,侧面都是平行四边形;(3)各侧面都是正方形的四棱柱一定是正方体.解析:(1)不正确,反例如图所示.(2)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形.(3)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体.答案:(2)[典例]下列关于棱柱的说法中,错误的是()A.三棱柱的底面为三角形B.一个棱柱至少有五个面C.若棱柱的底面边长相等,则它的各个侧面全等D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形[解析] 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,所以C错误;D正确,所以选C.[答案] C[活学活用]下列说法错误的是()A.多面体至少有四个面B.棱柱的两个底面是全等的多边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析:选D三棱柱的底面是三角形,其侧面一定是平行四边形,故D错误.棱锥、棱台的结构特征[典例](1)①由五个面围成的多面体只能是四棱锥;②仅有两个面互相平行的五面体是棱台;③两个底面平行且相似,其余各面都是梯形的多面体是棱台;④有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个(2)下列说法正确的有________个.①有一个面是多边形,其余各面都是三角形的几何体是棱锥.②正棱锥的侧面是等边三角形.③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.[解析](1)由五个面围成的多面体还可能是三棱台、三棱柱等,故①错;三棱柱是只有两个面平行的五面体,故②错.如图,可知③④错误.(2)①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△ADE和△BCF无公共顶点.②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有AB=AD=BD=BC=CD.满足底面△BCD为等边三角形.三个侧面△ABD,△ABC,△ACD都是等腰三角形,但AC长度不一定,三个侧面不一定全等.[答案](1)A(2)0判断棱锥、棱台的2个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[活学活用]用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形解析:选C如果截面截三棱锥的三条棱,则截面形状为三角形(如图①),如果截面截三棱锥的四条棱则截面为四边形(如图②).[典例] 如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.[活学活用]1.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是()解析:选C将四个选项中的平面图形折叠,看哪一个可以围成正方体.2.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1 B.7C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与7相对,0与快相对,所以下面是7.层级一学业水平达标1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.①③④C.①②④D.①②解析:选C根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C 根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB=B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥解析:选D 由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.答案:5698.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.答案:129.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.如图,已知三棱台ABC-A′B′C′.(1)把它分成一个三棱柱和一个多面体,并用字母表示;(2)把它分成三个三棱锥,并用字母表示.解:(1)作B′E∥AA′交AB于点E,C′D∥AA′交AC于点D,如图,连接ED,则分成一个三棱柱AED-A′B′C′和一个多面体C′B′EBCD.(2)如图,平面AB′C′和平面AB′C能把三棱台分成三个三棱锥,分别为三棱锥B′-AA′C′,三棱锥B′-ACC′,三棱锥B′-ABC.层级二应试能力达标1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析:选B根据棱锥顶点的定义可知,四棱锥仅有一个顶点.故选B.2.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确.3.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面图形的边数与侧面的个数不一致,故不能围成棱柱.故选D.4. 五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.解析:将平面图形翻折,折成空间图形,可得∠ABC=60°.答案:60°6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:在正方体ABCD-A1B1C1D1上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是:①矩形,如四边形ACC1A1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A-A1BD;④每个面都是等边三角形的四面体,如A-CB1D1;⑤每个面都是直角三角形的四面体,如A-A1DC,故填①③④⑤.答案:①③④⑤7.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2.8.如图,已知长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF 把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB 1F -CC 1E 和棱柱ABFA 1-DCED 1.。

高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征

高中数学人教A版必修2一课三测:1.1.1 棱柱、棱锥、棱台的结构特征

1.1.1棱柱、棱锥、棱台的结构特征填一填1.一般地,我们把由若干个平面多边形围成的几何体叫做多面体.2.我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.3.棱柱棱锥棱台棱柱的底面是几边形就叫几棱柱,例如,三棱柱、四棱柱……棱锥的底面是几边形就叫几棱锥,例如,三棱锥、四棱锥……由几棱锥截得的就叫几棱台,例如,由三棱锥截得的棱台叫三棱台.判一判1.2.棱柱最多有两个面不是四边形.(√)3.棱锥的所有面都可以是三角形.(√)4.多面体是由平面多边形和圆面围成的.(×)5.旋转体是由“平面图形”旋转而形成的,这个平面图形可以是平面多边形,也可以是圆或直线或其他曲线.(√)6.有两个面平行,其余各面都是四边形的几何体叫棱柱.(×)7.有两个面平行,其余各面都是平行四边形的几何体叫棱柱.(×)8.各侧面都是正方形的四棱柱一定是正方体.(×)想一想1.提示:(1)有两个面互相平行;(2)其余各面是平行四边形;(3)每相邻两侧面的公共边都互相平行.这三个条件缺一不可,解答此类问题要思维严谨,紧扣棱柱的定义.2.什么是斜棱柱、直棱柱、正棱柱、平行六面体、长方体、正方体?提示:(1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱.(2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱.(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.(5)长方体:底面是矩形的直棱柱叫做长方体.(6)正方体:棱长都相等的长方体叫做正方体.3.判断棱锥、棱台形状的两个方法是什么?提示:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点4.解多面体展开图问题的策略是什么?提示:(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.思考感悟:练一练1.答案:C2.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1个B.2个C.3个D.4个答案:D3.下列四个命题:①棱柱的两底面是全等的正多边形;②有一个侧面是矩形的棱柱是直棱柱;③有两个侧面是矩形的棱柱是直棱柱;④四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中正确的序号是________.答案:④4.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.答案:①③知识点一棱柱的结构特征1.A.1个B.2个C.3个D.4个解析:根据棱柱的定义知,这4个几何体都是柱体.答案:D2.下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析:根据棱柱的结构特征,D正确.答案:D知识点二棱锥、棱台的结构特征3.如图所示,在三棱台ABC-A′B′C′中,截去三棱锥A′-ABC,则剩余部分是() A.三棱锥B.四棱锥C.三棱柱D.组合体解析:剩余部分为四棱锥A′-BB′C′C,故选B.答案:B4.下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________解析:根据棱锥、棱台的定义,选①②.知识点三空间几何体的平面展开图5.解析:A,B,C中底面图形的边数与侧面的个数不一致,故不能围成棱柱,故选D.答案:D6.如图是三个几何体的侧面展开图,请问各是什么几何体?解析:①为五棱柱;②为五棱锥;③为三棱台.综合知识7.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点? (3)每个面的三角形面积为多少?解析:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△EPF 均为直角三角形.(3)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2.8.根据下列关于空间几何体的描述,说出几何体的名称: (1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解析:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱. (2)这是一个六棱锥. (3)这是一个三棱台.基础达标一、选择题1.棱锥的侧面和底面可以都是( )A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.故选A.答案:A2.下列说法正确的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选项A错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.答案:D3.棱台不具备的特点是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义及特征知,A、B、D是棱台的特点,故选C.答案:C4.下面关于棱锥的说法正确的是()A.有一个面是多边形,其余各面都是三角形的几何体是棱锥B.底面是正多边形的棱锥是正棱锥C.正棱锥的侧棱不一定相等D.过棱锥的不相邻的两侧棱的截面是三角形解析:由于A中缺少了定义中的“其余各面是有一个公共顶点的三角形”,故A不正确;由于正棱锥的概念中除了底面是正多边形外,还要求顶点在底面上的射影是底面的中心,否则就不是正棱锥,故B不正确;根据正棱锥的概念可知,正棱锥的侧棱长相等,故C不正确,D显然正确.答案:D5.正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为3,侧棱长为1,则动点从A沿表面移到点D1时的最短的路程是()A.27 B.28C.2 6 D.24解析:如图所示.将正六棱柱的侧面展开,只需展开一半,即可求A与D1之间的距离.AD21=AD2+DD21=(33)2+1=28.所以AD1=27.答案:A6.下列命题中,正确的命题是()①有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱②四棱锥的四个侧面都可以是直角三角形③有两个面互相平行,其余各面都是梯形的多面体是棱台④四面体都是三棱锥A.②④B.①②C.①②③D.②③④解析:①错误;反例:将两个相同的斜平行六面体叠放;②正确,在长方体中可以截出;③错误,侧棱可能无法聚成一点;④正确.故选A.答案:A7.下列说法中正确的是()A.顶点在底面上的射影到底面各顶点的距离相等的三棱锥是正棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.底面三角形各边分别与相对的侧棱垂直的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析:选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故A错;选项B,如图所示,△ABC为正三角形,若P A=PB=AB=BC=AC≠PC,△P AB,△PBC,△P AC都为等腰三角形,但它不是正三棱锥,故B错;选项C,顶点在底面面上的射影为底面三角形的垂心,底面为任意三角形皆可,故C错;选项D,顶点在底面上的射影是底面三角形的外心,又底面三角形为正三角形,因此,外心即中心,故D正确.故选D.答案:D二、填空题8.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).答案:489.如图所示平面图形沿虚线折起后,①为________,②为________,③为________.解析:由图①知几何体各侧面是矩形,底面为四边形.该几何体是四棱柱;由图②知几何体各侧面是三角形,底面是三角形,该几何体是三棱锥;由图③知几何体侧面是三角形,底面为四边形,故该几何体是四棱锥.答案:四棱柱三棱锥四棱锥10.下列四个命题中,错误的有________(填序号).①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④仅有两个面互相平行的五面体是棱台.解析:①中的平面不一定平行于底面,故①错;②③错,可用反例去检验,如下图.④三棱柱满足条件,是仅有两个面互相平行的五面体,但其不是棱台,④错.答案:①②③④11.如图所示的几何体,关于其结构特征,下列说法不正确的是________.①该几何体是由两个同底的四棱锥组成的几何体;②该几何体有12条棱、6个顶点;③该几何体有8个面,并且各面均为三角形;④该几何体有9个面,其中一个面是四边形,其余均为三角形.解析:平面ABCD可将该几何体分割成两个四棱锥,因此该几何体是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面,而不是一个面,故填④.答案:④12.如图所示,一个正方体的表面展开图中有五个正方形为阴影部分,第六个正方形在编号为1~5的适当位置,则所有可能的位置编号为________.解析:可用纸板做模型演示一下.答案:1,4,5三、解答题13.长方体ABCD-A1B1C1D1中,AB=4,BC=3,BB1=5,一只蚂蚁从点A出发沿表面爬行到点C1,求蚂蚁爬行的最短路线.解析:沿长方体的一条棱剪开,使A和C1展在同一平面上,求线段AC1的长即可,有如图所示的三种剪法:(1)若将C1D1剪开,使面AB1与面A1C1共面,可求得AC1=42+(5+3)2=80=4 5.(2)若将AD剪开,使面AC与面BC1共面,可求得AC1=32+(5+4)2=90=310.(3)若将CC1剪开,使面BC1与面AB1共面,可求得AC1=(4+3)2+52=74.相比较可得蚂蚁爬行的最短路线长为74.14.如图所示,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE 把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.解析:(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是平行的,其余各面都是矩形,也是平行四边形,并且每相邻的两个平行四边形的公共边都互相平行.(2)截面BCFE 上方部分是棱柱,且是三棱柱BEB 1-CFC 1,其中△BEB 1和△CFC 1是底面. 截面BCFE 下方部分也是棱柱,且是四棱柱ABEA 1-DCFD 1,其中四边形ABEA 1和DCFD 1是底面.能力提升15.如图在一个长方体的容器中,里面装有一些水,现将容器绕着其底部的一条棱倾斜,在倾斜的过程中,判断下面的说法是否正确,并说明理由.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形; (2)水的形状不断变化,可能是棱柱,也可能变为棱台或棱锥.解析:(1)不对,水面的形状就是用一个与棱(将长方体倾斜时固定不动的棱)平行的平面截长方体时形成的截面,截面的形状可以是矩形,但不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体,此几何体是棱柱.水比较少时,是三棱柱;水比较多时,可能是四棱柱或五棱柱,但不可能是棱台或棱锥.16.如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经过M 到C 1的最短路线长及此时A 1MAM的值.解析:沿侧棱BB 1将正三棱柱的侧面展开,得到一个矩形BB 1B ′1B ′(如下图).(1)矩形BB 1B ′1B ′的长BB ′=6,宽BB 1=2,所以三棱柱侧面展开图的对角线长为62+22=210.(2)由侧面展开图可知:当B ,M ,C 1三点共线时,由B 经M 到点C 1的路线最短,所以最短路线长为BC 1=42+22=2 5.显然Rt △ABM ≌Rt △A 1C 1M ,所以A 1M =AM ,即A 1MAM =1.由Ruize 收集整理。

