徐州三中附中八年级数学阶段自测作业

合集下载

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。

2022-2023学年江苏省徐州市八年级第二学期期中数学试卷及参考答案

2022-2023学年江苏省徐州市八年级第二学期期中数学试卷及参考答案

2022~2023学年度第二学期期中检测八年级数学试题(全卷共140分,考试时间90分钟,答案全部涂、写在答题卡上)一、选择题1.下列垃圾分类标识的图案中,是中心对称图形的是( )A. B. C. D.2.“翻开苏科版数学八年级下册,恰好翻到第20页”,这个事件是( ) A.确定事件B.不可能事件C.必然事件D.随机事件3.下列调查中最适合用普查的方式是( ) A.了解来徐游客满意度调查 B.乘坐地铁时进站安检 C.了解故黄河内现有鱼的种类 D.某批次灯泡的平均使用寿命4.要反应某市3月份空气质量指数PM2.5数据变化,宜采用( )A.统计表B.扇形统计图C.折线统计图D.条形统计图 5.关于“某地区刮刮乐彩票一等奖的中奖率为1%”下列说法正确的是( ) A.买100张刮刮乐必有1张一等奖 B.买100张刮刮乐必中一等奖 C.买100张刮刮乐可能都没有一等奖 D.买100张必定中奖6.下列命题中,正确的是( ) A.对角线相等的四边形是矩形B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是正方形D.菱形的对角线互相平分7.如图,在矩形纸片ABCD 中,3AB =,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若EAC ECA ∠=∠,则AC 的长是( )A. B.6C.4D.58.如图,正方形ABCO 和正方形DEFO 的顶点A 、O 、E 在同一直线l 上,且EF =,4AB =,给出下列结论:①45COD ∠=︒;②AD CF ⊥;③CF =ABDO 的面积与正方形ABCO 的面积相等.其中正确的结论为( ) A.①②③④B.①②C.①②③D.①③④二、填空题9.某校为了解今年春季开学后八年级学生的体质情况,校卫生室从八年级19个班中随机抽取了190名学生进行调研,则此次抽样调查的样本容量是____________.10.把质地均匀的小正方体的一个面涂成红色、两个面涂成黄色、三个面涂成蓝色,抛掷这个小立方体,那么向上一面的颜色可能性最大的是____________.11.某班50名同学每人选一种自己最喜欢的球类运动,其中足球16票、乒乓球7票、篮球21票、网球6票,则选篮球的频率为____________.12.在□ABCD 中,若50A ∠=︒,那么C ∠=____________︒.13.在不透明袋子里装有除颜色外完全相同的8个球.每次从袋子里摸出1个球记下颜色后放回,经过多次重复试验,发现摸到白球的频率稳定在0.25,估计袋中白球有________个. 14.在菱形ABCD 中,对角线6AC =,8BD =,则菱形的周长为________.15.矩形纸片ABCD 中,12AB =,5AD =,P 为DC 上一动点,将APD 沿AP 折叠后得到APD ',连接CD ',则CD '的最小值为___________.16.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,1BC =,4CE =,H 是AF 的中点,那么CH 的长是___________.三、解答题17.今年我市各景点游客明显增多.为提高服务质量,回龙窝管理部门随机抽取了部分游客进行满意度调查,并绘制成如下不完整的频数分布表和扇形统计图. 频数分布表扇形统计图根据提供的信息,解答下列问题:(1)a =_________,b =_________,c =_________,d =_________; (2)扇形统计图中表示“一般”的扇形圆心角α的度数是_________;(3)若某日回龙窝接待游客12000人,请估算满意程度为“非常满意”的有多少人? 18.正方形网格中(每个小正方形边长是1,小正方形的顶点叫做格点)ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出ABC 绕点B 逆时旋转90︒的111A B C ,并写出点C 的对应点1C 的坐标为__________; (2)画出ABC 关于点O 的中心对称图形222A B C ,并写出点C 的对应点2C 的坐标为__________;(3)在平面直角坐标系内找点D ,使以A 、B 、C 、D 为顶点的四边形为平行四边形,则点D 坐标为__________; (4)111A B C 可由222A B C 绕点M 旋转得到,请写出点M 的坐标为__________.19.如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,AE CF =. 求证:四边形BFDE 是平行四边形20.如图,在ABC 中,BD 平分ABC ∠,DE BC ,EF AC .求证:BE FC =21.如图,ABC 中90ACB ∠=︒,CD 平分ACB ∠,DE BC ⊥,DF AC ⊥.求证:四边形CFDE 为正方形.22.如图,E 、F 、G 、H 为菱形ABCD 各边中点.(1)求证:四边形EFGH 为矩形(2)若6EFGH S =四边形,则ABCD S =菱形__________. 23.如图,在四边形ABCD 中,ABCD , 90C ∠=︒,8AB =,5AD CD ==,点M 为BC 上的动点,N 、E 、F 分别为AB 、MD 、MN 的中点.(1)求EF 的长度(2)若点N 为AB 动点,则EF 最小为__________.24.如图,在四边形ABCD 中,90BAC ∠=︒,E 是BC 的中点,AD BC ,AE DC ,EF CD ⊥于点F .(1)求证:四边形AECD 是菱形; (2)若6AB =,10BC =,求EF 的长.25.如图,点O 为矩形ABCD 的对称中心,10AB cm =,12BC cm =,点E 、F 、G 分别从A 、B 、C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点E 的速度为1/cm s ,点F 的速度为3/cm s ,点G 的速度为/xcm s .当点F 到达点C (即点F 与点C 重合)时,三个点随之停止运动.在运动过程中,EBF 关于直线EF 的对称图形是EB F ',设点E 、F 、G 运动的时间为t (单位:s ).(1)当t =___________s 时,四边形EBFB '为正方形.(2)当x 为何值时,可得以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形全等? (3)是否存在实数t 、使得点B '与点O 重合?若存在,求出t 的值;若不存在,请说明理由.数学试题参考答案1-4:CDBC5-8:CDBC9.19010.蓝色11.0.4212.5013.214.2015.816.2 17.(1)a =15,5b =,0.15c =,100d =;(2) 54︒(3)120000.5 6000⨯=(人)答:非常满意的有6000人. 18.(1)如图所示,11A BC 即为所求.102C (,) (2)如图所示,222A B C 即为所求.231C --(,) (3)点034523D -(,)、(,)、(,) (4)点01M (,﹣).19.ABCD 中AD BC =又AE CF =AD AE BC CF ∴=--即DE BF =又ABCD 中AD BC DE BF ∴∴四边形BFDE 是平行四边形20.∵BD 平分ABC ∠CBD EBD ∴∠=∠DEBC CBD EDB ∴∠=∠ 则EBD EDB ∠=∠EBD ∴中BE DE =又DEBC ,EFAC ∴四边形EDFC 为平行四边形则FC DE =BE FC ∴=21.DE BC ⊥,DF AC ⊥90CED CFD ∴∠=∠︒= 90ACB ∠︒=∴四边形CFDE 为矩形又∵CD 平分ACB ∠DE DF ∴=∴矩形CFDE 为正方形.22.(1)连接AC 、BD 相交于O 点,BD 交HG 于M 点 ∵在ACD 中H 、G 为AD 、CD 中点12HG AC ∴=且HG AC同理可得12EF AC =且EF AC则EFHG 且EF HG =∴四边形EFGH 为平行四边形∵菱形ABCD 中AC BD ⊥且HG AC 90HMD ∴∠︒=∵在ABD 中H 、E 为AD 、AB 中点EH BD ∴则90EHM HMD ∠∠︒==∴EFGH 为矩形(2)1223.(1)作DH AB ⊥于H ,连接DNABCD ,=90C ∠90DHB ∠=︒∴四边形BCDH 是矩形5BH CD ∴==,3AH AB BH =-=在Rt DHA △中,4DH ===∵N 为AB 的中点142AN AB ∴==则1HN AN AH =-= 在Rt DHA △==∵在DMN △中,E 、F 为MD 、MN的中点122EF DN ∴==(2)2A24.(1)ADBC ,AEDC∴四边形AECD 是平行四边形90BAC ∠︒=,E 是BC 的中点12AE CE BC ∴==∴AECD 是菱形(2)过A 作AH BC ⊥于点H90BAC ∠︒=,6AB =,10BC =8AC ∴==1122ABCSBC AH AB AC =⋅=⋅6824105AH ⨯∴== ∵点E 是BC 的中点,10BC =,四边形AECD 是菱形 5CD CE ∴==(法一••AECD S CE AH CD EF ==245EF AH ∴==.) (法二 也可以证AHE EFC ≌,245EF AH ∴==.)25.(1)2.5(2)由题意得10BE t =-,3BF t =,123FC t =-,CG xt = 当BFE CGF ≌时,,BE CF BF CG ==即:101233t t t xt -=-⎧⎨=⎩,解得13t x =⎧⎨=⎩;当BFE CFG △≌△时,,BE CG BF CF == 即:103123t xt t t -=⎧⎨=-⎩,解得24t x =⎧⎨=⎩;即当3x =或4x =时,即为所求.(3)如右图假设存在实数t ,使得点使得点B '与点O 重合,由对称可知:连接OB ,作OB 的垂直平分线交AB 于E ,交BC 于F , 过O 作OM AB ⊥于M ,作ON BC ⊥于N , 则5,63EM t FN t =-=-在Rt EMO 中2222OE BE OM EM ==+,()()2221065x x -=+-,3910x = 在Rt FNO 中2222OF BF ON FN ==+,()()2223563x x =+-,6136x =39613636≠,所以,不存在实数t ,使得点B '与点O 重合.。

江苏省徐州市第三中学2014-2015学年第二学期4月月考八年级数学模拟试题

江苏省徐州市第三中学2014-2015学年第二学期4月月考八年级数学模拟试题

徐州市第三中学2014-2015学年第二学期4月月考八年级数学模拟试题一、 选择题(本大题共8小题,每小题3分,共24分,请将答案填在以下空格内)1.如果□+2=0,那么“□”内应填的实数是 (▲)A .-2B .-21 C .21D . 2 2.下列四个图形中,不是..轴对称图形的是 (▲)A .B .C .D .3.在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为A. 39.6×102B. 3.96×103C. 3.96×104D. 3.96×1044.随着社会的进步,农村生活水平有了很大的提高,很多村寨都通上了自来水.为了解某组村民用水情况,随机抽取了八户家庭的月用水量,结果是(单位:吨):6,3,4,6,6,3,5,6.那么这组数据的众数是 (▲) A .6 B .5 C .4 D .35.下面左图是由六个相同正方体堆成的物体的图形,则这一物体的主视图是 (▲)6.在菱形ABCD 中,AB=5cm ,则此菱形的周长为 (▲) A .5cm B .15cm C .20cm D .25cm 7.方程3(1)33xxx +=+的解为 (▲) A .1x =B .121-1x x ==,C .1x =-D . 120-1x x ==,8.如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线y=(k ≠0)与△ABC 有交点,则k 的取值范围是 (▲) A .1<k<2 B .1≤k ≤3 C .1≤k ≤4 D .1≤k<4 二、填空题 9.在函数y =x 的取值范围是____________.10.分解因式:224x -= .11.已知A 、B 是抛物线243y x x =-+上位置不同的两点,且关于抛物线的对称轴对称,则点A 、B 的坐标可能是_____________.(写出一对即可)12.如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,若∠BOD=100º,则∠AOE= . 13.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为 .14.如图,已知△OAB 与△OA 1B 1是相似比为1∶2的位似图形,点O 是位似中心,若A(-3,2),则点A 1的坐标是 .15.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为 .16.如图,菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6,sinA=53,则菱形ABCD 的面积是 .第12题第15题 第16题 第17题17.如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是.A ECBOD A BCDE 1x b +B ED A OC 18..如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作EF BC ∥交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D .下列四个结论:1902BOC A ∠=∠①°+;②以E 为圆心、BE 为半径的圆与以F 为圆心、CF为半径的圆外切;③设OD m AE AF n =+=,,则AEF S mn =△;④EF 不能成为ABC △的中位线. 其中正确的结论是_____________.(把你认为正确结论的序号都填上) 三、解答题(本大题共10小题,共96分) 19.(本题满分8分)(1()11302-︒- (2)计算:()()()2312x x x +---20. (本题满分10分) 甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中。

江苏省徐州市八年级下学期数学期中考试试卷

江苏省徐州市八年级下学期数学期中考试试卷

江苏省徐州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)函数中,自变量x的取值范围是()A .B .C .D .2. (2分) (2018八上·扬州月考) 在⊿ 中,若,则⊿ 是()A . 锐角三角形B . 钝角三角形C . 等腰三角形D . 直角三角形3. (2分)已知x=1是方程x2+ax+2=0的一个根,则方程的另一个根为()。

