中考数学第一轮复习 轴对称专题训练
2020年中考数学一轮专项复习——图形的对称中考真题汇编(含详细解答)
2020年中考数学一轮专项复习——图形的对称中考真题汇编一.选择题1.(2019•深圳)下列图形中是轴对称图形的是()A.B.C.D.2.(2019•湘西州)下列四个图形中,不是轴对称图形的是()A.B.C.D.3.(2019•兰州)如图,边长为的正方形ABCD的对角线AC与BD交于点O,将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,折痕DF交AC于点M,则OM=()A.B.C.﹣1 D.﹣14.(2019•攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG,FC,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正确结论的个数是()A.1 B.2 C.3 D.4 5.(2019•江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种6.(2019•乐山)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A.B.1 C.D.7.(2019•台州)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:28.(2019•湖州)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.2B.C.D.9.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)10.(2019•重庆)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8 B.4C.2+4 D.3+211.(2019•重庆)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD 翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.12.(2019•金华)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1 C.D.二.填空题13.(2019•锦州)如图,在矩形ABCD中,AB=3,BC=2,M是AD边的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△A′MN,连接A′C,则A′C的最小值是.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.15.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.16.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.17.(2019•泰安)矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.18.(2019•河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.19.(2019•淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH 沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.20.(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).21.(2019•杭州)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.22.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.23.(2019•天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD 上,若DE=5,则GE的长为.24.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB 的中点,若∠CMD=120°,则CD的最大值是.三.解答题25.(2019•天门)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.26.(2019•临沂)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.27.(2019•滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.28.(2019•永州)(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.29.(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.30.(2019•鞍山)如图,△ABC的三个顶点的坐标分别是A(2,4),B(1,1),C(3,2).(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标.(2)已知△A2B2C2与△ABC关于直线l对称,若点C2的坐标为(﹣2,﹣3),请直接写出直线l的函数解析式.注:点A1,B1,C1及点A2,B2,C2分别是点A,B,C按题中要求变换后对应得到的点.参考答案一.选择题1.解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.3.解:∵四边形ABCD是正方形,∴AB=AD=BC=CD=,∠DCB=∠COD=∠BOC=90°,OD=OC,∴BD=AB=2,∴OD=BO=OC=1,∵将正方形ABCD沿直线DF折叠,点C落在对角线BD上的点E处,∴DE=DC=,DF⊥CE,∴OE=﹣1,∠EDF+∠FED=∠ECO+∠OEC=90°,∴∠ODM=∠ECO,在△OEC与△OMD中,,△OEC≌△OMD(ASA),∴OM=OE=﹣1,故选:D.4.解:如图,连接DF.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴DG=FG,∠GAF=∠GAD,设GD=GF=x,∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正确,在Rt△ECG中,∵EG2=EC2+CG2,∴(4+x)2=82+(12﹣x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然F G≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=×24=,故④错误,故选:B.5.解:共有6种拼接法,如图所示.故选:D.6.解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3﹣.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=﹣1.故选:A.7.解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.8.解:如图,经过P、Q的直线则把它剪成了面积相等的两部分,由图形可知△AMC≌△FPE≌△BPD,∴AM=PB,∴PM=AB,∵PM==,∴AB=,故选:D.9.解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.10.解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.11.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.12.解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形E FGH 的面积=×正方形ABCD 的面积=,∴正方形EFGH 的边长GF ==∴HF =GF =∴MF =PH ==a∴=a ÷=故选:A .二.填空题(共12小题)13.解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值,∵MC ==∴A ′C 的最小值=MC ﹣MA '=﹣1故答案为:﹣114.解:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =CD =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,A ′B ′∥AB ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB'=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x=(负值舍去),x2=,故答案为:.16.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.17.解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE=AD=6由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC=×180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC===3,∴,∴FE=2,故答案为:2.18.解:分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE=∠BAD=45°,∴AB=BE,∴a=1,∴a=;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′=a,∴DB′==,EC=BC﹣BE=a﹣a=a.在△ADB′与△B′CE中,,∴△ADB′∽△B′CE,∴=,即=,解得a1=,a2=﹣(舍去).综上,所求a的值为或.故答案为或.19.解:如图,连接PB,交CH于E,由折叠可得,CH垂直平分BP,BH=PH,又∵H为AB的中点,∴AH=BH,∴AH=PH=BH,∴∠HAP=∠HPA,∠HBP=∠HPB,又∵∠HAP+∠HPA+∠HBP+∠HPB=180°,∴∠APB=90°,∴∠APB=∠HEB=90°,∴AP∥HE,∴∠BAP=∠BHE,又∵Rt△BCH中,tan∠BHC==,∴tan∠HAP=,故答案为:.20.解:方法1、如图,由图可得,拼出来的图形的总长度=5a+4[a﹣2(a﹣b)]=a+8b 故答案为:a+8b.方法2、∵小明用9个这样的图形(图1)拼出来的图形∴口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a,口朝下的有四个,长度为4[b﹣(a﹣b)]=8b﹣4a,即:总长度为5a+8b﹣4a=a+8b,故答案为a+8b.21.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴D x,∵•x•x=1,∴x=2(负根已经舍弃),∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3)=10+6.故答案为10+622.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn==.故答案为:.23.解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF===13,S=AB•AF=BF•AH,△ABF∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE﹣AG=13﹣=,故答案为:.24.解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,∵MA′=MB′,∴△A′MB′为等边三角形∵CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.三.解答题(共6小题)25.解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求26.解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠FAE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠FAE,∠BAG=∠FAG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH是∠EGM的平分线.27.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,∵FDE=90°,∴22+(6﹣x)2=x2,解得,x=,∴CE=,∴四边形CEFG的面积是:CE•DF=×2=.28.解:(1)如图所示:(2)依题意有=,解得m1=,m2=(负值舍去),经检验,m1=是原方程的解.故m的值是;(3)∵≠,∴直角三角形的斜边与直角梯形的斜腰不在一条直线上,故重新拼成的图形的面积会增加.29.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠E CB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).30.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,∵C(3,2),C2(﹣2,﹣3),△A2B2C2与△ABC关于直线l对称,∴直线l垂直平分直线CC2,∴直线l的函数解析式为y=﹣x.。
2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)