高中数学第八章立体几何初步基本立体图形第1课时棱柱棱锥棱台的结构特征课后提能训练新人教A版必修第二册

高中数学第八章立体几何初步基本立体图形第1课时棱柱棱锥棱台的结构特征课后提能训练新人教A版必修第二册

第八章 8.1 第1课时A级——基础过关练1.(2021年武汉月考)(多选)观察如下所示的四个几何体,其中判断正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台【答案】ACD【解析】结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥.2.(多选)下列命题中错误的是( )A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱C.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台D.有两个面平行,其余各面都是平行四边形的几何体叫棱柱【答案】ACD【解析】在A中,如图的几何体,有两个面平行,其余各面都是四边形的几何体不是棱柱,故A错误;在B中,由棱柱的定义知B正确;在C中,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故C错误;在D中,如图的几何体,有两个面平行,其余各面都是平行四边形的几何体不是棱柱,故D错误.故选ACD.3.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.组合体【答案】B【解析】余下部分是四棱锥A′-BCC′B′.4.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个【答案】A【解析】①中的平面不一定平行于底面,故①错;②③可用如图的反例检验,故②③错.故选A.5.下列图形中,不能折成三棱柱的是( )【答案】C【解析】C中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱.6.四棱柱有________条侧棱,________个顶点.【答案】4 8【解析】四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得).7.对如图所示的几何体描述正确的是________(写出正确结论的序号).①这是一个六面体;②这是一个四棱台;③这是一个四棱柱;④此几何体可由三棱柱截去一个小三棱柱而得到;⑤此几何体可由四棱柱截去一个小三棱柱而得到.【答案】①③④⑤【解析】在①中,∵这个几何体有六个面,∴这是个六面体,故①正确;在②中,∵这个几何体的侧棱延长后不能交于同一点,所以这不是个四棱台,故②错误;在③中,如果把这个几何体的正面或背面作为底面就会发现这是一个四棱柱,故③正确;在④中,如图1所示,此几何体可由三棱柱截去一个小三棱柱而得到,故④正确;在⑤中,如图2所示,此几何体可由四棱柱截去一个小三棱柱而得到,故⑤正确.故选①③④⑤.图1 图28.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________cm.【答案】13【解析】由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.9.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF 均为直角三角形.(3)S △PEF =12a 2,S △DPF =S △DPE =12×2a ·a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE =(2a )2-12a 2-a 2-a 2=32a 2. 10.如图所示,长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,则该图形是几棱柱?为什么?(2)用平面BCNM 把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,则该图形是几棱柱,并用符号表示;如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱,因为长方体相对的两个面是互相平行的四边形(作底面),其余各面都是矩形(作侧面),且相邻侧面的公共边互相平行,符合棱柱的定义.(2)截面BCNM 的上方部分是三棱柱BB 1M -CC 1N ,下方部分是四棱柱ABMA 1-DCND 1.B 级——能力提升练11.下列命题中,真命题是( )A .顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B .底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C .顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D .底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥【答案】D【解析】对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示,△ABC 为正三角形,若PA =PB =AB =BC =AC ≠PC ,△PAB ,△PBC ,△PAC 都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题是假命题;对于选项D,顶点在底面上的投影是底面三角形的外心,又因为底面三角形为正三角形,所以外心即为中心,故该命题是真命题.故选D.12.(2021年焦作模拟)如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A .①②B .②③C .③④D .①④【答案】B 【解析】在图②③中,5不动,把图形折起,则2,5为对面,1,4为对面,3,6为对面,故图②③完全一样,而图①④则不同.13.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.【答案】10【解析】在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.14.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图1所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.图1 图2如图2所示,在正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.C 级——探索创新练15.(2021年哈尔滨月考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =3,BC =4,A 1A =5,现有一只甲壳虫从点A 出发沿长方体表面爬行到点C 1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.解:把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90,74,80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.。