A . 2B . -2C . 3D . -34. (2分) (2016九上·乐至期末) 下列二次根式中,的同类根式是()A .B .C .D .5. (2分)用配方法解方程x2﹣8x+3=0,下列变形正确的是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=196. (2分) (2019八下·蔡甸月考) 下列计算正确的是()A . 3 - =3B . 2+ =2C . =-2D . =27. (2分)若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A . 25B . 7C . 7或25D . 9或168. (2分)关于x的一元二次方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法判断9. (2分)一元二次方程2x2﹣3x﹣5=0的两个实数根分别为x1、x2 ,则x1+x2的值为()A .B . -C . -D .10. (2分)(2018·定兴模拟) 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A . 6B . 2 +1C . 9D .二、填空题 (共3题;共3分)11. (1分) (2020八下·武汉期中) 化简: =________;=________;=________.12. (1分) (2019九上·长白期中) 已知是关于的一元二次方程的一个根,则________.13. (1分) (2015八下·灌阳期中) 若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为________.(结果保留根号)三、解答题 (共10题;共93分)14. (5分) (2019七下·淮滨月考) 如图,计划围一个面积为50 m2的长方形场地,一边靠旧墙(墙长为10 m),另外三边用篱笆围成,并且它的长与宽之比为5∶2.讨论方案时,小英说:“我们不可能围成满足要求的长方形场地.”小军说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?15. (10分) (2017八下·重庆期末) 计算16. (5分) (2019九上·遵义月考) 解方程:(1)(2);17. (10分) (2018九上·滨湖月考) 如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是RtDABC 和RtDBED的边长,已知,这时我们把关于x的形如二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程” ,必有实数根;(3)若x=-1是“勾系一元二次方程” 的一个根,且四边形ACDE的周长是6 ,求DABC 的面积.18. (2分) (2017八上·阳江期中) 如图,从高8米的电杆AC的顶部A处,向地面的固定点B处拉一根铁丝,若B点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?请你说明理由.19. (10分) (2019七上·淮安期末) 为了方便市民出行,减轻城市中心交通压力,南通市正在修建贯穿城市的地铁1,2号线,已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多亿元.(1)求1号线、2号线每千米的平均造价.(2)除1,2号线外,南通市政府规划还要再建90千米的地铁网线根据预算,这90千米的地铁网线每千米的平均造价是1号线每千米的平均造价的倍,则还需投资多少亿元?20. (10分)(2018·江津期中) 请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB 是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.21. (10分) (2017八下·常山月考) 完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= ﹣3,求2xy的值.22. (16分)(2017·东河模拟) 解答题(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.23. (15分)(2016·北区模拟) 如图,将△ABP放在每个小正方形的边长为1的网格中,点A、B、P均落在格点上.(1)△ABP的面积等于________;(2)若线段AB水平移动到A′B′,且使PA′+PB′最短,请你在如图所示的网格中,用直尺画出A′B′,并简要说明画图的方法(不要求证明).参考答案一、单选题 (共10题;共20分)1、答案:略2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共3题;共3分)11-1、12-1、13-1、三、解答题 (共10题;共93分)14-1、15-1、16-1、16-2、17-1、17-2、17-3、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。

初中八年级数学 (1)

初中八年级数学 (1)

O HG F E D C B A 徐州三中附中八年级数学检测(§3.1-3.4)(时间:45分钟 满分:60分)一、选择题(每题3分,共15分)1.将叶片图案旋转180°后,得到的图形是( )叶片图案 A B C D2.如图,□ABCD 的周长是28cm ,△ABC 的周长是22cm ,则对角线AC 的长是( )A .4cmB .6cmC .8cmD .12cm3.如图,以格点A 、B 、C 、D 、E 、F 中的4个点为顶点,共有( )平行四边形A .2个B .3个C .4个D .5个4.如图,在□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE 、EC 的长度分别是( )A .2和3B .3和2C .4和1D .1和4 5.下列能确定一个四边形是平行四边形的是 ( ) A .一组对角相等,一组邻角互补 B .一组对边相等,一组邻角互补 C .一组对边平行,一组对角互补 D .一组对边相等,一组对角互补 二、填空题(每题3分,共12分) 6.在时钟表面上,“1︰20”时,时针与分针的夹角为 °.7.在□ABCD 中,若∠A ∶∠B =2∶3,则∠C =_____°,∠D =_____°.8.四边形ABCD 中,AB //CD ,要使四边形ABCD 为平行四边形,可添加的条件是 .(添加一个条件即可)9.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,直线CE 交BA 的延长线于点G ,直线DF 交AB 的延长线于点H ,CG 、DH 交于点O ,若□ABCD 的面积为4,则OGH S = .班级 姓名OH G FE D C B A b a O C B A三、解答题(第10题9分,第11、12、13题每题8分,共33分)10.已知△ABC ,直线a 、b 互相垂直,垂足为O .(1)作△A ’B ’C ’与△ABC 关于直线a 对称;(2)作△A ”B ”C ”与△ABC 关于直线b 对称;(3)△A ’B ’C ’ 与△A ”B ”C ”有什么特殊的位置关系?请写出这个位置关系,并简单说明理由.11.已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G .试说明:AF =GB .12.在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC =6 cm ,P 、Q 分别从A 、C 同时出发,P 以1 cm/s 的速度由A 向D 运动,Q 以2 cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?13.已知:如图,□ABCD 中,BF =DE ,FG ⊥AB ,EH ⊥CD ,垂足分别是G 、H ,GH 交BD 于点O ,试说明GH 与EF 互相平分. Q P DC B A。

徐州市八年级下学期数学期中考试试卷

徐州市八年级下学期数学期中考试试卷

徐州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知a<b,下列四个不等式中,不正确的是()A . 2a<2bB . -2a<-2bC . a+2<b+2D . a-2<b-22. (2分)下列各分式中,是最简分式的是()A .B .C .D .3. (2分)已知如图是一个轴对称图形.若将图中某些黑色的图形去掉,得到一些新的图形,则其中轴对称的新图形共有()个。

A . 9B . 8C . 7D . 64. (2分)在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C=90°中,能确定△ABC是直角三角形的条件有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2017·肥城模拟) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分)下列因式分解正确的是()A . 5a﹣10a=5a(1﹣2a)B . a2﹣ab+ac=a(a﹣b﹣c)C . a2﹣2ab﹣b2=(a﹣b)2D . a2﹣b2=(a﹣b)(a+b)7. (2分)(2018·鄂尔多斯模拟) 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A 的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A . =15B . =15C . =D . =8. (2分) (2019八下·西湖期末) 如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G.连接EF,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD =4AG;④△DBF≌△EFA.则正确结论的序号是()A . ①③B . ②④C . ①③④D . ②③④9. (2分)使两个直角三角形全等的条件是()A . 一组锐角相等B . 斜边对应相等C . 一条直角边对应相等D . 两条直角边对应相等10. (2分)(2016·历城模拟) 已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()A . y>0B . y<0C . ﹣2<y<0D . y<﹣2二、填空题 (共6题;共6分)11. (1分)分解因式a3﹣a的结果是________ .12. (1分) (2017八下·宁波月考) 要使二次根式有意义,x的取值范围是________.13. (1分)对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是________ .14. (1分) (2019八下·江苏月考) 已知关于x的方程的解是正数,m的范围是________15. (1分) (2020八上·息县期末) 如图,在Δ 中,已知点为中点,点在线段上以每秒的速度由点向点运动,同时点在线段上由点向点运动。

2016-2017年江苏省徐州三中实验学校八年级(下)第一次月考数学试卷(解析版)

2016-2017年江苏省徐州三中实验学校八年级(下)第一次月考数学试卷(解析版)

2016-2017学年江苏省徐州三中实验学校八年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在表格相应的位置)1.(3分)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况2.(3分)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量3.(3分)下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖4.(3分)如图所示,一个可以自由转动的均匀的转盘被等分成6个扇形,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A.B.C.D.5.(3分)正三角形、矩形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.矩形C.等腰直角三角形D.平行四边形.6.(3分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16B.12C.24D.207.(3分)如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s8.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.2C.1.3D.1.5二、填空题(本大题共有8小题,每小题3分,共24分,请将答案直接写在横线上)9.(3分)在▱ABCD中,若∠A=60°,则∠C=°.10.(3分)对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.11.(3分)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有个.12.(3分)已知,如图在四边形ABCD中,AB=CD,则添加一个条件(只需填写一种)可以使得四边形ABCD为平行四边形.13.(3分)如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=.14.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是.15.(3分)已知平行四边形的三个顶点坐标分别为(﹣1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为.16.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本大题共有8题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(8分)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表18.(8分)如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.(1)求该班有多少名学生?(2)补上骑车分布直方图的空缺部分;(3)在扇形统计图中,求步行人数所占的圆心角度数;(4)若全年级有800人,估计该年级乘车人数.19.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使P A1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)20.(8分)如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F.求证:EF=BF.21.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.22.(8分)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,E,F分别是垂足,求证:四边形AECF是平行四边形.23.(12分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.24.(12分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.2016-2017学年江苏省徐州三中实验学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在表格相应的位置)1.(3分)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况【解答】解:A、了解某市学生的视力情况,适合采用抽样调查,故本选项错误;B、了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误;C、了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确;D、了解某市老年人参加晨练的情况,老年人的标准没有限定,人群范围可能较大,适合采用抽样调查,故本选项错误.故选:C.2.(3分)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;B、4万名考生的数学成绩是总体,故B选项错误;C、每位考生的数学成绩是个体,故C选项正确;D、1000是样本容量,故D选项错误;故选:C.3.(3分)下列成语所描述的事件是必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖【解答】解:A,B选项为不可能事件,故不符合题意;C选项为可能性较小的事件,是随机事件;D项瓮中捉鳖是必然发生的.故选:D.4.(3分)如图所示,一个可以自由转动的均匀的转盘被等分成6个扇形,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A.B.C.D.【解答】解:观察这个图可知:转盘被等分成6个扇形,蓝色区域有2个,占总数的,故其概率是.故选B.5.(3分)正三角形、矩形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.矩形C.等腰直角三角形D.平行四边形.【解答】解:A、正三角形是轴对称图形,不是中心对称图形;B、矩形是轴对称图形又是中心对称图形;C、等腰直角三角形是轴对称图形,不是中心对称图形;D、平行四边形不轴对称图形,是中心对称图形,故选:B.6.(3分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO 的周长为()A.16B.12C.24D.20【解答】解:∵四边形ABCD是矩形,AC=8,∴AC=BD,AC=2AO,BD=2BO,∴AO=BO=4,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4,∴△ABO的周长是4+4+4=12,故选:B.7.(3分)如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s【解答】解:设运动时间为t秒,则CP=12﹣3t,BQ=t,根据题意得到12﹣3t=t,解得:t=3,故选:B.8.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.2C.1.3D.1.5【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分,请将答案直接写在横线上)9.(3分)在▱ABCD中,若∠A=60°,则∠C=60°.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=60°,故答案为:60.10.(3分)对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是40人.【解答】解:该班级的人数:8÷0.2=40,故答案为:40.11.(3分)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有4个.【解答】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)==40%,解得:x=4.故答案为:4.12.(3分)已知,如图在四边形ABCD中,AB=CD,则添加一个AD=BC条件(只需填写一种)可以使得四边形ABCD为平行四边形.【解答】解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.13.(3分)如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=3cm.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.14.(3分)如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是3.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.故答案为3.15.(3分)已知平行四边形的三个顶点坐标分别为(﹣1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为(1,﹣2).【解答】解:如图,∵平行四边形的三个顶点坐标分别为(﹣1,0)、(0,2)(2,0),∴若四边形ABDC是平行四边形,则D1(3,2),若四边形ABCD是平行四边形,则D2(﹣3,2),若四边形ACBD是平行四边形,则D3(1,﹣2).综上所述:第四个顶点的坐标为:(3,2),(﹣3,2),(1,﹣2).∵第四个顶点的在第四象限,故答案为:(1,﹣2).16.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题(本大题共有8题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(8分)某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图和所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.样本人数分布表【解答】解:(1)3÷6%=50人,则篮球的人数为50×20%=10人,则补全条形统计图如下:羽毛球占总数的百分比为:15÷50=30%,补全人数分布表为:(2)920×30%=276人.则七年级学生喜爱羽毛球运动项目的人数为276人.18.(8分)如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.(1)求该班有多少名学生?(2)补上骑车分布直方图的空缺部分;(3)在扇形统计图中,求步行人数所占的圆心角度数;(4)若全年级有800人,估计该年级乘车人数.【解答】解:(1)根据题意得:20÷50%=40(人),则该班有40名学生;(2)步行的学生有40﹣(20+12)=8(人),补全条形统计图,如图所示:(3)根据题意得:360°×20%=72°;(4)根据题意得:800×50%=400(人).19.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使P A1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).20.(8分)如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F.求证:EF=BF.【解答】证明:∵四边形ACDE为平行四边形,∴ED=AC,ED∥AC.∴∠D=∠FCB,∠DEF=∠B.又∵C为AB的中点,∴AC=BC.∴ED=BC.在△DEF和△CBF中,,∴△DEF≌△CBF.∴EF=BF.21.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.22.(8分)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,E,F分别是垂足,求证:四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.23.(12分)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积为:EC•AB=5×6=30.24.(12分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.【解答】解:(1)∵四边形ABCD是矩形,∴AM∥DN.∴∠KNM=∠1.∵∠1=70°,∴∠KNM=∠KMN=∠1=70°,∴∠MKN=40°.(2)不能.过M点作ME⊥DN,垂足为E,则ME=AD=1.∵∠KNM=∠KMN,∴MK=NK,又∵MK≥ME,∴NK≥1.∴△MNK的面积=NK•ME≥.∴△MNK的面积不可能小于.(3)分两种情况:情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合.MK=MB=x,则AM=5﹣x.由勾股定理得12+(5﹣x)2=x2,解得x=2.6.∴MD=ND=2.6.S△MNK=S△MND==1.3.情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC.MK=AK=CK=x,则DK=5﹣x.同理可得MK=NK=2.6.∵MD=1,∴S△MNK ==1.3.△MNK的面积最大值为1.3.第21页(共21页)。