2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)1.在平行四边形ABCD 中,AB=6,AD=8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处.如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( )A .48 B .106 C .127 D .242 2.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称的点的坐标是( )A .(3,3)B .(﹣3,3)C .(﹣3,﹣3)D .(32,32) 3.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A .B .C .D . 4.如图,COD 是AOB 绕点O 顺时针方向旋转38后所得的图形,点C 恰好在AB 上,AOD 90∠=,那么BOC ∠的度数为( )A .12°B .14°C .24°D .30°5.点P (﹣4,﹣3)关于原点对称的点的坐标是( )A .(4,3)B .(﹣4,3)C .(﹣4,﹣3)D .(4,﹣3)6.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=( )A .50°B .60°C .45°D .以上都不对 7.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列分子结构模型平面图中,只有一条对称轴的是()A.B.C.D.10.如图,ABCD和DCGH是两块全等的正方形铁皮,要使它们重合,则存在的旋转中心有()A.1个B.2个C.3个D.4个11.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.12.如图,正方形ABCD的边长为4,E是边BC上的一点且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是____.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图,将△ABE向右平移3cm得到△DCF,如果△ABE的周长是12cm,那么四边形ABFD的周长是_____cm.15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.16.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为___________17.在平面直角坐标系中,已知点P0的坐标为(1,0),将P0绕原点O按逆时针方向旋转30°得点P1,延长OP1到P2,使OP2=2OP1,再将点P2绕原点O按逆时针方向转动30°得到点P3,延长OP3到P4,使OP4=2OP3,…,如果继续下去,点P2016的坐标为_________.18.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为______.19.在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距_____cm.20.如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.(1)直接写出点C的坐标,并判断△CDE的形状,说明理由;(2)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;(3)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)21.三角形右边的是由左边的怎样平移得到的?22.如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)23.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD 各顶点的坐标.24.如图,正方形网格中的△ABC,若小方格边长为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出三角形ABC关于y轴对称的三角形A1B1C1;(3)判断△ABC的形状,并求出△ABC的面积.25.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.26.如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;(2)画出△ABC关于原点对称的图形△A1B1C1;(3)求△ABC的面积;(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.27.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD 的度数与AD的长.28.将△ABC的∠C折起,翻折后角的顶点位置记作C′,当C′落在AC上时(如图1),易证:∠1=2∠2.当C′点落在CA和CB之间(如图2)时,或当C′落在CB、CA的同旁(如图3)时,∠1、∠2、∠3关系又如何,请写出你的猜想,并就其中一种情况给出证明.图1 图2 图329.已知,△AOB中,AB=BC=2,∠ABC=90°,点O是线段AC的中点,连接OB,将△AOB 绕点A逆时针旋转α度得到△ANM,连接CM,点P是线段CM的中点,连接PN、PB.(1)如图1,当α=180°时,直接写出线段PN和PB之间的位置关系和数量关系;(2)如图2,当α=90°时,探究线段PN和PB之间的位置关系和数量关系,并给出完整的证明过程;(3)如图3,直接写出当△AOB在绕点A逆时针旋转的过程中,线段PN的最大值和最小值.参考答案1.C【解析】设AE 与BC 交于O 点,O 点是BC 的中点.∵四边形ABCD 是平行四边形,∴∠B =∠D .AB ∥CD ,又由折叠的性质推知∠D =∠E ,CE =CD∴∠B =∠E .CE =AB∴△ABO 和△ECO 中 ,所以△ABO ≌△CEO (AAS ),所以AO =CO =4,OE =OB =4.∴AE =AD =8.∴△AED 为等腰三角形,又C 为底边中点,故三线合一可知∠ACE =90°,从而由勾股定理求得AC =. 平行四边形ABCD 的面积=AC ×CD =12.故选:C .2.A【解析】试题解析:已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,, 过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33., 故选A .点睛:关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数. 3.A【解析】试题分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.考点:生活中的平移现象.4.B【解析】【分析】直接利用旋转的性质得出∠AOC=∠BOD=38°,进而得出∠BOC的度数.【详解】∵△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,∴∠AOC=∠BOD=38°,∵∠AOD=90°,∴∠BOC=90°-38°-38°=14°.故选:B.【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.5.A【解析】解:点P(-4,-3)关于原点对称的点的坐标是(4,3).故选A.6.B【解析】试题解析:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选B.7.C【解析】【分析】根据轴对称图形的定义进行判断即可得到对称轴.【详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.8.B【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.详解:A.该图形是是轴对称图形不是中心对称图形,故本选项错误;B.该图形既是轴对称图形,又是中心对称图形,故本选项正确;C.该图形不是轴对称图形,是中心对称图形,故本选项错误;D.该图形是是轴对称图形,不是中心对称图形,故本选项错误.故选B.点睛:本题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.A【解析】根据图形可得:选项A有1条对称轴,选项B、C各有2条对称轴,选项D有6条对称轴,故选A.【点睛】本题主要考查了轴对称图形的定义,关键是正确找出每个图形的对称轴.10.C【解析】分析:旋转中心即是对应点连线的垂直平分线的交点.详解:根据旋转中心即是对应点连线的垂直平分线的交点,可得要使正方形ABCD和DCGH重合,有3种方法,可以分别绕D,C或CD的中点旋转,即旋转中心有3个.故选C.点睛:本题考查了旋转的性质旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,旋转中心即是对应点连线的垂直平分线的交点.11.35.【解析】解:连接PP′.如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6.∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA.在△PCB和△P′CA中,∵PC=P′C,∠PCB=∠P′CA,CB=CA,∴△PCB≌△P′CA,∴PB=P′A=10.∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠P AP′='6'10PPP A=35.故答案为35.12.6【解析】连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为6.13.(﹣a﹣2,﹣b)【解析】由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b),故答案为:(﹣a﹣2,﹣b).14.18.【解析】【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】∵△ABE向右平移3cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为3cm,∴AD=EF=3cm,∵△ABE的周长是12cm,∴四边形ABFD的周长=12+3+3=18cm.故答案为18cm.【点睛】本题考查了平移的性质,解题的关键是熟练的掌握平移的性质.15.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.16.(2,5)【解析】【分析】平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位.应用点的平移与坐标关系便可得出答案.【详解】因为将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位,此时得到对应点的坐标是(-1+3,3+2),即(2,5).故正确答案为: (2,5).【点睛】此题考核知识点:点的平移和坐标.关键要弄清点移动的方向和距离,特别要注意此题是移动平面直角坐标系........17.(21008,0)【解析】∵点P0的坐标为(1,0),∴OP0=1,∴OP2=2OP1=2,OP3=OP2=2,OP4=2OP3=2×2=22,…,OP2016=21008,∵2016÷24=84,∴点P2016是第84循环组的最后一个点,在x轴正半轴,∴点P2016的坐标为(21008,0).故答案为:(21008,0).点睛:本田考查了坐标与图形的变化-旋转,点的坐标变化规律,读懂题目信息,理解点的规律变化是解题的关键.18.8【解析】【分析】根据题意画出符合条件的图形,作F关于AD的对称点为M,作AB边上的高CP,求出EM+EC=MC,根据垂线段最短得出EM+EC=MC≥PC,求出PC即可得出CE+EF的最小值.【详解】试题分析:作F关于AD的对称点为M,作AB边上的高CP,∵AD平分∠CAB,△ABC为锐角三角形,∴M必在AC上,∵F关于AD的对称点为M,∴ME=EF,∴EF+EC=EM+EC,即EM+EC=MC≥PC(垂线段最短),∵△ABC的面积是48,AB=12,∴12×12×PC=48,∴PC=8,即CE+EF的最小值为8.故答案为8.点睛:本题考查了最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.19..【解析】分析:由中心对称的性质得OA=OC,OB=OB′,用勾股定理求出OB即可.详解:根据中心对称的性质得,OB=OB′,OC=1,又BC=2,由勾股定理得BO BB′=2OB=故答案为点睛:中心对称的性质有:①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.20.(Ⅰ)C(7,△CDE是等边三角形;(Ⅱ)存在;4 ;D(7,0);(Ⅲ)D(1,0)或(13,0).【解析】分析:(1)如图1,过点C作CH⊥x轴于点H,由△ABC是等边三角形易得AH=12AB=2,结合AC=AB=4、OA=5,可得CH=OH=7,由此即可得到点C的坐标;由旋转的性质可知CE=CD,结合旋转角∠DCE=60°可知△CDE是等边三角形;(2)如图2,由(1)可知△CDE是等边三角形,由此可得DE=CD,由△CDE是由△CAD绕点C旋转得到的,由此可得BE=AD,从而可得△BDE的周长=BD+BE+DE=BD+AD+CD=AB+CD=4+CD,由此可知,当CD⊥AB时,CD最小,此时△BDE 的周长最小,由(1)可知,此时CD=23,OD=7,即当点D的坐标为(7,0)时,△BDE 的周长最小,最小值为423+;(3)如图3,由∠CBE=∠CAD=120°可得∠ABC=60°,由此可得∠DBE=60°≠90°,结合△BDE是直角三角形,可知:存在①∠BED=90°;②∠BDE=90°(如图3,∠BD'E'=90°)两种情况,分两种情况画出符合要求的图形,并结合已知条件进行分析计算即可.详解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵△ABC是等边三角形,CH⊥AB于点H,∴∠AHC=90°,AH=12AB=12(9﹣5)=2,∴OH=OA+AH=7,∵AC=AB=4,∴在Rt△ACH中,224223-=∴ C(723),;∵△CBE是由△CAD绕点C逆时针旋转60°得到的,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(Ⅱ)存在,理由如下:如图2,由(Ⅰ)知,△CDE是等边三角形,∴DE=CD,由旋转知,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE=4+CD,由垂线段最短可知,CD⊥AB于D时,△BDE的周长最小,此时,由(1)可知CD=23,OD=7,∴△BDE的周长最小值为4+23,点D(7,0);(Ⅲ)如图3,∵由旋转知,∠CBE=∠CAD=120°,∵∠ABC=60°,∴∠DBE=60°≠90°,∵△BDE是直角三角形,∴存在∠BED=90°或∠BDE=90°(如图3,∠BD'E'=90°)两种情况,①当∠BED=90°时,∵△CDE是等边三角形,∴∠CED=60°,∴∠BEC=30°,∵∠CBE=∠CAD=120°,∴∠BCE=30°,∴BE=BC=AB=4,在Rt△BDE中,∠DBE=∠CBE﹣∠ABC=60°,∴BD=2BE=8,∵OB=9,∴OD=OB﹣BD=1,∴D(1,0),②当∠BD'E'=90°时,∵△CD'E'是等边三角形,∴∠CD'E'=60°,∴∠BD'C=30°,∵∠ABC=60°,∴∠BCD'=30°=∠BD'E,∴BD'=BC=6,∵OB=9,∴OD'=OB+BD'=13,∴D'(13,0),即:存在点D使△BDE是直角三角形,此时点D的坐标分别为:(1,0)或(13,0).点睛:(1)解第1小题的关键是:作出如图1所示的辅助线,利用等边三角形的性质和直角三角形的性质求得AH和CH的长;(2)解第2小题的关键是:利用旋转的性质得到BE=AD,从而把△BDE的周长转化为为:(4+CD)来表达,这样当CD⊥x轴时,CD最短,则△BDE 的周长就最小,由此即可使问题得到解决;(3)解第3小题的要点是:根据已知条件分析存在∠BED=90°或∠BDE=90°两种情况,然后画出符合题意的图形,再进行分析计算即可得到所求结果.21.向右平移7个单位.【解析】试题分析:观察图形中对应点的变化,即可得出图形的变化规律.试题解析:找出对应点来后会发现右边的图形是由左边的向右平移7个单位长度得到的.22.略【解析】可让两斜边重合,得到一个矩形和一个一般的四边形,根据勾股定理和三角形的面积公式可求得对角线长;让两长直角边重合或两短直角边重合,可得到一个平行四边形,利用勾股定理求得一对角线的长.图1是矩形,两条对角线长相等,均为2;图2是平行四边形,两条对角线长4和4;图3是平行四边形,两条对角线长2和2;图4是一般的四边形,两条对角线长2和.23.(1)A1(5,2),B1(3,0),C1(5,-2),D1(7,0);(2)A(11,3),B(8,0),C(11,-3),D(14,0).