人教a版数学必修二讲义:第1章 1.1 第1课时 棱柱、棱锥、棱台的结构特征

人教a版数学必修二讲义:第1章 1.1 第1课时 棱柱、棱锥、棱台的结构特征

1.1空间几何体的结构第一课时棱柱、棱锥、棱台的结构特征学习目标核心素养1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.(重点)2.理解棱柱、棱锥、棱台之间的关系.(难点)3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.(易混点)通过对空间几何体概念的学习,培养直观想象、逻辑推理的数学素养.1.空间几何体类别定义图示多面体由若干个平面多边形围成的空间几何体叫做多面体旋转体由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体,其中定直线叫做旋转体的轴2(1)棱柱的结构特征定义有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的多面体叫做棱柱图示及相关概念底面:两个互相平行的面.侧面:底面以外的其余各面. 侧棱:相邻侧面的公共边.顶点:侧面与底面的公共顶点分类按底面多边形的边数分:三棱柱、四棱柱、…思考:棱柱的侧面一定是平行四边形吗?[提示]根据棱柱的概念可知,棱柱侧面一定是平行四边形.(2)棱锥的结构特征定义有一面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体叫做棱锥图示及相关概念底面:多边形面.侧面:有公共顶点的三角形面. 侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点分类按底面多边形的边数分:三棱锥、四棱锥、…[提示]不一定.因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”.(3)棱台的结构特征定义用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台图示及相关概念上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:除上下底面以外的面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点分类由几棱锥截得,如三棱台、四棱台、…[提示]根据棱台的定义可知其侧棱延长线一定交于一点.1.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为() A.1个B.2个C.3个D.4个D[每个三角形都可以作为底面.]2.下面说法中,正确的是()A.上下两个底面平行且是相似的四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形B[由棱台的结构特点可知,A、C、D不正确.故B正确.] 3.下面属于多面体的是________(填序号).①建筑用的方砖;②埃及的金字塔;③茶杯;④球.①②[①②属于多面体,③④属于旋转体.]棱柱的结构特征A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,但底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形D[由棱柱的定义可知,只有D正确,分别构造图形如下:①②③图①中平面ABCD与平面A1B1C1D1平行,但四边形ABCD与A1B1C1D1不全等,故A错;图②中正六棱柱的相对侧面ABB1A1与EDD1E1平行,但不是底面,B错;图③中直四棱柱底面ABCD是平行四边形,C错,故选D.](2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?若是,请指出它们的底面.[解]①长方体是四棱柱.因为它有两个平行的平面ABCD与平面A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分,有两个平行的平面BB1M与平面CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M­CC1N.同理,另一部分也是棱柱,可以用符号表示为四棱柱ABMA1­DCND1.有关棱柱结构特征问题的解题策略:(1)有关棱柱概念辨析问题应紧扣棱柱定义:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.1.下列关于棱柱的说法错误..的是()A.所有棱柱的两个底面都平行B.所有的棱柱一定有两个面互相平行,其余每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面C[对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.]棱锥、棱台的结构特征①棱台的侧面一定不会是平行四边形;②棱锥的侧面只能是三角形;③由四个面围成的封闭图形只能是三棱锥;④棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.①②③[①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由棱锥的定义知棱锥的侧面只能是三角形;③正确,由四个面围成的封闭图形只能是三棱锥;④错误,如图所示,四棱锥被平面截成的两部分都是棱锥.](2)判断如图所示的几何体是不是棱台,为什么?[解]①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台,虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台,只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.棱锥、棱台结构特征题目的判断方法:(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点2.如图所示,观察以下四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱C[图①中的几何体不是由棱锥截来的,且上、下底面不是相似的图形,所以①不是棱台;图②中的几何体上、下两个面不平行,所以②不是圆台;图③中的几何体是棱锥.图④中的几何体前、后两个面平行,其他面是平行四边形,且每相邻两个平行四边形的公共边平行,所以④是棱柱.故选C.]多面体的表面展开图1.棱柱的侧面展开图是什么图形?正方体的表面展开图又是怎样的?[提示]棱柱的侧面展开图是平行四边形;正方体的表面展开图如图:2.棱台的侧面展开图又是什么样的?[提示]棱台的侧面展开图是多个相连的梯形.【例3】(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()(2)如图是三个几何体的平面展开图,请问各是什么几何体?思路探究:(1)正方体的平面展开图⇒以其中一个面不动把其他面展开.(2)常见几何体的定义与结构特征⇒空间想象或动手制作平面展开图进行实践.A[(1)由选项验证可知选A.](2)解:图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把平面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.1.将本例(1)中改为:水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.6C.快D.乐B[将图形折成正方体知选B.]2.将本例(2)的条件改为:一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?“你”字面相对的是哪个面?[解](1)该几何体是四棱台.(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)由展开图复原几何体:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.棱柱、棱台、棱锥关系图1.下面多面体中,是棱柱的有()A.1个B.2个C.3个D.4个D[根据棱柱的定义进行判定知,这4个几何体都是棱柱.]2.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥D[根据棱锥的定义可知该几何体是三棱锥.]3.下列图形经过折叠可以围成一个棱柱的是()A B C DD[A,B,C中底面多边形的边数与侧面数不相等.]4.一个棱柱至少有________个面,顶点最少的一个棱台有________条侧棱.53[面最少的棱柱是三棱柱,它有5个面;顶点最少的一个棱台是三棱台,它有3条侧棱.]5.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体;(2)三个三棱锥,并用字母表示.[解]画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,另一个多面体是B′C′CBB″C″.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.①②。

人教A版高中数学必修第二册精品课件 第8章 立体几何初步 第1课时 棱柱、棱锥、棱台的结构特征

人教A版高中数学必修第二册精品课件 第8章 立体几何初步 第1课时 棱柱、棱锥、棱台的结构特征

分类:按底面多边形的边数分为三棱柱、四棱柱、五棱
柱……
(2)特殊的棱柱:
侧棱垂直于底面的棱柱叫做直棱柱;
侧棱不垂直于底面的棱柱叫做斜棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱也叫做平行六面体.
3.下列几何体是棱柱的有(
A.5个
答案:D
B.4个
C.3个
)
D.2个
三、棱锥的概念及结构特征
相邻两个四边形的公共边都互相平行,由这些面所围成的多
面体叫做棱柱
相关概念:两个互相平行的面叫做棱柱的底面,它们是全等的
多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻
侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做
棱柱的顶点
图形及表示
棱柱用表示底面各顶点的字母来表示.
如图,可记作棱柱ABCDEF-A'B'C'D'E'F'
提示:(2)(4)(5)(6)中的物体,围成它们的面不全是平面图形,有
些是曲面;(1)(3)中的物体,围成它们的每个面都是平面图形.
2.(1)如果只考虑物体的形状和大小,而不考虑其他因素,那么
由这些物体抽象出来的空间图形就叫做空间几何体.
(2)一般地,由若干个平面多边形围成的几何体叫做多面体.围
成多面体的各个多边形叫做多面体的面;两个面的公共边叫
(2)底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱
锥叫做正棱锥
3.(1)棱锥最少有
(2)五棱锥一共有
答案:(1)4 (2)10
个面.
条棱.
四、棱台的概念及结构特征
1.用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开


底面:两个互相平行的面

侧面:底面以外的其余各面

侧棱:相邻侧面的公共边

顶点:侧面与底面的公共顶



记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,

【高中数学】基本几何图形第1课时 棱柱、棱锥、棱台课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】基本几何图形第1课时 棱柱、棱锥、棱台课件 高一下学期数学人教A版(2019)必修第二册

(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形. 底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥 ……其中三棱锥又叫四面体。
棱锥也用顶点和底面各顶点字母表示,如棱锥S-ABCD。 (3)棱台:用一个平行于棱锥底面的平面区截棱锥,底面于截面之间的部分 叫做棱台。 原棱锥的底面和截面分别叫做棱台的下底面和上底面,棱台也有侧面、侧棱、 顶点。
题型二 简单结合体的判断
例2 如图所示,长方体ABCD-A1B1C1D1. (1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?
(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还
是棱柱吗?如果是,是几棱柱?如果不是,说明理由.
【答案】(1)该长方体是棱柱,并且是四棱柱,祥见解析.
回顾
阅读课本97-100页,思考并完成以下问题 1、什么是空间几何体?什么是多面体与旋转体? 2、多面体包含哪些图形?这些图形是怎样定义的?又有什么结构特点?
探索新知
1、空间几何体 定义:如果只考虑物体的形状和大小,而不考虑其它因素, 那么这些由物体抽象出来的空间图形就叫做空间几何体。 2、多面体与旋转体 多面体的定义:由若干平面多边形围成的几何体叫做多面体, 围成多面体的各个多边形叫做多面体的面;相邻两个面的公共 边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点. 旋转体的定义:由一个平面图形绕它所在的平面内的一条定 直线旋转所形成的封闭几何体叫做旋转体.
(2)①正确.因为有六个面,属于六面体的范围.②错误.因为侧棱的延长线不能 交于一点,所以不正确.③正确.如果把几何体放倒就会发现是一个四棱柱. ④⑤都正确.如图所示. 解题技巧(判断结构特点的注意事项)
在解答关于空间几何体概念的判断题时,要注意紧扣定义判断,这就要求熟悉 各种空间几何体的概念的内涵和外延,切忌只凭图形主观臆断.

【三维设计】人教版高中数学必修2练习:1.1.1棱柱、棱锥、棱台的结构特征(含答案解析)

【三维设计】人教版高中数学必修2练习:1.1.1棱柱、棱锥、棱台的结构特征(含答案解析)

第一章1.1第一课时一、选择题1.以下图形中,不是三棱柱的睁开图的是()答案: C2.如右图所示,在三棱台ABC-A′ B′C′中,截去三棱锥A′ -ABC,则节余部分是 ()A.三棱锥C.三棱柱B .四棱锥D .组合体答案: B3.以下说法正确的选项是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四周体的任何一个面都能够作为棱锥的底面;④棱锥的各侧棱长都相等.A.①② B .①③C.②③ D .②④答案: B4.正五棱柱中,不一样在任何侧面且不一样在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A. 20B.15C. 12D.10答案: D5.以下命题正确的选项是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个相互平行的面必定是棱柱的底面C.棱台的底面是两个相像的正方形D.棱台的侧棱延伸后必交于一点答案: D二、填空题6.面数最少的棱柱为________棱柱,共有 ________个面围成.答案:三57.如右图所示, M 是棱长为 2 cm 的正方体 ABCD -A1B1C1D 1的棱 CC1的中点,沿正方体表面从点 A 到点 M 的最短行程是 ________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请依据上述定义,回答下边的问题:(1)直四棱柱 ________是长方体;(2)正四棱柱 ________是正方体.(填“必定”“不必定”或“必定不”)答案: (1) 不必定(2)不必定三、解答题9.如右图所示,长方体ABCD -A1B1C1D 1.(1)这个长方体是棱柱吗?假如是,是几棱柱?为何?(2)用平面 BCNM 把这个长方体分红两部分,各部分形成的几何体仍是棱柱吗?假如是,是几棱柱,并用符号表示;假如不是,请说明原因.解:(1)是棱柱,而且是四棱柱,由于长方体相对的两个面是相互平行的四边形(作底面 ),其他各面都是矩形(作侧面 ),且相邻侧面的公共边相互平行,切合棱柱的定义.(2)截面 BCNM 的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA 1-DCND 1.10.给出两块正三角形纸片 ( 如下图 ),要求将此中一块剪拼成一个底面为正三角形的三棱分别锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个同样的四边形,其较长的一组邻边边长为三角1形边长的4,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个同样的四边形恰巧拼成这个底面为正三角形的棱柱的上底.。