江苏省徐州市上学期初中八年级第一次段考

江苏省徐州市上学期初中八年级第一次段考

【试题答案】
一、选择题(本题有 6 小题,每小题 3 分,共 18 分),每小题只有一个正确选项。
题号
1
2
3
4
5
6
答案
A
C
B
A
D
A
二、填空题(本题有 8 小题,每小题 3 分,共 24 分)
7. 0 或-6
8. 3
9. 0 0 或 1
24
10.
5
11. 15
1
12.
8
13. -1
0,±1
14. 5
三、解答题:(共计 78 分) 15. 化简(6 分)
(1) 9 2 3 3
(2)0
16. 计算(6 分)
14
(1)
3
(2) 2 2 2
17. △ACB 是直角三角形,且∠C=90°
18. (6 分) DE=2.6
19. (8 分)
(1) a b 的值为±8,±2 (2) a b 6 13
1 1
1
2 1 3 2
2014 2013
22. (9 分)如图,一只蜘蛛沿长方体表面从长方体的一个端点 A 爬到另一个端点 C',已知长方 体的长、宽、高分别是 AB=4cm、BC=3cm、CC'=5cm,求蜘蛛爬行的最短距离。
23. (9 分)如图,在等腰直角三角形 ABC 中,∠ABC=90°,D 为 AC 边上的中点,过 D 点作 DE⊥DF, 交 AB 于 E,交 BC 为 F,
(1) 3 12 2 1 48) 2 3 3
(2) 18 5 10 9 (1 2)2
5
2
17. (6 分)如图所示,在△ABC 中,AC=8,BC=6,在△ABE 中,DE 为 AB 边上的高,DE=12,△ABE 的面积为 60,△ABC 是否为直角三角形?

徐州三中八年级上学期期中数学试题(解析版)

徐州三中八年级上学期期中数学试题(解析版)

八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.下列各组长度(单位:cm)的三条线段,按首位顺次相接,能构成三角形的是()A. 1,1,2B. 2,3,4C. 2,3,5D. 2,3,8【答案】B【解析】【分析】根据构成三角形的三边关系,即可得到答案.【详解】解:A、1+1=2,不能构成三角形;B、2+3>4,能构成三角形;C、2+3=5,不能构成三角形;D、2+3<8,不能构成三角形;故选:B.【点睛】本题考查了构成三角形的三边关系,解题的关键是熟记三角形两边和和大于第三边.2.能把三角形面积两等分的是三角形的()A. 中线B. 高线C. 角平分线D. 两边中点连线【答案】A【解析】【分析】观察各选项可知,只有三角形的中线把三角形分成等底同高的两个三角形,再根据三角形的面积公式,这两个三角形的面积相等.【详解】解:∵三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,∴分成的两三角形的面积相等.故选:A.【点睛】本题考查了等底等高的两个三角形的面积相等的性质,根据此性质,可以解决很多利用三角形的面积进行计算的题目,需熟练掌握并灵活运用.3.周长12,一边长4,另两边长都是整数的三角形,其最大边长为()A. 5B. 6C. 7D. 8【答案】A【解析】【分析】根据已知可以得到三角形的另外两边之和,根据三角形的三边关系可以得到另外两边之差应小于4,则最大的差应是3,从而求得最大边.【详解】解:设这个三角形的最大边长为a,最小边是b.由题意得,a+b=8,根据三角形的三边关系得,a﹣b<4,当a﹣b=3时,解得a=5.5,b=2.5,不符合题意;当a﹣b=2时,解得a=5,b=3,符合题意;当a﹣b=1时,解得a=4.5,b=3.5,不符合题意;当a﹣b=0时,解得a=b=4,符合题意;故三角形的最大边长为5;故选:A.【点睛】本题考查的是三角形的三边关系,掌握三角形三边关系定理是解题的关键.4.如图,AB=CD,AD=CB,若∠1=50°,∠2=48°,则∠B=()A. 48°B. 50°C. 98°D. 82°【答案】D【解析】【分析】由“SSS”可证△ABC≌△CDA,可得∠2=∠ACB=48°,由三角形内角和定理可求解.【详解】解:∵AB=CD,AD=CB,AC=CA,∴△ABC≌△CDA(SSS),∴∠2=∠ACB=48°,∴∠B=180°﹣∠1﹣∠ACB=82°.故选:D.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定和性质是本题的关键.5.将直尺与三角板按图放置,若∠1=30°,则∠2=()A. 100°B. 110°C. 120°D. 130°【答案】C【解析】【分析】先根据三角形外角性质计算出∠3=120°,然后根据两直线平行,同位角相等即可得到∠2的度数.【详解】解:如图,∵∠3=∠1+90°,而∠1=30°,∴∠3=120°,∵a∥b,∴∠2=∠3=120°.故选:C.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.图中二角,定有∠1>∠2的是()A. B.C. D.【答案】D【解析】【分析】根据对顶角的性质、同角的余角相等、三角形的外角性质判断即可.【详解】解:A、∠1=∠2,不合题意;B、∠1与∠2的关系不确定,不合题意;C、∠1=∠2,不合题意;D、由三角形的外角性质可知,∠1>∠2,符合题意;故选:D.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.7.下面4个汉字中,可以看作是轴对称图形是()A. 吉B. 祥C. 如D. 意【答案】A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8. 如果等腰三角形的两边长分别为2和5,则它的周长为()A. 9B. 7C. 12D. 9或12【答案】C【解析】试题分析:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选:C.考点:等腰三角形的性质、三角形的三边关系.9.到△ABC三个顶点距离相等的点是△ABC的( )A. 三边垂直平分线的交点B. 三条角平分线的交点C. 三边中线的交点D. 三条高的交点【答案】A【解析】【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.【详解】解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选:A.【点睛】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).10.如图,点A(2,1),点P在坐标轴上,若△OP A是等腰三角形,则这样的点P共有()A. 4个B. 6个C. 8个D. 10个【答案】C【解析】【分析】分别以点O、A为圆心,以OA的长度为半径画弧,与坐标轴的交点即为所求的点P的位置.【详解】解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与坐标轴的交点有2个,综上所述,满足条件的点P有8个.故选:C.【点睛】本题考查了等腰三角形的判定,坐标与图形性质,利用数形结合的思想求解更简便.二、填空题(3'×6)11.一个n边形内角和是1800°,则n=______.【答案】12【解析】分析:根据多边形内角和定理即可列方程求解.详解:根据题意得:180(n﹣2)=1800,解得:n=12.故答案为:12.点睛:本题考查了多边形的内角和定理,题目较简单,只要结合多边形的内角关系来寻求等量关系,构建方程即可求解.12.如图,∠1+∠2+∠3+∠4=___________.【答案】300°.【解析】试题解析:由图可知,∠1+∠2=150°,∠ 3+∠ 4=150°,所以∠ 1+∠ 2+∠ 3+∠ 4=150°+150°=300°.13.若点A(3,﹣2)与点B关于x轴对称,点B与点C关于y轴对称,则点C的坐标是_____.【答案】(-3,2).【解析】【分析】直接利用关于x轴以及y轴对称点的性质进而得出答案.【详解】解:∵点A(3,﹣2)与点B关于x轴对称,∴B(3,2),∵点B与点C关于y轴对称,∴C(-3,2).故答案为:(-3,2).【点睛】此题主要考查了关于x轴以及y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.在等腰三角形ABC中,∠A=80°,则∠B=_____.【答案】50°或20°或80°【解析】【分析】分∠A是顶角,∠B是顶角,∠C是顶角三种情况,根据等腰三角形的性质和内角和定理求解.【详解】已知等腰△ABC中∠A=80°,若∠A是顶角,则∠B=∠C,所以∠B=12(180°﹣80°)=50°;若∠B是顶角,则∠A=∠C=80°,所以∠B=180°﹣80°﹣80°=20°;若∠C是顶角,则∠B=∠A=80°.故答案为:50°或20°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.△ABC三内角满足:3∠A>5∠B,2∠B>3∠C,则按角分类,△ABC是_____三角形.【答案】钝角.【解析】【分析】利用已知条件,结合等式性质1可得3∠A+2∠B>5∠B+3∠C,整理得∠A>∠B+∠C,再利用等式性质,左右同加上∠A,结合∠A+∠B+∠C=180°,解不等式可得∠A>90°,从而可判断三角形的形状.【详解】解:∵3∠A>5∠B,2∠B>3∠C,∴3∠A+2∠B>5∠B+3∠C,即∠A>∠B+∠C,不等式两边加∠A,∴2∠A>∠A+∠B+∠C,而∠A+∠B+∠C=180°,∴2∠A>180°,即∠A>90°,∴这个三角形是钝角三角形.故答案是钝角.【点睛】本题考查了三角形内角和定理、解不等式,解题的关键是利用不等式性质将代数式变形.16.如图,把长方形纸片ABCD沿EF折叠后,点A落在CD边上A'处,点B落在B'处,若∠1=40°,则∠2=_____.【答案】115°【解析】【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【详解】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处, ∴∠BFE =∠EFB',∠B'=∠B =90°,∵∠1=40°,∴∠CFB'=50°,∴∠2+∠EFB'﹣∠CFB'=180°,即∠2+∠2﹣50°=180°,解得:∠2=115°,故答案为:115°.【点睛】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.三、解答与证明题(8'×9) 17.已知△ABC ,求作一点P ,使P A =PB ,且点P 到∠A 的两边距离相等作法:(1)作边AB 的垂直平分线m ;(2)作∠A 的平分线AD ,AD 与m 的交点P 就是所求作的点.要求:用直尺和圆规完成,保留作图痕迹.【答案】见解析【解析】【分析】先作AB的垂直平分线,再作∠BAC的平分线,它们的交点即为P点,根据线段的垂直平分线的性质得到PA=PB,根据角平分线的性质得到点P到∠BAC的两边距离相等.【详解】解:如图,点P为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质和角平分线的性质.18.△ABC三顶点A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),△A'B'C'与△ABC关于y轴对称.(1)直接写出A'、B'、C'的坐标;(2)画出△A'B'C';(3)求△ABC的面积.【答案】(1)A'(﹣5,0)、B'(﹣2,4)、C'(﹣1,﹣2);(2)见解析;(3)11. 【解析】【分析】(1)根据三个顶点在坐标系中的位置可得答案;(2)分别作出点A、B、C关于y轴的对称点,再顺次连接即可得;(3)利用割补法求解可得.【详解】解:(1)∵A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2),∴A'(﹣5,0)、B'(﹣2,4)、C'(﹣1,﹣2);(2)如图所示,△A'B'C'即为所求.(3)△ABC的面积为4×6﹣12×1×6﹣12×2×4﹣12×3×4=24﹣3﹣4﹣6=11.【点睛】本题主要考查作图——轴对称变换,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对称点.19.如图,已知:OC=OD,AB∥CD,求证:OA=OB.【答案】证明见解析【解析】【分析】由平行线的性质得出∠A=∠C,∠B=∠D,由等腰三角形的性质得出∠C=∠D,得出∠A=∠B,即可得出OA=OB.【详解】证明:∵AB∥CD,∴∠A=∠C,∠B=∠D,∵OC=OD,∴∠C=∠D,∴∠A=∠B,∴OA=OB.【点睛】本题考查了等腰三角形的判定与性质、平行线的性质;熟练掌握等腰三角形的性质和平行线的性质是解题的关键.20.如图,已知:∠1=∠2,∠3=∠4.(1)求证:DB=DC;(2)连接BC,求证:AD⊥BC.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由“ASA”可证△ADB≌△ADC,可得DB=DC;(2)由全等三角形的性质可得AB=AC,DB=DC,即可得AD⊥BC.【详解】证明:(1)∵∠3=∠4,∴∠ADB=∠ADC,且∠1=∠2,AD=AD,∴△ADB≌△ADC(ASA)∴DB=DC(2)∵△ADB≌△ADC∴AB=AC,DB=DC,∴AD垂直平分BC,即AD⊥BC【点睛】本题考查了全等三角形的判定与性质,线段垂直平分线的性质,证明△ADB≌△ADC解题的关键.21.请在图中补画一个小正方形,使整个图形是轴对称图形(要求画四个不同图形).【答案】见解析.【解析】【分析】直接利用轴对称图形的性质分析得出答案.【详解】解:如图所示:【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.22.一个三角形三边长分别是4,x,14﹣x.(1)求x的取值范围;(2)若这是一个等腰三角形,求x的值.【答案】(1)5<x<9.(2)7.【解析】【分析】(1)依据三角形两边之和大于第三边,即可得到x的取值范围;(2)依据等腰三角形的两条边相等,分三种情况讨论,即可得到x的值.【详解】解:(1)∵三角形三边长分别是4,x,14﹣x,∴414414144x xx x x x+>-⎧⎪+->⎨⎪+->⎩,解得:5<x<9.(2)分三种情况:①若4=x,则14﹣x=10,(不符合三角形三边关系,舍去)②若4=14﹣x,则x=10,(不符合三角形三边关系,舍去)若x=14﹣x,则x=7,(符合题意)综上所述,x的值为7.【点睛】本题主要考查了等腰三角形的性质,解题时注意三角形的三边需要符合三边关系.23.如图,△ABC中,BC边上二点D、E,有4个论断:①AB=AC;②AD=AE;③BD=CE;④∠1=∠2,请你从4个论断中选2个作为已知(题设),选1个作为结论,构成一个真命题,并给予证明.已知:求证:证明:【答案】见解析.【解析】【分析】根据题意、结合图形写出已知和求证,根据等腰三角形的性质、三角形的外角性质证明即可.【详解】已知:AB=AC,∠1=∠2,求证:AD=AE证明:∵AB=AC,∴∠B=∠C,∵∠ADE=∠B+∠1,∠AED=∠C+∠2,∠1=∠2,∴∠ADE=∠AED,∴AD=AE.【点睛】本题考查的是真命题、命题的证明,掌握等腰三角形的性质、三角形的外角性质是解题的关键.24.如图:锐角△ABC中,∠C=2∠B,AD是高,求证:AC+CD=BD.线段和差,通常用截长或补短法证明,下面是甲、乙两位同学的思路,请你按他们的思路,给出一种证明.甲:截长法,在DB上截取DE=DC,连AE,去证BE=AC;乙:补短法,延长DC到E,使CE=CA,连接AE,去证DB=DE.【答案】见解析.【解析】【分析】甲:由线段垂直平分线的性质可得AE=AC,由等腰三角形的性质可得∠AEC=∠C,由外角性质可得∠B=∠BAE,可得AE=BE=AC,即可得结论;乙:由外角性质可得∠ACB=2∠E,可得∠B=∠E,可得AB=AE,由等腰三角形的性质可得BD=DE,即可得结论.【详解】解:甲:截长法,如图1,在DB上截取DE=DC,连AE,∵DE=DC,AD⊥BC,∴AE=AC,∴∠AEC=∠C,且∠C=2∠B,∴∠AEC=∠B,且∠AEC=∠B+∠BAE,∴∠B=∠BAE,∴AE=BE=AC,∴BD=BE+DE=AC+CD乙:补短法,延长DC到E,使CE=CA,连接AE,∵CE=CA,∴∠E=∠CAE,且∠ACB=∠E+∠CAE,∴∠ACB=2∠E,且∠ACB=2∠B,∴∠B=∠E,∴AB=AE,且AD⊥BC,∴BD=DE,∵DE=DC+CE=AC+DC,∴BD=DC+AC.【点睛】本题考查了等腰三角形的性质,添加恰当辅助线构造等腰三角形是本题的关键.25.如图,已知AD是△ABC的高,且AB+BD=AC+CD,求证:AB=AC.【答案】证明见解析.【解析】【分析】延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF;由AB+BD=CD+AC,得到DE=DF,又AD⊥BC;推出△AEF是等腰三角形;得到∠E=∠F;于是得到∠ABC=2∠E;同理得∠ACB=2∠F;证得∠ABC=∠ACB,即可得到结论.【详解】证明:延长DB至E,使BE=AB;延长DC至F,使CF=AC;连接AE、AF.∵AB+BD=CD+AC,∴DE=DF,又AD⊥BC,∴△AEF是等腰三角形;∴∠E=∠F;∵AB=BE,∴∠ABC=2∠E;同理,得∠ACB=2∠F;∴∠ABC=∠ACB,∴AB=AC,【点睛】此题主要考查的是等腰三角形的判定和性质,正确的构建出等腰三角形是解题的关键.26.如图,已知△ABC中,∠A=30°,AB=2,BC=1,求证:∠C=90°.【答案】证明见解析.【解析】【分析】作关于AC的△ABC的轴对称图形,利用等边三角形的性质解答即可.【详解】证明:作关于AC的△ABC的轴对称图形,∴BC=CD=1,AB=AD=2,∴△ADB是等边三角形,∴AC⊥BD,∴∠ACB=90°.【点睛】本题考查了轴对称图形,利用等边三角形判定和性质得到AC⊥BD是解题的关键.。

