2010年中考数学一轮复习——全等三角形

合集下载

中考数学复习《全等三角形》专题(卷1)

中考数学复习《全等三角形》专题(卷1)

《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。

中考数学考点专题复习 三角形与全等三角形

中考数学考点专题复习 三角形与全等三角形

剖析
先看一个事实,如图,将等腰△ABC 的底边 BC 延长线上的任一点和顶 点 A 相连,所得的△DAB 和△DAC 无疑是不全等的,由此可知,有两边及 其一边的对角对应相等的两个三角形(简称“边边角”)不一定全等.因此, 在判定三角形全等时,一定要留心“边边角”,别上当哟.
正解 证明:∵EB=EC,∴∠3=∠4.又∵∠1=∠2,∴∠1+∠3= ∠2+∠4,即∠ABC=∠ACB,∴AB=AC.在△AEB和△AEC中, ∵EB=EC,∠1=∠2,AB=AC,∴△AEB≌△AEC(SAS), ∴∠BAE=∠CAE
的长可能是下列哪个值( B )
A.11
B.5 C.2 D.1
(2)(2015·巴中)若 a,b,c 为三角形的三边,且 a,b 满足 a2-9+(b-
2)2=0,则第三边 c 的取值范围是 1<c<5

【点评】 三角形三边关系性质的实质是“两点之间,线段最 短”.根据三角形的三边关系,已知三角形的两边a,b,可确 定三角形第三边长c的取值范围|a-b|<c<a+b.
[对应训练] 1.(1)(2014·宜昌)已知三角形两边长分别为3和8,则该三角形第 三边的长可能是( )B A.5 B.10 C.11 D.12
(2)(2014·淮安)若一个三角形三边长分别为2,3,x,则x的值可 以为___4_.(只需填一个整数)
【例2】 (1)(2014·赤峰)如图,把一块含有30°角(∠A=30°)的 直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌 面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么 ∠AFE=( ) D
A.40° B.50° C.60° D.70°
4.(2015·柳州)如图,下列条件中,不能证明△ABC≌△DCB 的是( D )

全等三角形-中考数学总复习精品课件

全等三角形-中考数学总复习精品课件

三角形全等的条件
如何找边相等、 角相等
1.找“角”相等的途径主要有:对顶角相等;两直线平行,同位角、 内错角相等;余角等角代换;角平分线;平行四边形对角相等等.
2.找“边”相等主要借助中点、平行四边形对边相等来证明.
三角形全等的证明
如何找边相等、 角相等
3.判定两个三角形全等的三个条件中,“边”是必不可少的.
垂足分别是点 D,E,AD=3,BE=1,则 DE 的长是( B )
3 A.2
B.2
C.2 2
D. 10
61.2如0° 图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.
7.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC=DB, ③AB=DC,其中不能确定△ABC≌△DCB的是_②_____(只填序号).
A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC
平移加翻折型
2.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且 BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是
( C)
A.BE=3 B.∠F=35° C.DF=5 D.AB∥DE
平移型
3.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果
对称型
解:(1)在△ABC 和△ADC 中,AABC= =AADC,,∴△ABC≌△ADC(SSS), BC=DC,
∴∠BAC=∠DAC,即 AC 平分∠BAD (2) 由 (1) 得 ∠BAE = ∠ DAE , 在 △BAE 和 △DAE 中 ,
BA=DA, ∠BAE=∠DAE,∴△BAE≌△DAE(SAS),∴BE=DE AE=AE,

中考数学专题复习全等三角形(公共角模型)

中考数学专题复习全等三角形(公共角模型)

中考数学专题复习全等三角形(公共角模型)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE . (1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由; (2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.在四边形ABCD 中,∠DAB +∠DCB =180°,AC 平分∠DAB .(1)如图1,求证:BC =CD ;(2)如图2,连接BD 交AC 于点E ,若∠ADB =90°,AE =2DE ,求∠ABD 的度数; (3)如图3,在(2)的条件下,过点C 作CH ∠AB 于点H ,∠BCH 沿BC 翻折,点H 的对应点为点F ,点G 在线段AB 上,连接FG ,若∠CGF =30°,S △CHG =9,求线段CG 的长.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG∠AH且AG=AH,连接GC,HB.(1)证明:AHB∠AGC;(2)如图2,连接GF,HG,HG交AF于点Q.∠证明:在点H的运动过程中,总有∠HFG=90°;∠当AQG为等腰三角形时,求∠AHE的度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=52.BC=42,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=26,则S△ABC=.5.已知,∠ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP 交点为M,请直接写出∠CMQ度数.6.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:∠BCP∠∠DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.∠若CD=2PC时,求证:BP∠CF;∠若CD=n•PC(n是大于1的实数)时,记∠BPF的面积为S1,∠DPE的面积为S2.求证:S1=(n+1)S2.参考答案:1.(1)BC ∠CE ,见解析;(2)成立,见解析;(3)成立【解析】【分析】(1)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠4=∠5,求出∠4=∠6=45°,∠5=45°即可;(2)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,求出∠ABC =∠ACB =45°,得出∠ABD =∠ACE =135°即可;(3)先证∠BAD =∠CAE ,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,再求∠ABC =∠ACB =45°,得出∠ABD =∠ACE =45°.【详解】解:(1)BC 与CE 的位置关系是BC ∠CE ,理由是:∠∠BAC =∠DAE =90°,∠∠BAC -∠1=∠DAE -∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠4=∠5,∠∠BAC =90°,AB =AC ,∠∠4=∠6=45°,∠∠5=45°,∠∠BCE =∠5+∠6=45°+45°=90°,即BC ∠CE ;(2)成立.理由是:∠∠BAC =∠DAE =90°,∠∠BAC-∠1=∠DAE-∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠ABD =∠ACE ,∠∠BAC =90°,AB =AC ,∠∠ABC =∠ACB =45°,∠∠ABD =∠ACE =135°,∠∠BCE =∠ACE -∠ACB =135°-45°=90°,即BC ∠CE ;(3)成立∠∠BAC =∠DAE =90°,∠∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(SAS),∠∠ABD=∠ACE,∠∠BAC=90°,AB=AC,∠∠ABC=∠ACB=45°,∠∠ABD=∠ACE=45°,∠∠BCE=∠ACE+∠ACB=45°+45°=90°.【点睛】本题考查图形变换中结论问题,等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系,掌握等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系垂直的证法是解题关键.2.(1)证明见解析;(2)30ABD∠=;(3)CG=6【解析】【分析】(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,证明∠CQD∠∠CPB,即可得到答案;(2)延长ED,让MD=ED,∠AME是等边三角形,然后利用等边三角形的性质和角平分线的定义即可求得答案;(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,通过证明∠CFK∠∠HFL,得到FK=FL,又有直角三角形中30所对的直角边是斜边的一半,求得FK=12GF,根据等腰三角形的三线合一,进一步求得∠FGH=15,从求得到∠GCH=45,然后在直角三角形中利用勾股定理求解即可得答案.【详解】解:(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,如下图:∠AC平分∠DAB,CP∠AB,CQ∠AD∠CQ=CP在四边形APCQ中,∠APC=∠AQC=90∠∠QAP+∠PCQ=180又∠∠DAB+∠DCB=180°∠∠PCQ=∠DCB∠∠QCD+∠DCP=∠DCP+∠PCB∠∠QCD=∠PCB又∠∠CQD=∠CPB=90∠∠CQD∠∠CPB(ASA)∠CD=CB(2)延长ED,让MD=ED,如下图:∠∠ADB=90°∠AD∠ME又∠MD=ED∠AM=AE,ME=2DE又∠AE=2DE∠ME=AE=AM∠∠AME是等边三角形∠60AED∠=又∠∠ADE=90°∠30DAE∠=∠AC平分∠DAB∠30EAB DAE∠=∠=又∠AED EAB ABD∠=∠+∠∠30ABD∠=(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,如下图:∠在Rt CHB中,90,60CHB CBH ABD CBD∠=∠=∠+∠=∠∠HCB=30又∠折叠∠CH=CF, ∠HCB=∠FCB=30∠∠HCF=60∠∠CHF是等边三角形∠∠CFH=∠CHF=60,CF=HF又∠在Rt GFK△中,∠CGF=30,∠GKF=90∠∠GFK=60∠∠CFH=∠GFK∠∠CFK +∠CFG =∠CFG +∠HFL ∠∠CFK =∠HFL又∠∠CKF =∠LHF =90,CF =HF∠∠CFK ∠∠HFL∠FK =FL又∠在Rt GFK △中,∠CGF =30∠FK =12GF∠FL =12GF∠GL =FL又∠HL ∠GF∠HG =HF∠∠FGH =∠GFH又∠∠CHF =60,∠CHB =90∠∠FHB =∠CHB -∠CHF =30∠∠FGH =15∠∠CGH =∠CGF +∠FGH =45又∠∠CHG =90∠∠GCH =45∠GH =CH ,∠GCH 是等腰直角三角形又∠9CHG S =△∠192GH CH ⋅= ∠2218GH CH ==在Rt CHG 中,由勾股定理得:22236CG GH CH =+=∠CG >0∠CG =6【点睛】本题考查全等三角形的性质和判定,含30︒的直角三角形性质,等边三角形的性质和判定,直角三角形的勾股定理等知识点,能够熟练利用化归的思想和数形结合的思想去解题,是本题的重点.3.(1)见解析;(2)∠见解析;∠当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【解析】【分析】(1)根据SAS可证明∠AHB∠∠AGC;(2)∠证明∠AEH∠∠AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;∠分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【详解】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∠∠BAC=90°,∠∠BAH=∠CAG,∠AB=AC,∠∠ABH∠∠ACG(SAS);(2)∠证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∠∠ABC=∠ACB=45°,∠点E,F分别为AB,AC的中点,∠EF是∠ABC的中位线,∠EF∠BC,AE=12AB,AF=12AC,∠AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∠∠EAH=∠F AG,AH=AG,∠∠AEH∠∠AFG(SAS),∠∠AFG=∠AEH=45°,∠∠HFG=45°+45°=90°;∠分两种情况:i)如图3,AQ=QG时,∠AQ=QG,∠∠QAG=∠AGQ,∠AG∠AH且AG=AH,∠∠AHG=∠AGH=45°,∠∠AHG=∠AGH=∠HAQ=∠QAG=45°,∠∠EAH=∠F AH=45°,∠AE=AF,AH=AH,∠∠AEH∠∠AFH(SAS),∠∠AHE=∠AHF,∠∠AHE+∠AHF=180°,∠∠AHE=∠AHF=90°;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∠∠AEH=∠AGQ=45°,∠∠GAQ=∠AQG=180452︒-︒=67.5°,∠∠EAQ=∠HAG=90°,∠∠EAH=∠GAQ=67.5°,∠∠AHE=∠AQG=67.5°;∠H为线段EF上一动点(不与点E,F重合),∠不存在AG=AQ的情况.综上,当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.4.(1)见解析;(2)∠146;∠7 2【解析】【分析】(1)根据AC∠BD可以得到,AOB =∠COD=90°即可得到AB²=AO²+OB²,CD²=DO²+OC²即AB²+CD²=AO²+OB²+DO²+OC² 同理可以得到AD²+BC²=AO²+OB²+DO²+OC² 即可得到答案;(2)连DC、AE相交于点F,先证明∠ABE ∠∠DBC得到∠CDB=∠BAE 从而证得AE∠CD 再利用勾股定理和(1)中的结论求解即可得到答案;(3)连DC、AE相交于点F,作CP∠BD交DB延长线于点P,BP²+CP²=BC²=(42)²=32,DP²+PC²=DC²=(46)²=96,(DP²+PC²)-(BP²+CP²)=96-32=64,DP²-BP²=64从而求出BP=7210,再证明AB∠PC则S△ABC=12AB×BP.【详解】解:(1)证明:∠AC∠BD∠,AOB=90°在Rt∠AOB中AB²=AO²+OB²∠,COD=90°在Rt∠COD中CD² =DO²+OC²∠AB²+CD²=AO²+OB²+DO²+OC²同理AD²+BC²=AO²+OB²+DO²+OC² ∠ AB2+CD2=AD2+BC ²(2)∠解:连DC、AE相交于点F ∠Rt∠BCE和Rt∠ABD是等腰三角形∠BE=BC AB=BD∠CBE=∠ABD=90°∠∠ABE=∠DBC=90°+∠ABC∠∠ABE ∠∠DBC∠∠CDB=∠BAE∠∠ABD=90°∠∠CDB+∠CDA+∠DAB=90°∠∠BAE+∠CDA+∠DAB=90°∠∠AFD=90°∠AE∠CD∠AB=52,BC=42∠ACB=90° ∠AC=2232AB BC-=∠AB=52,BD=52∠ABD=90°∠AD=2210AB BD+=∠BC=42,BE=42∠CBE=90°∠CE=228BC BE+=由(1)中结论AD²+EC²=AC²+DE²∠(10)²+(8)²=(32)²+DE²∠DE=146∠连DC、AE相交于点F∠点G、H分别是AD、AC中点,GH=26∠ DC=2GH =46作CP∠BD交DB延长线于点PBP²+CP²=BC²=(42)²=32DP²+PC²=DC²=(46)²=96∠(DP²+PC²)-(BP²+CP²)=96-32=64∠DP²-BP²=64∠(BD+BP)²-BP²=64∠(52+BP)²-BP²=64∠BP=7210∠∠PBA=90°,∠P=90°,∠∠PBA+∠P=90°+90°=180°则S △ABC =12AB ×BP =12×52×772=102【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.5.(1)不变,60°;(2)43或83;(3)120°. 【解析】【分析】(1)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)需要分类讨论:分∠PQB =90°和∠BPQ =90°两种情况;(3)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【详解】(1)不变.在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)设时间为t ,则AP =BQ =t ,PB =4-t ,∠当∠PQB =90°时,∠∠B =60°,∠4-t =2t ,43t =; ∠当∠BPQ =90°时,∠∠B =60°,∠BQ =2BP ,∠ t =2(4-t ),t =83; ∠当第43秒或第83秒时,∠PBQ 为直角三角形; (3)在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.6.(1)证明见解析;(2)∠证明见解析;∠证明见解析.【解析】【分析】(1)由SAS 即可证明∠BCP ∠∠DCE .(2)∠在(1)的基础上,再证明∠BCP ∠∠CDF ,进而得到∠FCD +∠BPC =90°,从而证明BP ⊥CF ;∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1,分别求出S 1与S 2的值,得()()11112S n n =+-,()2112S n =-,所以S 1=(n +1)S 2结论成立. 【详解】证明:(1)∠在∠BCP 与∠DCE 中,90BC CD BCP DCE CP CE =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠DCE (SAS ).(2)∠∠CP =CE ,∠PCE =90°,∠∠CPE =45°,∠∠FPD =∠CPE =45°,∠∠PFD =45°,∠FD =DP .∠CD =2PC ,∠DP =CP ,∠FD =CP .∠在∠BCP 与∠CDF 中,90BC CD BCP CDF CP FD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠CDF (SAS ),∠∠FCD =∠CBP .∠∠CBP +∠BPC =90°,∠∠FCD +∠BPC =90°,∠∠PGC =90°,即BP ⊥CF .∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1 易知∠FDP 为等腰直角三角形,∠FD =DP =n -1.∠()1111222BCDF BCP FDP S S S S BC FD CD BC CP FD DP ∆∆=--=+⋅-⋅-⋅梯形 ()()()()()221111111111122222n n n n n n n n =+-⋅-⋅--=-=+- ()()2111111222S DP CE n n =⋅=-⋅=- ∠S 1=(n +1)S 2.【点睛】本题是几何综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形、图形的面积等知识点,试题的综合性强,难度较大.。