高中数学 必修2(人教版)8.1.1棱柱、棱锥、棱台的结构特征

高中数学 必修2(人教版)8.1.1棱柱、棱锥、棱台的结构特征

解析:根据各种几何体的概念与结构特征判断命题的真 假.A、B均为真命题;对于C,一个图形要成为空间几何体,则 它至少需有4个顶点,3个顶点只能构成平面图形,当有4个顶点 时,可围成4个面,所以一个多面体至少应有4个面,而且这样的 面必是三角形,故C也是真命题;对于D,只有当截面与底面平行 时才对.
2.下面图形中,为棱锥的是( )
A.①③ B.①③④ C.①②④ D.①② 解析:根据棱锥的定义和结构特征可以判断,①②是棱锥, ③不是棱锥,④是棱锥.故选C. 答案:C
3.下列图形中,是棱台的是( )
解析:由棱台的定义知,A、D的侧棱延长线不交于一点,所 以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定 义,故选C.
跟踪训练2 如图所示,不是正四面体(各棱长都相等的三棱 锥)的展开图的是( )
A.①③ B.②④ C.③④ D.①② 解析:可选择阴影三角形作为底面进行折叠,发现①②可折 成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正 四面体.故选C. 答案:C
轴:形成旋转体所绕的 __定__直__线__
状元随笔
1.任意一个几何体都是由点、线、面构成的. 点、线、面是构 成几何体的基本元素.
我们还可以从运动的观点来理解空间基本图形之间的关 系.在几何中,可以把线看成点运动的轨迹,如果点运动的方向 始终不变,那么它的轨迹就是一条直线或线段;如果点运动的方 向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.同样, 一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分) 可以形成一个几何体.即点动成线,线动成面,面动成体.
解析:这个几何体有8个面,都是全等的正三角形;有6个顶 点;有12条棱.
题型三 多面体的表面展开图——师生共研 例2 (1)某同学制作了一个对面图案均相同的正方体礼品盒, 如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同 的图案)( )

8.1-第1课时棱柱、棱锥、棱台的结构特征(习题)-高一下学期人教A版(2019)必修第二册课件

8.1-第1课时棱柱、棱锥、棱台的结构特征(习题)-高一下学期人教A版(2019)必修第二册课件

底面(底):多边形 按 底 面 面.
各面都是有一个
侧面:有公共顶点 多 边 形
公共顶点的
的各个三角形面.的 边 数
__三__角__形__ , 由这
如图可记作:棱锥
侧棱:相邻侧面的 公共边.
分:三棱 锥、四棱
些面所围成的多 S-ABCD
顶点:各侧面的公 锥……
面体叫做棱锥
共顶点
多面体 定义
图形及表示
2.下列图形经过折叠可以围成一个棱柱的是
()
【答案】D 【解析】A,B,C中底面图形的边数与侧面的个数不一致,故不能 围成棱柱.故选D.
3.下列几何体中,________是棱柱,________是棱锥,________ 是棱台.(仅填相应序号)
【答案】①③④ ⑥ ⑤ 【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱 锥,⑤是棱台.
①若延 A1B1 展开,使面 AB1 与面 A1C1 共面,可求得 AC1= 42+5+32= 80=4 5.
②若延 BC 展开,使面 AC 与面 BC1 共面,可求得 AC1 = 32+5+42= 90=3 10.
③若延 BB1 展开,使面 BC1 与面 AB1 共面,可求得 AC1= 4+32+52 = 74.
A′B′C.
图1
图2
题型2 棱锥、棱台的结构特征 下列关于棱锥、棱台的说法:
①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图 形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是________. 素养点睛:本题考查了直观想象的核心素养.
【答案】①② 【解析】①正确,棱台的侧面一定是梯形,而不是平行四边形;② 正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四 棱锥被平面截成的两部分都是棱锥.

新人教A版高中数学必修2课件:8.1 第一课时 棱柱、棱锥、棱台的结构特征

新人教A版高中数学必修2课件:8.1 第一课时   棱柱、棱锥、棱台的结构特征

分类 由几棱锥截得,如三棱台、四棱台……
[微思考] (1)棱柱的侧面一定是平行四边形吗? 提示:根据棱柱的概念可知,棱柱的侧面一定是平行四边形. (2)棱台的上、下底面互相平行,各侧棱延长线一定相交于一点吗? 提示:根据棱台的定义可知其侧棱延长线一定交于一点.
(二)基本知能小试 1.判断正误:
(1)棱柱的底面互相平行. (2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥. (3)长方体是四棱柱,直四棱柱是长方体. 2.下面多面体中,是棱柱的有
第八章|立体几何初步
8.1 基本立体图形
第一课时 棱柱、棱锥、棱台的结构特征
明确目标
发展素养
1.利用实物模型、计算机软件等 1.通过对棱柱、棱锥、棱台的结构特征的
观察空间图形,认识棱柱、 理解,培养直观想象、数学抽象素养.
棱锥、棱台的结构特征. 2.通过认识棱柱、棱锥、棱台的关系,及
2.能运用这些结构特征描述现实 利用它们的结构特征描述简单物体的结构,
[解] (1)平面展开图如图所示:
(2)沿长方体的一条棱剪开,使 A 和 C1 展在同一平面上, 求线段 AC1 的长即可,有如图所示的三种剪法:
①若将 C1D1 剪开,使面 AB1 与面 A1C1 共面,可求得 AC1 = 42+5+32= 80=4 5.
②若将 AD 剪开,使面 AC 与面 BC1 共面,可求得 AC1= 32+5+42= 90=3 10.
(2)A 中的几何体不是由棱锥截来的,且上、下底面不是相似的图形,所以 A 不 是棱台;B 不是棱台;C 中的几何体是棱锥;D 中的几何体前、后两个面平行,其他 面是平行四边形,且每相邻两个平行四边形的公共边平行,所以 D 是棱柱.判断正 确的是 C、D.