江苏省徐州市八年级上学期第二次月考质量自测数学试题

江苏省徐州市八年级上学期第二次月考质量自测数学试题

江苏省徐州市八年级上学期第二次月考质量自测数学试题一、选择题1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.下列四个图标中,是轴对称图形的是( )A .B .C .D .3.下列标志中属于轴对称图形的是( )A .B .C .D .4.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m ≤-D .1m ≥-5.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④6.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .17.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .48.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.89.下列标志中,不是轴对称图形的是( )A .B .C .D .10.下列调查中,调查方式最适合普查(全面调查)的是( )A .对全国初中学生视力情况的调查B .对2019年央视春节联欢晚会收视率的调查C .对一批飞机零部件的合格情况的调查D .对我市居民节水意识的调查二、填空题11.使3x -有意义的x 的取值范围是__________.12.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.13.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.14.因式分解:24ax ay -=__________.15.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 16.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.18.4的平方根是 .19.若正比例函数y=kx 的图象经过点(2,4),则k=_____.20.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.三、解答题21.如图,已知函数12y x =+的图像与y 轴交于点A ,一次函数2y kx b =+的图像经过点(0,4)B ,与x 轴交于点C ,与12y x =+的图像交于点D ,且点D 的坐标为2,3n ⎛⎫ ⎪⎝⎭.(1)求k 和b 的值;(2)若12y y >,则x 的取值范围是__________.(3)求四边形AOCD 的面积.22.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形; (2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.23.计算:(1)2(43)x y -(2)(1)(1)x y x y +++-(3)2293169a a a a -⎛⎫÷- ⎪++⎝⎭(4)22222233a b a b a a a b a b a b b +-⎛⎫⋅-÷ ⎪-+-⎝⎭24.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”,例如分式31x +与31x x+互为“3阶分式”. (1)分式1032x x +与 互为“5阶分式”; (2)设正数,x y 互为倒数,求证:分式22x x y +与22y y x +互为“2阶分式”; (3)若分式24a a b +与222b a b+互为“1阶分式”(其中,a b 为正数),求ab 的值. 25.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.四、压轴题26.如图,已知等腰△ABC 中,AB =AC ,∠A <90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与 BE 交于点 P .当∠A 的大小变化时,△EPC 的形状也随之改变.(1)当∠A =44°时,求∠BPD 的度数;(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并说明理由;(4)如图4,△ABC外角∠CBM、∠BCN的平分线交于点Q,∠A=64°,∠CBQ,∠BCQ的平分线交于点P,则∠BPC= ゜,延长BC至点E,∠ECQ的平分线与BP的延长线相交于点R,则∠R= ゜.29.ABC是等边三角形,作直线AP,点C关于直线AP的对称点为D,连接AD,直线BD交直线AP于点E,连接CE.(1)如图①,求证:CE AE BE+=;(提示:在BE上截取BF DE=,连接AF.)(2)如图②、图③,请直接写出线段CE,AE,BE之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若26BD AE==,则CE=__________.30.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由四边形ABCD是平行四边形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A 的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A-∠B=20°,∴∠A=100°,∴∠C=∠A=100°.故选:C.【点睛】此题考查了平行四边形的性质.注意平行四边形的对角相等,邻角互补.2.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不合题意.故选:B.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C解析:C【解析】【分析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选 C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.4.A解析:A【解析】令点P 的横坐标小于0,列不等式求解即可.【详解】解:∵点P P (1+m ,3)在第二象限,∴1+m <0,解得: m <-1.故选:A .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.B解析:B【解析】【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知: 21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错∴①③对故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.6.D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 7.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,则2.71.5v svt s=⎧⎨=⎩解得,t=1.8∴a=3.2+1.8=5(小时),故选B.【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.9.B解析:B【解析】【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.10.C解析:C【解析】根据普查和抽样调查的特点解答即可.【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x≥解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.x≥故答案为3【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;12.100【解析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,AD BFA B AF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=40°,∴∠P=180°-∠A-∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.13.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).14.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【解析】【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.15.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 16.4【解析】【分析】先求出直线与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.17.10或【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭, ∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.18.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2.考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.19.2【解析】解析:2【解析】4=22k k ⇒=20.12cm .【解析】【分析】题目给出等腰三角形有两条边长为5cm 和2cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm 为腰,2解析:12cm .【解析】【分析】题目给出等腰三角形有两条边长为5cm 和2cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm 为腰,2cm 为底,此时周长为12cm ;②5cm 为底,2cm 为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm .故答案为12cm .【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件.三、解答题21.(1)k 和b 的值分别为2-和4;(2)23x >;(3)103. 【解析】【分析】(1)根据点D 在函数y =x +2的图象上,即可求出n 的值;再利用待定系数法求出k ,b 的值;(2)根据图象,直接判断即可;(3)用三角形OBC 的面积减去三角形ABD 的面积即可.【详解】(1)函数12y x =+的图像过点D ,且点D 的坐标为2(,)3n ,则有28233n =+=. 所以点D 的坐标为28(,)33. 所以有4,28.33b k b =⎧⎪⎨+=⎪⎩解得2,4.k b =-⎧⎨=⎩所以k 和b 的值分别为2-和4. (2)由图象可知,函数y =kx +b 大于函数y =x +2时,图象在直线x =23的左侧, ∴x <23, 故答案为:x <23. (3)已知函数12y x =+的图像与y 轴交于点A ,则点A 坐标为(0,2).所以422AB OB OA =-=-=.函数2y kx b =+的图像与x 轴交于点C ,令20y =,则240x -+=.2x =.所以点C 坐标为(2,0).∴2OC =.则四边形AOCD 的面积等于112104222233BOC BAD S S ∆∆-=⨯⨯-=⨯⨯. 【点睛】本题主要考查一次函数的交点,解决此题时,明确二元一次方程组与一次函数的关系是解决此类问题的关键.第(3)小题中,求不规则图形的面积时,可以利用整体减去部分的方法进行计算.22.作图见解析.【解析】试题分析:(1)根据正方形的面积为10可得正方形边长为10,画一个边长为10正方形即可;(2)①画一个边长为2,22,10的直角三角形即可;②画一个边长为5,5,10的直角三角形即可;试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.23.(1)2216249x xy y -+;(2)2221x xy y ++-;(3)3a a +;(4)22223()()a ab b a b a b +++- 【解析】【分析】(1)根据完全平方公式直接写出结果即可;(2)先将x y +看做一个整体运用平方差公式计算,再利用完全平方公式展开即可; (3)将分式利用平方差公式和完全平方公式分解因式,再约分化简即可;(4)运用分式的混合运算法则化简即可.【详解】(1)2(43)x y -=2216249x xy y -+;(2)2222(1)(1)()121x y x y x y x xy y +++-=+-=++-;(3)22293(3)(3)169(3)33a a a a a a a a a a a -+-⎛⎫÷-=⋅= ⎪+++-+⎝⎭; (4)22222233a b a b a a a b a b a b b+-⎛⎫⋅-÷ ⎪-+-⎝⎭ 22222()2()()3()a b a b a b a b a b a b a +-=⋅-⋅-+- 2222()13()()1a b a b a b a b a b +=⋅-⋅-+- 2222()3()()a b ab a b a b a b+=--+- 2224233()()a ab b ab a b a b ++-=+- 22223()()a ab b a b a b ++=+-. 【点睛】本题主要考查了整式得乘除法及分式的乘除法,熟练运用整式得乘法公式,幂运算,及分式的通分约分等计算技巧是解决本题的关键.24.(1)1532x +;(2)详见解析;(3)12 【解析】【分析】(1)根据分式的加法,设所求分式为A ,然后进行通分求解即可;(2)根据题意首先利用倒数关系,将x ,y 进行消元,然后通过分式的加法化简即可得解;(3)根据1阶分式的要求对两者相加进行分式加法化简,通过通分化简即可得解.【详解】(1)依题意,所求分式为A ,即:10+532x A x =+, ∴1015101015532323232x x x A x x x x+=-=-=++++; (2)∵正数,x y 互为倒数∴1xy =,即1x y=∴33 223332212222222(1)211111x y y y yyx y y x y y yy yy y++=+=+==+++++++∴分式22xx y+与22yy x+互为“2阶分式”;(3)由题意得222142a ba b a b+=++,等式两边同乘22(4)(2)a b a b++化简得:2222(2)2(4)(2)(4)a ab b a b a b a b+++=++即:32232848ab b a b b+=+∴22420a b ab-=,即2(21)0ab ab-=∴12ab=或0∵,a b为正数∴12ab=.【点睛】本题主要考查了分式的加减,熟练掌握分式的通分约分运算知识是解决此类问题的关键. 25.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B =∠E ,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS )【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.四、压轴题26.(1)56°;(2)y=454x +;(3)36°或1807°. 【解析】【分析】(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454x +解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,∴∠ABC=∠ACB=(180-44)÷2=68°,∵CD ⊥AB ,∴∠BDC=90°,∵BE 平分∠ABC ,∴∠ABE=∠CBE=34°,∴∠BPD =90-34=56°;(2)∵∠A =x °,∴∠ABC=(180°-x°)÷2=(902x -)°, 由(1)可得:∠ABP=12∠ABC=(454x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -)°=(454x +)°, 即y 与 x 的关系式为y=454x +;(3)①若EP=EC ,则∠ECP=∠EPC=y ,而∠ABC=∠ACB=902x -,∠ABC+∠BCD=90°, 则有:902x -+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454x +)=90°, 解得:x=36°;②若PC=PE ,则∠PCE=∠PEC=(180-y )÷2=902y -, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454x +, 解得:x=1807°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或1807°. 【点睛】本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.27.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得t =2即可;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,则CM =CN ,得3t =10−8t ,解得t =1011;当点N 在线段CA 上时,△PCM ≌△QCN ,则3t =8t−10,解得t =2;即可得出答案.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键. 28.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.29.(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.5或4.5【解析】【分析】(1)在BE上截取BF DE=,连接AF,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE= BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE= BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE =CF+EF,即可解决问题;(3)根据线段CE,AE,BE,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取BF DE=,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=∠ABD=12(180°-∠BAC-2x)=60°-x,∴∠AEB=60-x+x=60°.∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵BF DE=,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,∴CE+AE= BF+FE =BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接AF在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB =AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE =60°∴∠EAF=∠BAE+∠BAF =60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF= BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接AF,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,∴AB =AD,CE=DE,∵AE =AE∴△ACE ≌△ADE ,∴∠ACE=∠ADE∵AB =AD ,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC ,BE=CF ,∴△ACF ≌△ABE , ∴AE=AF ,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF =60°∴∠EAF=∠BAF+∠BAE =60°∴△AFE 为等边三角形,∴EF=AE ,∴CE =EF+CF= AE + BE ,即AE+BE=CE ;(3)在(1)的条件下,若26BD AE ==,则AE=3,∵CE+AE=BE ,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.5;在(2)的条件下,若26BD AE ==,则AE=3,因为图②中,CE+BE=AE ,而BD=BE-DE=BE-CE ,所以BD 不可能等于2AE ;图③中,若26BD AE ==,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.5.即CE=1.5或4.5.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.30.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