中考数学专题复习全等三角形之辅助线补全图形法

中考数学专题复习全等三角形之辅助线补全图形法

中考数学专题复习全等三角形(辅助线补全图形法)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE∠AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.2.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于(,0) ,(0,)A aB b两点,且,a b满足2()|4|0a b a t,且0,t t>是常数,直线BD平分OBA∠,交x轴于点D.(1)若AB的中点为M,连接OM交BD于点N,求证:ON OD=;(2)如图2,过点A作AE BD⊥,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想.3.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE∠AE点F在AB上,且BF=DE(1)求证:四边形BDEF是平行四边形(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论4.已知,如图ABC∆中,AB AC=,90A∠=︒,ACB∠的平分线CD交AB于点E,90BDC∠=︒,求证:2CE BD=.5.在∠ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD . (1)如图1,当∠BAC=100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC=100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.6.(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,180A C ∠+∠=︒.求证:DA DC =. 思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题; 方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC ∠=︒时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ∠+∠=︒,DA DC =,过点D 作DE BC ⊥,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.参考答案:1.(1)BE =12AD ,见解析;(2)BEG 是等腰直角三角形,见解析【解析】【分析】(1)延长BE 、AC 交于点H ,先证明△BAE ∠∠HAE ,得BE =HE =12BH ,再证明△BCH ∠∠ACD ,得BH =AD ,则BE =12AD ;(2)先证明CF 垂直平分AB ,则AG =BG ,再证明∠CAB =∠CBA =45°,则∠GAB =∠GBA =22.5°,于是∠EGB =∠GAB +∠GBA =45°,可证明△BEG 是等腰直角三角形.【详解】证:(1)BE =12AD ,理由如下:如图,延长BE 、AC 交于点H ,∠BE ∠AD ,∠∠AEB =∠AEH =90°,∠AD 平分∠BAC ,∠∠BAE =∠HAE ,在△BAE 和△HAE 中,AEB AEH AE AEBAE HAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BAE ∠∠HAE (ASA ),∠BE =HE =12BH ,∠∠ACB =90°,∠∠BCH =180°﹣∠ACB =90°=∠ACD ,∠∠CBH =90°﹣∠H =∠CAD ,在△BCH 和△ACD 中,BCH ACD BC ACCBH CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BCH ∠∠ACD (ASA ),∠BH =AD ,∠BE =12AD . (2)△BEG 是等腰直角三角形,理由如下:∠AC =BC ,AF =BF ,∠CF ∠AB ,∠AG =BG ,∠∠GAB =∠GBA ,∠AC =BC ,∠ACB =90°,∠∠CAB =∠CBA =45°,∠∠GAB =12∠CAB =22.5°,∠∠GAB =∠GBA =22.5°, ∠∠EGB =∠GAB +∠GBA =45°,∠∠BEG =90°,∠∠EBG =∠EGB =45°,∠EG =EB ,∠∠BEG 是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.2.(1)见解析;(2)2BD AE =,证明见解析.【解析】【分析】(1)由已知条件可得AO BO =,进而得OBA OAB ∠=∠,由直线BD 平分OBA ∠及直角三角形斜边上中线的性质得BOM OAB ∠=∠,再由三角形的外角定理,分别求得,ODN OND ∠∠,根据角度的等量代换,即可得ODN OND ∠=∠,最后由等角对等边的性质即可得证;(2)如图,延长AE 交y 轴于点C ,先证明BCE BAE △≌△,得AE EC =,再证明DOB COA ∠≌△,即可得2BD AC AE ==.【详解】(1)2()|4|0a b a t ,4a b t ∴==,AO BO ∴=,∴OBA OAB ∠=∠,直线BD 平分OBA ∠,ABD OBD ∴∠=∠,M 为AB 的中点,∴12OM AB BM AM ===, BOM OBA ∴∠=∠,OBA OAB ∠=∠,BOM OAB ∴∠=∠,OND OBD BOM ∠=∠+∠,ODN OAB ABD ∠=∠+∠,OND ODN ∴∠=∠,ON OD ∴=. (2)2BD AE =,证明:如图,延长AE 交y 轴于点C ,直线BD 平分OBA ∠,AE BD ⊥,ABD OBD ∴∠=∠,AEB CEB ∠=∠,又BE BE =,∴BCE BAE △≌△(ASA ),∴AE CE =1=2AC , AO BC ⊥,∴DOB COA ∠=∠,即90OAC OCA OCA CBE ∠+∠=∠+∠=︒, OAC OBD ∴∠=∠,又OB OA =,∴DOB COA ∠≌△(ASA ),2BD AC AE ∴==,即2BD AE =.【点睛】本题考查了平面直角坐标系的定义,非负数之和为零,三角形角平分线的定义,三角形中线的性质,三角形外角定理,三角形全等的性质与判定,等角对等边,熟练掌握以上知识,添加辅助线是解题的关键.3.(1)见解析;(2)1()2BF AB AC =-,理由见解析 【解析】【分析】(1)延长CE交AB于点G,证明AEG∆≅AEC∆,得E为中点,通过中位线证明DE// AB,结合BF=DE,证明BDEF是平行四边形(2)通过BDEF为平行四边形,证得BF=DE=12BG,再根据AEG∆≅AEC∆,得AC=AG,用AB-AG=BG,可证1()2BF AB AC=-【详解】(1)证明:延长CE交AB于点G∠AE⊥CE∠90AEG AEC︒∠=∠=在AEG∆和AEC∆GAE CAEAE AEAEG AEC∠=∠⎧⎪=⎨⎪∠=∠⎩∠AEG∆≅AEC∆∠GE=EC∠BD=CD∠DE为CGB∆的中位线∠DE//AB∠DE=BF∠四边形BDEF是平行四边形(2)1()2BF AB AC=-理由如下:∠四边形BDEF是平行四边形∠BF=DE∠D,E分别是BC,GC的中点∠BF=DE=12BG∠AEG∆≅AEC∆∠AG=ACBF=12(AB-AG)=12(AB-AC).【点睛】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.4.见解析.【解析】【分析】延长BD交CA的延长线于F,先证得∠ACE∠∠ABF,得出CE=BF;再证∠CBD∠∠CFD,得出BD=DF;由此得出结论即可.【详解】证明:如图,延长BD交CA的延长线于F,90BAC︒∠=90,90BAF BAC ACE AEC︒︒∴∠=∠=∠+∠=90BDC︒∠=90BDC FDC︒∴∠=∠=90ABF BED︒∴∠+∠=AEC BED∠=∠ACE ABF∴∠=∠AB AC=()ACE ABF ASA∴∆∆≌CE BF ∴=CD 平分ACB ∠ACD BCD ∴∠=∠CD CD =()CBD CFD ASA ∴∆∆≌12BD FD BF ∴== 12BD CE ∴= 2CE BD ∴=【点睛】此题考查三角形全等的判定与性质,角平分线的性质,根据已知条件,作出辅助线是解决问题的关键.5.(1)30°;(2)30°;(3)α为60︒或120m ︒-或240m ︒-.【解析】【分析】(1)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,旋转角为α,60α=︒时ACD ∆是等边三角形,且AC AD AB CD ===,知道BAD ∠的度数,进而求得CBD ∠的大小;(2)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,连接DF 、BF .AF FC AC ==,60FAC AFC ∠=∠=︒,20ACD ∠=︒,由20DCB ∠=︒案.依次证明DCB FCB ∆≅∆,DAB DAF ∆≅∆.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,ACD ∆是等边三角形时,CD 在ABC ∆内部时,CD 在ABC ∆外部时,求得答案.【详解】解:(1)解(1)∠AB AC =,100BAC ∠=︒,∠40ABC ∠=︒,∠AC CD =,60ACD α=∠=︒,∠ACD △为等边三角形,∠40BAD BAC DAC ∠=∠-∠=︒.又∠AD AC AB ==,∠ABD △为等腰三角形,∠180702BAD ABD ︒-∠∠==︒, ∠30CBD ABD ABC ∠=∠-∠=︒.(2)方法1:如图作等边AFC △,连接DF 、BF .AF FC AC ∴==,60FAC AFC ∠=∠=︒.100BAC ∠=︒,AB AC =,40ABC BCA ∴∠=∠=︒.20ACD ∠=︒,20DCB ∴∠=︒.20DCB FCB ∴∠=∠=︒.∠AC CD =,AC FC =,DC FC ∴=.∠ BC BC =,∠∴由∠∠∠,得DCB FCB ≅,DB BF ∴=,DBC FBC ∠=∠.100BAC ∠=︒,60FAC ∠=︒,40BAF ∴∠=︒.20ACD ∠=︒,AC CD =,80CAD ∴∠=︒.20DAF ∴∠=︒.20BAD FAD ∴∠=∠=︒.∠AB AC =,AC AF =,AB AF ∴=.∠AD AD =,∠∴由∠∠∠,得DAB DAF ≅.FD BD ∴=.FD BD FB ∴==.60DBF ∴∠=︒.30CBD ∴∠=︒.方法2 如下图所示,构造等边三角形ADE ,连接CE .∠在等腰三角形ACD 中,20ACD ∠=︒,∠80CAD CDA ∠=∠=︒,∠100BAC ∠=︒,∠20BAD ∠=︒.可证ACE DCE ≌.结合角度,可得20CAE CDE ∠=∠=︒,10ACE DCE ∠=∠=︒.在ADB △和ACE 中,20AB AC BAD CAE AD AE =⎧⎪∠=∠=︒⎨⎪=⎩,∠△≌△ADB AEC ,∠10ABD ACE ∠=∠=︒.∠40ABC ∠=︒,∠30CBD ABC ABD ∠=∠-∠=︒.方法3 如下图所示,平移CD 至AE ,连接ED ,EB ,则四边形ACDE 是平行四边形.∠AC DC =,∠四边形ACDE 是菱形,∠20AED ACD ∠=∠=︒,180EAC ACD ∠+∠=︒.∠160EAC ∠=︒,∠60EAB ∠=︒,∠ABE △是等边三角形,EBD △是等腰三角形,∠40BED ∠=︒,70EBD ∠=︒,∠10ABD ∠=︒.∠30CBD ABC ABD ∠=∠-∠=︒.(3)由(1)知道,若100BAC ∠=︒,60α=︒时,则30CBD ∠=︒;∠由(1)可知,设60α∠=︒时可得60BAD m ∠=-︒,902m ABC ACB ∠=∠=︒-, 19012022m ABD BAD ∠=︒-∠=︒-, 30CBD ABD ABC ∠=∠-∠=︒.∠由(2)可知,翻折BDC ∆到△1BD C ,则此时130CBD ∠=︒,60302m BCD ACB ∠=︒-∠=-︒, 190(30)12022m m ACB BCD ACB BCD m α∠=∠-∠=∠-∠=︒---︒=︒-, ∠以C 为圆心CD 为半径画圆弧交BD 的延长线于点2D ,连接2CD ,2303022m m CDD CBD BCD ∠=∠+∠=︒+-︒=, 221802180DCD CDD m ∠=︒-∠=︒-260240DCD m α∠=︒+∠=︒-.综上所述,α为60︒或120m ︒-或240m ︒-时,30CBD ∠=︒.【点睛】本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的. 6.(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【解析】【分析】(1)方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题; (2)延长CB 到点P ,使BP BA =,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD =,即PC BP BC AB BC =+=+(3)连接BD ,过点D 作DF AC ⊥于F ,证明ΔΔDFA DEC ≌,Rt ΔRt ΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE =+=++=+即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD 平分ABC ∠,ABD CBD ∴∠=∠.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩,ΔΔABD MBD ∴≌,A BMD ∴∠=∠,AD MD =.180BMD CMD ︒∠+∠=,180C A ︒∠+∠=.C CMD ∴∠=∠.DM DC ∴=,DA DC ∴=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD平分ABC∠,NBD CBD∴∠=∠.在ΔNBD和ΔCBD中,BD BDNBD CBDBN BC=⎧⎪∠=∠⎨⎪=⎩,ΔΔNBD CBD∴≌.BND C∴∠=∠,ND CD=.180NAD BAD︒∠+∠=,180C BAD︒∠+∠=.BND NAD∴∠=∠,DN DA∴=,DA DC∴=.(2)AB、BC、BD之间的数量关系为:AB BC BD+=.(或者:BD CB AB-=,BD AB CB-=).延长CB到点P,使BP BA=,连接AP,如图2所示.由(1)可知AD CD =,60DAC ︒∠=.ΔADC ∴为等边三角形.AC AD ∴=,60ADC ︒∠=.180BCD BAD ︒∠+∠=,36018060120ABC ︒︒︒︒∴∠=--=.18060PBA ABC ︒︒∴∠=-∠=.BP BA =,ΔABP ∴为等边三角形.60PAB ︒∴∠=,AB AP =.60DAC ︒∠=,PAB BAC DAC BAC ∴∠+∠=∠+∠,即PAC BAD ∠=∠.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,ΔΔPAC BAD ∴≌. PC BD ∴=, PC BP BC AB BC =+=+,AB BC BD ∴+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC⊥于F ,如图3所示.180BAD C ︒∠+∠=,180BAD FAD ︒∠+∠=.FAD C ∴∠=∠.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ΔΔDFA DEC ∴≌,DF DE ∴=,AF CE =.在Rt ΔBDF 和Rt ΔBDE 中,BD BD DF DE =⎧⎨=⎩, Rt ΔRt ΔBDF BDE ∴≌.BF BE ∴=,2BC BE CE BA AF CE BA CE ∴=+=++=+,2BC BA CE ∴-=.【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.。