数学试题 人教a版必修2 同步练习第一章小节测试题

数学试题 人教a版必修2 同步练习第一章小节测试题

第1课时棱柱、棱锥、棱台的结构特征课时过关·能力提升一、基础巩固1.如图所示的几何体是( )A.五棱锥B.五棱台C.五棱柱D.五面体答案:C2.有两个面平行的多面体不可能是( )A.四棱柱B.三棱锥C.四棱台D.三棱台解析:棱锥的任意两个面都相交,不可能有两个面平行,所以不可能是棱锥,也就不可能是三棱锥.答案:B3.下列说法错误的是( )A.多面体至少有四个面B.六棱柱有6条侧棱、6个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析:由棱柱的定义知,选项D不正确.答案:D4.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是( )A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.答案:B5.一个纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面上的方位是( )A.南B.北C.西D.下解析:将所给图形还原为正方体,并将已知面“上”“东”分别指向上面、东面,则标记“△”的面指向北面.答案:B6.在如图所示的几何体中,是棱柱.(只填序号)答案:①③7.若一个平面平行于棱柱的底面,用该平面去截此棱柱时得到的截面为八边形,则该棱柱是棱柱.答案:八8.已知下列说法:①棱柱的侧面可以不是平行四边形;②棱锥的各个侧面都是三角形;③棱台的上、下底面互相平行,且各侧棱的延长线相交于一点;④三棱锥的任何一个面都可以作为棱锥的底面.其中正确的是.(只填序号)答案:②③④9.判断如图所示的几何体是不是棱台,并说明理由.解:(1)(2)(3)都不是棱台.因为(1)和(3)都不是由棱锥截得的,所以(1)(3)都不是棱台.虽然(2)是由棱锥截得的,但截面和底面不平行,故不是棱台.10.(1)五棱柱一共有多少个顶点?多少条棱?(2)六棱柱一共有多少个顶点?多少条棱?(3)设n棱柱的顶点数为V,棱数为E,求证:E(1)解:五棱柱有10个顶点,15条棱.(2)解:六棱柱有12个顶点,18条棱.(3)证明:n棱柱的顶点分别是两个底面多边形的顶点,由棱柱的两个底面是全等的多边形,知V=2n.n棱柱的棱分为两类:一类是侧棱,有n条;另一类是两个底面多边形的边,有2n条,则E=n+2n=3n.因为V=2n,E=3n,所以E二、能力提升1.将平面六边形及内部所有点沿某一方向平移相同的距离形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体答案:C2.用一个平面去截棱锥,得到两个几何体,下列说法正确的是( )A.一个几何体是棱锥,另一个几何体是棱台B.一个几何体是棱锥,另一个几何体不一定是棱台C.一个几何体不一定是棱锥,另一个几何体是棱台D.一个几何体不一定是棱锥,另一个几何体也不一定是棱台答案:D★3.如图,将装有水的长方体水槽固定底面一边后倾斜,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱台的组合体D.不确定答案:A4.已知一个棱柱有14个顶点,所有侧棱长的和为63 cm,则每条侧棱长为 cm.解析:n棱柱有2n个顶点,因为棱柱有14个顶点,所以该棱柱为七棱柱.又因为棱柱的侧棱长都相等,7条侧棱长的和为63 cm,所以每条侧棱长为9 cm.答案:9★5.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面?每个面的三角形有何特点?(3)每个面的面积为多少?解:(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF△DPF=S△DPES△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2第2课时圆柱、圆锥、圆台、球的结构特征课时过关·能力提升一、基础巩固1.在下列几何体中,旋转体有( )①圆柱;②六棱锥;③正方体;④球;⑤四面体.A.①⑤B.①②C.③④D.①④答案:D2.将正方形绕其一条对角线所在直线旋转一周,所得的几何体是( )A.圆柱B.圆锥C.圆台D.两个圆锥答案:D3.若用一个平面去截一个几何体,得到的截面是圆面,则这个几何体不可能是( )A.圆锥B.圆柱C.球D.棱柱解析:棱柱的任何截面都不可能是圆面.答案:D4.如图,已知OA为球O的半径,且OA=2,过OA的中点M且垂直于OA的平面截球面得到圆M,则圆M的面积为 ( )A.πB.2πC.3πD.4π解析:因为OA=2,所以OM=1.所以圆M的半径r故圆M的面积S=πr2=3π.答案:C5.在如图所示的四个几何体中,圆柱有;圆锥有.(只填序号)答案:③②6.将长为8 cm、宽为6 cm的矩形绕其一边旋转而成的圆柱的底面面积为cm2.解析:若圆柱是矩形绕其宽旋转而成的,则其底面半径为8 cm,底面面积为64π cm2;若圆柱是矩形绕其长旋转而成的,则其底面半径为6 cm,底面面积为36π cm2.答案:64π或36π7.若圆锥的高与底面半径相等,母线长为解析:如图,设圆锥SO的高为h,底面半径为r,母线长为l,则h=r,l=l2=h2+r2,则l2=2r2,即(r=5.答案:58.写出下列7种几何体的名称.解:(1)是圆柱,(2)是圆锥,(3)是球,(4)(5)是棱柱,(6)是圆台,(7)是棱锥.9.判断下列几何体是不是圆台,并说明理由.解:(1)是圆台,因为上、下两个底面平行,侧面是由直角梯形的一腰绕垂直于底边的腰所在的直线旋转一周形成的.(2)不是圆台,因为上、下两个底面不平行.(3)不是圆台,因为它是由两个圆台组合而成的,不符合圆台的结构特征.10.已知一个圆台的母线长为12 cm,两个底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解:(1)如图,圆台的轴截面为等腰梯形ABCD,由已知可得上底面半径O1A=2 cm,下底面半径OB=5 cm,且腰长AB=12 cm.过点A作AM⊥BO于点M,所以AM cm.(2)设截得此圆台的圆锥的母线长为l cm,延长BA,CD,OO1且它们交于一点S,则由△SAO1∽△SBO,可所以l=20.故截得此圆台的圆锥的母线长为20 cm.二、能力提升1.下列说法正确的是( )A.圆锥的母线长等于底面圆的直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心解析:圆锥的母线长与底面圆的直径的大小关系不确定,则A项不正确;圆柱的母线与轴平行,则B项不正确;圆台的母线延长后与轴相交,则C项不正确;很明显D项正确.答案:D★2.下列命题:①圆柱的轴截面是过母线的截面中面积最大的一个;②用任意一个平面去截球体得到的截面一定是一个圆;③用任意一个平面去截圆锥得到的截面一定是一个圆.其中正确的个数是( )A.0B.1C.2D.3答案:C3.已知一个圆锥的母线长为20 cm,母线与轴的夹角为30°,则圆锥的高为( )A.1C.20 cmD.10 cm解析:如图,在Rt△ABO中,AB=20 cm,∠BAO=30°,所以AO=ABcos 30°=20答案:A4.下列说法:①半圆以其直径为轴旋转一周所形成的几何体叫做球;②夹在圆柱的两个平行截面间的几何体还是圆柱;③截面是圆的几何体,不是圆柱,就是圆锥;④圆柱的轴是过圆柱上、下底面圆的圆心的直线.其中错误的是.(只填序号)解析:易知①④正确;②当两个平行截面不平行于上、下底面时,截面间的几何体不是圆柱,故②错误;③截面是圆的几何体还可以是球或圆台,故③错误.答案:②③5.已知球的半径为10 cm,若它的一个截面圆的面积为36 π cm2,则球心与截面圆圆心的距离是cm.解析:设截面圆的半径为r cm,则πr2=36π,所以r=6.所以球心与截面圆圆心的距离d答案:86.将一个半径为2的半圆围成一个圆锥,所得圆锥的轴截面面积等于.解析:所得圆锥的母线长为2,底面周长为2π,故底面半径为1,则该圆锥的轴截面为一个边长为2的正三角形,其面积答案:★7.已知圆台的上底周长是下底周长解:设圆台上、下底面半径分别为r,R,母线长为l,高为h.由题意,得2πr·2πR,即R=3r. ①·h=392,即(R+r)h=392. ②又母线与底面的夹角为45°,则h=R-r联立①②③,得R=21,r=7,h=14,l=11.1.2 简单组合体的结构特征课时过关·能力提升一、基础巩固1.下列几何体是组合体的是( )解析:A选项中的几何体是圆锥,B选项中的几何体是圆柱,C选项中的几何体是球,D选项中的几何体是在一个圆台中挖去一个圆锥而形成的,是组合体.答案:D2.将日常生活中我们常用到的螺母看成一个组合体,其结构特征是( )A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱解析:如图,螺母的结构特征是一个棱柱中挖去一个圆柱.答案:B3.在下列各选项的平面图形中,通过围绕定直线l旋转一周可得到如图所示几何体的是( )解析:因为该几何体是由两个圆锥与一个圆柱组合成的组合体,所以结合选项可知,该几何体可由选项B中的梯形绕定直线l旋转一周得到.答案:B4.如图所示的组合体,其结构特征是( )A.一个圆柱内挖去一个圆柱B.一个圆锥内挖去一个圆锥C.一个圆台内挖去一个圆锥D.一个圆台内挖去一个球解析:该组合体是在一个圆台内挖去一个圆锥形成的.答案:C5.如图所示的几何体,关于其结构特征,下列说法不正确的是( )A.该几何体是由两个同底的四棱锥组成的B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形答案:D6.如图所示的组合体的结构特征是.答案:上面是一个圆柱,下面是一个长方体7. 将如图所示的四边形绕直线l旋转一周,所得旋转体的结构特征是.解析:过点C作CE⊥AD于点E(图略),则CE∥AB,且AB>CE.故所得旋转体是由一个圆锥和一个圆台拼接成的组合体.答案:上面是一个圆锥,下面是一个圆台8.如图所示的组合体的结构特征为.答案:左边是一个四棱锥,右边是一个三棱柱9.指出如图①②所示的几何体是由哪些简单几何体构成的.图①图②解:分割几何体,使分割后的每一部分都是简单几何体.图①是由一个三棱柱和一个四棱柱拼接而成的组合体.图②是在一个圆柱中间挖去一个三棱柱后得到的组合体.10. 将如图所示的平面图形绕轴l旋转180°后形成一个几何体,请描述该几何体的结构特征.解:将题中平面图形绕l旋转180°后形成一个组合体,并且该组合体自上而下可分解为一个倒圆锥、一个球、一个半球、一个圆柱、一个圆台.二、能力提升1.把如图所示的平面图形中的阴影部分绕定直线l旋转一周,形成的旋转体的结构特征为( )A.一个球B.一个球中挖去一个圆柱C.一个圆柱D.一个球中挖去一个棱柱解析:如题图,圆面绕轴旋转一周得球,矩形绕轴旋转一周得圆柱,则该旋转体是一个球中挖去一个圆柱. 答案:B2.以钝角三角形较短的边所在的直线为轴,其他两边旋转一周所得到的几何体是( )A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥后形成的组合体解析:如图,过点A作AD垂直BC于点D,则△ADC与△ADB分别为直角三角形,所以旋转一周形成的几何体是一个圆锥挖去一个同底的小圆锥后形成的组合体.答案:D3.已知一个正方体内接于一个球,过球心作一截面,在如图所示的图形中,可能是截面图形的是( )A.①③B.②④C.①②③D.②③④解析:当截面平行于正方体的一个侧面或底面时得③,当截面过正方体的对角线时得②,当截面不平行于任何侧面或底面也不过正方体的对角线时得①,但无论如何都不能截出④.答案:C★4.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )A.①②B.①③C.①④D.①⑤答案:D5. 