苏科版徐州市八年级上学期第三次月考质量自测数学试题

苏科版徐州市八年级上学期第三次月考质量自测数学试题

苏科版徐州市八年级上学期第三次月考质量自测数学试题 一、选择题 1.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 2.在平面直角坐标系中,点P (﹣3,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列四个实数中,属于无理数的是( )A .0B .9C .23D .124.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 5.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个6.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条7.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .8.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处9.某种产品的原料提价,因而厂家决定对产品提价,现有三种方案:方案(一):第一次提价%p ,第二次提价%q ;方案(二):第一次提价%q ,第二次提价%p ;方案(三):第一、二次提价均为2%p q +; 其中p ,q 是不相等的正数.有以下说法:①方案(一)、方案(二)提价一样;②方案(一)的提价也有可能高于方案(二)的提价;③三种方案中,以方案(三)的提价最多;④方案(三)的提价也有可能会低于方案(一)或方案(二)的提价.其中正确的有( )A .②③B .①③C .①④D .②④10.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .111.若点Α()m,n 在一次函数y=3x+b 的图象上,且3m-n>2,则b 的取值范围为 ( ) A .b>2B .b>-2C .b<2D .b<-2 12.到ABC ∆的三顶点距离相等的点是ABC ∆的是( ) A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点13.9的平方根是( )A .3B .81C .3±D .81±14.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A .9cmB .12cmC .15cmD .18cm15.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题16.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.17.如图,在△PAB 中,PA=PB ,D 、E 、F 分别是边PA ,PB ,AB 上的点,且AD=BF ,BE=AF ,若∠DFE=40°,则∠P=____°.18.计算:32()x y -=__________.19.如图,在ABC ∆中,90C =∠,AD 平分CAB ∠,交BC 于点D ,若ADC 60∠=,2CD =,则ABC ∆周长等于__________.20.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.21.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.22.当x =_____时,分式22x x x-+值为0. 23.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.24.如图,直线1l x ⊥轴于点(1,0),直线2l x ⊥轴于点(2,0),直线3l x ⊥轴于点(3,0),…直线n l x ⊥轴于点(,0)n .函数y x =的图像与直线123,,n l l l l 分别变于点123,,,n A A A A ;函数3y x =的图像与直线123,,,n l l l l 分别交于点123,,,n B B B B ,如果11OA B ∆的面积记的作1S ,四边形1221A A B B 的面积记作2S ,四边形2332A A B B 的面积记作3S ,…四边形n 1n n n 1A A B B --的面积记作n S ,那么2020S =________.25.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题26.解方程:12 242xx x-=--.27.如图,一次函数y=﹣x+7的图象与正比例函数y=34x的图象交于点A,点P(t,0)是x正半轴上的一个动点.(1)点A的坐标为(,);(2)如图1,连接PA,若△AOP是等腰三角形,求点P的坐标:(3)如图2,过点P作x轴的垂线,分别交y=34x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC=32OA,若存在求出t的值;若不存在,请说明理由.28.如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1 dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t (s),容器A、B中的水位高度A h(dm)、B h(dm)与时间t (s)之间的部分函数图像如图②所示.根据图中数据解答下列问题:(1)容器A 向容器B 注水的速度为 dm 3/s(结果保留π),容器B 的底面直径m = dm;(2)当容器B 注满水后,容器A 停止向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为4πdm 3/s.请在图②中画出容器B 中水位高度B h 与时间 (4t ≥)的函数图像,说明理由;(3)当容器B 注满水后,容器A 继续向容器B 注水,同时开启容器B 的水龙头进行放水,放水速度为2πdm 3/s ,直至容器A 、B 水位高度相同时,立即停止放水和注水,求容器A 向容器B 全程注水时间.(提示:圆柱体积=圆柱的底面积×圆柱的高) 29.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.30.证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.31.涟水外卖市场竞争激烈,美团、饿了么等公司订单大量增加,某公司负责招聘外卖送餐员,具体方案如下:每月不超出750单,每单收入4元;超出750单的部分每单收入m 元.(1)若某“外卖小哥”某月送了500单,收入元;(2)若“外卖小哥”每月收入为y(元),每月送单量为x单,y与x之间的关系如图所示,求y与x之间的函数关系式;(3)若“外卖小哥”甲和乙在某个月内共送单1200单,且甲送单量低于乙送单量,共收入5000元,问:甲、乙送单量各是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.2.B解析:B【解析】【分析】根据各象限的点的坐标的符号特征判断即可.【详解】∵-3<0,2>0,∴点P (﹣3,2)在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.3.D解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D 正确;03=,23是有理数,故ABC 错误; 故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义. 4.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 5.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.6.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222-=-=AC CD543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.7.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m、n的符合,从而得到mn的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.8.D解析:D【解析】【分析】根据线段垂直平分线的性质判断即可.【详解】作AC ,BC 两边的垂直平分线,它们的交点为P ,由线段垂直平分线的性质,P A =PB =PC ,故选:D.【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.9.B解析:B【解析】【分析】根据提价方案求出提价后三种方案的价格,得到方案(一)、方案(二)、方案(三)提价情况,进行对比即可得解.【详解】∵方案(一):(1%)(1%)1%%%%p q p q p q ++=+++方案(二):(1%)(1%)1%%%%q p q p q p ++=+++∴方案(一)、方案(二)提价一样∴①对,②错; ∵方案(三):2(1%)(1%)1%%(%)222p q p q p q p q +++++=+++ ∴可知:21%%(%)(1%%%%)2p q p q p q p q ++++-+++2(%)%%2p q p q +=-2(%)2p q -= ∵p ,q 是不相等的正数 ∴2(%)02p q -> ∴方案(三)提价最多∴③对,④错∴①③对故选:B.【点睛】本题主要考查了销售问题中的增长率问题,熟练掌握增长率的相关知识及整式的乘法化简是解决本题的关键.10.D解析:D【解析】【分析】图中直线y=x+b 与x 轴负半轴,y 轴正半轴分别交于A ,B 两点,可以根据两点的坐标得出OA=OB ,由此可证明△AOD ≌△OBE ,证出OC=AD ,BE=OD ,在Rt △OBE 中,运用勾股定理可求出BE 的长,再根据线段的差可求出DE 的长.【详解】直线y=x+b(b >0)与x 轴的交点坐标A 为(-b ,0)与y 轴的交点坐标B 为(0,-b ), 所以,OA=OB ,又∵AD ⊥OC ,BE ⊥OC ,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB ,在△DAO 和△BOE 中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键.11.D解析:D【解析】分析:由点(m,n )在一次函数3y x b =+的图像上,可得出3m+b=n ,再由3m-n >2,即可得出b <-2,此题得解.详解:∵点A (m ,n )在一次函数y=3x+b 的图象上,∴3m+b=n .∵3m-n >2,∴3m-(3m+b)>2,即-b>2,∴b <-2.故选D .点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n >2,得出-b >2是解题的关键.12.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC 的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D .【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.13.C解析:C【解析】【分析】根据平方根的定义进行求解即可.解:9的平方根是3±.故选C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数.14.D解析:D【解析】【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长.【详解】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm .故选D .【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.15.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π32个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题16.5.【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解解析:5.【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴240060k bk b=+⎧⎨=+⎩,解得:1106kb⎧=-⎪⎨⎪=⎩,∴y与t的函数关系式为y=﹣16 10t+,当t=45时,y=﹣110×45+6=1.5.故答案为1.5.【点睛】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.17.100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.【详解析:100【解析】【分析】根据等腰三角形的性质得到∠A=∠B,证明△ADF≌△BFE,得到∠ADF=∠BFE,根据三角形的外角的性质求出∠A=∠DFE=40°,根据三角形内角和定理计算即可.解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,AD BFA B AF BE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=40°,∴∠P=180°-∠A-∠B=100°;故答案为:100.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.18.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y-=-=故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.19.6+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2解析:+6【解析】【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC ,再求出AB 和BD 即可.【详解】因为在ABC ∆中,90C =∠,ADC 60∠=所以30DAC ∠=o所以AD=2CD=4所以==因为AD 平分CAB ∠,所以CAB ∠=2o DAC 60∠=所以o B BAD 30∠=∠=所以所以ABC ∆周长=AC+BC+AB=故答案为:【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.20.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B 点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B 点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B 点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.21.【解析】试题分析:解:设y=x+b ,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析:1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.22.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.23.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.【解析】【分析】根据直线解析式求出An−1Bn−1,AnBn的值,再根据直线ln−1与直线ln互相平行并判断出四边形An−1AnBn Bn−1是梯形,然后根据梯形的面积公式求出Sn的表解析:4039【解析】【分析】根据直线解析式求出A n−1B n−1,A n B n的值,再根据直线l n−1与直线l n互相平行并判断出四边形A n−1A n B n B n−1是梯形,然后根据梯形的面积公式求出S n的表达式,然后把n=2020代入表达式进行计算即可得解.【详解】根据题意,A n−1B n−1=3(n−1)−(n−1)=3n−3−n+1=2n−2,A nB n=3n−n=2n,∵直线l n−1⊥x轴于点(n−1,0),直线l n⊥x轴于点(n,0),∴A n−1B n−1∥A n B n,且l n−1与l n间的距离为1,∴四边形A n−1A n B n B n−1是梯形,S n=12(2n−2+2n)×1=12(4n−2)=2n-1,当n=2020时,S2020=2×2020-1=4039故答案为:4039.【点睛】本题是对一次函数的综合考查,读懂题意,根据直线解析式求出A n−1B n−1,A n B n的值是解题的关键,要注意脚码的对应关系,这也是本题最容易出错的地方.25.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题26.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:x-2=4(x-2)解得:x=2.检验:当x=2时,2(x-2)=0,∴x=2是增根.∴方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.27.(1)(4,3);(2)P(5,0)或(8,0)或(258,0);(3)t=587.【解析】【分析】(1)解方程组即可得到结论;(2)根据勾股定理得到OA5,当OP=OA=5时,△AOP是等腰三角形,当AP=OA=5时,△AOP是等腰三角形,当OP=PA时,△AOP是等腰三角形,于是得到结论;(3)由P(t,0),得到B(t,34t),C(t,﹣t+7),根据BC=32OA,解方程即可得到结论.【详解】解:(1)解734y xy x=-+⎧⎪⎨=⎪⎩得43xy=⎧⎨=⎩,∴点A的坐标为(4,3),故答案为:(4,3);(2)∵A(4,3),∴OA5,当OP=OA=5时,△AOP是等腰三角形,∴P(5,0),当AP=OA=5时,△AOP是等腰三角形,则OP=8,∴P(8,0);当OP=PA时,△AOP是等腰三角形,则点P在OA的垂直平分线上,如图1,设OA的垂直平分线交OA于H,∴OH=12OA=52,过A作AG⊥x轴于G,∴△OPH∽△OAG,∴OH OP OG OA=,∴5245OP =,∴OP=25 8,∴P(258,0),综上所述,P(5,0)或(8,0)或(258,0);(3)∵P(t,0),∴B(t,34t),C(t,﹣t+7),∵BC=32 OA,∴﹣t+7﹣34t=32×5或34t+t﹣7=32×5,解得:t=﹣27或t=587,∵t>0,∴t=587.【点睛】本题考查了一次函数的综合题,解方程组求点的坐标,等腰三角形的性质,相似三角形的判定和性质,正确的识别图形是解题的关键.28.(1)34,2;(2)见详解;(3)6s.【解析】【分析】(1)通过注水速度=注水体积÷注水时间以及圆柱体积=圆柱的底面积×圆柱的高,代入公式进行计算即可;(2)通过放水时间=放水体积÷放水速度,求出时间即可求出放水时间,然后画出图像;(3)列出容器A和容器B中水的高度与时间t的关系,通过水位高度相同求解即可.【详解】解:(1)由图象可知,4秒时间A容器内水的高度下降了1dm,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,A容器减少的水的体积22313A V sh ππ⎛⎫==⨯= ⎪ ⎪⎝⎭,则注水速度为34V t π=, B 容器流入的水的体积 2332B m V sh ππ⎛⎫==⨯= ⎪⎝⎭, 解得m=2, 故答案为34π;2. (2)注满后B 容器中水的总体积为:22442ππ⎛⎫⨯= ⎪⎝⎭, ∵放水速度为4π, ∴放空所需要的时间为:4π÷4π=16 s . 如图所示,(3)4秒时A 容器体积为22326ππ⨯=⎝⎭此时B 容器体积为4π根据注水速度,A 容器内水的高度为()36414334t t πππ--=- B 容器内水的高度:()()344245494t t t ππππ+---=- 由153944t t -=-解得t=6,∴容器A 向容器B 全程注水时间t 为6s .【点睛】此题的关键是找到题中各个量之间的关系,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,理解题意是解题的关键.29.(1)证明见解析;(2)21.【解析】【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.30.见解析【解析】【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,AH DKAB DE=⎧⎨=⎩,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,AB DEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.31.(1)2000;(2)y=5x﹣750;(3)甲送250单,乙送950单【解析】【分析】(1)根据题意可以求得“外卖小哥”某月送了500单的收入情况;(2)分段函数,运用待定系数法解答即可;(3)根据题意,利用分类讨论的方法可以求得甲、乙送单量各是多少.【详解】解:(1)由题意可得,“外卖小哥”某月送了500单,收入为:4×500=2000元,故答案为:2000;(2)当0≤x<750时,y=4x当x≥750时,当x=4时,y=3000设y=kx+b,根据题意得3000750 55001250k bk b=+⎧⎨=+⎩,解得5750kb=⎧⎨=-⎩,∴y=5x﹣750;(3)设甲送a单,则a<600<750,则乙送(1200﹣a)单,若1200﹣a<750,则4a+4(1200﹣a)=4800≠5000,不合题意,∴1200﹣a>750,∴4a+5(1200﹣a)﹣750=5000,∴a=250,1200﹣a=950,故甲送250单,乙送950单.【点睛】本题考查的知识点是一次函数的应用以及二元一次方程组,从函数图象中找出有用的信息是解此题的关键.。