初三中考第一轮复习全等三角形(一对一教案)

初三中考第一轮复习全等三角形(一对一教案)

初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。

题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。

中考数学专题复习全等三角形

中考数学专题复习全等三角形
∵AE=AC,∠EAD=∠CAD,AD=AD
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE

中考数学一轮复习《全等三角形》练习题(含答案)

中考数学一轮复习《全等三角形》练习题(含答案)

中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。

中考数学总复习《全等三角形》专项提升练习题(附答案)

中考数学总复习《全等三角形》专项提升练习题(附答案)

中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。

2024年中考数学一轮复习考点精讲课件—全等三角形

2024年中考数学一轮复习考点精讲课件—全等三角形
【详解】∵△ ≌△ ,
∴ = ,∠ = ∠,
∵∠ + ∠ = 180°,∠ + ∠ = 180°,
∴∠ = ∠,
∴ ∥ .
考点一 全等三角形及其性质
题型05 利用全等的性质证明线段之间的数量/位置关系
【对点训练1】(2023·陕西西安·校考模拟预测)如图,、相交于点,且△ ≌△ ,在上,在
1. 形状相同的两个图形不一定是全等图形,面积相同的两个图形也不一定是全等图形.
2. 通过平移、翻折、旋转后得到的图形与原图形是全等图形.
考点一 全等三角形及其性质
题型01 利用全等三角形的性质求角度
【例1】(2023·湖北襄阳·统考模拟预测)已知△ ≌△ ,若∠ = 50°, ∠ = 40°,则∠1的度数为
5.对于特殊的直角三角形:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或
“HL”).
【小技巧】从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素
(其中至少有一个元素是边)对应相等,这样就可以利用题目中的已知边(角)准确地确定要补充的边(角),有


A.40°
Hale Waihona Puke B.25°C.15°D.无法确定
【对点训练1】(2023·浙江金华·校联考三模)如图,已知△ ≌△ ,∠ = 75°,∠ = 30°,则∠的
度数为(
A.105°

B.80°
C.75°
D.45°
考点一 全等三角形及其性质
题型02 利用全等三角形的性质求长度
【例2】(2023·广东·校联考模拟预测)如图,△ ≅△ ,A的对应顶点是B,C的对应顶点是D,若 =