【解析】【分析】(1)两个正方形只有一个公共点时,分D和B1为公共点,B和D1为公共点两种情况,结合平移的性质写出各点的坐标;(2)根据两个正方形的位置可知公共部分肯定是个正方形,面积是2,可以算出它的对角线长为2,所以有两种情况:点D和O1重合,点B和O1重合,据此解答.【详解】解:(1)当点B1与点D重合时,两个正方形只有一个公共点,此时A1(5,2),B1(3,0),C1(5,-2),D1(7,0);当点B与D1重合时,两个正方形只有一个公共点,此时A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).(2)当点D与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(5,3),B(2,0),C (5,-3),D (8,0);当点B 与O 1重合时,两个正方形公共部分的面积为2个平方单位,此时A (11,3),B (8,0),C (11,-3),D (14,0).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点. 24.(1)见解析;(2)见解析;(3)直角三角形,2.【解析】【分析】(1)根据点A 和点C 的坐标即可作出坐标系;(2)分别作出三角形的三顶点关于y 轴的对称点,顺次连接可得;(3)根据勾股定理的逆定理可得.【详解】解:(1)如图所示:(2)如图所示,△A 1B 1C 1即为所求;(3)∵正方形小方格边长为1,∴AB 2211+2,BC 2222+2,AC 2213+10,∴AB 2+BC 2=AC 2,∴网格中的△ABC 是直角三角形.△ABC 的面积为122×2=2. 【点睛】本题考查的是作图﹣轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.考点:(1)作图-旋转变换;(2)作图-轴对称变换26.(1)坐标系详见解析,点B的坐标(﹣2,0);(2)详见解析;(3)5;(4)点P 的坐标(﹣2,0).【解析】【分析】(1)根据A、C点坐标,作出的平面直角坐标系即可,根据作出的平面直角坐标系写出B 点的坐标即可;(2)根据原点对称的特点画出图形即可;(3)利用矩形面积减去周围三角形面积得出即可;(4)根据轴对称的性质解答即可.【详解】解:(1)如图所示:点B的坐标(-2,0);(2)如图所示,△A1B1C1即为所求;(3)△ABC的面积111 34222314222=⨯-⨯⨯-⨯⨯-⨯⨯=5;(4)点P的坐标(-2,0).【点睛】本题考查的知识点是平移变换以及三角形面积求法和坐标轴确定方法,解题关键是正确平移顶点.27.∠BAD=60°,AD=8.【解析】【分析】根据旋转的性质先证明△ADE是等边三角形,由相似三角形的性质可得∠EAD=60°,AD=AE,即可得到∠BAD=∠BAC﹣∠CAD=60°,AD=AE=AC+CE=AC+AB=3+5=8.【详解】∵△ABD≌△ECD,∴AD=DE,∠BDA=∠DCE,∴∠BDC=∠ADE=60°,∠ABD=∠ECD,∵∠BAC=120°,∠BDC=60°,∴∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠ECD=180°,∴A、C、E共线,∴△ADE是等边三角形,∴∠EAD=60°,AD=AE,∴∠BAD=∠BAC﹣∠CAD=60°,∴AD=AE=AC+CE=AC+AB=3+5=8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,证明△AED是等边三角形是解决问题的关键.28.∠1-∠3=2∠2,证明见解析.【解析】【分析】利用轴对称的知识找出等解即可进行推理判断.【详解】解:当C′点落在CA和CB之间(如图2)时,∠1+∠3=2∠2;当C′落在CB、CA的同旁(如图3)时,∠1-∠3=2∠2;对于图2证明如下:连结CC’,如图4所示,∵⊿EC’D是由⊿ECD翻折得到的,∴⊿EC’D≌⊿ECD,由此得EC=EC’,DC=DC’,∠EC’D=∠ECD,∴∠EC’C=∠ECC;∠DC’C=∠DCC,∵∠1=∠DC’C+∠DCC’ ,∠3=∠EC’C+∠ECC’ ,∴∠1+∠3=∠DC’C+∠DCC’ +∠EC’C+∠ECC’=2∠D C’C+2∠ EC’C =2(∠DC’C+∠EC’C)= 2∠2;∴∠1+∠3=2∠2;对于图3证明如下:设AC与DC’在⊿ABC内部所夹角为∠4,如图5所示,则有∠1=∠C +∠4,∠4=∠3+∠2,又由翻折得:∠2=∠C ,∴∠1=∠2+∠3+∠2=∠3+2∠2,∴∠1-∠3=2∠2.【点睛】本题主要考查了轴对称的性质.找准对称轴是解题的关键.29.(1)PN=PB ,PN⊥PB;(2)略;221-【解析】(1)由旋转的性质可得△ABC ≌△ANM ,再由直角三角形斜边的中线等于斜边的一半,得到PN 和PB 之间的位置关系和数量关系;(2)结论一样,证明的方法与(1)一样;(3)连接OP ,利用勾股定理可得出线段PN 的最大值和最小值.解:(1)PN PB ⊥,PN PB =.(2)连接PO ,∵90α=︒,∴90MAB ∠=︒.∵90ABC ∠=︒,∴//AM BC . ∵AMN ≌ABO ,∴AB AM =,OB MN =,∴//AM BC ,=AM BC ,又∵90ABC ∠=︒,∴四边形ABCM 为正方形.∵P 为CM 中点,O 为AC 中点,∴12OP AM , ∴OP PM =,45POC MAC ∠=∠=︒, ∴135BOP BOC POC ∠=∠+∠=︒. ∵9045135PMN ∠=︒+︒=︒, ∴PMN POB ∠=∠. PMN ≌POB , ∴PN PB =,MPN OPB ∠=∠. ∵90MPO ∠=︒, ∴90NPB ∠=︒, ∴PN PB ⊥.(3)连接OP . ∵P ,O 为AC ,MC 中点, ∴11122OP AM AB ===. 在Rt AOB 中, ∵OA OB =,2AB =,∴OB =PO OP PB BO PO -≤≤+. ∵PB PN =,11PN ≤≤.PN ∴11.。
2021年九年级数学中考一轮复习专题突破训练(选择题专项):轴对称之线段最短问题(二)及答案
2021年九年级数学中考一轮复习专题突破训练(选择题专项):轴对称之线段最短问题(二)1.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.2.平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A.B.C.D.3.如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l 对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.3C.2D.2+4.如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C 为所求作的点.在解决这个问题时没有运用到的知识或方法是()A.转化思想B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角5.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50°B.60°C.70°D.80°6.如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A.B.C.D.7.如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+P A和的最小值是()A.2B.C.4D.68.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3D.9.如图,直线l是一条河,P,Q两地相距8千米,P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个水泵站,向P,Q两地供水.现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B.4C.D.511.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN 的中点.P是直径MN上一动点,则P A+PB的最小值为()A.B.1C.2D.212.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则P A+PC的最小值为()A.B.C.D.213.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°14.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.C.2D.+115.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.416.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1B.2C.3D.417.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当P A+PD取最小值时,△APD中边AP上的高为()A.B.C.D.318.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC 边上的中点,则MP+NP的最小值是()A.2B.1C.D.19.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.20.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°参考答案1.解:如图,连接DP,BD,作DH⊥BC于H.∵四边形ABCD是菱形,∴AC⊥BD,B、D关于AC对称,∴PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,∴CM=2,HM=1,DH=3,在Rt△DMH中,DM===2,∵CM∥AD,∴===,∴P′M=DM=.故选:A.2.解:由题可得,点C关于直线x=1的对称点E的坐标为(2,﹣1),设直线AE的解析式为y=kx+b,则,解得,∴y=﹣x﹣,将D(1,m)代入,得m=﹣﹣=﹣,即点D的坐标为(1,﹣),∴当△ACD的周长最小时,△ABD的面积=×AB×|﹣|=×4×=.故选:C.3.解:连接CC′,如图所示.∵△ABC、△A′BC′均为正三角形,∴∠ABC=∠A′=60°,A′B=BC=A′C′,∴A′C′∥BC,∴四边形A′BCC′为菱形,∴点C关于BC'对称的点是A',∴当点D与点B重合时,AD+CD取最小值,此时AD+CD=2+2=4.故选:A.4.解:∵点B和点B′关于直线l对称,且点C在l上,∴CB=CB′,又∵AB′交l与C,且两条直线相交只有一个交点,∴CB′+CA最短,即CA+CB的值最小,将轴对称最短路径问题利用线段的性质定理两点之间,线段最短,体现了转化思想,验证时利用三角形的两边之和大于第三边.故选:D.5.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.6.解:∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,∴b=﹣,∴抛物线的解析式为y=x2﹣x﹣2,∴顶点D的坐标为(,﹣),作出点C关于x轴的对称点C′,则C′(0,2),OC′=2连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.设抛物线的对称轴交x轴于点E.∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴=,即=,∴m=.故选:B.7.解:连接CD,交OB于P.则CD就是PD+P A和的最小值.∵在直角△OCD中,∠COD=90°,OD=2,OC=6,∴CD==2,∴PD+P A=PD+PC=CD=2.∴PD+P A和的最小值是2.故选:A.8.解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.9.解:A、PQ+QM=8+2=10km;B、∵QM+PM=P′Q,P′Q2=82﹣(5﹣2)2+(5+2)2=104,∴P′Q=2km>10km;C、QM+PR=5+>10;D、PM+QM=5+>10.综上所述,A选项铺设的管道最短.故选:A.10.解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.11.解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,则AB′与MN的交点即为P A+PB的最小时的点,P A+PB的最小值=AB′,∵∠AMN=30°,∴∠AON=2∠AMN=2×30°=60°,∵点B为劣弧AN的中点,∴∠BON=∠AON=×60°=30°,由对称性,∠B′ON=∠BON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′是等腰直角三角形,∴AB′=OA=×1=,即P A+PB的最小值=.故选:A.12.解:法一:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时P A+PC的值最小,∵DP=P A,∴P A+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=,∴AD=2×=3,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=,由勾股定理得:DN=,∵C(,0),∴CN=3﹣﹣=1,在Rt△DNC中,由勾股定理得:DC==,即P A+PC的最小值是,法二:如图,作点C关于OB的对称点D,连接AD,过点D作DM⊥OA于M.∵AB=,OA=3∴∠AOB=30°,∴∠DOC=2∠AOB=60°∵OC=OD∴△OCD是等边三角形∴DM=CD•sin60°=,OM=CM=CD•cos60°=∴AM=OA﹣OM=3﹣=∴AD==即P A+PC的最小值为故选:B.13.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选:B.14.解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当P′Q⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sin B=2×=.故选:B.15.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2.故选:C.16.解:作点E关于直线CD的对称点E′,连接AE′交CD于点F,∵在矩形ABCD中,AB=6,BC=8,点E是BC中点,∴BE=CE=CE′=4,∵AB⊥BC,CD⊥BC,∴=,即=,解得CF=2,∴DF=CD﹣CF=6﹣2=4.故选:D.17.解:过点D作DE⊥BC于E,∵AD∥BC,AB⊥BC,∴四边形ABED是矩形,∴BE=AD=2,∵BC=CD=5,∴EC=3,∴AB=DE=4,延长AB到A′,使得A′B=AB,连接A′D交BC于P,此时P A+PD最小,即当P在AD的中垂线上,P A+PD取最小值,∵B为AA′的中点,BP∥AD∴此时BP为△AA′D的中位线,∴BP=AD=1,根据勾股定理可得AP==,在△APD中,由面积公式可得△APD中边AP上的高=2×4÷=.故选:C.18.解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′BN是平行四边形,∴PN∥AB,又N是BC边上的中点,∴PN是△CAB的中位线,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故选:B.19.解:由题意,可得BE与AC交于点P.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:B.20.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.。