徐州市八年级上学期第二次月考学业水平调研数学卷(含答案)

徐州市八年级上学期第二次月考学业水平调研数学卷(含答案)

徐州市八年级上学期第二次月考学业水平调研数学卷(含答案)一、选择题1.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四 2.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE3.下列有关一次函数y =-3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为C .当时,D .函数图象经过第一、二、四象限4.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 5.已知点P (1+m ,3)在第二象限,则m 的取值范围是( ) A .1m <-B .1m >-C .1m ≤-D .1m ≥- 6.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =ADC 2B ∠=∠,则BC的长为( )A .51-B .51+C .31-D .31+ 8. 4的平方根是( )A .2B .±2C .16D .±169.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,010.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm二、填空题 11.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.12.如图,点A 的坐标为(-2,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标是__________.13.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.14.在ABC ∆中,13AC BC ==, 10AB =,则ABC ∆面积为_______. 15.在实数:311-50.2-803.010010001......72π、、、、、、中,无理数有______个. 16.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y 17.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.18.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.19.一次函数y 1=ax +3与y 2=kx ﹣1的图象如图所示,则不等式kx ﹣1<ax +3的解集是_____.20.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,点点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。

徐州市八年级上学期期末质量自测数学试题

徐州市八年级上学期期末质量自测数学试题

徐州市八年级上学期期末质量自测数学试题一、选择题1.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 2.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,83.估计11的值应在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间4.下列运算正确的是( )A .=2B .|﹣3|=﹣3C .=±2D .=3 5.如图,∠A =30°,∠C ′=60°,△ABC 与△A′B′C′关于直线l 对称,则∠B 度数为( )A .30B .60︒C .90︒D .120︒6.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( )A .0条B .1条C .2条D .3条7.估计(130246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 8.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .29.下列各数中,无理数的是( )A .0B .1.01001C .πD .410.下列说法中,不正确的是( )A .2﹣3的绝对值是2﹣3B .2﹣3的相反数是3﹣2C .64的立方根是2D .﹣3的倒数是﹣13二、填空题11.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.12.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______.13.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______. 14.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.15.如图①的长方形ABCD 中, E 在AD 上,沿BE 将A 点往右折成如图②所示,再作AF ⊥CD 于点F ,如图③所示,若AB =2,BC =3,∠BEA =60°,则图③中AF 的长度为_______.16.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.17.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.18.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.19.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.20.计算:16=_______.三、解答题21.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.22.一次函数(0)y kx b k =+≠的图象经过点(3,1)A 和点(0,2)B -.(1)求一次函数的表达式;(2)若此一次函数的图像与x 轴交于点C ,求BOC ∆的面积.23.已知函数y 1=2x -4与y 2=-2x +8的图象,观察图象并回答问题:(1)x 取何值时,2x -4>0?(2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)求函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积?24.在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数()210y kx k k =-+≠进行了探究学习,请根据他们的对话解答问题.(1)张明:当1k =-时,我能求出直线与x 轴的交点坐标为 ;李丽:当2k =时,我能求出直线与坐标轴围成的三角形的面积为 ;(2)王林:根据你们的探究,我发现无论k 取何值,直线总是经过一个固定的点,请求出这个定点的坐标.(3)赵老师:我来考考你们,如果点P 的坐标为()1,0一,该点到直线()210y kx k k =-+≠的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.25.计算:()()023163.1422781π-+-- 四、压轴题26.如图,直线l 1:y 1=﹣x +2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=12x +b 过点P .(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.27.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?29.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.30.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数.【详解】延长AO 交BC 于D .∵点O 在AB 的垂直平分线上.∴AO=BO .同理:AO=CO .∴∠OAB=∠OBA ,∠OAC=∠OCA .∵∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA .∴∠BOD=2∠OAB ,∠COD=2∠OAC .∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC )=2∠BAC .∵∠A=50°.∴∠BOC=100°.故选:B .【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.B解析:B【解析】【分析】直接利用32=9,42=16得出11的取值范围.【详解】∵32=9,42=16,∴估计11在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.4.A解析:A【解析】【分析】根据算术平方根和立方根的定义、绝对值的性质逐一计算可得结论.【详解】A.=2,此选项计算正确;B.|﹣3|=3,此选项计算错误;C.=2,此选项计算错误;D.不能进一步计算,此选项错误.故选A.【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.5.C解析:C【解析】【分析】由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.【详解】∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.【点睛】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.6.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222-=-=543AC CD所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.7.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2-<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.8.C解析:C【解析】【分析】先根据勾股定理求出EC的长,进而可得出OE的长,在Rt△DOE中,由DE=AD及勾股定理可求出AD的长.【详解】解:根据各点坐标可得AB=OC=BE=5,AO=BC=3,设AD=x,则DE=x,DO=3-x∴=4,∴OE=1,在Rt△DOE中,DO2+OE2=DE2,解得x=53,∴AD=53,故选C.【点睛】本题考查了勾股定理的应用,找准直角三角形,设出未知数列出方程即可解答. 9.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;2,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.10.A解析:A【解析】【分析】分别根据实数绝对值的意义、相反数的定义、立方根的定义和倒数的定义逐项解答即可.【详解】解:A,故A选项不正确,所以本选项符合题意;B,正确,所以本选项不符合题意;C82,正确,所以本选项不符合题意;D、﹣3的倒数是﹣13,正确,所以本选项不符合题意.故选:A.【点睛】本题考查了实数的绝对值、相反数、立方根和倒数的定义,属于基础知识题型,熟练掌握实数的基本知识是解题关键.二、填空题11.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成. 12.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.13.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键. 14.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. 15.3-【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠AB H=30°,则根据勾股定理可求出BH=,可求出HC 的长度即为AF 的长度.【详解】解析:3【解析】【分析】作AH ⊥BC 于H .证明四边形AFCH 是矩形,得出AF=CH ,在Rt △ABH 中,求得∠ABH=30°,则根据勾股定理可求出BH=3,可求出HC 的长度即为AF 的长度.【详解】解:如下图,作AH ⊥BC 于H .则∠AHC=90°,∵四边形形ABCD 为长方形,∴∠B=∠C=∠EAB=90°,∵AF ⊥CD ,∴∠AFC=90°,∴四边形AFCH 是矩形,,AF CH =∵∠BEA =60°, ∴∠EAB=30°,∴根据折叠的性质可知∠AEH=90°-2∠EAB=30°,∵在Rt△ABH 中, AB=2,∴112AH AB ==, 根据勾股定理2222213BH AB AH -=-=∵BC=3, ∴33AF HC BC BH ==-=-故填:33【点睛】本题考查矩形的性质和判定,折叠变化,勾股定理,含30°角的直角三角形.能作辅助线构造直角三角形是解决此题的关键.16.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.17.60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经解析:60【解析】【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.60(精确到0.01).故答案为3.60.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得 m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.19.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.20.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.三、解答题21.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴==77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.22.(1)2y x =-;(2)2.【解析】【分析】(1)根据待定系数法将A 、B 两点的坐标代入求出k 、b 的值即可解决;(2)根据求出C 点坐标,由B 、C 两点的坐标即可求出△BOC 的面积.【详解】解:(1)将(3,1)A 和点(0,2)B -代入(0)y kx b k =+≠,得:312k b b +=⎧⎨=-⎩解得:21b k =-⎧⎨=⎩故一次函数解析式为:2y x =-.(2)令y=0得:0=x-2,x=2,所以C 点坐标为(2,0),OC=2所以三角形OBC 的面积=22222OC OB ⋅⨯== 【点睛】本题考查了待定系数法求函数解析式,利用点的坐标求三角形面积,解决本题的关键是熟练掌握待定系数法.23.(1)x >2;(2)x <4 ;(3)2<x <4;(4)2(平方单位)【解析】【分析】利用图象可解决(1)、(2)、(3);利用图象写出两函数图象的交点坐标,然后根据三角形面积公式计算函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积.【详解】由图可知:(1)当x >2时,2x−4>0;(2)当x <4时,-2x +8>0;(3)由(1)(2)可知当2<x <4时,2x−4>0与−2x +8>0同时成立;(4)联立y 1=2x -4与y 2=-2x +8,解得x=3,y=2,∴函数y 1=2x -4与y 2=-2x +8的图象的交点坐标为(3,2),所以函数y 1=2x -4与y 2=-2x +8的图象与x 轴所围成的三角形的面积=12×(4−2)×2=2(平方单位).【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.解决本题的关键是准确画出两函数图象.24.(1) (3,0),94; (2) (2,1);; 【解析】【分析】(1) 张明:将k 值代入求出解析式即可得到答案;李丽: 将k 值代入求出解析式,得到直线与x 轴和y 轴的交点,即可得到答案;(2) 将()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数,即可求出;(3) 由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB ,发现直角三角形ABP 中PA 是最大值,所以当PA 与()210y kx k k =-+≠垂直时最大,求出即可.