中考数学一轮复习全全等三角形截长补短知识点总结含答案

中考数学一轮复习全全等三角形截长补短知识点总结含答案

中考数学一轮复习全全等三角形截长补短知识点总结含答案一、全等三角形截长补短1.已知:在ABC 中,90BAC ︒∠=,AB AC =.将ABC 按如图所示的位置放置在平面直角坐标系中,使得点(0,)A m 落在y 轴的负半轴上,使得点(,0)B n 落在x 轴的正半轴上,点C 在第二象限,并且,m n 满足2268250m n m n ++-+=.(1)由题意可知OA =_____,OB =_____(直接写答案);(2)求点C 的坐标;(3)ABC 的斜边BC 交y 轴于D ,直角边AC 交x 轴于E .在AC 上截取AF CE =,连接DF .探究线段DF AD BE 、、的数量关系并证明你的结论.2.如图,△ABC 中,,AD 是BC 边上的高,如果,我们就称△ABC 为“高和三角形”.请你依据这一定义回答问题: (1)若,,则△ABC____ “高和三角形”(填“是”或“不是”); (2)一般地,如果△ABC 是“高和三角形”,则与之间的关系是____,并证明你的结论3.如图,在△ABC 中,AB =AC ,∠BAC =30°,点D 是△ABC 内一点,DB =DC ,∠DCB =30°,点E 是BD 延长线上一点,AE =AB .(1)求∠ADB 的度数;(2)线段DE ,AD ,DC 之间有什么数量关系?请说明理由.4.如图,在ABC 中,AB AC =,30ABC ∠<︒,D 是边BC 的中点,以AC 为边作等边三角形ACE ,且ACE △与ABC 在直线AC 的异侧,连接BE 交DA 的延长线于点F ,连接FC 交AE 于点M .(1)求证:FB FC =;(2)求证:FEA FCA ∠=∠;(3)若8FE =,2AD =,求AF 的长.5.如图,ABC 是边长为1的等边三角形,BD CD =,120BDC ∠=︒,点E ,F 分别在AB ,AC 上,且60EDF ∠=︒,求AEF 的周长.6.如图,ABC ∆中,BE ,CD 分别平分ABC ∠和ACB ∠,BE ,CD 相交于点F ,60A ∠=︒.(1)求BFD ∠的度数;(2)判断BC ,BD ,CE 之间的等量关系,并证明你的结论.7.(1)如图①,Rt ABC 中,AB AC =,90BAC ∠=︒,D 为BC 边上的一点,将ABD △绕点A 逆时针旋转90°至ACF ,作AE 平分DAF ∠交BC 于点E ,易证明:222BD CE DE +=.若2DE BD =,则以BD 、DE 、EC 为边的三角形的形状是______;(2)如图②,四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,若四边形ABCD 的面积是32,2CD =,求BC 的长度;(3)ABC 是以BC 为底的等腰直角三角形,点D 是ABC 所在平面内一点,且满足4=AD ,6BD =,2CD =,请画草图并求ADC ∠的度数.8.已知,在ABCD 中,AB BD AB BD E ⊥=,,为射线BC 上一点,连接AE 交BD 于点F .(1)如图1,若E 点与点C 重合,且25AF =,求AD 的长;(2)如图2,当点E 在BC 边上时,过点D 作DG AE ⊥于G ,延长DG 交BC 于H ,连接FH .求证:AF DH FH =+.(3)如图3,当点E 在射线BC 上运动时,过点D 作DG AE ⊥于G M ,为AG 的中点,点N 在BC 边上且1BN =,已知42AB =MN 的最小值.9.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.10.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD ,AD ∥BC ,AB =AD ,E 为对角线AC 上一点,∠BEC =∠BAD =2∠DEC ,探究AB 与BC 的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB =∠ABE ”;小源:“通过观察和度量,AE 和BE 存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB 与BC 的数量关系”.……老师:“保留原题条件,如图2, AC 上存在点F ,使DF =CF =k AE ,连接DF 并延长交BC 于点G ,求AB FG的值”. (1)求证:∠ACB =∠ABE ;(2)探究线段AB 与BC 的数量关系,并证明;(3)若DF =CF =k AE ,求AB FG的值(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)3,4;(2)(3,1)C -;(3)BE=DF+AD ,理由见解析【分析】(1)由非负数的性质求出m ,n 即可;(2)如图,作CH ⊥y 轴于点H ,只要证明△ACH ≌△BAO 即可解决问题;(3)在OB 上取一点K ,使得OK=DH ,则△CHD ≌△AOK ,再证明DF=EK ,AD=BK 即可解决问题.【详解】解:(1)∵2268250m n m n ++-+=∴22(3)(4)0m n ++-=,∵2(3)0+≥m ,2(4)0n -≥,∴3,4m n =-=,∴(0,3)A -,(4,0)B∴OA=3,OB=4,故答案为:3,4(2)如图,作CH ⊥y 轴于点H ,∵∠CHA=∠AOB=∠CAB=90°,∴∠CAH+∠ACH=90°,∠CAH+∠BAO=90°,∴∠ACH=∠BAO ,∵AC=BC ,∴△ACH ≌△BAO ,∴AH=OB=4,CH=OA=3,∴OH=1,∴(3,1)C -(3)结论为:BE=DF+AD理由:如图,在OB 上取一点K ,使得OK=DH ,∵CH=OA ,∠CHD=∠AOK=90°,DH=OK ,∴△CHD ≌△AOK (SAS ),∴CD=AK ,∵AD=BK ,AB=AC ,∴△AKB ≌△CDA (SSS ),∴∠KAB=∠ACD=45°,∴∠EAK=45°=∠FCD,∵CE=AF,∴CF=AE,∵CD=AK,∴△CDF≌△AKE(SAS)∴DF=KE,∵BE=EK+BK,∴BE=DF+AD【点睛】本题考查三角形综合题、等腰直角三角形的性质、全等三角形的判定和性质、非负数的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.(1)是(2);见解析【解析】【分析】(1)在BC上截取,根据,可得△ABE为等边三角形,,问题得解;(2)在△ABC中,在DC上截取,由AD是BC边上的高且,进而证明,△ABD≌△AED(SAS)就可以得到结论.【详解】解:(1)如图,Rt△ABC中,,,,在BC上截取,则△ABE为等边三角形,∴,∵,,∴,∴,∴∵,且△ABE为等边三角形,∴∴,∴是高和三角形.(2);证明:如上图,在△ABC中,在DC 上截取.∵,∴,∵AD是BC 边上的高且,∴,△ABD≌△AED(SAS ),∴,,∴.【点睛】本题主要考查全等三角形的判定与性质,根据题意构造全等三角形,理解“高和三角形”的定义是解题关键.3.(1)120°;(2)DE=AD+CD,理由见解析【分析】(1)根据三角形内角和定理得到∠ABC=∠ACB=75°,根据全等三角形的性质得到∠BAD =∠CAD=15°,根据三角形的外角性质计算,得到答案;(2)在线段DE上截取DM=AD,连接AM,得到△ADM是等边三角形,根据△ABD≌△AEM,得到BD=ME,结合图形证明结论【详解】解:(1)∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=12(180°﹣30°)=75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,在△ABD和△ACD中,AB AC DB DC AD AD=⎧⎪=⎨⎪=⎩,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=12∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°,∴∠ADB=180°﹣∠ADE=180°﹣60°=120°;(2)DE=AD+CD,理由如下:在线段DE上截取DM=AD,连接AM,∵∠ADE =60°,DM =AD ,∴△ADM 是等边三角形,∴∠ADB =∠AME =120°.∵AE =AB ,∴∠ABD =∠E ,在△ABD 和△AEM 中,ABD E ADB AME AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△AEM (AAS ),∴BD =ME ,∵BD =CD ,∴CD =ME .∵DE =DM +ME ,∴DE =AD +CD .【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4.(1)见解析;(2)见解析;(3)4【分析】(1)利用AD 所在直线是BC 的垂直平分线,点F 在直线AD 上即可得出结论. (2)由ACE △是等边三角形,得AC=AE=AB 推得ABF FEA ∠=∠.易证ABF ≌ACF (SSS ),ABF FCA FEA ∠=∠=∠即可,(3)延长AD 至点P 处,使DP AD ,连接CP .先证直角三角形ADC ≌PDC△(SAS ),推出AC CP CE ==,ACD PCD ∠=∠.再证60EFC EAC ∠=∠=︒.求出,FBD 30FCD ∠=∠=︒.用ACD ∠表示30ECF ACD ∠=︒+∠.而30FCP ACD ∠=︒+∠,得ECF FCP ∠=∠.可证ECF △≌PCF (SAS ),可推得AF EF AP =-即可.【详解】(1)证明:∵AB AC =,D 是边BC 的中点,∴AD 所在直线是BC 的垂直平分线,又∵点F 在直线AD 上∴FB FC =.(2)证明:∵ACE △是等边三角形,∴60EAC ACE ∠=∠=︒,AC AE =.∵AB AC =,∴AB AE =,∴ABF FEA ∠=∠.由(1)可知,FB FC =,又∵AF AF =,AB AC =,∴ABF ≌ACF (SSS ),∴ABF FCA ∠=∠,∴FEA FCA ∠=∠. (3)解:如图,延长AD 至点P 处,使DP AD ,连接CP .∵AB AC =,D 是边BC 的中点,∴90ADC PDC ∠=∠=︒.∵ACE △是等边三角形,∴AC CE =,60EAC ∠=︒.∵AD DP =,ADC PDC ∠=∠,CD CD =,∴ADC ≌PDC △(SAS ),∴AC CP CE ==,ACD PCD ∠=∠.由(2)可知,FEA FCA ∠=∠,∵AMC FME ∠=∠,∴60EFC EAC ∠=∠=︒.由(1)可知,BF CF =, ∴()18060260BFD CFD ∠=∠=︒-︒÷=︒,∴906030FCD ∠=︒-︒=︒.∵FCA FCD ACD ∠=∠-∠,∴30FCA ACD ∠=︒-∠.∵ECF ECA FCA ∠=∠-∠,∴()303030ECF ECA ACD ECA ACD ACD ∠=∠-︒-∠=∠-︒+∠=︒+∠.∵FCP FCD PCD ∠=∠+∠,∴30FCP ACD ∠=︒+∠,∴ECF FCP ∠=∠.∵FC FC =,CE CP =,∴ECF △≌PCF (SAS ),∴FE FP =,∴2FE FA AP AF AD =+=+,∴2822=4AF EF AD =-=-⨯.【点睛】本题考查线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,掌握线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,会利用引辅助线构造三角形全等转化线与线关系,角与角关系来解决问题.5.2【分析】延长AC 至点P ,使CP BE =,连接PD ,证明()BDE CDP SAS △△推出DE DP =,BDE CDP ∠=∠,进而得到60EDF PDF ∠=∠=︒,从而证明()DEF DPF SAS ≌△△,推出EF=CP ,由此求出AEF 的周长=AB+AC 得到答案.【详解】解:如图,延长AC 至点P ,使CP BE =,连接PD .∵ABC 是等边三角形, ∴60ABC ACB ∠=∠=︒. ∵BD CD =,120BDC ∠=︒, ∴30DBC DCB ∠=∠=︒, ∴90EBD DCF ∠=∠=︒, ∴90DCP DBE ∠=∠=︒.在BDE 和CDP 中,BD CD DBE DCP BE CP =⎧⎪∠=∠⎨⎪=⎩,∴()BDE CDP SAS △△,∴DE DP =,BDE CDP ∠=∠.∵120BDC ∠=︒,60EDF ∠=︒,∴60BDE CDF ∠+∠=︒,∴60CDP CDF ∠+∠=︒,∴60EDF PDF ∠=∠=︒.在DEF 和DPF 中,DE DP EDF PDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴()DEF DPF SAS ≌△△, ∴EF FP =,∴EF FC BE =+,∴AEF 的周长2AE EF AF AB AC =++=+=.【点睛】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.6.(1)∠BFD =60°;(2)BC =BD +CE ;证明见解析【分析】(1)根据角平分线和外角性质求解即可;(2)在BC 上截取BG =BD ,连接FG ,证明△BDF ≌△BGF ,△CGF ≌△CEF ,即可得到结果;【详解】(1)∵BE ,CD 分别平分ABC ∠和ACB ∠,BE ,∴ABE CBE ∠=∠,ACD BCD ∠=∠,∵60A ∠=︒,∴120ABC ACB ∠+∠=︒,∴60FBC FCB ∠+∠=︒,∴60DFB ∠=︒.(2)BC =BD +CE ;证明方法:在BC 上截取BG =BD ,连接FG ,在△BDF 和△BGF 中,BD BG DBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△BDF BGFSAS ≅, ∴60DFB BFG ∠=∠=︒,又∵GCF ECF ∠=∠,∴△CGF ≌△CEF (ASA ),∴CE =CG ,∴BC =BD +CE .【点睛】本题主要考查了三角形内角和定理、外角定理、三角形全等应用,准确分析是解题的关键.7.(1)等腰直角三角形;(2)723)图见解析,135°或45°【分析】(1)要判断以BD 、DE 、EC 为边的三角形形状,根据题干中所给条件,只需证明BD EC =即可;(2)先构造出ABE ADC △≌△,进而判断出CAE 是等腰直角三角形,四边形的面积等于ACE △的面积,由此求出AC ,CE 即可;(3)分情况讨论:①当点D 在ABC 内时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题;②当点D 在ABC 外时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题.【详解】解:(1)222BD CE DE +=,∴以BD 、DE 、EC 为边的三角形是直角三角形, 2DE BD =,设BD a =,则2DE a =,2222a EC a ∴+=,EC a ∴=,BD EC ∴=,∴以BD 、DE 、EC 为边的三角形的形状是等腰直角三角形.故答案:等腰直角三角形.(2)如图①,延长CB 至E ,使BE CD =,连接AE ,在四边形ABCD 中,90BAD BCD ∠=∠=︒,180ABC ADC ∴∠+∠=︒,180ABC ABE ∠+∠=︒,ABE ADC ∴∠=∠,在ABE △和ADC 中,,,,AB AD ABE ADC BE CD =⎧⎪∠=∠⎨⎪=⎩()ABE ADC SAS ∴△≌△,AE AC ∴=,BAE DAC ∠=∠,90CAE BAE BAC DAC BAC ∴∠=∠+∠=∠+∠=︒,212ACE S AC ∴=△, 四边形ABCD 的面积为32,ACE ABCD S S =△四边形, 21322AC ∴=, 8AC ∴=(负值已舍),282EC AC ∴==,82272BC EC BE ∴=-=-=.图①(3)①画图如图②,③.当点D 在ABC 内时,如图②,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE , 90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠, 在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==,242DE ==2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,4590135ADC ∴∠=︒+︒=︒;②当点D 在ABC 外时,如图③,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE ,90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==, 242DE AD ==,2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,45ADC ∴∠=︒.综上所述,ADC ∠的度数为135°或45°.图② 图③【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理以及逆定理等知识,解题的关键是利用旋转法添加辅助线,构造全等三角形解决问题,用分类讨论的思想思考问题,属于中考压轴题.8.(1)42AD =2)见解析;(3)MN 的最小值为3.【分析】(1)如图1中,利用等腰三角形的性质可得90ABD ∠=︒,利用平行四边形的性质可得F 为BD 中点,在Rt ABF ∆中,由勾股定理可求得BF ,则可求得AB ,在Rt ABD ∆中,再利用勾股定理可求得AD ;(2)如图2中,在AF 上截取AK HD =,连接BK ,可先证明ABK DBH ∆≅∆,再证明BFK BFH ∆≅∆,可证得结论;(3)连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,得到90AGD ∠=︒,于是得到点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,求得GQ 最小值为6,根据三角形的中位线定理即可得到结论.【详解】(1)45AB BD BAD =∠=︒,,45BDA BAD ∴∠=∠=︒90 ABD ∴∠=︒,四边形ABCD 是平行四边形,∴当点E 与点C 重合时,1122BF BD AB == 在Rt ABF 中,222AF AB BF =+()()222252BF BF ∴=+ 24BF AB ∴==,Rt ABD ∴中,42AD =.(2)证明:如图2中,在AF 上截取AK HD =,连接BK ,23AFD ABF FGD ∠=∠+∠=∠+∠,90ABF FGD ∠=∠=︒,23∴∠=∠,在ABK 和DBH ∆中,23AB BD AK HD =⎧⎪∠=∠⎨⎪=⎩, ABK DBH ∴∆≅∆,BK BH ∴=,61∠=∠,AK DH =,四边形ABCD 是平行四边形,//AD BC ∴,41645∴∠=∠=∠=︒,5645ABD ∴∠=∠-∠=︒,51∴∠=∠,在FBK ∆和FBH ∆中,51BF BF BK BH =⎧⎪∠=∠⎨⎪=⎩, FBK FBH ∴∆≅∆,KF FH ∴=,AF AK KF =+,AF DH FH ∴=+;()3解:连接AN 并延长到Q ,使NQ AN =,连接GQ ,取AD 的中点O ,连接OG ,作AK ⊥BC ,交BC 延长线于点K ,作QP ⊥AD ,交AD 延长线于点P .90AGD ∠=︒,∴点G 的轨迹是以O 为圆心,以OG 为半径的弧,且4OG =,根据△ABD 为等腰直角三角形,可得AD 228AB BD +=, ∴AO=142AD =, 根据△ABK 为等腰直角三角形,可得AK =BK =4,可得QE =PE =4,∴PQ =8,∵BK=4,BN =1,∴KN =5,∴KE=AP =10,∴OP =6,10OQ ∴=,4OG =,GQ ∴最小值为6, MN 是AGQ ∆的中位线,MN ∴的最小值为3.【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、全等三角形的判定和性质、中位线定理,解题的关键是学会添加常用辅助线,构造全等三角形.9.(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE ∴∠=∠//AD BCDAE F ∴∠=∠BAF F ∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE ∴=在ADE 和FCE △中,DAE F AED FEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADE FCE AAS ∴≅AD FC ∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE ∴∠=∠在ADE 和AGE 中,AD AG DAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅,DE GE D AGE ∴=∠=∠E 是边CD 的中点DE CE ∴=CE GE ∴=ECG EGC ∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC ∴∠=∠BG BC ∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF 由方法1可知:,AF GF AE GE ==AFG ∴是等腰三角形EF ∴平分AFG ∠12EFC AFG ∴∠=∠ //CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒11802D BCD ︒∠+∠=,即1()1802D ECF BCF ∠+∠+∠=︒ 1()2ECF ECF BCF ∴∠=∠+∠ ECF BCF ∴∠=∠在ECF △和BCF △中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅ CB CE ∴=.【点睛】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键. 10.(1)见解析;(2)CB=2AB ;(3)3AB k FG k = 【分析】(1)利用平行线的性质以及角的等量代换求证即可;(2)在BE 边上取点H ,使BH=AE ,可证明△ABH ≌△DAE ,△ABE ∽△ACB ,利用相似三角形的性质从而得出结论;(3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K ,得出12AD DK CB DB ==,通过证明△ADK ∽△DBC 得出∠BDC=∠AKD=90°,再证DF=FQ ,设AD=a ,因此有DF=FC=QF=ka ,再利用相似三角形的性质得出AC=3ka ,3AB ka =,1122FG DF ka ==,从而得出答案.【详解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD ∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE 边上取点H ,使BH=AE∵AB=AD∴△ABH ≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE ∽△ACB ∴EB AE CB AB= ∴CB=2AB ; (3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K∵AD=AB∴12DK BD = ∠AKD=90°∵12AB AD BC == ∴12AD DK CB DB == ∵AD ∥BC∴∠ADK=∠DBC∴△ADK ∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ设AD=a∴DF=FC=QF=ka∵AD ∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD ∽△CQB ∴12AD QA BC CQ== ∴AQ=ka=QF=CF∴AC=3ka∵△ABE ∽△ACB ∴AE AB AB AC= ∴AB =同理△AFD ∽△CFG12DF AF FG FC == ∴1122FG DF ka ==AB FG = 【点睛】本题是一道关于相似的综合题目,难度较大,根据题目作出合适的辅助线是解此题的关键,解决此题还需要较强的数形结合的能力以及较强的计算能力.。