2021年中考数学一轮复习:轴对称与中心对称 专项练习题(含答案)
2021年中考数学一轮复习:轴对称与中心对称专项练习题一、选择题1. 如图所示电视台的台标中,是中心对称图形的是()2. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()3. 如图,四边形ABCD与四边形FGHE关于一个点中心对称,则这个点是()A.O1B.O2C.O3D.O44. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()5. 如图,在△ABC中,AC=BC,点D和E分别在AB和AC上,且AD=AE,连接DE,过点A的直线GH与DE平行.若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°6. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD7. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图0)的对应点所具有的性质是()A.对应点所连线段与对称轴垂直B.对应点所连线段被对称轴平分C.对应点所连线段都相等D.对应点所连线段互相平行8. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是()A.B.C.6 D.3二、填空题9. 将一张矩形纸片折叠成如图所示的图形,若AB=10 cm ,则AC= cm .10. 等腰三角形的两边长分别为6 cm ,13 cm ,其周长为________ cm .11. 如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为 .12. 已知点P (x ,y )的坐标满足等式(x -2)2+|y -1|=0,且点P 与点P ′关于y 轴对称,则点P ′的坐标为________.13. 画图:试画出下列正多边形的所有对称轴,并完成表格.根据上表,猜想正n 边形有 条对称轴.14. (2019•黄冈)如图,AC BD ,在AB 的同侧,288AC BD AB ===,,,点M为AB 的中点,若120CMD ∠=︒,则CD 的最大值是__________.三、解答题15. 已知:如图,AB=AC,DB=DC,点E在直线AD上.求证:EB=EC.16. 如图,DF为△ABC的边BC的垂直平分线,F为垂足,DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC,连接BD,CD.求证:(1)∠DBE=∠DCA;(2)BE=AC+AE.17. 如图,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.18. 如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)如图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF =3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M 处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长.答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A[解析] 如图,连接HC和DE交于点O1.4. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.5. 【答案】C[解析] ∵AC=CB,∠C=40°,∴∠BAC=∠B=12(180°-40°)=70°.∵AD=AE,∴∠ADE=∠AED=12(180°-70°)=55°.∵GH∥DE,∴∠GAD=∠ADE=55°.6. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.7. 【答案】B[解析] 连接BB'交对称轴于点O,过点B作BM⊥对称轴,垂足为M,过点B'作B'N⊥对称轴,垂足为N,由轴对称的性质及平移的性质可得BM=B'N.又因为∠BOM=∠B'ON,∠BMO=∠B'NO=90°,所以△BOM≌△B'ON.所以OB=OB'.同理其他对应点也有这样的结论.8. 【答案】D[解析]分别以OB,OA为对称轴作点P的对称点P1,P2,连接OP1,OP2,P1P2,P1P2交射线OA,OB于点M,N,则此时△PMN的周长有最小值,△PMN的周长=PN+PM+MN=P1N+P2M+MN=P1P2,根据轴对称的性质可知OP1=OP2=OP=,∠P1OP2=120°,∴∠OP1M=30°,过点O作MN的垂线段,垂足为Q,在Rt△OP1Q中,可知P1Q=,所以P1P2=2P1Q=3,故△PMN周长的最小值为3.二、填空题9. 【答案】10[解析]如图,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质,得∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=10 cm,∴AC=10 cm.故答案为10.10. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm时,三角形的三边长为6 cm,6 cm,13 cm,6+6<13,不能构成三角形;(2)当腰长为13 cm时,三角形的三边长为6 cm,13 cm,13 cm,能构成三角形,周长=2×13+6=32(cm).11. 【答案】12[解析]∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24.∵点O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.12. 【答案】(-2,1)[解析] ∵(x -2)2≥0,|y -1|≥0,又(x -2)2+|y -1|=0,∴x-2=0且y -1=0,即x =2,y =1.∴点P 的坐标为(2,1).那么点P 关于y 轴的对称点P′的坐标为(-2,1).13. 【答案】解:如图.故填3,4,5,6,n.14. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=, ∴CD 的最大值为14,故答案为:14.三、解答题15. 【答案】证明:连接BC.∵AB=AC ,DB=DC ,∴直线AD 是线段BC 的垂直平分线. 又∵点E 在直线AD 上,∴EB=EC.16. 【答案】证明:(1)如图,过点D 作DG ⊥CA 交CA 的延长线于点G .∵DF 是BC 的垂直平分线,∴BD=CD.∵AD 是△ABC 的外角平分线,DE ⊥AB ,DG ⊥CA , ∴DE=DG ,∠DEB=∠DGC=90°. 在Rt △DBE 和Rt △DCG 中,∴Rt △DBE ≌Rt △DCG (HL). ∴∠DBE=∠DCA.(2)∵Rt △DBE ≌Rt △DCG ,∴BE=CG . 在Rt △DEA 和Rt △DGA 中,∴Rt △DEA ≌Rt △DGA (HL). ∴AE=AG .∴BE=CG=AC+AG=AC+AE , 即BE=AC+AE.17. 【答案】(1)①如图2,当E 在OA 上时,由12y x b =-+可知,点E 的坐标为(2b ,0),OE=2b .此时S =S △ODE =112122OE OC b b ⋅=⨯⨯=.②如图3,当E 在AB 上时,把y =1代入12y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3(3,)2b -,AE =32b -,BE =52b -.此时S =S 矩形OABC -S △OAE - S △BDE -S △OCD=1315133()()(52)1(22)22222b b b b -⨯-----⨯⨯-252b b =-+.(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形.作DH⊥OA,垂足为H.由于CD=2b-2,OE=2b,所以EH=2.设菱形DMEN的边长为m.在Rt△DEH中,DH=1,NH=2-m,DN=m,所以12+(2-m)2=m2.解得54m .所以重叠部分菱形DMEN的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7 18. 【答案】(1)如解图①,∵折叠后点A落在AB边上的点D处,解图①∴EF⊥AB,△AEF≌△DEF,∴S △AEF =S △DEF ,∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF ,∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴14△△AEF ACB S S =, ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°,∴△AEF ∽△ABC ,∴2△△()AEF ACB S AE ABS =, ∴214()=,AE AB 在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,∴AB 2=AC 2+BC 2,即AB =42+32=5,∴(AE 5)2=14,∴AE =52;(2)①四边形AEMF 是菱形.证明:如解图②,∵折叠后点A 落在BC 边上的点M 处,∴∠CAB =∠EMF ,AE =ME ,又∵MF ∥CA ,∴∠CEM =∠EMF ,∴∠CAB =∠CEM ,∴EM ∥AF ,∴四边形AEMF 是平行四边形,而AE =ME ,∴四边形AEMF 是菱形,解图②②如解图②,连接AM ,与EF 交于点O ,设AE =x ,则AE =ME =x ,EC =4-x , ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°,∴Rt △ECM ∽Rt △ACB ,∴EC AC =EM AB ,∵AB =5,∴445-,x x =解得x =209, ∴AE =ME =209,EC =169,在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2,即CM =(209)2-(169)2=43,∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S AEMF 菱形=4S △AOE =2OE ·AO , 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠CAM ,∴OE AO =CM AC ,∵CM =43,AC =4,∴AO =3OE ,∴S AEMF 菱形=6OE 2,又∵S AEMF 菱形=AE ·CM ,∴6OE 2=209×43,解得OE =2109,∴EF =2OE =4109.。
中考数学专题复习练习:轴对称与轴对称图形
典型例题一例01.下列图形中,不是轴对称图形的是( )(A )有两个角相等的三角形(B )有一个内角是的直角三角形︒45(C )有一个内角是,另一个内角为的三角形︒30︒120(D )有一个角是的直角三角形︒30分析:在(A )中,有两个角相等的三角形一定是等腰三角形,而等腰三角形一定是轴对称图形,它的对称轴为底边上的高(或底边上的中线或顶角的平分线). 而(B )和(C )中的两个三角形同样也是等腰三角形,所以也是轴对称图形. 那么(D )中三角形的三个内角各不相等,不是等腰三角形,所以(D )不是轴对称图形.解答:选(D )说明:在三角形中,只有等腰三角形才是轴对称图形,而不是等腰三角形的三角形就一定不是轴对称图形.典型例题二例02.已知:直线MN ,同侧两点A 、B (如图)求作:点P ,使P 在MN 上,并且最小.BP AP +作法 1.作点A 关于直线MN 的对称点.A '2.连结交MN 于PA A '点P 就是所求作的点.说明 这类问题经常遇到,可以和生活中的问题结合衍生出许多应用问题,但本质都是这道题.典型例题三例03.在图(a )中,分别作出点P 关于OA 、OB 的对称点,,连结交OA 1P 2P 21P P 于M ,交OB 于N ,若,则的周长为多少?cm P P 521=PMN ∆作法:略.解答:如图(b )所示,∵,P 关于OA 对称,1P ∴PMM P =1同理可得.PN N P =2∴的周长PMN ∆MN PN PM ++=N P MN M P 21++=cmP P 521==∴的周长为. PMN ∆cm 5 说明 准确作图是关键.典型例题四例04.已知:(如图)四边形ABCD 和过点D 的直线MN ,求作:四边形,使四边形与四边形ABCD 关于MN 对称.D C B A ''''D C B A ''''作法 1.作,垂足为E ;延长BE 到,使,得到点B 的对称MN BE ⊥B 'BE E B ='点.2.同法作点A 和点C 的对称点.C A ''3.因为D 在对称轴MN 上,所以点D 的对称点重合.D '4.连结、、.B A ''C B ''D C ''四边形即为所求.D C B A '''' 说明 关键是掌握概念和基本作图.典型例题五例05.有一条小河(如图所示),两岸有A 、B 两地,要设计道路并在河上垂直于河岸架一座桥,用来连接A 、B 间路线怎样走,桥应架在何处,才能使A 到B 的距离最短.分析:桥梁无论架在何处均垂直于河岸,因此桥梁的长度是定值,决定路程长度的关键是选取建桥点的位置,相对应地在河岸A 地同测取一点,使B 与河岸距离等于与河B 'B '岸到桥头的距离之和,于是,这个总是转化为“直线同侧有两点A 、,欲在直线上求一B '点,使这一点与A 、距离之和最短.B '已知:如图,河岸AB 两地求作:线段CD ,使CD 与、均互相垂直,并且最小.1l 2l BD CD AC ++作法:(1)作,与、分别交点、E ,并且1l B B ⊥'1l 2l E 'BEE B =''(2)在上取一点使(或者找到点关于的对称点)E E 'B ''E B E B ''='''B '1l B ''(3)连结,与交于C 点,作,与交于D 点,CD 即为所求作的线段.B A ''l 2l CD ⊥2l 典型例题六例06.如图所示,P 是平分线AD 上一点,P 与A 不重合,.BAC ∠AB AC >求证:ABAC PB PC -<-分析:用对称法. 可利用轴对称图形的知识找出点B 关于直线AD 的对称点,因AD B '为的平分线,故在AC 上,连结,从而构造与两个轴对称图BAC ∠B 'P B 'P B A '∆ABP ∆形,再利用三角形两边之差小于第三边来证明.证明:作点B 关于直线AD 的对称点,连结.B 'P B '∵AD 是的平分线,BAC ∠∴点在AC 上(是以角平分线AD 所在直线为对称轴的轴对称图形),B 'BAC ∠又∵AP 在对称轴AD 上,∴,P B BP B A AB '='=,在中,C B P '∆∵,C B B P PC '<'-,AB AC B A AC C B -='-=' ,P B BP '=∴.AB AC BP PC -<-说明:和就是利用角平分线AD 构造出的轴对称图形,这种方法对于证BAC ∆P B A '∆明有关线段的不等关系非常方便、有效.典型例题七例07.如图,E 、F 是的边AB 、AC 上的点,在BC 上求一点M ,使的ABC ∆EMF ∆周长最小.分析 因为E 、F 是定点,所以EF 是定值. 