【详解】解:(1)张明: 将1k =-代入()210y kx k k =-+≠得到y=-x-2×(-1)+1y=-x+3令y=0 得-x+3=0,得x=3所以直线与x 轴的交点坐标为(3,0)李丽:将2k = 代入()210y kx k k =-+≠得到 y=2x-3直线与x 轴的交点为(32,0) 直线与y 轴的交点为(0,-3) 所以直线与坐标轴围成的三角形的面积=1393=224⨯⨯ (2) ∵()210y kx k k =-+≠转化为(y-1)=k (x-2)正比例函数∴(y-1)=k (x-2)必过(0,0)∴此时x=2,y=1通过图像平移得到()210y kx k k =-+≠必过(2,1)(3)由图像()210y kx k k =-+≠ 必过(2,1)设必过点为A,P 到直线的距离为PB由图中可以得到直角三角形ABP 中AP 大于直角边PB所以P 到()210y kx k k =-+≠最大距离为PA 与直线垂直,即为PA∵ P (-1,0)A (2,1)得到10答:点P 到()210y kx k k =-+≠10.【点睛】此题主要考查了一次函数的性质及一次函数的实际应用-几何问题,正确理解点到直线的距离是解题的关键. 25.49- 【解析】【分析】原式利用零指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+2﹣49+(﹣3) =﹣49. 【点睛】 本题考查了实数的运算,涉及到了零指数幂、平方根、立方根定义,熟练掌握法则是解题的关键四、压轴题26.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+2或9﹣2或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+, 解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-,解得t =6. 故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.27.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得t =2即可;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,则CM =CN ,得3t =10−8t ,解得t =1011;当点N 在线段CA 上时,△PCM ≌△QCN ,则3t =8t−10,解得t =2;即可得出答案.【详解】(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠DAC +∠DCA =∠DCA +∠BCE =90°,∴∠DAC =∠ECB , 在△ADC 和△CEB 中ADC CEB DAC ECB AC CB ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC ≌△CEB (AAS );②由①得:△ADC ≌△CEB ,∴AD =CE =8,CD =BE =6,∴DE =CD +CE =6+8=14;(2)解:①当点N 在线段CA 上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.28.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.29.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC=,利用AAS得到AFH CAD∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD=,再EK AD⊥,交DG延长线于点K,同理可得到AD EK=,等量代换得到FK EH=,再由一对直角相等且对顶角相等,利用AAS得到FHG EKG≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1)∵FH AG⊥,90AEH EAH∴∠+∠=︒,90FAC∠=︒,90FAH CAD∴∠+∠=︒,AFH CAD∴∠=∠,在AFH∆和CAD∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.30.(1)①见解析;②DE =297;(2)DE 的值为 【解析】【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC =∠EAD =90°,∴∠EAB =∠DAC ,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

江苏省徐州市部分学校八年级数学下学期期中检测试题 苏科版

江苏省徐州市部分学校八年级数学下学期期中检测试题 苏科版

江苏省徐州市部分学校2017-2018学年八年级数学下学期期中检测试题(全卷共140分,考试时间90分钟)一、选择题(本大题共有8小题,每小题3分,共24分. 在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.2. 下列调査中,适合采用普査方式的是A.对大运河水质情况的调査 B.对端午节期间市场上粽子质量情况的调査C.对某班50名同学体重情况的调査 D.对某类烟花爆竹燃放安全情况的调査3.今年某市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是A.这1000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体 D.1000名学生是样本容量4.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是A.冠军属于中国选手 B.冠军属于外国选手C.冠军属于中国选手甲 D.冠军属于中国选手乙5.不能判断四边形ABCD是平行四边形的是A.AB=CD,AD=BC B.∠A=∠C,AB∥CDC.AB∥CD,AD∥BC D.AB=CD,AD∥BC6.若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是A.菱形 B.对角线相互垂直的四边形C.正方形 D.对角线相等的四边形7.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为A.16 B.12 C.24 D.208.如图,由两个长为9,宽为3的全等矩形叠合,得到四边形ABCD,则四边形ABCD面积的最大值是A. 15B. 16C. 19D. 20二、填空题(本大题共有8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.一个袋中装有3个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到▲球的可能性最大.10.在ABCD中,∠A+∠C=200°,则∠A= ▲°.11.在△ABC中,D、E分别是AB、AC的中点,BC=6,则DE= ▲ .12.数学老师布置10道选择题作为课堂练习,学习委员将全班同学的答题情况绘制成条形图,根据统计图可知,答对8道题的同学的频率是▲.13.如图,菱形ABCD的对角线AC、BD相交于点O,E为AD的中点,若OE=5,BC等于▲.14.如图,平行四边形ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,若AB=4,BC=6,则EF= ▲.15.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠CAD= ▲°.16.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm 的速度从点A向点D 运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两点同时出发,当点P到达点D时,两点同时停止运动.在两点运动过程中,以P、D、Q、B四点组成平行四边形的次数有▲次.第13题第16题第15题第14题第12题三、解答题(本大题共有9题,共84分.解答时应写出文字说明、证明过程或演算步骤)17.(8分) 在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学 习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后 从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后 统计的数据:(1) 请估计:当实验次数很大时,摸到白球的频率将会接近 ▲ ;假如你去摸一次, 你摸到红球的概率是 ▲ ;(精确到0.1).(2)试估算口袋中红球有多少只?18.(8分)4月23日是“世界读书日”,某校开展了“书香校园”、“书香家庭”的活动.学校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生作了调查统计, 将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数 频率 卡通画a 0.45 时文杂志b 0.16 武侠小说50 c 文学名著de(1)这次随机调查了 ▲ 名学生,统计表中d = ▲ ;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 ▲ °;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?第18题19.(9分) 如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy 的原点O 在格点上,x 轴、y 轴都在网格线上.线段AB 的端点A 、B 在格点上.(1)将线段AB 绕点O 逆时针90°得到线段A 1B 1,请在图中画出线段A 1B 1;(2)在(1)的条件下,线段A 2B 2与线段A 1B 1关于原点O 成中心对称,请在图中画出线段A 2B 2;(3)在(1)、(2)的条件下,点P 是此平面直角坐标系内的一点,当以点A 、B 、B 2、P 为顶点的四边形是平行四边形时,请直接写出点P的坐标 ▲ .20.(9分)如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F .已知AB =4,BC =6,∠F =55°,求线段EC 的长和∠D 的度数.21.(9分)如图,△ABC 中,D 是AB 的中点,E 是AC 上一点,EF ∥AB , DF ∥BE .请你猜想DF 与AE 的关系,并说明理由.22.(9分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD 、CE .若点D 是BC 中点,说明四边形ADCE 是矩形. O y x A B 第19题第20题第21题23.(10分)如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O ,CE ∥BD ,DE ∥AC .(1)求证:四边形 OCED 为菱形(2)若AD =7,AB =4,求四边形 OCED 的面积.24.(10分)如图,平行四边形ABCD 中,AB =3cm ,BC =5cm ,∠B =60°,G 是CD 的中点, E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF .(1)求证:四边形CEDF 是平行四边形;(2)当AE = ▲ cm 时,四边形CEDF 是矩形.(直接写出答案,不需要说明理由)25.(12分)如图1,四边形ABCD 中,AD ∥BC ,∠ADC =90°,AD =8,BC =6,点M 从点D 出发,以每秒2个单位长度的速度向点A 运动,同时,点N 从点B 出发,以每 秒1个单位长度的速度向点C 运动.其中一个动点到达终点时,另一个动点也随之 停止运动.过点N 作NP ⊥AD 于点P ,连接AC 交NP 于点Q ,连接MQ .设运动时 间为t 秒.(1)AM = ▲ ,AP = ▲ .(用含t 的代数式表示)(2)当四边形ANCP 为平行四边形时,求t 的值(3)如图2,将△AQM 沿AD 翻折,得△AKM ,是否存在某时刻t ,①使四边形AQMK 为为菱形,若存在,求出t 的值;若不存在,请说明理由②使四边形AQMK 为正方形,则AC = ▲ .第22题 第23题第24题第23题2017~2018学年度第二学期期中抽测八年级数学参考答案题号12345678选项 B C C A D B B A13.10; 14. 2 15.22.5 ; 16. 3 17.(1)0.3 ,0.7 ···························4分(2)70.······························8分18.(1)200,28 ····························4分(2)90.······························6分(3)210.·····························8分19.(1)(2)略····························6分(3) (1,4)(1,-4)(3,0) ······················9分20.在平行四边形ABCD中,AB∥CD, AD∥BC················1分∵AD∥BC ∴∠DAE=∠AEB······················2分∵AF平分∠BAD ∴∠DAE=∠BAE····················3分∴∠BAE=∠AEB ∴AB=BE=4 ······················5分∴EC=6-4=2 ·····························6分∵AB∥CD ∴∠BAE=∠F·······················7分∴∠DAE=∠F=55°··························8分∴∠D=70°·····························9分21.AE、DF互相平分.··························1分∵EF∥AB, DF∥BE ∴四边形DBEF是平行四边形············3分∴EF∥BD,EF=BD··························5分∵D是AB的中点,∴AD=BD.·····················6分∴AD∥EF,AD=EF.·························7分∴四边形ADEF是平行四边形.····················8分∴AE、DF互相平分.·························9分22.∵四边形ABDE是平行四边形,∴BD∥AE,BD=AE,∵点D是BC中点,∴BD=CD,∴AE∥CD,AE=CD,∴四边形ADCE 是平行四边形 ····················· 5分 在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形. ····················· 9分23.(1)∵DE ∥OC ,CE ∥OD ,∴四边形OCED 是平行四边形 ··········· 2分∴OC =DE ,OD =CE . ·························· 3分 ∵四边形ABCD 是矩形,∴ ,AC =BD . ····· 4分∴OC =OD ······························ 5分 ∴平行四边形OCED 是菱形 ······················ 6分(2)如图,连接OE∵在菱形OCED 中,OE ⊥CD ,又∵AD ⊥CD ,∴OE ∥AD , ·········· 7分 ∵DE ∥AC ,OE ∥AD∴四边形AOED 是平行四边形 ····················· 8分 ∴OE=AD =7 ····························· 9分 ∴S 菱形OCED =OE •DC =×4×7=14 ··················· 10分24.. (1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED ,∴∠FCG =∠EDG , ·························· 2分 ∵G 是CD 的中点,∴CG =DG ······················ 3分 在△FCG 和△EDG 中,⎪⎩⎪⎨⎧∠=∠=∠=∠DGECGF DG CG EDGFCG ∴△FCG ≌△EDG ··························· 5分 ∴FG =EG ······························ 6分 ∵CG =DG ,∴四边形CEDF 是平行四边形 ················· 8分(2)3.5 ····························· 10分25.解:(1)8﹣2t ,2+t. ························· 2分(2)∵四边形ANCP 为平行四边形时,CN =AP .∴6﹣t =8﹣(6﹣t ),解得t =2. ···················· 6分(3)①存在时刻t =1,使四边形AQMK 为菱形.理由如下四边形AQMK 为菱形 ∴QM =QA∵QP ⊥AD ∴PM =PA∴6﹣t ﹣2t =8﹣(6﹣t ),解得t =1 ················· 10分 128····························· 12分 1122OC AC OD BD ==,。