中考数学分类(含答案)三角形全等

中考数学分类(含答案)三角形全等

中考数学分类(含答案)全等三角形一、选择题1.(2010四川凉山)如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有A .1个B .2个C .3个D .4个 【答案】C2.(2010四川 巴中)如图2 所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件 不能..是()A .∠B =∠CB. AD = AEC .∠ADC =∠AEB D. DC = BE 【答案】D3.(2010广西南宁)如图2所示,在ABC Rt ∆中,︒=∠90A ,BD 平分ABC ∠, 交AC 于点D ,且5,4==BD AB ,则点D 到BC 的距离是:(A )3 (B )4 (C )5 (D )6B【答案】A4.(2010广西柳州)如图3,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是A .5cmB .4cmC .3cmD .2cm【答案】C 5.(2010贵州铜仁)如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )A .5B .4C .3D .2【答案】A 二、填空题1.(2010 天津)如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件, 这个条件可以是 .第(13)题 ACD BEF【答案】C E ∠=∠(答案不惟一,也可以是AB FD =或AD FB =)2.(2010 广西钦州市)如图,在△ABC 和△BAD 中,BC = AD ,请你再补充一个条件,使△ABC ≌△BAD .你补充的条件是_ ▲ _(只填一个).【答案】AC =BD 或∠CBA =∠DAB 三、解答题1.(2010江苏苏州) (本题满分6分)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .(1)求证:△ACD ≌△BCE ;(2)若∠D=50°,求∠B 的度数.【答案】2.(2010江苏南通)(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ;DABC第8题③∠ACB =∠DFE .【答案】解:由上面两条件不能证明AB//ED .有两种添加方法. 第一种:FB =CE ,AC =DF 添加 ①AB =ED证明:因为FB =CE ,所以BC =EF ,又AC =EF ,AB =ED ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED第二种:FB =CE ,AC =DF 添加 ③∠ACB =∠DFE证明:因为FB =CE ,所以BC =EF ,又∠ACB =∠DFE AC =EF ,所以 ABC ≅ DEF 所以∠ABC =∠DEF 所以AB//ED3.(2010浙江金华)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是: ▲ ; (2)证明: 【答案】解:(1)DC BD =(或点D 是线段BC 的中点),EDFD =,BE CF =中 任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB ,∴△BDE ≌△CDF .4.(2010福建福州)(每小题7分,共14分)(1)如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:△ABC ≌△DEF .D(第25题)A CBDF E (第18题(第17(1)题)【答案】证明:∵ AB ∥DE . ∴ ∠B =∠DEF . 在△ABC 和△DEF 中,B DEF A D BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,.∴ △ABC ≌△DEF .5.(2010四川宜宾,13(3),5分)如图,分别过点C 、B 作△ABC 的BC 边上的中线AD 及其延长线的垂线,垂足分 别为E 、F .求证:BF =CE .【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△CDE (AAS ),∴BF =CE . 6.(2010福建宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:_______________,并给予证明.全品中考网B DC AEF【答案】解法一:添加条件:AE=AF,证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS).解法二:添加条件:∠EDA=∠FDA,证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA∴△AED≌△AFD(ASA).7.(2010湖北武汉)如图,B,F,C,E在同一条直线上,点A,D在直线BE的两侧,AB∥DE,AC∥DF,BF=CE.求证:AC=DF【答案】证明:∵AB∥DE,∴∠ABC=∠DEF∵AC∥DF,∴∠ABC=∠DEF∵BF=CE,∴BC=EF∴△ABC≌△DEF∴AC=DF8.(2010江苏淮安)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE, 求证:AE=BD.题20图【答案】证明:∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△ACE和△BCD中,AC BCACE BCD CE CD⎧=⎪∠=∠⎨⎪=⎩,∴△ACE≌△BCD(SAS),∴AE=BD.9.(2010北京)已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .【答案】证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DB AC D A FDEA ∴△EAC ≌△FDB∴∠ACE =∠DBF . 10.(2010云南楚雄)如图,点A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF .请探索BC 与EF 有怎样的位置关系?并说明理由.【答案】解:BC ∥EF .理由如下:∵AE =DB ,∴AE +BE =DB +BE ,∴AD =DE .∵AC ∥DF , ∴∠A =∠D ,∵AC =DF , ∴△ACB ≌△DFE ,∴∠FED =∠CBA ,∴BC ∥EF . 11.(2010云南昆明)如图,点B 、D 、C 、F 在一条直线上,且BC = FD ,AB = EF.(1)请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是 ;(2)添加了条件后,证明△ABC ≌△EFD.ABDEF【答案】(1)∠B = ∠F 或 AB ∥EF 或 AC = ED.(2)证明:当∠B = ∠F 时 在△ABC 和△EFD 中A B E FB F BC FD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EFD (SAS) 12.(2010四川 泸州)如图4,已知AC ∥DF ,且BE =CF . (1)请你只添加一个..条件,使△ABC ≌△DEF ,你添加的条件是 ;(2)添加条件后,证明△ABC ≌△DEF.【答案】(1)添加的条件是AC =DF (或AB ∥DE 、∠B =∠DEF 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ABC 和△DEF中,ACB F AC DF BC EF ===⎧⎪⎨⎪⎩∠∠ ,∴△ABC ≌△DEF.13.(2010 甘肃)(8分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件,证明OC OD =.DO CBAFABCDEDO BA 【答案】解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分 说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD. 证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分 又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD. ∴ OC OD =. ……………………8分14.(2010 重庆江津)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .【答案】证明:(1)∵AC ∥DF∴∠ACB =∠F ……………………………………………………………………2分 在△ABC 与△DEF 中ACB F A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF ……………………………………………………………………6分 (2) ∵△ABC ≌△DEF ∴BC=EF∴BC –EC=EF –EC即BE=CF ……………………………………………………………………………10分 15.(2010 福建泉州南安)如图,已知点E C ,在线段BF 上,CF BE =,请在下列四个等式中,①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两个..作为条件,推出ABC DEF △≌△.并予以证明.(写出一种即可) 已知: , . 求证:ABC DEF △≌△. 证明:C E B FDA【答案】解:已知:①④(或②③、或②④)……………3分证明:若选①④ ∵CF BE =∴EF BC EC CF EC BE =+=+即,.…………………………………………5分 在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF .……………………………8分∴ABC DEF △≌△.……………………………………9分 16.(2010青海西宁)八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线.(Ⅱ)∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,将角尺的直角顶点P 介于射线OA 、OB 之间,移动角尺使角尺两边相同的刻度与M 、N 重合,即PM=PN ,过角尺顶点P 的射线OP 就是∠AOB 的平分线. (1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.(2)在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使PM ⊥OA ,PN ⊥OB.此方案是否可行?请说明理由. 【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. ……………………………2分(2)方案(Ⅱ)可行. ……………………………3分证明:在△OPM 和△OPN 中⎪⎩⎪⎨⎧===OP OP PN PM OP OM∴△OPM ≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ……………………………5分 (3)当∠AOB 是直角时,此方案可行. ……………………………6分∵四边形内角和为360°,又若PM ⊥OA,PN ⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°,C E B CDA∴∠AOB=90°∵若PM ⊥OA,PN ⊥OB, 且PM=PN∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行. …………8分 17.(2010广西梧州)如图,AB 是∠DAC 的平分线,且AD =AC 。

中考备考数学总复习14讲三角形与全等三角形(含解析)

中考备考数学总复习14讲三角形与全等三角形(含解析)

第14讲三角形与全等三角形[锁定目标考试]考标要求考查角度1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系.2.理解三角形内角和定理及推论.3.理解三角形的角平分线、中线、高的概念及画法和性质.4.掌握三角形全等的性质与判定,熟练掌握三角形全等的证明.中考多以填空题、选择题的形式考查三角形的边角关系,通过解答题来考查全等三角形的性质及判定.全等三角形在中考中常与平行四边形、二次函数、圆等知识相结合,考查运用知识的能力.[导学必备知识]知识梳理一、三角形的概念及性质1.概念(1)由三条线段________顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形.2.性质(1)三角形的内角和是______;三角形的一个外角等于与它不相邻的____________;三角形的一个外角大于与它________的任何一个内角.(2)三角形的任意两边之和______第三边;三角形任意两边之差________第三边.二、三角形中的重要线段1.三角形的角平分线三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这个点叫做三角形的________.2.三角形的高线从三角形的一个顶点向它的对边所在的直线作______,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点,这个点叫做三角形的______.3.三角形的中线在三角形中,连接一个顶点和它对边______的线段叫做三角形的中线.特性:三角形的三条中线交于一点,这个点叫做三角形的______.4.三角形的中位线连接三角形两边______的线段叫做三角形的中位线.定理:三角形的中位线平行于第三边,且等于它的________.三、全等三角形的性质与判定1.概念能够________的两个三角形叫做全等三角形.2.性质全等三角形的__________、__________分别相等.3.判定(1)有三边对应相等的两个三角形全等,简记为(SSS);(2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS);(3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA);(4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS);(5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).四、定义、命题、定理、公理1.定义对一个概念的特征、性质的描述叫做这个概念的定义.2.命题判断一件事情的语句.(1)命题由________和________两部分组成.命题通常写成“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.(2)命题的真假:正确的命题称为________;错误的命题称为________.(3)互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的________,而第一个命题的结论是第二个命题的________,那么这两个命题称为互逆命题.每一个命题都有逆命题.3.定理经过证明的真命题叫做定理.因为定理的逆命题不一定都是真命题.所以不是所有的定理都有逆定理.4.公理有一类命题的正确性是人们在长期的实践中总结出来的,并把它们作为判断其他命题真伪的原始依据,这样的真命题叫做公理.五、证明1.证明从一个命题的条件出发,根据定义、公理及定理,经过________,得出它的结论成立,从而判断该命题为真,这个过程叫做证明.2.证明的一般步骤(1)审题,找出命题的题设和结论;(2)由题意画出图形,具有一般性;(3)用数学语言写出已知、求证;(4)分析证明的思路;(5)写出证明过程,每一步应有根据,要推理严密.3.反证法先假设命题中结论的反面成立,推出与已知条件或是定义、定理等相矛盾,从而结论的反面不可能成立,借此证明原命题结论是成立的.这种证明的方法叫做反证法.自主测试1.(浙江嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于() A.40° B.60° C.80° D.90°2.下列长度的三条线段,不能组成三角形的是()A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,83. (贵阳)如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF4.下面的命题中,真命题是()A.有一条斜边对应相等的两个直角三角形全等B.有两条边和一个角对应相等的两个三角形全等C.有一条边对应相等的两个等腰三角形全等D.有一条高对应相等的两个等边三角形全等5.(四川雅安)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B=∠C,BD=DC;④∠ADB=∠ADC,BD=DC.能得出△ADB≌△ADC的序号是__________.6.(广东广州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BE =CD.[探究重难方法]考点一、三角形的边角关系【例1】若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1 B.5 C.7 D.9解析:设第三边为x,根据三角形三边的关系可得4-3<x<3+4,即1<x<7.答案:B方法总结 1.在具体判断时,可用较小的两条线段的和与最长的线段进行比较.若这两条线段的和大于最长的那条线段,则这三条线段能组成三角形.否则就不能组成三角形.2.三角形边的关系的应用:(1)判定三条线段是否构成三角形;(2)已知两边的长,确定第三边的取值范围;(3)可证明线段之间的不等关系.触类旁通1已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13考点二、全等三角形的性质与判定【例2】(云南)如图,在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.证明:在△ABC和△MED中,∵BC∥EM,∴∠MED=∠B.∵DM⊥AB,∴∠MDE=90°,∴∠C=∠MDE.∵AC=MD,∴△ABC≌△MED.方法总结 1.判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等.在具体的证明中,要根据已知条件灵活选择证明方法.2.全等三角形的性质主要是指全等三角形的对应边、对应角、对应中线、对应高、对应角平分线、周长、面积等之间的等量关系.触类旁通2如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.求证:△BEC ≌△CDA . 考点三、真假命题的判断【例3】 (湖南益阳)下列命题是假命题...的是( ) A .中心投影下,物高与影长成正比B .平移不改变图形的形状和大小C .三角形的中位线平行于第三边D .圆的切线垂直于过切点的半径解析:同一时刻,平行投影下物高与影长成正比,故A 项错误;平移是全等变换,不改变图形的形状和大小,故B 项正确;三角形的中位线平行于第三边,故C 项正确;圆的切线垂直于经过切点的半径是切线的性质,故D 项正确.答案:A方法总结 对命题的正确性理解一定要准确,判定命题不成立时,有时可以举反例说明道理;命题有正、误,错误的命题也是命题.触类旁通3已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)考点四、证明的方法【例4】 如图,已知在梯形ABCD 中,AD ∥BC ,BC =DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E.求证:(1)△BFC ≌△DFC ; (2)AD =DE .证明:(1)∵CF 平分∠BCD ,∴∠BCF =∠DCF . 在△BFC 和△DFC 中,⎩⎪⎨⎪⎧BC =DC ,∠BCF =∠DCF ,FC =FC ,∴△BFC ≌△DFC . (2)如图,连接BD .∵△BFC≌△DFC,∴BF=DF.∴∠FBD=∠FDB.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又BD是公共边,∴△BAD≌△BED.∴AD=DE.方法总结 1.证明问题时,首先要理清证明的思路,做到证明过程的每一步都有理有据,推理严密.要证明线段、角相等时,证全等是常用的方法.2.证明的基本方法:(1)综合法,从已知条件入手,探索解题途径的方法;(2)分析法,从结论出发,用倒推来寻求证题思路的方法;(3)两头“凑”的方法,综合应用以上两种方法找证明思路的方法.触类旁通4如图,在△ABC中,AD是中线,分别过点B,C作AD及其延长线的垂线BE,CF,垂足分别为点E,F.求证:BE=CF.[品鉴经典考题]1.(湖南长沙)现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1 B.2 C.3 D.42.(湖南娄底)下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y3.以下列各组线段为边,能组成三角形的是()A.1 cm,2 cm,4 cm B.4 cm,6 cm,8 cm C.5 cm,6 cm,12 cm D.2 cm,3 cm,5 cm4.(湖南长沙)如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=__________°.5.(湖南郴州)已知,点P是平行四边形ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.6. (湖南衡阳)如图所示,AF=DC,BC∥EF,请你只补充一个条件,使△ABC≌△DEF,并说明理由.[研习预测试题]1.如图,为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得P A=16 m,PB=12 m,那么AB间的距离不可能是()A.5 m B.15 m C.20 m D.28 m2.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A.2 2 B.4 C.3 2 D.4 23.如图,在△ABC中,∠A=80°,点D是BC延长线上一点,∠ACD=150°,则∠B =__________.4.如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大,若∠A减少α度,∠B增加β度,∠C增加γ度,则α,β,γ三者之间的等量关系是__________.5.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为__________.6.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,∠1__________(填“是”或“不是”)∠2的对顶角,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是__________(只需写出一个).7.如图,已知在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过点E作AC的垂线,交CD的延长线于点F.求证:AB=FC.8.如图,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.参考答案【知识梳理】一、1.(1)首尾2.(1)180° 两个内角的和 不相邻 (2)大于 小于 二、1.内心 2.垂线 垂心 3.中点 重心 4.中点 一半三、1.完全重合 2.对应边 对应角四、2.(1)题设 结论 (2)真命题 假命题 (3)结论 题设 五、1.逻辑推理 导学必备知识 自主测试1.A 设∠A =x ,则∠B =2x ,∠C =x +20°,则x +2x +x +20°=180°,解得x =40°,即∠A =40°.2.A3.B 由已知可得两个三角形已有两组边对应相等,还需要另一组边对应相等或夹角对应相等,只有B 能满足条件.4.D5.①②④ 由题意知AD =AD ,条件①可组成三边对应相等,条件②可组成两角和其中一角的对边对应相等,条件④可组成两边及其夹角对应相等,这三个条件都可得出△ADB ≌△ADC ,条件③组成的是两边及其一边的对角对应相等,不能得出△ADB ≌△ADC .6.证明:∵在△ABE 和△ACD 中,∠B =∠C ,AB =AC ,∠A =∠A ,∴△ABE ≌△ACD (ASA).∴BE =CD .探究考点方法触类旁通1.B 由三角形三边的关系可得13-2<x <13+2,即11<x <15, ∵x 为正整数,∴x 为12,13,14,故选B.触类旁通2.证明:∵BE ⊥CF 于点E ,AD ⊥CE 于点D , ∴∠BEC =∠CDA =90°.在Rt △BEC 中,∠BCE +∠CBE =90°, 在Rt △BCA 中,∠BCE +∠ACD =90°, ∴∠CBE =∠ACD . 在△BEC 和△CDA 中, ∵⎩⎪⎨⎪⎧∠BEC =∠CDA ,∠CBE =∠ACD ,BC =CA ,∴△BEC ≌△CDA . 触类旁通3.①②④触类旁通4.证明:∵在△ABC 中,AD 是中线, ∴BD =CD .∵CF ⊥AD ,BE ⊥AE ,∴∠CFD =∠BED =90°. 在△BED 与△CFD 中,∵∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD , ∴△BED ≌△CFD ,∴BE =CF .品鉴经典考题1.B 根据三角形三边关系,能组成三角形的是:3,7,9;4,7,9. 2.D 若x 2=y 2,则x =y 或x =-y ,所以D 是假命题. 3.B4.105 ∠ACD =∠A +∠B =45°+60°=105°. 5.证明:在平行四边形ABCD 中,AB ∥CD , ∴∠ACD =∠BAC .在△APE 和△CPF 中,⎩⎪⎨⎪⎧∠ACD =∠BAC ,∠CPF =∠APE ,PC =P A ,∴△APE ≌△CPF .∴AE =CF . 6.解:答案不唯一,如BC =EF 等. 理由:∵AF =DC ,∴AC =DF . ∵BC ∥EF ,∴∠BCA =∠EFD . 又BC =EF ,∴△ABC ≌△DEF .研习预测试题1.D 由三角形三边关系知16-12<AB <16+12,故选D. 2.B 因为由已知可证明△BDF ≌△ADC ,所以DF =CD . 3.70° 4.α=β+γ5.60° ∵∠A +∠B +∠C =180°,∠CDE +∠CED +∠C =180°, ∴∠A +∠B =∠CDE +∠CED .∴∠A +∠B +∠CDE +∠CED =2(∠A +∠B )=280°. ∵∠1+∠2+∠CDE +∠CED +∠A +∠B =360°, ∴∠1+∠2=360°-280°=80°. 又∵∠1=20°,∴∠2=60°. 6.不是 ∠B =∠E (答案不唯一)7.证明:∵FE ⊥AC 于点E ,∠ACB =90°, ∴∠FEC =∠ACB =90°.∴∠F +∠ECF =90°. 又∵CD ⊥AB 于点D ,∴∠A +∠ECF =90°. ∴∠A =∠F .在△ABC 和△FCE 中,⎩⎪⎨⎪⎧∠A =∠F ,∠ACB =∠FEC ,BC =CE ,∴△ABC ≌△FCE . ∴AB =FC .8.证明:∵AD =EB ,∴AD -BD =EB -BD ,即AB =ED .又∵BC∥DF,∴∠CBD=∠FDB. ∴∠ABC=∠EDF.又∵∠C=∠F,∴△ABC≌△EDF.∴AC=EF。