如图,AB为圆弧BC所在圆的直径,∠BAC=45°.将这个平面图形绕直线AB旋转一周得到一个组合体,则该组合体的结构特征是.答案:上面是一个圆锥,下面是一个半球6.关于如图所示的组合体的结构特征,有以下几种说法:①由一个长方体挖去一个四棱柱所构成的;②由一个长方体与两个四棱柱组合而成的;③由一个长方体挖去一个四棱台所构成的;④由一个长方体与两个四棱台组合而成的.其中说法正确的序号是.解析:如图,该组合体可由一个长方体挖去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故说法①②正确.答案:①②7.已知三棱锥的侧棱长和底面边长均相等,试用三个这样的三棱锥组合成一个三棱柱,并画出来.解:所求三棱柱如图所示.三棱柱ABC-A1B1C1是由三棱锥A-A1B1C1,三棱锥A-BB1C,三棱锥A-CB1C1组合成的.★8.已知一个圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.解:作出圆锥的一个过顶点的纵截面如图所示.其中AB,AC为母线,BC为底面直径,DG,EF是正方体的棱,DE,GF是正方体的上、下底面的对角线.设正方体的棱长为x,则DG=EF=x,DE=GF,得△ABC∽△ADE,所以x故此正方体的棱长1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图课时过关·能力提升一、基础巩固1.下列视图不属于三视图的是( )A.正视图B.侧视图C.后视图D.俯视图答案:C2.如果一个空间几何体的正视图与侧视图均为全等的等腰三角形,俯视图为一个圆及其圆心,那么这个几何体是( )A.棱锥B.棱柱C.圆锥D.圆柱答案:C3.下列命题正确的是( )A.矩形的平行投影一定是矩形B.梯形的平行投影一定是梯形C.两条相交直线的投影可能平行D.一条线段中点的平行投影仍是这条线段投影的中点解析:因为当平面图形与投影线平行时,所得投影是线段,故A,B错.又因为点的平行投影仍是点,所以相交直线的投影不可能平行,故C错.由排除法可知,选项D正确.答案:D4.在下列几何体各自的三视图中,有且仅有两个视图相同的是( )A.①②B.①③C.①④D.②④解析:①正方体,三个视图均相同;②圆锥,正视图和侧视图相同;③三棱台,三个视图各不相同;④四棱锥,正视图和侧视图相同.答案:D5.若一个几何体的三视图如图所示,则该几何体是( )A.棱柱B.棱台C.圆柱D.圆台答案:D6.若一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的. (填入所有可能的几何体前的编号)①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.答案:①②③⑤7.若某几何体的三视图如图所示,则该几何体是由(简单几何体)与组成的.答案:长方体四棱台8.若线段AB平行于投影面,O是线段AB上一点,解析:由题意知AB∥A'B',OO'∥AA',OO'∥BB',则答案:9.画出如图所示的几何体的三视图.解:该几何体的三视图如图所示.10.如图是一个几何体的三视图,想象该几何体的结构特征,画出该几何体的形状.解:由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体拼接成的组合体;结合侧视图和正视图,可知该几何体的上面是一个圆柱,下面是一个长方体.该几何体的形状如图所示.二、能力提升1.如图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的投影为( )解析:阴影部分是△MND及其内部,点D在平面ADD1A1上的投影是其本身;点M,N在平面ADD1A1上的投影分别是AA1和DA的中点,故选项A正确.答案:A2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析:由题意知该长方体沿相邻三个面的对角线截去一个棱锥,如右图所示.易知其侧视图为B项中图.故选B.答案:B3.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )解析:若为D选项,则正视图为:故俯视图不可能是D选项中所示的图形.答案:D4.如图,该几何体的正视图和侧视图可能正确的是( )答案:A5.如图为长方体积木堆成的几何体的三视图,该几何体一共由块长方体积木堆成.解析:由俯视图知最下一层为3块,由正视图、侧视图知第二层有1块,所以该几何体一共由4块积木堆成. 答案:4★6.已知一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,则用个这样的几何体可以拼成一个棱长为4的正方体.解析:该几何体是四棱锥,其底面是边长为4的正方形,高AA1等于4,即为如图①所示的四棱锥A-A1B1C1D1.图①图②如图②,三个相同的四棱锥A-A1B1C1D1,A-BB1C1C,A-DD1C1C可以拼成一个棱长为4的正方体.答案:37.某几何体的三视图如图所示,说出该几何体的结构特征,并画出该几何体.解:从题中的三视图可以看出,该几何体的上半部分是六棱柱,下半部分是圆柱.这个几何体如图所示.★8.把边长为1的正方形ABCD沿对角线BD折起形成的三棱锥C-ABD的正视图与俯视图如图所示,求侧视图的面积.解:形成的三棱锥C-ABD如图①所示,根据正视图和俯视图可知,其侧视图为等腰直角三角形,如图②所示. 故所求侧视图的面积1.2.3 空间几何体的直观图课时过关·能力提升一、基础巩固1.关于斜二测画法,下列说法不正确的是( )A.原图形中平行于x轴的线段,在直观图中与其对应的线段平行于x'轴,且长度不变B.原图形中平行于y轴的线段,在直观图中与其对应的线段平行于y'轴,长度为原来C.画与平面直角坐标系xOy对应的坐标系x'O'y'时,∠x'O'y'必须是45°D.在画直观图时,由于坐标轴选取位置的不同,所得的直观图可能不同解析:画与平面直角坐标系对应的坐标系x'O'y'时,∠x'O'y'可以是45°也可以为135°.答案:C2.已知AB=2CD,AB∥x轴,CD∥y轴.若在直观图中,A'B'与AB对应,C'D'与CD对应,则( )A.A'B'=2C'D'B.A'B'=C'D'C.A'B'=4C'D'D.A'B'解析:∵AB∥x轴,CD∥y轴,∴AB=A'B',CD=2C'D',∴A'B'=AB=2CD=2(2C'D')=4C'D'.答案:C3.已知两个圆锥的底面相同且重合在一起,其中一个圆锥的顶点到底面的距离为2 cm,另一个圆锥的顶点到底面的距离为3 cm,则在直观图中这两个顶点之间的距离为( )A.2 cmB.3 cmC.2.5 cmD.5 cm解析:因为这两个顶点的连线与子轴平行或重合,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D4.水平放置的△ABC的直观图如图所示,若B'O'=C'O'=1,A'O'△ABC是一个( )A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形解析:由题图知,在△ABC中,AO⊥BC.∵A'O'△ABC为等边三角形.故选A.答案:A5.如图为一个平面图形的直观图,则此平面图形可能是下面选项中的( )答案:C6.如图,△A'O'B'是△AOB用斜二测画法画出的直观图,则△AOB的面积是.解析:由题图可知在△AOB中,底边OB=4.因为底边OB上的高为8,所以面积S答案:167.如图,平行四边形O'P'Q'R'是四边形OPQR的直观图,若O'P'=3,O'R'=1,则原四边形OPQR的周长为.解析:由四边形OPQR的直观图可知该四边形是矩形,且OP=3,OR=2,所以四边形OPQR的周长为2×(3+2)=10.答案:108.如图,水平放置的△ABC的斜二测直观图是图中的△A'B'C',已知A'C'=6,B'C'=4,则AB边的实际长度是.解析:由斜二测画法,可知△ABC是直角三角形,且∠BCA=90°,AC=6,BC=4×2=8,则AB答案:109.如图,画出水平放置的等腰梯形ABCD的直观图.画法:(1)如图①,在已知等腰梯形中以底边AB所在直线为x轴、线段AB的中垂线为y轴建立平面直角坐标系.如图②,画x'轴和y'轴,使∠x'O'y'=45°.(2)设DC与y轴的交点为E,在x'轴上取A'B'=AB,且使O'为A'B'的中点,在y'轴上取O'E'E'作x'轴的平行线l,在l上取点D',C',使得E'C'=EC,D'E'=DE.如图③.(3)连接A'D',B'C',擦去辅助线,得到等腰梯形ABCD的直观图,如图④.10.已知一个棱柱的底面是边长为3 cm的正方形,各侧面都是矩形,且侧棱长为4 cm,试用斜二测画法画出此棱柱的直观图.解:(1)画轴.画出x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.(2)画底面.以点O为中点,在x轴上画MN=3 cm,在y轴上画PQ cm,分别过点M,N作y轴的平行线,过点P,Q作x轴的平行线,设它们的交点分别为A,B,C,D,则四边形ABCD就是该棱柱的一个底面.(3)画侧棱.过点A,B,C,D分别作z轴的平行线,并在这些平行线上分别截取4 cm长的线段AA',BB',CC',DD',如图①所示.(4)成图.连接A'B',B'C',C'D',D'A',并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到该棱柱的直观图,如图②所示.图①图②二、能力提升1. 如图,已知等腰三角形ABC,则下面的四个图形可能是△ABC的直观图的是( )A.①②B.②③C.②④D.③④解析:若以BC所在直线为x轴,则当∠x'O'y'=45°时,直观图为④;当∠x'O'y'=135°时,直观图为③,故选D.答案:D2.如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图.若O'A'=6,O'C'=2,则原图形是( )A.正方形B.矩形C.菱形D.梯形解析:由题图可知C'D'=O'C'=2,O'D'=由直观图可得原图形OABC为平行四边形,如图所示.∵CD=2,OD=∴OC=6,∴OA=OC=6.∴四边形OABC为菱形.答案:C3.已知一个建筑物的上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样.已知长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m.若按1∶500的比例画出它的直观图,则在直观图中,长方体的长、宽、高和四棱锥的高应分别为( )A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.2 cm,0.5 cm,1 cm,0.8 cm解析:由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm和1.6 cm,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm,2 cm,1.6 cm.答案:C4.用斜二测法画水平放置的△ABC的直观图,得到如图所示的等腰直角三角形A'B'C'.已知点O'是斜边B'C'的中点,且A'O'=1,则△ABC中BC边上的高为( )A.1B.2C解析:∵直观图是等腰直角三角形A'B'C',∠B'A'C'=90°,A'O'=1,∴∠A'C'B'=45°,A'C'A'C'∥y'轴.根据直观图中平行于y轴的线段的长度变为原来的一半,得△ABC中BC边上的高为AC=2A'C'=答案:D★5.如图,已知用斜二测画法画出的△ABC的直观图△A'B'C'是边长为a的等边三角形,则△ABC的面积为.答案:6.如图,四边形OABC是上底长为2,下底长为6,底角为45°的等腰梯形.用斜二测画法画出这个梯形的直观图O'A'B'C',则在直观图中,梯形的高为。