江苏省徐州市2023-2024学年八年级上学期期中数学模考练习试题

江苏省徐州市2023-2024学年八年级上学期期中数学模考练习试题

江苏省徐州市2023-2024学年八年级上学期期中数学模考练习试题学校:___________姓名:___________班级:___________考号:___________一、单选题.B...A .AD CD =B .DAP DCP ∠=∠C .AP BC =D .ABP CBP ∠=∠7.如图,有一张直角三角形的纸片,两直角边6AC cm =,8BC cm =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上且与AE 重合,则BD 的长为()A .5cmB .4cmC .3cmD .2cm8.如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EBC =110°;④AD =AC ;⑤∠EFB =40°,正确的个数为()个.A .1B .2C .3D .4二、填空题14.有一个数值转换器,原理如图,当输入的15.如图,已知:∠A =∠D ,∠1=∠2,下列条件中:①∠③AB =EF ;④AF =C D .能使△ABC ≌△DEF 的有16.如图,在Rt ABC △中,90BAC ∠=︒,若55B ∠=︒,过点CD 上取一点B ',使BD B D '=,则三、解答题17.解方程:(1)26(1)1x =-;(2)30()82127x +=-.四、证明题18.如图,12,,AB AE AC AD ∠=∠==.求证:BC ED =.五、解答题六、填空题七、解答题21.如图,在正方形网格中,每个小正方形的边长均为1.(1)作四边形ABCD 关于直线l 的对称图形;(2)在直线l 上找一点P ,使PA PC +最小;(3)四边形ABCD 的面积=___________.22.如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:DE =DF ;(2)如果S △ABC =14,AC =7,求DE 的长.八、证明题23.已知,如图,在ABC 中,AD AE ,分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠的关系,并加以证明.九、解答题24.麒麟某数学兴趣小组的同学用数学知识测一池塘的长度,他们所绘如图,点B ,F ,C (点F ,C 之间不能直接测量,为池塘的长度),点A ,D 在l 的异侧,且AB DE ∥,A D ∠=∠,测得AB DE =.(1)求证:ABC DEF ≌△△;(2)若100m 30m BE BF ==,,求池塘FC 的长.十、证明题25.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,,AB AC AD AE ==,点C D E 、、三点在同一直线上,连接BD 交AC 于点F .(1)求证:ΔΔBAD CAE ≌;(2)猜想,BD CE 有何特殊位置关系,并说明理由.。

江苏省徐州市八年级下学期数学期中考试试卷

江苏省徐州市八年级下学期数学期中考试试卷

江苏省徐州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列标志既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)函数y=中自变量x的取值范围是()A . x≤0B . x≤-2C . x≤2D . x≥-23. (2分)下列说法正确的是()A . ﹣3的倒数是B . ﹣2的绝对值是﹣2C . ﹣(﹣5)的相反数是﹣5D . x取任意实数时,都有意义4. (2分) (2019七下·钦州期末) 下列调查中,适合用全面调查方式的是()A . 了解市场上酸奶的质量情况B . 了解一批签字笔的使用寿命情况C . 了解某条河流的水质情况D . 了解某校七年级甲班学生期中数学考试的成绩5. (2分)一枚质地均匀的正六面体骰子六个面分别刻有1到6的点数,掷这枚骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数是6的可能性()A . 等于朝上点数为5分可能性B . 大于朝上点数为5分可能性C . 小于朝上点数为5分可能性D . 无法确定6. (2分) (2019八下·江苏月考) 若将分式中、的值都扩大2倍,则分式的值()A . 扩大2倍B . 扩大4倍C . 不变D . 缩小2倍7. (2分) (2017八下·福清期末) 如图,已知四边形ABCD是平行四边形,下列结论中错误的是()A . 当AB=BC时,它是菱形B . 当AC⊥BD时,它是菱形C . 当AC=BD时,它是矩形D . 当∠ABC=90°时,它是正方形8. (2分)(2016·福州) 如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A . (sinα,sinα)B . (cosα,cosα)C . (cosα,sinα)D . (sinα,cosα)二、填空题 (共11题;共11分)9. (1分) (2019八下·镇江月考) “从超市货架上任意取一盒月饼进行检验,结果合格”这一事件是________(填“必然事件”“不可能事件”“随机事件”).10. (1分) (2019八下·杭州期中) 若最简二次根式与是同类二次根式,则a的值为________.11. (1分) (2019八上·北京期中) 若分式的值为0,则的值为________.12. (1分)若代数式有意义,则x的取值范围为________.13. (1分) (2019八上·凉州期末) 分式的最简公分母是________.14. (1分) (2016七下·建瓯期末) 若实数a,b满足|a+2|+ =0,则a+b=________.15. (1分) (2019八下·江阴期中) 如图,四边形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为________.16. (1分)矩形ABCD中,AB=4,BC=9,点P为BC的三等分点,连接AP,则sin∠PAB=________.17. (1分) (2017九上·宁县期中) 如图,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).18. (1分) (2017八上·湖州期中) 如图,在△ABC中,∠ACB=90°,D在BC上,E是AB的中点,AD、CE 相交于F,且AD=DB.若∠B=20°,则∠DFE等于________.19. (1分)化简:=________ .三、解答题 (共5题;共42分)20. (20分)先化简:,然后再在0、1、2、4中取一个你喜欢的值代入求值.21. (11分)(2016·南京模拟) 某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.(每组只含最小值,不含最大值)(1)该课外活动小组抽取的样本容量是多少?请补全图中的频数分布直方图;(2)样本中,睡眠时间在哪个范围内的人数最多?这个范围的人数是多少?(3)设该校九年级学生900名,若合理的睡眠时间范围为7≤h<9,你对该校九年级学生的睡眠时间做怎样的分析、推断?22. (3分)(2016·龙东) 如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1 ,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O 顺时针旋转90°得到△A2B2C2 ,点A1的对应点为点A2 .(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.23. (5分) (2016八下·曲阜期中) 如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.24. (3分) (2017八上·金堂期末) 把长方形沿对角形线AC折叠,得到如图所示的图形,已知∠BAO=30°,(1)求∠AOC和∠BAC的度数;(2)若AD= ,OD= ,求CD的长参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共11题;共11分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共5题;共42分)20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、24-1、24-2、。

徐州市数学八年级下学期期中模拟试卷

徐州市数学八年级下学期期中模拟试卷

徐州市数学八年级下学期期中模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各式中,是最简二次根式的是()A .B .C .D .2. (2分)已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,则△ABC的形状为()A . 等腰三角形B . 直角三角形C . 等腰直角三角形D . 等腰三角形或直角三角形3. (2分)(2017·肥城模拟) 如图,点A是反比例函数y= (>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在x轴上,则平行四边形ABCD的面积为()A . 2B . 3C . 4D . 54. (2分) (2016七上·萧山期中) 如图,在5×5的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A .B .C .D .5. (2分) (2018八上·衢州期中) 下列说法中,正确的是()A . 直角三角形中,已知两边长为 3 和 4,则第三边长为 5B . 若一个三角形是直角三角形,其三边长为 a,b,c,则满足a2-b2=c2C . 以三个连续自然数为三边长不可能构成直角三角形D . △ABC 中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC 是直角三角形6. (2分)下列判定中,正确的个数有()(1)一组对边平行,一组对边相等的四边形是平行四边形;(2)对角线互相平分且相等的四边形是矩形;(3)对角线互相垂直的四边形是菱形;(4)有一个角是直角的四边形是矩形;(5)有四个角是直角的四边形是矩形;(6)对角线互相垂直平分且相等的四边形是正方形.A . 2个B . 3个C . 4个D . 5个7. (2分) (2017八下·江阴期中) 已知点D与点A(0,6),B(0,﹣4),C(x,y)是平行四边形的四个顶点,其中x,y满足x﹣y+3=0,则CD长的最小值为()A .B . 4C . 2D . 28. (2分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将ΔBCE绕点C顺时针方向旋转90°得到ΔDCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A . 10°B . 15°C . 20°D . 25°9. (2分)如图1,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A . 线段ECB . 线段AEC . 线段EFD . 线段BF10. (2分)如图,四边形ABCD中,点M , N分别在AB , BC上,将△BMN沿MN翻折,得△FMN ,若MF∥AD ,FN∥DC ,则∠B =()A . 95°B . 90°C . 135°D . 120°二、填空题 (共8题;共8分)11. (1分) (2017七上·南宁期中) 如果,则的值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

徐州三中附中八年级数学阶段自测作业
过节不忘学习,成绩全靠努力!
勤奋认真踏实,敷衍耽误自己!
一、选择题
1.下列函数:①y =x -6;②y =x 2;③y =8
x ;④y =7-x 中,y 是x 的一次函数的是( ) A .①②③ B .①③④ C .①②③④ D .②③④
2.小王于上午8时从甲地出发去相距50千米的乙地.下图中,折线OABC 是表示小王离开甲地的时间t (时)与路程S (千米)之间的函数关系的图
象.根据图象给出的信息,下列判断中,错误的是( )
A .小王11时到达乙地
B .小王在途中停了半小时
C .与8:00-9:30相比,在10:00-11:00前进的速度较慢
D .出发后1小时,小王走的路程少于25千米
3.如图:将长为30厘米、宽为10厘米的长方形白纸共x 张,按
来,粘合部分的宽度为2厘米,粘合后的总长度为y 厘米;则y 关于x 的函数关系式是( )
A .x y 30=
B .x y 28=
C .
228-=x y D .228+=x y
4.一次函数y=2x+3的图象不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
二、填空题
5.边长为a 的等边三角形,其面积S=
24
3a ,其中常量是 ,变量是 , 是 的函数,自变量是 ,因变量是 . 6.有下列函数:①y =6x -5;②y =5x ;③y =x +4;④y =-4x +5。

其中过原点的直线是___________;函数y 随x 的增大而增大的是___________;函数y 随x 的增大而减小的 是______;图象在第一、二、三象限的是___________.
7.在函数关系式y=-31x +2中, 当x =-3时,y = ;当y =0时,x = .
8.一次函数y =kx+b 的图象如图,则k = ,b = .
9.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .
(1)y 随着x 的增大而减小; (2)图象经过点(1,-3)
10.把函数3
x y =的图像向 平移 个单位得到函数36-=x y .
三、解答题
11.已知:y-3与x+2成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系式吗?(2)计算x=4时,y的值;
(3)计算y=4时,x的值
12.已知函数y=(m+1)x+(m2-1),当m取什么值时,y是x的一次函数?当m取什么值时,y是x的正比例函数?
13.用60 m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成
(1)写出矩形面积S(m2)与平行于墙的一边长a(m)的关系式;
(2)写出矩形面积S(m2)与垂直于墙的一边长b(m)的关系式,
并指出两式中的常量与变量,函数与自变量.
14.(1)同一坐标系中,画一次函数y=4x-4、y=-4x+4的图象.
(2)点(1,2)、(2,-4)是否在所画的图象上?在哪一个函数的图象上?
(3)如果(a,5)在y=4x-4的图象上,求a的值.
(4)请写出它们的交点坐标.
15.一次函数y=kx+b与x轴交于点(4,0),函数图象与坐标轴围成的三角形面积为8,求k、b的值,并画出函数图象.。

相关文档
最新文档