中考数学一轮复习全全等三角形截长补短知识点-+典型题及答案

中考数学一轮复习全全等三角形截长补短知识点-+典型题及答案

中考数学一轮复习全全等三角形截长补短知识点-+典型题及答案一、全等三角形截长补短1.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.2.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 .(2)拓展应用: 如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.3.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC .(1)求证: ∠ABD = ∠ACD ;(2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.如图,ABC 中,点D 在AC 边上,且1902BDC ABD ∠=+∠.(1)求证:DB AB =;(2)点E 在BC 边上,连接AE 交BD 于点F ,且AFD ABC ∠=∠,BE CD =,求ACB ∠的度数.(3)在(2)的条件下,若16BC =,ABF 的周长等于30,求AF 的长.6.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积. 7.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).8.如图,在菱形ABCD 中,∠A =60°,E 为菱形ABCD 内对角线BD 左侧一点,连接BE 、CE 、DE .(1)若AB =6,求菱形ABCD 的面积;(2)若∠BED =2∠A ,求证:CE =BE+DE .9.(1)如图①,Rt ABC 中,AB AC =,90BAC ∠=︒,D 为BC 边上的一点,将ABD △绕点A 逆时针旋转90°至ACF ,作AE 平分DAF ∠交BC 于点E ,易证明:222BD CE DE +=.若2DE BD =,则以BD 、DE 、EC 为边的三角形的形状是______;(2)如图②,四边形ABCD 中,90BAD BCD ∠=∠=︒,AB AD =,若四边形ABCD 的面积是32,2CD =,求BC 的长度;(3)ABC 是以BC 为底的等腰直角三角形,点D 是ABC 所在平面内一点,且满足4=AD ,6BD =,2CD =,请画草图并求ADC ∠的度数.10.如图,//AD BC ,点E 在线段AB 上,DE 、CE 分别是ADC ∠、BCD ∠的角平分线,若3AD =,2BC =,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD≌△ECD(SAS),∴DE=DA,∠A=∠CED=60°,∴∠CED=2∠CBA,∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,∵BE=BC−CE=BC−AC,∴BC−AC=AD.(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果. 2.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.【详解】(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF=12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3.(1)见解析;(2)见解析;(3)∠BAC 的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,证明△ACM ≌△ABN 即可;(3)用截长补短法在CD 上截取CP=BD ,连接AP ,证明△ABD ≌△ACP ,由全等性质可知△ADP 是等边三角形,易知∠BAC 的度数.【详解】(1)∵∠BDC=∠BAC ,∠DFB=∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD ;(2)过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N .则∠AMC=∠ANB=90°.∵OB=OC ,OA ⊥BC ,∴AB=AC ,∵∠ABD=∠ACD ,∴△ACM ≌△ABN (AAS )∴AM=AN .∴AD 平分∠CDE .(到角的两边距离相等的点在角的平分线上);(3)∠BAC 的度数不变化.在CD 上截取CP=BD ,连接AP .∵CD=AD+BD ,AD=PD .∵AB=AC ,∠ABD=∠ACD ,BD=CP ,∴△ABD ≌△ACP .∴AD=AP ;∠BAD=∠CAP .∴AD=AP=PD ,即△ADP 是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 4.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =, 又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD≌ECF△()SAS,∴D CFM∠=∠,CAD≌CBF,∴D CFB∠=∠,∴CFM CFB∠=∠,//AC OQ,∴MCF CFB∠=∠,∴CFM MCF∠=∠,∴MC MF=,同理可证:CN EN=,∴在Rt MCN△中,由勾股定理得:22222MN CN CM EN FM=+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.5.(1)见解析;(2)ACB∠=60°;(3)AF=11【分析】(1)根据三角形内角与外角之间的关系建立等式,运用等量代换得出A BDA∠=∠,证得DB AB=;(2)作CH=BE,连接DH,根据角的数量关系证得EAC C∠=∠,再由三角形全等判定得△BDH≌△ABE,最后推出△DCH为等边三角形,即可得出ACB∠=60°;(3)借助辅助线AO⊥CE,构造直角三角形,并结合平行线构造△BFE∽△BDH,建立相应的等量关系式,完成等式变形和求值,即可得出AF的值.【详解】(1)证明:∵∠BDC=90°+12∠ABD,∠BDC=∠ABD+∠A,∴∠A=90°-12∠ABD.∵∠BDC+∠BDA=180°,∴∠BDA=180°-∠BDC=90°-12∠ABD.∴∠A=∠BDA=90°-12∠ABD.∴DB=AB.解:(2)如图1,作CH=BE,连接DH,∵∠AFD=∠ABC,∠AFD=∠ABD+∠BAE,∠ABC=∠ABD+∠DBC,∴∠BAE=∠DBC.∵由(1)知,∠BAD=∠BDA,又∵∠EAC=∠BAD-∠BAE,∠C=∠ADB-∠DBC,∴∠CAE=∠C.∴AE=CE.∵BE=CH,∴BE+EH=CH+EH.即BH=CE=AE.∵AB=BD,∴△BDH≌△ABE.∴BE=DH.∵BE=CD,∴CH=DH=CD.∴△DCH为等边三角形.∴∠ACB =60°.(3)如图2,过点A作AO⊥CE,垂足为O.∵DH∥AE,∴∠CAE=∠CDH=60°,∠AEC=∠DHC=60°.∴△ACE是等边三角形.设AC=CE=AE=x,则BE=16-x,∵DH∥AE,∴△BFE∽△BDH.∴16BF BE EF x BD BH DH x-===. ∴1616x x BF BD AB x x--==, ()21616x x EF DH x x--==. ∵△ABF 的周长等于30,即AB +BF +AF =AB +16x AB x -+x -()216x x-=30, 解得AB =16-8x .在Rt △ACO 中,AC =2x ,AO , ∴BO =16-2x . 在Rt △ABO 中,AO 2+BO 2=AB 2, 即2221616428x x x x ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭. 解得10x =(舍去)225621x =. ∴AC =25621. ∴AF =11.【点睛】 本题考查了三角形角的性质、等边三角形的性质与判定以及全等三角形的判定与性质的综合应用,解题的关键是能熟练掌握三角形的性质与全等判定并借助辅助线构造特殊三角形的能力,.6.(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解. 【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌,∴FH=FK , 又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm , ∴12=242FGH HFM MFN FMK FGHMN S SS S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用. 7.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,MDN EDN DN DN ⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,MDN EDN DN DN ⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 8.(1)183;(2)见解析【分析】(1)过点B 作BH ⊥AD 于H ,由直角三角形的性质可求BH 的长,由菱形的面积公式可求解;(2)延长DE 至M ,使ME =BE ,连接MB ,由题意可证△ABD 是等边三角形,△BCD 是等边三角形,△BEM 是等边三角形,可得∠CBD =∠ABD =60°=∠MBE ,AB =BD =BC ,BM =BE ,由“SAS”可证∴△MBD ≌△EBC ,可得MD =EC ,即可得结论.【详解】解:(1)如图,过点B 作BH ⊥AD 于H ,∵四边形ABCD 是菱形,∴AB =AD =6,∵∠A =60°,BH ⊥AD ,∴∠ABH =30°,∴AH =12AB =3,BH =3AH =33, ∴菱形ABCD 的面积=AD×BH =6×33=183;(2)如图,延长DE 至M ,ME =BE ,连接MB ,∵四边形ABCD 是菱形,∴AB =AD =CD =BC ,∠A =60°=∠BCD ,∴△ABD 是等边三角形,△BCD 是等边三角形,∴∠CBD =∠ABD =60°,AB =BD =BC ,∵∠BED =2∠A =120°,∴∠BEM =60°,又∵BE =ME ,∴△BEM 是等边三角形,∴BM =BE ,∠MBE =∠DBC =60°,∴∠MBD =∠EBC ,∴△MBD ≌△EBC (SAS ),∴MD =EC ,∴CE =BE+DE .【点睛】本题主要考查了菱形的性质应用,结合等边三角形的性质是解题的关键.9.(1)等腰直角三角形;(2)3)图见解析,135°或45°【分析】(1)要判断以BD 、DE 、EC 为边的三角形形状,根据题干中所给条件,只需证明BD EC =即可;(2)先构造出ABE ADC △≌△,进而判断出CAE 是等腰直角三角形,四边形的面积等于ACE △的面积,由此求出AC ,CE 即可;(3)分情况讨论:①当点D 在ABC 内时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题;②当点D 在ABC 外时,作AE AD ⊥,使AE AD =,连接CE ,DE ,利用全等三角形的性质以及勾股定理的逆定理解决问题.【详解】解:(1)222BD CE DE +=,∴以BD 、DE 、EC 为边的三角形是直角三角形,2DE =,设BD a =,则DE =,2222a EC a ∴+=,EC a ∴=,BD EC ∴=,∴以BD 、DE 、EC 为边的三角形的形状是等腰直角三角形.故答案:等腰直角三角形.(2)如图①,延长CB 至E ,使BE CD =,连接AE ,在四边形ABCD 中,90BAD BCD ∠=∠=︒,180ABC ADC ∴∠+∠=︒,180ABC ABE ∠+∠=︒,ABE ADC ∴∠=∠,在ABE △和ADC 中,,,,AB AD ABE ADC BE CD =⎧⎪∠=∠⎨⎪=⎩()ABE ADC SAS ∴△≌△,AE AC ∴=,BAE DAC ∠=∠,90CAE BAE BAC DAC BAC ∴∠=∠+∠=∠+∠=︒,212ACE S AC ∴=△, 四边形ABCD 的面积为32,ACE ABCD S S =△四边形, 21322AC ∴=, 8AC ∴=(负值已舍),282EC AC ∴==,82272BC EC BE ∴=-=-=.图①(3)①画图如图②,③.当点D 在ABC 内时,如图②,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE , 90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠, 在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==,242DE ==2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,4590135ADC ∴∠=︒+︒=︒;②当点D 在ABC 外时,如图③,过点A 作AE AD ⊥,使AE AD =,连接CE ,DE ,90BAC DAE ∠=∠=︒,BAD CAE ∴∠=∠,在BAD 和CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()BAD CAE SAS ∴≌,6BD CE ∴==, 242DE ==,2CD =,222EC ED CD ∴=+,90EDC ∴∠=︒,45ADE ∠=︒,45ADC ∴∠=︒.综上所述,ADC ∠的度数为135°或45°.图② 图③【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理以及逆定理等知识,解题的关键是利用旋转法添加辅助线,构造全等三角形解决问题,用分类讨论的思想思考问题,属于中考压轴题.10.5【分析】如图,在DC 上截取DF DA =,连接EF ,先证明ADE FDE △≌△,得到AE EF =,5A ∠=∠,然后证明CEF CEB △≌△,得到CF BC =,即可求出答案.【详解】解:如图,在DC 上截取DF DA =,连接EF ,DE 是ADC ∠的角平分线,12∠∠∴=,在△ADE 和△FDE 中,,12,,AD DF DE DE =⎧⎪∠=∠⎨⎪=⎩()ADE FDE SAS ∴△≌△,AE EF ∴=,5A ∠=∠,//AD BC ,180A B ∴∠+∠=︒,56180∠+∠=︒,6B ∴∠=∠, CE 是BCD ∠的角平分线,34∴∠=∠,在CEF △和CEB △中,6,34,,B CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()CEF CEB AAS ∴△≌△,CF BC ∴=,325CD DF CF AD BC ∴=+=+=+=.【点睛】本题考查了角平分线的性质,平行线的性质,全等三角形的判定和性质,证明ADE FDE △≌△是解题关键.。