新教材人教A版数学必修第二册学案:第8章8.1第1课时 棱柱、棱锥、棱台的结构特征Word版含解析

新教材人教A版数学必修第二册学案:第8章8.1第1课时 棱柱、棱锥、棱台的结构特征Word版含解析

8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征学习任务核心素养1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.(重点)2.理解棱柱、棱锥、棱台之间的关系.(难点) 3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.(易混点)通过空间几何体概念的学习,培养直观想象、逻辑推理的核心素养.观察下面的图片,小到精巧的家居装饰,大到宏伟的庞大建筑;从远古的金字塔,到现代的国家大剧院、埃菲尔铁塔,设计师、建筑师们匠心独具,为我们留下了精美绝伦的建筑物,每当看到这些建筑物都会给人以震撼的美.问题:那么设计师是如何设计这些建筑物的呢?应用到哪些数学知识呢?1.空间几何体:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.分类:常见的空间几何体有多面体和旋转体两类.3.多面体和旋转体类别多面体旋转体定义一般地,由若干个平面多边形围成的几何体叫做多面体(1)一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面.(2)封闭的旋转面围成的几何体叫做旋转体图形相关概念(1)面:围成多面体的各个多边形叫做多面体的面.(2)棱:两个面的公共边叫做多面体的棱.(3)顶点:棱与棱的公共点叫做多面体的顶点轴:形成旋转面所绕的定直线叫做旋转体的轴1.观察下列图片,这些都是我们日常熟知的一些物体:①②③④⑤⑥(1)哪些物体围成它们的每个面都是平面图形,并且都是平面多边形?(2)哪些物体围成它们的面中既有平面图形,又有曲面图形?(3)哪些物体围成它们的面都是曲面图形?[提示](1)②④;(2)①③⑤;(3)⑥1.下列实物不能近似看成多面体的是()A.钻石B.骰子C.足球D.金字塔C[钻石、骰子、金字塔的表面都可以近似看成平面多边形,所以它们都能近似看成多面体.足球的表面不是平面多边形,故不能近似看成多面体.]知识点2棱柱的结构特征1.棱柱的结构特征定义一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱图示及相关概底面:两个互相平行的面;侧面:底面以外的其余各面;念 侧棱:相邻侧面的公共边;顶点:侧面与底面的公共顶点分类 按底面多边形的边数分:三棱柱,四棱柱……直棱柱:侧棱垂直于底面的棱柱.斜棱柱:侧棱不垂直于底面的棱柱.正棱柱:底面是正多边形的直棱柱.平行六面体:底面是平行四边形的四棱柱.3.常见的几种四棱柱之间的转化关系四棱柱――――――――→底面为平行四边形平行六面体―――――――→侧棱与底面垂直直平行六面体―――――→底面为矩形长方体――――――→底面为正方形正四棱柱――――→棱长相等正方体2.棱柱的侧面一定是平行四边形吗?[提示]根据棱柱的概念可知,棱柱侧面一定是平行四边形.2.下列命题正确的是( )A .四棱柱是平行六面体B .直平行六面体是长方体C .长方体的六个面都是矩形D .底面是矩形的四棱柱是长方体C [底面是平行四边形的四棱柱才是平行六面体,选项A 错误;底面是矩形的直平行六面体才是长方体,选项B 错误;底面是矩形的直四棱柱才是长方体,选项D 错误;选项C 显然正确.]知识点3 棱锥的结构特征定义 有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥图示及相关概念底面:多边形面;侧面:有公共顶点的各个三角形面;侧棱:相邻侧面的公共边;顶点:各侧面的公共顶点分类按底面多边形的边数分:三棱锥,四棱锥,……,其中三棱锥又叫四面体.底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫正棱锥3.有一个面是多边形,其余各面是三角形的几何体一定是棱锥吗?[提示]不一定.因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”.3.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为() A.1B.2C.3D.4D[每个三角形都可以作为底面.]知识点4棱台的结构特征定义用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台图示及相关概念上底面:原棱锥的截面;下底面:原棱锥的底面;侧面:除上下底面以外的面;侧棱:相邻侧面的公共边;顶点:侧面与上(下)底面的公共顶点分类由几棱锥截得,如三棱台、四棱台……4.棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?[提示]根据棱台的定义可知其侧棱延长线一定交于一点.4.下面四个几何体中,是棱台的是()A BC DC[A项中的几何体是棱柱.B项中的几何体是棱锥;D项中的几何体的棱AA′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;C项中的几何体是由一个棱锥被一个平行于底面的平面截去一个棱锥剩余的部分,符合棱台的定义,是棱台.故选:C.]类型1棱柱的结构特征【例1】(1)下列命题中,正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,但底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形(2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?若是,请指出它们的底面.(1)D[由棱柱的定义可知,只有D正确,分别构造图形如下:①②③图①中平面ABCD与平面A1B1C1D1平行,但四边形ABCD与A1B1C1D1不全等,故A错;图②中正六棱柱的相对侧面ABB1A1与EDD1E1平行,但不是底面,B错;图③中直四棱柱底面ABCD是平行四边形,C错,故选D.](2)[解]①长方体是四棱柱.因为它有两个平行的平面ABCD与平面A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分,有两个平行的平面BB1M与平面CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M-CC1N.同理,另一部分也是棱柱,可以用符号表示为四棱柱ABMA1-DCND1.有关棱柱结构特征问题的解题策略(1)有关棱柱概念辨析问题应紧扣棱柱定义:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.[跟进训练]1.(多选题)下列关于棱柱的说法正确的是()A.所有棱柱的两个底面都平行B.所有的棱柱一定有两个面互相平行,其余每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面ABD[对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.]类型2棱锥、棱台的结构特征【例2】(1)(多选题)下列关于棱锥、棱台的说法,正确的是()A.棱台的侧面一定不会是平行四边形B.棱锥的侧面只能是三角形C.由四个面围成的封闭图形只能是三棱锥D.棱锥被平面截成的两部分不可能都是棱锥(2)判断如图所示的几何体是不是棱台,为什么?(1)ABC[A正确,棱台的侧面一定是梯形,而不是平行四边形;B正确,由棱锥的定义知棱锥的侧面只能是三角形;C正确,由四个面围成的封闭图形只能是三棱锥;D错误,如图所示,四棱锥被平面截成的两部分都是棱锥.](2)[解]①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台,虽然②是由棱锥所截得的,但截面和底面不平行,故不是棱台,只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.根据几何体的结构特征如何辨析其为棱锥还是棱台?[提示](1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[跟进训练]2.下列几何体中,________是棱柱,________是棱锥,________是棱台.(仅填相应序号)①③④⑥⑤[结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱锥,⑤是棱台.]类型3多面体的表面展开图【例3】(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()(2)如图是三个几何体的平面展开图,请问各是什么几何体?1.棱柱的侧面展开图是什么图形?正方体的表面展开图又是怎样的?[提示]棱柱的侧面展开图是平行四边形;正方体的表面展开图如图:2.棱台的侧面展开图又是什么样的?[提示]棱台的侧面展开图是多个相连的梯形.(1)A[由选项验证可知选A.](2)[解]图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把平面展开图还原为原几何体,如图所示.所以①为五棱柱,②为五棱锥,③为三棱台.将本例(2)的条件改为:一个几何体的平面展开图如图所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?与“你”字面相对的是哪个面?[解](1)该几何体是四棱台.(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)由展开图复原几何体:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.[跟进训练]3.某人用如图所示的纸片,沿折痕向纸外折后粘成一个四棱锥形的“走马灯”(字在灯的外表面),正方形做灯底,且有一个三角形面上写上了“年”字,当灯逆时针旋转时,正好看到“新年快乐”的字样,则在①,②,③处应依次写上()A.快、新、乐B.乐、新、快C.新、乐、快D.乐、快、新A[根据四棱锥图形,当灯逆时针旋转时,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A.]1.下列说法正确的是()A.棱柱中相邻两个面的公共边叫做侧棱B.棱柱中至少有两个面的形状完全相同C.棱柱中两个互相平行的面一定是棱柱的底面D.有两个面互相平行,其余各面都是平行四边形的几何体一定是棱柱B[A错误,底面和侧面的公共边不是侧棱;B正确,根据棱柱的特征知,棱柱的两个底面一定是全等的,故棱柱中至少有两个面的形状完全相同;C错误,正六棱柱的两个相对侧面互相平行;D错误,“其余各面都是平行四边形”并不能保证“相邻两个四边形的公共边都互相平行”,如图所示的几何体就不是棱柱.] 2.棱台不具备的特点是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点C[由于棱锥的侧棱不一定相等,所以棱台的侧棱都相等的说法是错误的.]3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥D[根据棱锥的定义可知该几何体是三棱锥.]4.下列图形经过折叠可以围成一个棱柱的是()A B C DD[A,B,C中底面多边形的边数与侧面数不相等.]5.正方体ABCD-A1B1C1D1的棱长为2,则在正方体表面上,从顶点A到顶点C1的最短距离为________.25[将侧面ABB1A1与上底面A1B1C1D1展开在同一平面上,连接AC1,则线段AC1的长即为所求.如图,AC1=25.]回顾本节知识,自我完成以下问题:(1)空间几何体的定义、分类是什么?(2)棱柱、棱锥、棱台各有什么几何特征?(3)如何解决多面体的表面展开图?。