要使△EMF 的周长最小,只要MF ME +最小.解答 (1)作点F 关于直线BC 的对称点.F '(2)连结交BC 于M ,点M 就是所求.F E '说明 这类问题在日常生活中经常可以遇到.典型例题八例08.如图,过C 作的平分线AD 的垂线,垂足为D ,作交AC 于BAC ∠AB DE //E .求证:.CE AE =分析 由已知条件容易得到,从而. 要证明,只须证明32∠=∠DE AE =CE AE =,联想到AD 是角平分线又是垂线,若延长CD 交AB 的延长线于P ,则C 、P 关CE DE =于直线AD 对称,于是问题可以解决.解答 延长CD 交AB 的延长线于P .在和中,ADP ∆ADC ∆⎪⎩⎪⎨⎧∠=∠=∠=∠ADP ADC ADAD 21∴(角边角)ADC ADP ∆≅∆故.ACD P ∠=∠又∵,AP DE //∴,P ∠=∠4则.,4CE DE ACD =∠=∠∵,AB DE //∴,31∠=∠又∵,21∠=∠∴,32∠=∠∵(等边对等角),AE DE =∴.CE AE =说明 全等三角形是证明角或线段相等的一种方法,但不是惟一方法,不要一证线段相等就找全等三角形. 等腰三角形的判定定理及其推论,中垂线的性质,都是证线段相等的重要途径.典型例题九例09.如图,AD 是中的平分线,且.ABC ∆BAC ∠AC AB >求证:.DC BC>分析 由于AD 是的平分线,所以可以以AD 为轴构造轴对称图形,即把BAC ∠ADC ∆沿AD 翻折,这样,就可以在中解决问题.︒180DC DE =BED ∆证明 在AB 上截取AE ,使,连结DE .AC AE =∵AD 是的平分线,BAC ∠∴,21∠=∠在和中,AED ∆ACD ∆⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已证作图AD AD AC AE ∴(边角边),ACD AED ∆≅∆∴,DC DE =∴(全等三角形对应边对应角相等),43∠=∠∵,(内角和定理的推论),3∠>∠BED B ∠>∠4∴(大角对大边),ED BD B BED >∠>∠,∴.DC BD >说明 本题中的的就是利用角平分线构造出来的轴对称图形. 本题还有AED ∆ACD ∆其他构造轴对称图形的方法,比如把沿AD 翻折,也可证明结论.ADB ∆︒180选择题1.选择题(1)在下列命题中:①两个全等三角形是轴对称图形②两个关于直线对称的图形是全等形l ③等边三角形是轴对称图形④线段有三条对称轴正确命题的个数是()(A )1 (B )2 (C )3 (D )4(2)下列图形是一定轴对称图形的是()(A )任意三角形 (B )有一个角等于的三角形︒60(C )等腰三角形 (D )直角三角形(3)P 为内一点,且,则P 点是()ABC ∆PC PB PA ==(A )三条中线的交点 (B )三条高的交点(C )三个角的平分线的交点 (D )三边垂直平分线的交点(4)已知:D 为的边BC 的中点,且,下面各结论不正确的是()ABC ∆BC AD ⊥(A ) (B )ACD ABC ∆≅∆CB ∠=∠(C )AD 是的平分线 (D )是等边三角形BAC ∠ABC ∆(5)正五角星的对称轴有()(A )1条 (B )2条 (C )5条 (D )10条(6)等边三角形的对称轴共有()(A )1条 (B )3条 (C )6条 (D )无数条(7)下列四个图形①等腰三角形 ②等边三角形 ③等腰直角三角形 ④直角三角形中,一定是轴对称图形的有()(A )1个 (B )2个 (C )3个 (D )4个(8)下列图形中,不一定是轴对称图形的是()(A )线段 (B )角 (C )三角形 (D )等腰直角三角形参考答案:1.选择题(1)B (2)C (3)D (4)D (5)C (6)B (7)C (8)C 填空题1.填空题(1)等边三角形的对称轴有______条.(2)如果沿着一条直线折叠,两个点能互相重合,那么这两个点叫做_______.(3)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形_______.(4)如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做_______.参考答案1.填空题(1)3 (2)对称点 (3)轴对称 (4)轴对称图形解答题1.如图,已知线段AB 及直线MN ,求作线段AB 关于MN 的对称图形.2.如图,已知及直线EF ,求作关于EF 的对称图形.ABC ∆ABC ∆3.如图,已知折线ABC 及直线PQ ,求作折线ABC 关于直线PQ 的对称图形.4.如图,已知,分别以OM ,ON 为对称轴作三角形与它对称.ABC ∆5.在中,,,垂足为H ,点B 关于AH 的对称点是. ABC ∆C B ∠=∠2BC AH ⊥B '求证:.AB C B ='6.如图,已知:在直线MN 的同侧有两点A 和B .求作:MN 上一点,使.BCN ACM ∠=∠7.如图,EFGH 是一个矩形的台球台面,有黑白两球分别位于A ,B 两点位置上,试问:怎样撞击黑球A ,求能使A 先碰撞台边EF 反弹后两击中白球B ?参考答案1.略 2.略 3.略 4.略5.证明:连结,则易证,B A 'B A AB '=B B A B '∠=∠∵,∴,即.B CAC B B A '∠+∠='∠B ∠=C ∠=2B CA C '∠=∠AB C B AB =''=6.作法:作点A 关于MN 的对称点,连结,与MN 的交点为C ,则点C 就是所A 'A B '要求作的点. 证明:略.7.作点A 关于EF 的对称点,连结与EF 的交点为C ,则沿AC 方向撞击黑球A 'B A '就可以满足要求.。
初三数学中考复习专题图形的轴对称 练习试题
初三数学中考复习专题图形的轴对称 练习试题1 / 19图形的轴对称一、选择题1. 下列图案属于轴对称图形的是( )A.B.C.D.2. 下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有( )A. 4个B. 3个C. 2个D. 1个3. 下列大学的校徽图案是轴对称图形的是( )A. 清华大学B. 北京大学C. 中国人民大学D. 浙江大学4. 给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.B.C.D. 7cm6.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A. △是等腰三角形B. MN垂直平分,C. △与△面积相等D. 直线AB、的交点不一定在MN上7.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.8.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后得到的是()A. B. C. D.9.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A. 1个初三数学中考复习专题图形的轴对称 练习试题3 / 19B. 2个C. 3个D. 4个10. 如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A. B. C. D. 11. 如图,在等腰△ABC 中,AB =AC ,∠BAC =50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A.B.C.D.12. 如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在直线折叠得到△AGE ,延长AG 交CD 于点F ,已知CF =2,FD =1,则BC 的长是()A. 5cmB. 10cmC. 20cmD. 15cm二、填空题13.如图,在A BCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为______.14.如图,把一张长方形纸片ABCD沿EF折叠,C点落在C′处,D点落在D′处,ED′交BC于点G.已知∠EFG=50°,则∠BGD′的度数为______ .15.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有________种选择.16.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是______.17.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(-4,0),点P为直线一动点,当PC+PO值最小时点P的坐标为______.三、解答题(本大题共3小题,共24.0分)18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答初三数学中考复习专题图形的轴对称 练习试题5 / 19了此题,按小明的思路探究并解答下列问题:(1)分别以AB ,AC 所在直线为对称轴,画出△ABD 和△ACD 的对称图形,点D 的对称点分别为点E ,F ,延长EB 和FC 相交于点G ,求证:四边形AEGF 是正方形;(2)设AD =x ,建立关于x 的方程模型,求出AD 的长.19. 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上.(1)画出△ABC 关于直线OM 对称的△A 1B 1C 1.(2)画出△ABC 关于点O 的中心对称图形△A 2B 2C 2.(3)△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A 1B 1C 1与△A 2B 2C 2组成的图形______(填“是”或“不是”)轴对称图形.20.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.初三数学中考复习专题图形的轴对称练习试题答案和解析1.【答案】A【解析】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.2.【答案】C【解析】解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有三条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.7 / 19要找出正确的说法,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.3.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.此题主要考查了轴对称图形,关键是找出图形中的对称轴.4.【答案】D【解析】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.此题主要考查了轴对称图形,关键是找出图形的对称轴.5.【答案】A【解析】初三数学中考复习专题图形的轴对称练习试题解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN-MQ=4-2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ 的长,即可得出QR的长.此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.6.【答案】D【解析】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.【答案】C【解析】9 / 19解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.根据中心对称图形和轴对称图形对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.【答案】C【解析】解:如图,展开后图形为正方形.故选:C.由图可知减掉的三角形为等腰直角三角形,展开后为正方形.本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.9.【答案】C【解析】【分析】本题考查了画轴对称图形.找出对称轴,根据对称轴的性质画图是解题的关键.根据网格可知,画三角形ABC的对称图形共有3个符号题意得对称轴,所以可以画3个符合题意的三角形即可解答.【解答】解:根据题意画出图形如下:初三数学中考复习专题图形的轴对称 练习试题11 / 19,共有三条对称轴,分别是a ,b ,c ,根据画轴对称图形的方法可以画3个符合题意的三角形.故选C.10.【答案】D【解析】【分析】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4,∴AE==5,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴)∴BH==,则BF=, ∵FE=BE=EC ,∴∠BFC=90°,∴CF==.故选D.11.【答案】C【解析】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠CEF=∠CEO=50°.故选:C.连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.初三数学中考复习专题图形的轴对称 练习试题13 / 1912.【答案】B【解析】解:连接EF ,∵E 是BC 的中点,∴BE=EC ,∵△ABE 沿AE 折叠后得到△AFE ,∴BE=EG ,∴EG=EC ,∵在矩形ABCD 中,∴∠C=90°, ∴∠EGF=∠B=90°, ∵在Rt △EFG 和Rt △EFC 中,,∴Rt △EFG ≌Rt △EFC (HL ),∴FG=CF=2,∵在矩形ABCD 中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选B .首先连接EF ,由折叠的性质可得BE=EG ,又由E 是BC 边的中点,可得EG=EC ,然后证得Rt △EFG ≌Rt △EFC (HL ),继而求得线段AF 的长,再利用勾股定理求解,即可求得答案.此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.注意证得FG=FC 是关键.17.【答案】80°【解析】 【分析】本题主要考查的是平行线的性质和轴对称的性质.首先由平行线的性质得出∠DEF=∠EFG=50°,然后由折叠性质得出∠DEG=100°,最后根据对顶角相等得出∠BGD′的度数即可.【解答】解:∵四边形ED′C′F 由四边形EDCF 折叠而成,∴∠DEG=2∠DEF=2∠D′EF.∵AD∥BC,∴∠DEF=∠EFG=50°,∠AEG=∠EGF,∴∠GEF=∠DEF=50°,∴∠DEG=∠GEF+∠DEF=100°.∴∠AEG=180°-∠DEG=80°∴∠EGF=80° ,∴∠BGD′=∠EGF=80°.故答案为80°.18.【答案】3【解析】【分析】本题主要考查轴对称图形的概念.此题利用格点图,考查学生轴对称性的认识.此题关键是找对称轴,按对称轴的不同位置,可以有多种画法.根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有3个位置使之成为轴对称图形.故答案为3.19.【答案】(-10,3)【解析】解:设CE=a,则BE=8-a,由题意可得,EF=BE=8-a,∵∠ECF=90°,CF=4,∴a2+42=(8-a)2,解得,a=3,初三数学中考复习专题图形的轴对称练习试题设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(-10,3),故答案为(-10,3).根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E 的坐标.