中考数学一轮综合复习同步讲义(第9课全等三角形)

中考数学一轮综合复习同步讲义(第9课全等三角形)

中考数学一轮分复习第09课 全等三角形知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧;倍长中线:截长补短:角平分线上:已知角平分线及垂足在上一点到一边距离:已知角平分线及平分线辅助线做法:共边问题:重叠角问题:已知两角,已知两边,全等三角形判定方法:角平分线画法:角平分线判定:角平分线性质:,,,,全等三角形判定:全等三角形性质:定义:全等三角形课堂练习:1.下列说法错误的有( )①只有两个三角形才能完全重合; ②如果两个图形全等,它们的形状和大小一定都相同; ③两个正方形一定是全等图形; ④边数相同的图形一定能互相重合.A.4 个B.3 个C.2 个D.1 个2.已知△ABC 与△DEF 全等,∠A=∠D=900,∠B=370,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°3.如图,已知∠1=∠2,要使△ABC ≌△ADE ,还需条件( )A.AB=AD,BC=DEB.BC=DE,AC=AEC.∠B=∠D,∠C=∠ED.AC=AE,AB=AD4.在△ABC 中,AC=5,中线AD=4,则边AB 的取值范围是( )A.1<AB<9B.3<AB<13C.5<AB<13D.9<AB<135.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=6.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=1050,∠CAD=150 ,∠B=∠D=300,则∠1的度数为第6题图第7题图第8题图7.如图,AB=DB,∠ABD=∠CBE,请添加一个适当条件,使△ABC≌△DBE.(只需添加一个即可)8.如图,在Rt△ABC中,∠ACB=900,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.9.如图,已知AB⊥BD 于B,ED⊥BD 于D,AB=CD,BC=DE,则∠ACE=____.10.如图,F在正方形ABCD的边BC边上,E在AB 的延长线上,FB=EB,AF 交CE 于G,则∠AGC的度数是______.11.如图,△ABC是不等边三角形,DE=BC,以D,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.12.如图,AE=DB,BC=EF,BC∥EF,求证:△ABC≌△DEF.13.如图∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AB=AC.14.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.15.如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.16.如图,ΔABC和ΔBDE是等边三角形,D在AE 延长线上.求证:BD+DC=AD.17.如图,在△ABC中,∠ACB=900,AC=BC,D是AB上一点,AE⊥GD于E,BF⊥CD交CD的延长线于F.求证:AE=EF+BF.18.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=900,BE⊥AD,垂足为E.求证:BE=DE.19.已知,在ΔABC中,∠B=2∠C,AD平分∠A交BC于D点,求证:AC=AB+BD.20.如图,等腰 Rt△OAB中,∠AOB=90o,等腰Rt△EOF中,∠EOF=90o,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.21.已知在Rt△ABC中,∠C=900,AC=BC,AD为∠BAC的平分线,DE⊥AB,垂足为C.求证:△DBE的周长等于AB的长.22.已知,如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC.求证:∠BAD+∠BCD=180°.23.如图①,点E在正方形ABCD边BC上,BF⊥AE于F,DG⊥AE于G,可知△ADG≌△BAF.(不要求证明)拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF.应用:如图③,在等腰三角形ABC中,AB=AC,B>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为.第09课全等三角形测试题日期:月日满分:100分时间:20分钟姓名:得分:1.如图∠1=∠2=200,AD=AB,∠D=∠B,E 在线段BC 上,则∠AEC=()A.200B.700C.500D.800第1题图第2题图第3题图2.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去 B.带②去 C.带③去 D.带①和②去3.已知图中的两个三角形全等,则∠α度数是()A.72°B.60°C.58°D.50°4.如图,已知点A、D、C、F在同一直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF第4题图第5题图第6题图5.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等6.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对7.在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形8.如图,△ABC中,∠C=900,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AC=10cm,则△DBE的周长等于( )A.10cm B.8cm C.6cm D.9cm第8题图第9题图9.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1 处B.2 处C.3 处D.4 处10.若两个三角形的面积相等, 则这两个三角形________全等.(选择:一定或不一定)11.已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“ASA”为依据,还缺条件 .(2)若以“AAS ”为依据,还缺条件 .(3)若以“SAS ”为依据,还缺条件 .12.如图,AD 是△ABC 的中线,∠ADC=600,BC=6,把△ABC 沿直线AD 折叠,点C 落在C /处,连接BC /,那么BC /的长为 .第12题图 第13题图 第14题图13.如图,△ABD 与△AEC 都是等边三角形,AB ≠AC,下列结论中:①BE=DC ;②∠BOD=60°;③△BOD ∽△COE.正确的序号是 14.如图,△ABD 的三边AB 、BC 、CA 的长分别是20、30、40、其中三条角平分线将△ABD 分为三个三角形,则CAO BCO ABO S S S ∆∆∆:: 等于______.15.如图,AB ∥CD,O 是∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E,且OE=3,则AB 与CD 间的距离等于16.如图,AC ⊥BC,BD ⊥AD,AC 与BD 交于O,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.17.如图,已知AD 是∠BAC 的平分线,DE ⊥AB 于E,DF ⊥AC 于F,且BD=CD.求证:BE=CF .18.如图,在四边形ABCD 中,AD ∥BC,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F,点G 在边BC 上,且∠GDF=∠ADF .(1)求证:△ADE ≌△BFE ;(2)连接EG,判断EG 与DF 的位置关系并说明理由.。

数学中考总复习(一轮复习)第17讲全等三角形

数学中考总复习(一轮复习)第17讲全等三角形

第17讲全等三角形【考点总汇】一、全等三角形的性质及判定定理 1•性质(1) _________________________ 全等三角形的对应边,对应角 。

(2) ________________________________ 全等三角形的对应边的中线 _______________________ ,对应角平分线 _____________________________________ ,对应边上的高 __________ ,全等三角 形的周长 _________ ,面积 _________ 。

2•判定定理(1)三边分别 _________ 的两个三角形全等(简写“边边边”或“ _______ ”)。

微拨炉:已知两边和一角判定三角形全等时,没有“ SSA ”定理,即不能错用成“两边及一边对角相等的两个三角形全等”。

二、角的平分线1•性质:角的平分线上的点到角的两边的距离 ___________ 。

2•判定:角的内部到角的两边的距离相等的点在 ____________ 。

3•三角形的三条角平分线相交于一点,并且这一点到三条边的距离 微拨炉: 1•三角形的角平分线是一条线段,不是射线。

2•角的平分线的性质定理和判定定理互为逆定理。

注意分清题设和结论。

高频考点1、全等三角形的判定与性质 【范例】如图,在△ ABC 中,AB=CB ,■ ABC =90,D 为AB 延长线上一点,点 E 在BC 边上, 且 BE 二 BD ,连接 AE 、DE 、DC 。

(2)两边和它们的夹角分别________ 的两个三角形全等(简写“边角边”或 ”) (3)两角和它们的夹边分别________ 的两个三角形全等(简写“角边角”或”)(4)斜边和一条直角边分别 的两个直角三角形全等(简写“斜边、直角边”或 ”)(1)求证:△ ABE ◎△ CBD(2)若• CAE =30 [求• BDC 的度数D得分要领:判定全等三角形的基本思路1•已知两边:(1)找夹角(SAS) ; (2)找直角(HL或SAS) ; (3)找第三边(SSS)。