(完整word版)棱柱、棱锥和棱台的结构特征练习

(完整word版)棱柱、棱锥和棱台的结构特征练习

棱柱棱锥棱台练习题1.有四个会集:A={ 棱柱 } , B= { 四棱柱 } , C={ 长方体 } , D= { 正方体 } ,它们之间的包含关系是 () A. C D A B B. D C B A C.C A D B D. B D C A2. 以三棱台的极点为三棱锥的极点,这样可以把一个三棱台分成三棱锥的个数为( )A. 1 B . 2 C. 3 D . 43. 用一个平面去截四棱锥,不可以能获取( )A.棱锥B.棱柱C.棱台D.周围体4.一个正三棱锥的底面边长为3,高为6,则它的侧棱长为( )A . 2B . 23C.3 D. 45.若是一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可以能是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥6.设有四个命题甲:有两个平面互相平行,其余各面都是四边形的多面体必然是棱柱;乙:有一个面是多边形,其余各面都是三角形的多面体必然是棱锥;丙:用一个面去截棱锥,底面与截面之间的部分叫棱台;丁:侧面都是长方形的棱柱叫长方体.其中,真命题的个数是()A. 0B. 1C. 2D. 37.有一个正三棱锥和一个正四棱锥,它们所有的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,则所获取的这个组合体是( )A.底面为平行四边形的四棱柱C.无平行平面的六面体 D B .五棱锥.斜三棱柱8. 以下命题正确的选项是()A.斜棱柱的侧棱有时垂直于底面C.六个面都是矩形的六面体是长方体B .正棱柱的高可以与侧棱不相等D.底面是正多边形的棱柱为正棱柱9.以下列图中不可以能围成正方体的是( )10.所有棱长都相等的三棱锥叫做正周围体,正周围体 ABCD 的棱长为 a,M、N 分别为棱 BC、AD 的中点,则 MN 的长度为 ( )[本源2a 3a 3A .a B. 2 C. 2 D. 3 a11.以下命题中,正确的选项是()A .有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形12.下面描述中,不是棱锥的几何结构特色的为()A .三棱锥有四个面是三角形B.棱锥都是有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱交于一点13. 在下面 4 个平面图形中,哪几个是下面各侧棱都相等的周围体的张开图?其序号是________. ( 把你认为正确的序号都填上)14.一个正方体的六个面上分别标有字母A、 B、 C、 D、 E、 F,以下列图是此正方体的两种不同样放置,则与D 面相对的面上的字母是________.15.以下列图的是一个三棱台ABC— A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.16.以下列图,在正三棱柱 ABC— A1B1C1中, AB= 3, AA1= 4, M为 AA1的中点, P 是 BC 上一点,且由 P 沿棱柱侧面经过棱CC1到 M的最短路线长为29,设这条最短路线与CC1的交点为N,求:(1)三棱柱的侧面张开图的对角线长;(2)PC 与 NC的长.17. 以下列图,正四棱台 AC′的高为 17 cm,两底面的边长分别为 4 cm 和 16 cm,求这个棱台的侧棱和斜高.18. 正四棱锥P— ABCD的底面边长为 a,高 PO为 h,求它的侧棱PA的长和斜高PE.棱柱棱锥棱台练习题答案BCBCD ADCDB DB 13. ①②; 14. B16. 解 (1) 正三棱柱 1 1 1的侧面张开图是一个长为 9,宽为 4 的矩形,其对角线长为 22= 97. ABC — A B C 9 + 4(2) 以下列图,将侧面 BB 1C 1C 绕棱 CC 1 旋转 120°使其与侧面 AA 1C 1C 在同一平面上,点 P 运动到点 P 1 的地址,连接 MP 1,则 MP 1就是由点 P 沿棱柱侧面经过棱 CC 1 到点 M 的最短路线.设 PC = x ,则 P 1C = x ,在 Rt △MAP 1中,由勾股定理得22NC P 1C 24(3 + x)+ 2 = 29,求得 x =2. ∴PC = P 1C = 2.∵ == ,∴ NC = .MA P 1A 5 517. 解 设棱台两底面的中心分别为O ′和 O ,B ′C ′和 BC 的中点分别为 E ′和 E.连接 O ′O 、E ′E 、O ′B ′、 OB 、O ′E ′、 OE ,则 OBB ′O ′和 OEE ′O ′都是直角梯形.因为 A ′B ′= 4 cm , AB = 16 cm ,因此 O ′E ′= 2 cm , OE = 8 cm ,O ′B ′= 2 2 cm ,OB = 8 2 cm. 因此 B ′B = OO ′ 2+ OB -O ′B ′2= 172+ 8 2- 2 22= 19 cm ,EE ′= OO ′ 2+ OE -O ′E ′ 2= 172+8- 22= 5 13 cm.即这个棱台的侧棱长为19 cm ,斜高为 5 13 cm.218. 解:∵正四棱锥的底面边长为a ,∴ AO = 2 a ,∴在 Rt △PAO 中,2222222 2PA = PO + AO =h + 2a= 2 a + 2h .1222a 2 122∵OE = 2a ,∴在 Rt △POE 中,斜高 PE =PO + OE =h + 2=2 a + 4h .即此正四棱锥的侧棱长为2 a 2+ 2h 2,2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第课时棱柱、棱锥、棱台的结构特征
课时目标
.会用语言概述棱柱、棱锥、棱台的结构特征,会表示有关几何体.下列图形中,不是三棱柱的展开图的是( )
根据三棱柱的立体图,可以知道选项中的图形不是三棱柱的展开图..棱柱是有两个面互相平行,其余各面都是四边形的几何体
根据棱柱的概念,可以知道棱柱中至少有两个面平行,所以选
答案:
解析:对于,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥,错误;显然正确;对于,举反例,如图所示,在棱锥-中,====,==,满足侧面是全等的等腰三角形,但该棱锥不是正棱锥,错误;对于,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥,错误..以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成三棱锥的个数为( ) ..
..
答案:
解析:
如图所示,在三棱台-中,分别连接,,,则将三棱台分成个三棱锥,即三棱锥-,-,-.
.如果一个棱锥的各条棱长都相等,那么这个棱锥一定不是( )
.三棱锥.四棱锥
.五棱锥.六棱锥
答案:
解析:由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为°,如果是六棱锥,因为×°=°,所以顶点会在底面上,因此不是六棱锥.
.如图()()()()都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )
.()() .()()
.()() .()()
答案:
解析:将所给的四个展开图均还原成正方体,在图()中,①⑤,②④,③⑥分别为相对的面;在图()中,②⑤,①④,③⑥分别为相对的面;在图()中,②⑤,①④,③⑥分别为相对的面;在图()中,①⑥,②⑤,③④分别为相对的面,所以还原成正方体后,两个完全一样的是图()().
二、填空题(每个分,共分)
.在如图所示的个几何体中,有个是棱柱.。

相关文档
最新文档