本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【答案】(-,)【解析】【分析】本题考查的是一次函数的应用和轴对称的性质,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求.求出AB两点的坐标,据此可得出∠BAO及∠ACC′的度数,根据轴对称的性质得出△ACC′是等腰直角三角形,故可得出C′点的坐标,利用待定系数法求出直线OC′的坐标,进而可得出P点坐标.【解答】解:如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,15 / 19∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(-6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(-6,2).设直线OC′的解析式为y=kx(k≠0),则2=-6k,解得k=-,∴直线OC′的解析式为y=-x,∴,解得,∴P(-,).故答案为(-,).21.【答案】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC∴∠E=∠ADB=90°,∠F=∠ADC=90°.∴四边形AEGF是矩形,又∵AE=AD,AF=AD初三数学中考复习专题图形的轴对称 练习试题17 / 19∴AE =AF .∴矩形AEGF 是正方形;(2)解:设AD =x ,则AE =EG =GF =x .∵BD =6,DC =4,∴BE =6,CF =4,∴BG =x -6,CG =x -4,在Rt △BGC 中,BG 2+CG 2=BC 2,∴(x -6)2+(x -4)2=102.化简得,x 2-10x -24=0解得x 1=12,x 2=-2(舍去)所以AD =x =12.【解析】(1)先根据△ABD ≌△ABE ,△ACD ≌△ACF ,得出∠EAF=90°;再根据对称的性质得到AE=AF ,从而说明四边形AEGF 是正方形;(2)利用勾股定理,建立关于x 的方程模型(x-6)2+(x-4)2=102,求出AD=x=12.本题考查图形的翻折变换和利用勾股定理,建立关于x 的方程模型的解题思想.要能灵活运用.22.【答案】是【解析】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)如图,△A 1B 1C 1与△A 2B 2C 2组成的图形是轴对称图形,其对称轴为直线l .(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.本题主要考查了利用轴对称变换以及中心对称进行作图,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点中心对称.23.【答案】解:(1)∵四边形ABCD是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′,∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,∴∠DAF=∠B′AE,在△ADF和△AB′E中,,∴△ADF≌△AB′E(ASA).(2)由折叠性质得FA=FC,设FA=FC=x,则DF=DC-FC=18-x,初三数学中考复习专题图形的轴对称 练习试题19 / 19 在Rt △ADF 中,AD 2+DF 2=AF 2,∴122+(18-x )2=x 2.解得x =13.∵△ADF ≌△AB ′E (已证),∴AE =AF =13,∴S △AEF = = =78.【解析】(1)根据折叠的性质以及矩形的性质,运用ASA 即可判定△ADF ≌△AB′E ;(2)先设FA=FC=x ,则DF=DC-FC=18-x ,根据Rt △ADF 中,AD 2+DF 2=AF 2,即可得出方程122+(18-x )2=x 2,解得x=13. 再根据AE=AF=13,即可得出S △AEF==78.本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以及三角形面积的计算公式的运用,解决问题的关键是:设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.。
中考数学复习《轴对称》专题训练-带含有参考答案
中考数学复习《轴对称》专题训练-带含有参考答案一、选择题1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.点P关于x轴对称点M的坐标为(4,﹣5),那么点P关于y轴对称点N的坐标为()A.(﹣4,5)B.(4,5)C.(﹣4,﹣5)D.(﹣5,4)3.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,线段AB 的顶点均在格点上.在图中画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点,这样的线段能画()条.A.2 B.3 C.5 D.64.如图,在△ABC中,DE是AC的垂直平分线AB=5cm,BC=8cm,则△ABD的周长为()A.10cm B.13cm C.15cm D.16cm5.等腰三角形的周长为11,其中一边长为3,则该等腰三角形的底边长为()A.3B.5C.4或5D.3或56.如图,在Rt△ABC中∠ACB=90°,∠B=15°,AB的垂直平分线交AB于点E,交BC于点D,且BD=12cm,则AC的长是()A.12cm B.6cm C.4cm D.6√3cm7.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G,F,若FG=3,ED=6,则EB+DC的值为()A.7 B.8 C.9 D.108.如图,已知ΔABC是正三角形,D是BC边上任意一点,过点D作DF⊥AC于点F,ED⊥BC交AB于点E,则∠EDF等于()A.50°B.65°C.60°D.75°二、填空题9.某车标是一个轴对称图形,有条对称轴.10.在平面直角坐标系中,点M(a,3)与点N(5,b)关于y轴对称,则a﹣b=.11.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.12.如图,在△ABC中,AB=AC,AD=BD,∠A=36°,则图中等腰三角形的个数是.13.如图,在△ABC中AB=AC,∠C=30°,AB⊥AD,AD=6,BC的长是.三、解答题14.图①、图②均是由边长为1的小正方形组成的网格,每个小正方形的顶点称为格点,点A、B、C均在格点上.请用无刻度的直尺按下列要求在网格中作图.(1)在图①中,连接AC,以线段AC为腰作一个等腰直角三角形ACD;(2)在图②中确定一个格点D,并画出以A、B、C、D为顶点的四边形.使其为轴对称图形.15.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.16.如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.17.如图,在△ABC中,AB=AC,点D、E、F分别在△ABC的三条边上,且BF=CD,BD=CE.(1)求证:△DFE是等腰三角形;(2)若∠A=56°,求∠EDF的度数.18.如图,在△ABC中AB=AC,点D在△ABC内BD=BC,∠DBC=60°点E在△ABC外∠BCE=150°,∠ABE=60° .(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8求AD的长.参考答案1.B2.A3.C4.B5.D6.B7.C8.C9.310.﹣811.1412.313.1814.(1)解:如图①所示(2)解:如图②所示15.(1)解:∵、分别是的垂直平分线∴∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.16.(1)解:S△ABC= 12×5×3=152(或7.5)(平方单位)(2)解:如图.(3)解:A1(1,5),B1(1,0),C1(4,3). 17.(1)证明:∵AB=AC∴∠B=∠C在△FBD与△DCE中{BF=CD∠B=∠CBD=CE∴△FBD≌△DCE.∴DF=ED,即△DEF是等腰三角形(2)解:∵AB=AC,∠A=56°∴∠B=∠C= 12(180°−56°)=62°.∴∠EDF=∠B=62°.18.(1)解:∵BD=BC,∠DBC=60°∴△DBC是等边三角形,∴DB=DC,∠BDC=∠DBC=∠DCB=60°在△ADB和△ADC中{AB=ACAD=ADDB=DC∴△ADB≌△ADC,∴∠ADB=∠ADC,∴∠ADB= 12(360°﹣60°)=150°.(2)解:结论:△ABE是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE在△ABD和△EBC中{AB=EB∠ADB=∠BCE=150°∠ABD=∠CBE∴△ABD≌△EBC ∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)解:连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°∴∠EDC=30°,∴EC= 12DE=4,∵△ABD≌△EBC,∴AD=EC=4.。
2023年中考苏科版数学一轮复习专题讲义与练习-轴对称图形
2023年中考数学一轮复习专题讲义与练习轴对称图形【课标要求】1.进一步认识轴对称,了解它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质;2.能按要求作出简单平面图形经过一次或两次轴对称后的图形;3.了解轴对称与轴对称图形的区别和联系;4.进一步巩固和掌握基本图形(线段.角.等腰三角形.矩形.菱形.正多边形.圆)的轴对称性及其相关性质,并能运用这些性质解决问题;5.能利用轴对称进行图案设计.【要点梳理】1.把一个图形沿着一条直线折叠,如果它能够与另一个图形_____,那么称这两个图形成轴对称,这条直线叫做_____;把一个图形沿着某条直线折叠,如果直线两旁的部分能够_____,那么称这个图形是______,这条直线就是对称轴.2.轴对称的性质:①_____________;②_______________________.3.线段是_____图形,____________是它的对称轴;性质:_______________;判定:_______________4.角是_____图形,对称轴是____________;性质:________________;判定:______________5.等腰三角形是_____图形,对称轴是____________;性质:①_______________;②________________;判定:_____________________________.6.直角三角形的性质:___________________7.等边三角形的性质:①______________;②__________. 【规律总结】1.图形的轴对称与图形的平移.旋转是近两年的新题型.热点题型,在试题中的比重逐年上升.考查的形式以填空题.选择题为主,与其他知识如三角形.平行四边形综合的解答题也时有出现,分值在5~12分左右;2.解决与轴对称相关的问题时,一定要充分利用轴对称的性质,有时需要结合题目条件添加适当的辅助线来解决问题;3.轴对称知识的一个重要体现形式是折叠问题,此类问题常常需要联系全等三角形以及勾股定理,并结合方程思想来解题,故解题时一定要充分挖掘题目中的隐含条件;4.在解决等腰三角形的相关问题时,要运用其轴对称的本质特性来分析和解决问题. 【强化训练】一、选择题1.下列图形中,为轴对称图形的是()A .B .C .D .2.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()3.下列轴对称图形中,对称轴条数最少的是()A.等边三角形B.正方形C.正六边形D.圆4.如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.355.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BCC.△ABD是等腰三角形D.点D为线段AC的中点第4题第5题第6题6.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,连接BD,将△BCD沿对角线BD折叠得到△BDE,BE交AD于点O,BE恰好平分∠ABD,若AB=2,则点O到BD的距离为()A .B.2 C .D.3第7题第8题第9题8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A'处,点B落在点B'处,若∠2=40°, 则图中∠1的度数为()A B C D E F A .115° B .120° C .130° D .140°9.图1为某四边形ABCD 纸片,其中∠B=70°, ∠C=80°. 若将CD 叠合在AB 上,出现折线MN, 再将纸片展开后,M.N 两点分别在AD.BC 上,如图2所示,则∠MNB 的度数为( )A .90°B .95°C .100°D .105°二、填空题10.等腰三角形中,有一个角是80°,则它的顶角是______.11.直角三角形斜边上的中线和面积分别是5cm.20cm 2,则它斜边上的高是___cm12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分的面积为____cm 2.第12题 第13题 第14题13.如图,正方形纸片ABCD 的边长为12,点F 是AD 上一点,将△CDF 沿CF 折叠,点D 落在点G 处,连接DG 并延长交AB 于点E .若AE =5,则GE 的长 . 14.如图,过边长为4的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为____________.三、解答题15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC 和△DEF (顶点为网格线的交点),以及过格点的直线l .(1)将△ABC 向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.(2)画出△DEF 关于直线l 对称的三角形.(3)填空:∠C+∠E=________________.16.如图,在△ABC 中,∠ABC 的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C=45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.17.已知:如图,△ABC.△CDE都是等边三角形,AD.BE相交于点O,点M.N分别是线段AD.BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.18.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C’的位置,BC’交AD于点G.(1)求证:AG=C’G.(2)如图(2),再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.19.如图,在矩形纸片ABCD中,点E.F分别在矩形的边AB.AD上,将矩形纸片沿CE.CF折叠,点B落在H处,点D落在G处,点C.H.G恰好在同一直线上,若AB=6,AD=4,BE =2,求DF的长.。
第31讲轴对称、平移、旋转(课件)-2025年中考数学一轮复习讲练测(全国通用)
=8
= −2
= 2 2 − 2 − 6
联立
,解得: 1
, 2
(舍).