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理

中考数学一轮复习专题解析—全等三角形判定与性质定理复习目标1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;考点梳理一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.特别提醒:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).例1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP△AQ.【答案】证明:(1)△BD、CE分别是△ABC的边AC和AB上的高,△△1+△CAE=90°,△2+△CAE=90°.△△1=△2,△在△AQC和△PAB中,△△AQC△△PAB.△ AP=AQ.(2)△ AP=AQ,△QAC=△P,△△PAD+△P=90°,△△PAD+△QAC=90°,即△PAQ=90°.△AP△AQ.二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例2.如图,已知AD为△ABC的中线,且△1=△2,△3=△4,求证:BE+CF>EF.【答案】证明:延长ED至M,使DM=DE,连接CM,MF,在△BDE和△CDM中,△△BDE△△CDM(SAS).△BE=CM.又△△1=△2,△3=△4 ,△1+△2+△3+△4=180°,△△3+△2=90°,即△EDF=90°,△△FDM=△EDF =90°.在△EDF和△MDF中△△EDF△△MDF(SAS),△EF=MF (全等三角形对应边相等),△在△CMF中,CF+CM>MF(三角形两边之和大于第三边),△BE+CF>EF.三、常见的几种辅助线添加△遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;△遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;△遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;△过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;△截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.例3.如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,△ D为BC中点,△ BD=DC,在△ADC和△HDB中,△ △ADC△△HDB(SAS),△ AC=BH, △H=△HAC,△ EA=EF,△ △HAE=△AFE,又△ △BFH=△AFE,△ BH=BF,△ BF=AC.综合训练1.(2022·长沙市雅礼实验中学九年级月考)如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SSA C.ASA D.SAS【答案】C【分析】根据全等三角形的判定方法解答即可.【详解】解:画一个三角形A′B′C′,使△A′=△A,A′B′=AB,△B′=△B,符合全等三角形的判定定理ASA,故选:C.2.(2022·全国九年级专题练习)如图G是△ABC的重心,直线过A点与BC平行.若直线CG分别与AB、交于D、E两点,直线BG与AC交于F点,则△AED 的面积:四边形ADGF的面积=()A.1:2B.2:1C.2:3D.3:2【答案】D【分析】根据重心的概念得出D,F分别是三角形边的中点.若设△ABC的面积是2,则△BCD的面积和△BCF的面积都是1.又因为BG:GF=CG:GD,可求得△CGF 的面积.则四边形ADGF的面积也可求出.根据ASA可以证明△ADE△△BDC,则△ADE的面积是1.则△AED的面积:四边形ADGF的面积可求.【详解】解:设三角形ABC的面积是2,△三角形BCD的面积和三角形BCF的面积都是1,△BG:GF=CG:GD=2,△三角形CGF的面积是13,△四边形ADGF的面积是2−1−13=23,△//l BC,△EAD CBD∠=∠,△,=∠=∠,BD AD ADE BDC△△ADE△△BDC(ASA)△△ADE的面积是1△△AED的面积:四边形ADGF的面积=1:2=3:2.3故选:D.3.(2022·重庆实验外国语学校九年级月考)如图,在正方形ABCD中,210AB=﹐E,F分别为BC,CD的中点,连接AE、BF,AE交BF于点G,将BCF△沿BF△的面积是()翻折得到BPF△,延长FP交BA延长线于点Q,连接QG,则QGFA.25B.25C.20D.15 2【答案】D【分析】由已知可求QF=QB,在Rt△BPQ中,由勾股定理求得QB,可求出S△BQF=25,再证明△ABE△△BCF(SAS),△BGE△△BCF,由此得BF,GE,BG,过点G作GN△AB交AB于N,可证明△ANG△△ABE,再由GA=AE-GE,可求得GN,根据S△QGF=S△BQF-S△BQG即可求解.【详解】解:将BCF△,△沿BF翻折得到BPF∴PF =FC ,△PFB =△CFB ,四边形ABCD 是正方形∴△FPB =90°,CD △AB ,,90AB BC ABE BCF =∠=∠=︒△△CFB =△ABF , △△ABF =△PFB , △QF =QB ,△PF =FC =12CD 12AB =PB =AB 在Rt △BPQ 中,222QB BP PQ =+,△222(QB QB =+,△QB△S△BQF =1252=,△AB =BC ,BE =CF ,△ABE =△BCF =90°, △△ABE △△BCF (SAS ), △△AEB =△BFC , 又△△EBG =△CBF , △△BGE △△BCF ,GE BG BECF BC BF∴==, △CF,BC △BF△GEBG , 过点G 作GN △AB 交AB 于N ,△△GAN=△EAB,△ANG=△ABE=90°,△△ANG△△ABE,△GN GABE EA=△GA=AE-GE =42△GN=4105△S△BQG=12×QB×GN=1510410225⨯⨯=10,△S△QGF=S△BQF-S△BQG=25-10=15,故选:D.4.(2022·四川省宜宾市第二中学校九年级一模)如图,以ABC的三边为边分别作等边ACD△、ABE△、BCF△,则下列结论正确的是()A.EBF DFC≌B.四边形ADFE为矩形C.四边形ADFE为菱形D .当AB AC =,120BAC ∠=︒时,四边形ADFE 是正方形【答案】A【分析】利用SAS 得到△EBF 与△DFC 全等,利用全等三角形对应边相等得到EF =AC ,再由△ADC 为等边三角形得到三边相等,等量代换得到EF =AD ,AE =DF ,利用对边相等的四边形为平行四边形得到AEFD 为平行四边形,若AB =AC ,△BAC =120°,只能得到AEFD 为菱形,不能为正方形,即可得到正确的选项.【详解】解:△△ABE 、△BCF 为等边三角形,△AB =BE =AE ,BC =CF =FB ,△ABE =△CBF =60°,△△ABE −△ABF =△FBC −△ABF ,即△CBA =△FBE ,在△ABC 和△EBF 中,AB EB CBA FBE BC BF =⎧⎪∠=∠⎨⎪=⎩, △△ABC △△EBF (SAS ),△EF =AC ,又△△ADC 为等边三角形,△CD =AD =AC ,△EF =AD =DC ,同理可得△ABC △△DFC ,△DF =AB =AE =DF ,△四边形AEFD 是平行四边形,故B 、C 选项错误;△△FEA =△ADF ,△△FEA +△AEB =△ADF +△ADC ,即△FEB =△CDF ,在△FEB 和△CDF 中,EF DC FEB CDF EB FD =⎧⎪∠=∠⎨⎪=⎩. △△FEB △△CDF (SAS ),故选项A 正确;若AB =AC ,△BAC =120°,则有AE =AD ,△EAD =120°,此时AEFD 为菱形,选项D 错误故选A .5.(2022·重庆实验外国语学校九年级开学考试)如图在四边形ABEC 中,BEC ∠和BAC ∠都是直角,且AB AC =.现将BEC ∆沿BC 翻折,点E 的对应点为E ',BE '与AC 边相交于D 点,恰好BE '是ABC ∠的角平分线,若1CE =,则BD 的长为( )A .1.5B 2C .2D 3【答案】C【分析】 如图,延长CE '和BA 相交于点F ,根据翻折的性质可以证明△BE′C △△BE′F ,可得CF =2,再证明△FCA △△DBA ,可得BD =CF =2.【详解】解:如图,延长CE '和BA 相交于点F ,由翻折可知:90BE C E ∠'=∠=︒,1CE CE '==,BE '是ABC ∠的角平分线,CBE FBE ∴∠'=∠',BE BE '=',∴()BE C BE F ASA '≅',1E F CE ∴'='=,2CF ∴=,90FCA F ∠+∠=︒,90DBA F ∠+∠=︒,FCA DBA ∴∠=∠,90FAC DAB ∠=∠=︒,AB AC =,()FCA DBA ASA ∴≅,2BD CF ∴==.故选:C .6.(2022·长沙市开福区青竹湖湘一外国语学校九年级三模)如图,在Rt ABC 中,90A ∠=︒,利用尺规在BA ,BC 上分别截取BD ,BE ,使BD BE =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在ABC ∠内交于点F ;作射线BF 交AC于点H.若2HA=,P为BC上一动点,则HP的最小值是()A.12B.2C.1D.无法确定【答案】B【分析】根据作图过程可得BH平分△ABC,当HP△BC时,HP最小,根据角平分线的性质即可得HP的最小值.【详解】解:根据作图过程可知:BH平分△ABC,当HP△BC时,HP最小,△HP=HA=2.故选:B.7.(2022·长沙市雅礼实验中学九年级月考)如图,在Rt ABC中,90C∠=︒,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于12MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若54B∠=︒,则CDA∠=______度.【答案】72°利用三角形内角和180°,解得36CAB ∠=︒,由角平分线性质解得18CAD ∠=︒的度数,最后根据三角形外角性质解题即可.【详解】解:90,54C B ∠=︒∠=︒905436CAB ∴∠=︒-︒=︒ AD 平分CAB ∠ 1182CAD DAB CAB ∴∠=∠=∠=︒ 185472CDA DAB B ∴∠=∠+∠=︒+︒=︒故答案为:72.8.(2022·广东深圳市南山外国语学校九年级二模)如图,在平面直角坐标系中,矩形OABC 中,3OA =,6OC =,将ABC 沿对角线AC 翻折,使点B 落在B '处,AB '与y 轴交于点D ,则点D 的坐标为______.【答案】9(0,)4-【分析】设OD m =,则6CD m =-,由题意可以求证AOD CB D '△≌△,从而得到6AD CD m ==-,再根据勾股定理即可求解.解:由题意可知:3OA BC B C '===,6OC AB ==,90B B AOD '∠=∠=∠=︒ 设OD m =,则6CD m =-,又△B DC ADO '∠=∠△()AOD CB D AAS '△≌△△6AD CD m ==-在Rt AOD △中,222AD AO OD =+,即222(6)3m m -=+ 解得:94m =△点D 的坐标为9(0,)4-故答案为9(0,)4-9.(2022·广东实验中学九年级三模)已知,ABC DCB ∠=∠,ACB DBC ∠=∠,求证:ABC DCB △≌△.【答案】证明见解析【分析】由条件△ABC =△DCB ,△ACB =△DBC ,根据ASA 证明△ABC △△DCB 即可.【详解】证明:在△ABC 和△DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABC △△DCB (ASA );10.(2022·厦门市湖滨中学)如图,在△ABE 和△CDF 中,点C 、E 、F 、B 在同一直线上,BF =CE ,若AB △CD ,△A =△D .求证:AB =CD .【答案】见解析【分析】根据平行线的性质可得△B =△C ,根据已知条件可得BE =CD ,结合已知条件△A =△D ,即可证明△ABE △△DCF ,进而即可得证AB =CD .【详解】解:△AB △CD ,△△B =△C .△BF =CE ,△BF +EF =CE +EF ,即BE =CF .△△A =△D ,△B =△C ,BE =CF△△ABE △△DCF (AAS ).△AB =CD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形◆课前热身1.已知图中的两个三角形全等,则∠错误!不能通过编辑域代码创建对象。

度数是( )A.72°B.60°C.58°D.50°2.一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或123.如图,已知错误!不能通过编辑域代码创建对象。

那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .错误!不能通过编辑域代码创建对象。

B .BAC DAC =∠∠C .错误!不能通过编辑域代码创建对象。

D .90B D ==︒∠∠4.如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对【参考答案】 1. D2. C 分析:等腰三角形有两种情况:(1)2、2、5;(2)5、5、2;(1)不满足三角形三边关系,所以只有5、5、2;周长=123. C4. B ◆考点聚焦 知识点全等形,全等三角形及其性质,三角形全等判定 大纲要求1.了解全等形,全等三角形的概念和性质,逆命题和逆定理的概念;ABCDOABCD2.理解全等三角形的概念和性质。

掌握全等三角形的判定公理及其推论,并能应用他们进行简单的证明和计算。

3.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握寓丁几何证明中的分析,综合,转化等数学思想。

考查重点与常见题型论证三角形全等,线段的倍分,常见的多为解答题 ◆备考兵法1.证边角相等可转化为证三角形全等,即“要证边相等,转化证全等.•”全等三角形是证明线段、角的数量关系的有力工具,若它们所在的三角形不全等,可找中间量或作辅助线构造全等三角形证明.在选用ASA 或SAS 时,一定要看清是否有夹角和夹边;要结合图形挖掘其中相等的边和角(如公共边、公共角和对顶角等),若题目中出现线段的和差问题,往往选择截长或补短法.2.本节内容的试题一改以往“由已知条件寻求结论”的模式,•而是在运动变化中(如平移、旋转、折叠等)寻求全等.对全等三角形的考查一般不单纯证明两个三角形全等,命题时往往把需要证明的全等三角形置于其他图形(如特殊平行四边形)中,或与其他图形变换相结合,有时也还与作图题相结合;解题时要善于从复杂的图形中分离出基本图形,寻找全等的条件. ◆考点链接1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.◆典例精析例1(2009山西太原)如图,错误!不能通过编辑域代码创建对象。

,BCB ∠'=30°,则错误!不能通过编辑域代码创建对象。

的度数为A .20°B .30°C .35°D .40°【解析】本题考查全等三角形的性质,ACB A C B '''△≌△, ∴∠ACB=∠A′CB′,CABB 'A '∴错误!不能通过编辑域代码创建对象。

=BCB ∠'=30°,故选B . 【答案】B例2(2009年河南)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.【分析】首先进行判断:OE ⊥AB ,由已知条件不难证明△BAC ≌△ABD ,得∠OBA =∠OAB 再利用等腰三角形“三线合一”的性质即可证得结论。

解决此类问题,要熟练掌握三角形全等的判定、等腰三角形的性质等知识。

答案:OE ⊥AB . 证明:在△BAC 和△ABD 中,⎩⎪⎨⎪⎧AC =BD ,∠BAC =∠ABD ,AB =BA .∴△BAC ≌△ABD . ∴∠OBA =∠OAB , ∴OA =OB .又∵AE =BE , ∴OE ⊥AB .(注:若开始未给出判断“OE ⊥AB ”,但证明过程正确,不扣分)例3(2009年山东临沂)数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.错误!不能通过编辑域代码创建对象。

,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证错误!不能通过编辑域代码创建对象。

,所以AE EF =. 在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【分析】构造全等三角形解题 解:(1)正确.证明:在错误!不能通过编辑域代码创建对象。

上取一点M ,使错误!不能通过编辑域代码创建对象。

,连接ME .错误!不能通过编辑域代码创建对象。

.45BME ∴∠=°,错误!不能通过编辑域代码创建对象。

.CF 是外角平分线,错误!不能通过编辑域代码创建对象。

,135ECF ∴∠=°.错误!不能通过编辑域代码创建对象。

.90AEB BAE ∠+∠= °,错误!不能通过编辑域代码创建对象。

,∴错误!不能通过编辑域代码创建对象。

.AME BCF ∴△≌△(ASA ).错误!不能通过编辑域代码创建对象。

. (2)正确.ADFC GE BN ADFC GE B图1ADFC GE B 图2ADFC G E B图3证明:在BA 的延长线上取一点错误!不能通过编辑域代码创建对象。

. 使AN CE =,连接错误!不能通过编辑域代码创建对象。

.BN BE ∴=.错误!不能通过编辑域代码创建对象。

.四边形错误!不能通过编辑域代码创建对象。

是正方形,AD BE ∴∥.错误!不能通过编辑域代码创建对象。

.NAE CEF ∴∠=∠.错误!不能通过编辑域代码创建对象。

(ASA ).AE EF ∴=.◆迎考精炼 一、选择题1.(2009年江苏省)如图,给出下列四组条件: ①错误!不能通过编辑域代码创建对象。

; ②AB DE B E BC EF =∠=∠=,,; ③错误!不能通过编辑域代码创建对象。

; ④AB DE AC DF B E ==∠=∠,,.其中,能使错误!不能通过编辑域代码创建对象。

的条件共有( ) A .1组B .2组C .3组D .4组2.(2009年黑龙江牡丹江)尺规作图作AOB ∠的平分线方法如下:以错误!不能通过编辑域代码创建对象。

为圆心,任意长为半径画弧交OA 、错误!不能通过编辑域代码创建对象。

于C 、错误!不能通过编辑域代码创建对象。

,再分别以点C 、错误!不能通过编辑域代码创建对象。

为圆心,以大于12CD 长为半径画弧,两弧交于点错误!不能通过编辑域代码创建对象。

,作射线OP ,由作法得错误!不能通过编辑域ODPCA B代码创建对象。

的根据是( )A .SASB .ASAC .AASD .SSS3.(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CDB .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB4. (2009年甘肃定西)如图,四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE=( ) A .2B .3C .22D .错误!不能通过编辑域代码创建对象。

二、填空题1.(2009年广东清远)如图,若111ABC A B C △≌△,且错误!不能通过编辑域代码创建对象。

,则1C ∠= .2.(2009年湖南邵阳)如图,点错误!不能通过编辑域代码创建对象。

是菱形ABCD 的对角线错误!不能通过编辑域代码创建对象。

上的任意一点,连结 AE CE 、.请找出图中一对全等三角形为___________.3.(2009年湖南怀化)如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是 (写出一个即可).4.(2009年福建龙岩)如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可).ABC C 1A 1B 1ABCDEA CEBDABCD5.(2009年四川遂宁)已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 三、解答题1.(2009年四川宜宾)已知:如图,在四边形ABCD 中,AB=CB,AD=CD. 求证:∠C=∠A.2. (2009年四川南充)如图,ABCD 是正方形,点G 是BC 上的任意一点,错误!不能通过编辑域代码创建对象。

于E ,BF DE ∥,交AG 于F . 求证:错误!不能通过编辑域代码创建对象。

.3.(2009年浙江丽水)已知命题:如图,点A ,D ,B ,E 在同一条直线上,且AD=BE ,∠A=∠FDE ,则△ABC ≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.4. (2009年上海市)已知线段AC 与错误!不能通过编辑域代码创建对象。

相交于点O ,联结错误!不能通过编辑域代码创建对象。

,E 为错误!不能通过编辑域代码创建对象。

的FEABCDA BE FCDDCBA EFG中点,F 为错误!不能通过编辑域代码创建对象。

的中点,联结EF (如图所示).(1)添加条件∠A=∠D ,错误!不能通过编辑域代码创建对象。

,求证:AB=DC . (2)分别将“A D ∠=∠”记为①,“错误!不能通过编辑域代码创建对象。

”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 命题,命题2是 命题(选择“真”或“假”填入空格).5.(2009年吉林省)如图,,AB AC AD BC D =⊥于点,AD AE AB DAE =∠,平分交 DE F 于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.6.(2009年湖南省娄底市)如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE . (1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.ODC ABEF(第5题)BD CFAE【参考答案】一、选择题1. C2. D3. A4. C 二、填空题1.3002.错误!不能通过编辑域代码创建对象。

相关文档
最新文档