=
10
=
0
1
2
=+2
∴此时点P的坐标为 8,10 ;
考点一 轴对称
题型05 折叠问题 类型四 抛物线与几何图形综合
【例8】(2023·陕西渭南·统考二模)如图,抛物线 = 2 + − 6与x轴正半轴交于点 6,0 ,与y轴交于点B,点
这两个图形就关于这条直线成轴对称.
性质
1)关于某条直线对称的两个图形是全等形.
2)两个图形关于某直线对称那么对称轴是对应点连线的垂直平分线.
判定
1)两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.
2)两个图形关于某条直线成轴对称,那么对称轴是对折重合的折痕线.
考点一 轴对称
的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.
考点一 轴对称
1. 对称轴是一条直线,不是一条射线,也不是一条线段.
2. 轴对称图形的对称轴有的只有一条,有的存在多条对称轴(例:正方形有四条对称轴,圆有无数
条对称轴等).
3. 成轴对称的两个图形中的任何一个都可以看作由另一个图形经过轴对称变换得到的,一个轴对称
考点一 轴对称
题型05 折叠问题 类型二 四边形折叠问题
【例6】(2019·山东菏泽·统考三模)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若
∠ABD=48°,∠CFD=40°,则∠E为(
A.102°
B.112°
C.122°
中考数学复习《轴对称》专项练习题-带含有答案
中考数学复习《轴对称》专项练习题-带含有答案一、单选题1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.若点与关于x轴对称,则点的坐标为()A.B.C.D.3.在中,和的度数如下,能判定是等腰三角形的是()A.B.C.D.4.如图,PD垂直平分AB,PE垂直平分BC,若PA的长为7,则PC的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.B.BC=2DE C.∠ABE=15°D.DE=2AE7.如图,矩形中,对角线的垂直平分线分别交,于点,若AM=1,BN=2,则的长为()A.B.C.D.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM、MC下列结论:①DF=DN;②ABE≌△MBN;③△CMN 是等腰三角形;④AE=CN;,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.10.已知等腰三角形ABC,其中两边,满足,则ABC的周长为.11.在中,点D为斜边上的一点,若为等腰三角形,那么的度数为.12.如图,在中AB=AC,∠A=120°,AB的垂直平分线分别交,于D,E,BE=3,则的长为.13.如图,在中,∠ACB=90°,∠A=30°,将绕点C逆时针旋转得到,点M是的中点,点N是的中点,连接,若,则线段的最大值是.三、解答题14.如图,在正方形网格上的一个△ABC.(其中点A. B. C均在网格上)①作△ABC关于直线MN的轴对称图形△A′B′C′;②以P点为一个顶点作一个与△ABC全等的△EPF(规定点P与点B对应,另两顶点都在图中网格交点处).③在MN上画出点Q,使得QA+QC最小。
中考数学总复习《轴对称》专项测试卷-附有参考答案
中考数学总复习《轴对称》专项测试卷-附有参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.在平面直角坐标系中,点P(−2,3)关于x轴对称的点的坐标为( )A.(−2,−3)B.(2,−3)C.(−3,2)D.(3,−2) 2.下列四个图案中,不是轴对称图案的是( )A.B.C.D.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A.中B.国C.加D.油4.点P(m,−2)与点P1(−4,n)关于x轴对称,则m,n的值分别为( )A.m=4,n=−2B.m=−4,n=2C.m=−4,n=−2D.m=4,n=25.若等腰三角形的周长为30cm,一边为14cm,则腰长为( )A.2cm B.8cmC.8cm或2cm D.14cm或8cm6.如图,在△ABC中,DE是AC的垂直平分线AC=8cm,且△ABD的周长为14cm则△ABC的周长为( )A.15cm B.18cm C.22cm D.25cm7.在Rt△ABC中∠ABC=90∘,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.若等腰三角形的一个内角为80∘,则这个等腰三角形的顶角为( )A.80∘B.50∘C.80∘或50∘D.80∘或20∘二、填空题(共5题,共15分)9.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点Aʹ的坐标为.10.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=度.11.如图,在△ABC中AB=AC=5,BC=6,AD平分∠BAC交BC于点D,分别以点A和点C为圆心,大于1AC的长为半径作弧,两弧相交于点M和点N,作直线MN,2交AD于点E,则DE的长为.12.如图,长方形纸条ABCD中AB∥CD,AD∥BC,∠A=∠B=∠C=∠D=90∘.将长方形纸条沿直线EF折叠,点A落在Aʹ处,点D落在Dʹ处,AʹE交CD于点G.若∠AEF=α,则∠AʹGC=(用含α的式子表示).13.在平面直角坐标系中,点A的坐标是(−1,2).作点A关于y轴的对称点,得到点Aʹ,再将点Aʹ向下平移4个单位长度,得到点Aʺ,则点Aʺ的坐标是(,).三、解答题(共3题,共45分)14.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN过点O交AB于点M,交AC于点N,且MN∥BC,BM=6,CN=7.求MN的长.15.如图,在△ABC中AB=AC,点D,E,F分别在AB,BC,AC边上,且BE= CF,BD=CE.(1) 求证:△DEF为等腰三角形;(2) 当∠A=50∘时,求∠DEF的度数.16.如图,△ABC为等边三角形,D为△ABC内一点,且∠ABD=∠DAC,过点C作AD 的平行线,交BD的延长线于点E,BD=EC连接AE.(1) 求证:△ABD≌△ACE;(2) 求证:△ADE为等边三角形.参考答案1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】D6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】63∘或27∘10. 【答案】3011. 【答案】7812. 【答案】180∘−2α13. 【答案】1;−214. 【答案】∵BO平分∠ABC∴∠ABO=∠CBO∵MN∥BC∴∠CBO=∠BOM∴∠ABO=∠BOM∴BM=OM同理可得:∠ACO=∠CON∴CN=ON∴MN=OM+ON=BM+CN=6+7=13.15. 【答案】(1) ∵AB=AC∴∠B=∠C在△BDE和△CEF中{BD=CE,∠B=∠C, BE=CF,∴△BDE≌△CEF(SAS)∴DE=EF∴△DEF为等腰三角形;(2) ∵△BDE≌△CEF∴∠BDE=∠CEF∴∠BED+∠CEF=∠BED+∠BDE∵∠B+(∠BED+∠BDE)=180∘∠DEF+(∠BED+∠BDE)=180∘∴∠B=∠DEF.∵∠A=50∘AB=AC∴∠B=12(180∘−50∘)=65∘∴∠DEF=65∘.16. 【答案】(1) ∵△ABC是等边三角形∴AB=AC∠BAC=∠ACB=60∘∵AD∥CE∴∠DAC=∠ACE,且∠ABD=∠DAC∴∠ACE=∠ABD,且AB=AC BD=CE∴△ABD≌△ACE(SAS).(2) ∵△ABD≌△ACE∴AD=AE∠BAD=∠CAE∵∠BAD+∠DAC=∠BAC=60∘∴∠CAE+∠DAC=∠DAE=60∘,且AD=AE∴△ADE是等边三角形.。
2022-2023学年九年级数学中考复习《轴对称最短路径问题》选择题专题训练(附答案)
2022-2023学年九年级数学中考复习《轴对称最短路径问题》选择题专题训练(附答案)1.如图,在△ABC中,AB=AC=13,AB的垂直平分线交AB于点N,交AC于点M,P是直线MN上一动点,点H为BC中点,若BC=10,则PB+PH的最小值为()A.B.10C.12D.132.如图,在等腰Rt△ABC中,斜边AB的长为4,D为AB的中点,E为AC边上的动点,DE⊥DF交BC于点F,P为EF的中点,连接P A,PB,则P A+PB的最小值是()A.3B.C.D.3.在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=2+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是()A.2+2B.+3C.2+2D.+44.如图,菱形ABCD的边长是4,∠B=120°,P是对角线AC上一个动点,E是CD的中点,则△PDE的周长的最小值为()A.6B.C.8D.5.在矩形ABCD中,AB=5,AD=6,动点P满足,则点P到A,B 两点距离之和最小值为()A.B.C.D.6.如图,在四边形ABCD中,∠C=40°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°7.如图,正方形ABCD的边长是2,∠DAC的平分线交CD于点E,若点P,Q分别是AD 和AE上的动点,则DQ+PQ的最小值为()A.B.C.D.28.如图,河道m的同侧有M、N两个村庄,计划铺设一条管道将河水引至M,N两地,下面的四个方案中,管道长度最短的是()A.B.C.D.9.如图,矩形ABCD中,AB=,BC=3,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是()A.2+3B.2C.2D.10.如图,已知∠ACB=30°,M为∠ACB内部任意一点,且CM=5,E,F分别是CA,CB上的动点,则△MEF的周长的最小值为()A.2.5B.3C.4D.511.如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.312.如图,在菱形ABCD中,AB=4,E在BC上,BE=2,∠BAD=120°,P点在BD上,则PE+PC的最小值为()A.6B.5C.4D.213.如图,在正方形ABCD中,AB=3,点B在CD边上,且DE=2CE,点P是对角线AC 上的一个动点,则PE+PD的最小值是()A.B.C.9D.14.如图,在矩形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA上的动点(不与端点重合),若四点运动过程中满足AE=CG,BF=DH,且AB=10,BC=5,则四边形EFGH周长的最小值等于()A.10B.10C.5D.515.如图,正方形ABCD的边长为3,点E,F分别是BC,CD边上的动点,并且满足BE =CF,则AE+AF的最小值为()A.6B.C.D.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=3,ON=5,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是()A.B.C.﹣2D.﹣217.如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A(﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()A.3B.5C.2D.18.如图,在五边形ABCDE中,∠BAE=α(∠BAE为钝角),∠B=∠E=90°,在BC,DE上分别找一点M,N,当△AMN周长最小时,∠MAN的度数为()A.B.α﹣90°C.2α﹣180°D.α﹣45°19.已知三点,当MA﹣MB的值最大时,m的值为()A.﹣1B.1C.﹣2D.220.在矩形ABCD中,AB=10,AD=6,点N是线段BC的中点,点E,G分别为射线DA,线段AB上的动点,CE交以DE为直径的圆于点M,则GM+GN的最小值为()A.B.C.5D.6参考答案1.解:连接AP,AH,∵MN是AB的垂直平分线,∴PB=P A,∴PB+PH的最小值为AH的长,∵AB=AC,点H为BC的中点,∴BH=BC=5,在Rt△ABH中,由勾股定理得,AH===12,∴PB+PH的最小值为12,故选:C.2.解:连接PC,PD,∵在Rt△CEF中,P为EF的中点,∴CP=EF,在Rt△EDF中,DP=,∴CP=DP,∴点P在CD的垂直平分线上运动,作A关于CD垂直平分线的对称点A',∴P A+PB的最小值为A'B,在Rt△AA'B中,A'B==2,故选:C.3.解:如图,作点Q关于BD的对称点H,则PQ=PH.∴CP+PQ=CP+PH,∴当C、H、P三点在同一直线上,且CH⊥AB时,CP+PQ=CH为最短.∵∠ABC=60°,∴∠BCH=30°,∴BH===,∴CH==3+.故选B.4.解:∵四边形ABCD是菱形,∴点B与点D关于直线AC对称,如图,连接BE与AC相交于点P,由轴对称确定最短路线问题,BE的长度即为PE+PD 的最小值,连接BD,∵∠ABC=120°,∴∠BCD=180°﹣120°=60°,∵BC=CD,∴△BCD是等边三角形,∵E是CD的中点,∴∠CBE=30°∠BEC=90°,∵BC=4,∴CE=2,∴,即PE+PD的最小值为2,∵E为CD的中点,CD=4,ED=2,∴△PDE的周长的最小值为PE+PD.故选:B.5.解:如图,∵四边形ABCD是矩形,∴∠ABC=90°,由题意得,h AB=,∴h AB=AD=2,∴点P在距离AB两个单位且与AB平行的两条直线上,作点B关于l的对称点B′,连接AB′,在Rt△ABB′中,AB=5,BB′=4,∴AB′==,故选:B.6.解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.∵∠C=40°,∴∠DAB=140°,∴∠AA′E+∠A″=40°,∵∠EA′A=∠EAA′,∠F AD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°﹣40°=100°,故选:A.7.解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=2,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,∵AP′=P′D',2P′D′2=AD′2=4,∴P′D′=,即DQ+PQ的最小值为.故选:A.8.解:作点M关于直线m的对称点M′,连接M′N交直线m于点P,则MP+NP=M′N,此时管道长度最短.故选:C.9.解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC===2,∴AC=2AB,∴∠ACB=30°,AC=2AB=2,∵∠BCE=60°,∴∠ACE=90°,∴AE===,故选:D.10.解:分别作点M关于CA、CB的对称点P、Q,连接PQ,分别交CA、CB于点E、F,连接CP、CQ、MP、MQ.∵点M关于CA的对称点为P,关于CB的对称点为Q,∴ME=PE,CM=CP,∠PCA=∠MCA;∵点M关于OB的对称点为Q,∴ME=QE,CM=CQ,∠QCB=∠MCB,∴CP=CQ=CP=5,∠PCQ=∠PCE+MCE+QCF+∠MCF=2∠ACB=60°,∴△PCQ是等边三角形,∴PQ=CP=CQ=5cm.∴△PMN的周长的最小值=ME+MF+EF=PE+EF+QF≥PQ=5.故选:D.11.解:∵直线MN为线段AD的垂直平分线,P为MN上的一个动点,∴点A与点D关于直线MN对称,∴AC与这些MN的交点即为点P,PC+PD的最小值=AC的长度=1,故选:A.12.解:∵四边形ABCD为菱形,∴A、C关于BD对称,∴连AE交BD于P,则PE+PC=PE+AP=AE,根据两点之间线段最短,AE的长即为PE+PC的最小值.∵∠BAD=120°,∴∠ABE=∠BAC=60°,∴△ABC为等边三角形,又∵BE=CE,∴AE⊥BC,∴AE==2.故选:D.13.解:连接BP,BE,∵四边形ABCD是正方形,∴DP=BP,∴DP+PE=BP+PE,∴BP+PE的最小值为BE的长,∵AB=3,DE=2CE,∴CE=1,BC=3,在Rt△BCE中,由勾股定理得,BD===,∴PE+PD的最小值是,故选:A.14.解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G==5.∴C四边形EFGH=2E′G=10.故选:A.15.解:连接DE,根据正方形的性质及BE=CF,∴△DCE≌△ADF(SAS),∴DE=AF,∴AE+AF=AE+DE,作点A关于BC的对称点A′,连接BA′、EA′,则AE=A′E,即AE+AF=AE+DE=A'E+DE,当D、E、A′在同一直线时,AE+AF最小,AA′=2AB=6,此时,在Rt△ADA′中,DA′===3,故AE+AF的最小值为3.故选:C.16.解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,OM′=OM=3,ON′=ON=5,在Rt△M′ON′中,M′N′==.故选:A.17.解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A.18.解:作点A关于BC对称点A',作点A关于DE对称点A'',则A''E=AE,A'B=AB,连接A'A'',分别交线段BC和线段DE于点M和点N,连接AM,AN,这时候△AMN的周长取最小值.∵∠B=∠E=90°,∴A'M=AM,∴AN=A''N,∴∠AA'M=∠A'AM,∠AA''N=∠A''AN,∴∠AMN=2∠A'AM,∠ANM=2∠A''AN,∴∠MAN+∠MAB+∠NAE=α,∠MAN+∠AMN+∠ANM=180°,∴∠MAN+2∠BAM+2∠EAN=180°,∴∠BAM+∠EAN=180°﹣α,∴∠MAN=α﹣(180°﹣α)=2α﹣180°,故选:C.19.解:如图,在平面直角坐标系中作直线:y=x,作B(0,1)关于直线y=x的对称点B'(1,0),则直线AB'与直线y=x交于点M,此时MA﹣MB的值最大,∵M(m,m),∴点M在直线y=x上,∵B(0,1),∴B(0,1)关于直线y=x的对称点B'(1,0),∵A(2,),∴设直线AB'的解析式为y=kx+b(k≠0),∴,∴,∴直线AB'的解析式为:y=,联立得:,∴,∴M(﹣1,﹣1),∴m的值为﹣1,故选:A.20.解:如图所示,作N关于AB的对称点N',取DC中点F,连接DM,FM,GN'.可得GN=GN',∵M在以DE为直径的圆上,∴DM⊥EC,∴△DMC为直角三角形,∵F为Rt△DMC斜边的中点,∴MF===5,此时当MF,MG,GN'三边共线时,有MF+MG+GN'长度的最小值等于FN',∵F,N分别是DC,CB的中点,∴FC==5,BN'=BN==3,∴CN'=BC+BN'=9,∴FN'==,∴MF+MG+GN'长度的最小值为,∵MF=5,GN=GN′∴GM+GN的最小值为﹣5,故选:A.。
江苏省2023年中考备考数学一轮复习 轴对称图形 练习题
江苏省2023年中考备考数学一轮复习 轴对称图形 练习题一、单选题1.(2022·江苏盐城·统考一模)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .2.(2022·江苏南通·统考中考真题)下面由北京冬奥会比赛项目图标组成的四个图形中,可看作轴对称图形的是( )A .B .C .D .3.(2022·江苏连云港·统考中考真题)下列图案中,是轴对称图形的是( )A .B .C .D . 4.(2022·江苏无锡·模拟预测)如图,在ABC 中,70B ∠=︒,沿图中虚线EF 翻折,使得点B 落在AC 上的点D 处,则12∠+∠等于( )A .160°B .150°C .140°D .110°5.(2022·江苏常州·统考一模)如图,已知四边形ABCD 的对角互补,且BAC DAC ∠=∠,15AB =,12AD =.过顶点C 作CE AB ⊥于E ,则AE BE的值为( )A B .9 C .6 D .7.26.(2022·江苏盐城·统考二模)如图,AB CD ∥,AE 平分CAB ∠.下列说法错误的是( )A .13∠=∠B .12∠=∠C .3=4∠∠D .45∠=∠7.(2022·江苏连云港·统考一模)如图,点F 在正五边形ABCDE 的内部,ABF △为等边三角形,则AFC ∠等于( )A .108︒B .120︒C .126︒D .132︒8.(2022·江苏宿迁·统考中考真题)若等腰三角形的两边长分别是3cm 和5cm ,则这个等腰三角形的周长是( )A .8cmB .13cmC .8cm 或13cmD .11cm 或13cm9.(2022·江苏淮安·统考中考真题)如图,在ABC 中,AB AC =,BAC ∠的平分线交BC 于点D ,E 为AC 的中点,若10AB =,则DE 的长是( )A .8B .6C .5D .410.(2022·江苏宿迁·统考二模)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且ABC 是等腰三角形,那么点C 的个数为( ).A .1B .2C .3D .4二、填空题11.(2022·江苏镇江·统考中考真题)如图,有一张平行四边形纸片ABCD ,5AB =,7AD =,将这张纸片折叠,使得点B 落在边AD 上,点B 的对应点为点B ',折痕为EF ,若点E 在边AB 上,则DB '长的最小值等于_________.12.(2022·江苏宿迁·统考二模)如图,在△ABC 中,△B =30°,△C =50°,通过观察尺规作图的痕迹,△DAE 的度数是 _____.13.(2022·江苏盐城·统考三模)根据光学中平面镜光线反射原理,入射光线、反射光线与平面镜所夹的角相等.如图,,αβ是两面互相平行的平面镜,一束光线m 通过镜面α反射后的光线为n ,再通过镜面β反射后的光线为k .光线m 与镜面α的夹角的度数为x ︒,光线n 与光线k 的夹角的度数为y ︒.则x 与y 之间的数量关系是______.14.(2022·江苏南通·统考模拟预测)如图,在Rt△ABC 中,△ACB=90°,EF 垂直平分AB ,AC=3,BC=4,则AE+CE 的最小值是________.15.(2022·江苏南通·统考二模)如图,在ABC 中,按以下步骤作图:△以点B 为圆心,任意长为半径作弧,分别交AB ,BC 于点D ,E ;△分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在ABC ∠的内部交于点F ; △作射线BF ,交AC 于点G .如果6AB =,9BC =,ABG 的面积为9,则ABC 的面积为______.16.(2022·江苏无锡·统考一模)如图,在△ABC 中,边AB 的垂直平分线分别交AB 、BC 于点E ,D ,30B ∠=︒,50C ∠=︒,则△DAC 的度数是______.17.(2022·江苏苏州·统考中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.18.(2022·江苏南京·统考一模)如图,ABC 中,2,AB AC P ==是BC 上任意一点,PE AB ⊥于点,E PF AC ⊥于点F ,若1ABC S =△,则PE PF +=________.19.(2022·江苏南通·统考一模)如图,△ABC 中,AB=BC ,△ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若△BAE=25°,则△ACF=__________度.20.(2022·江苏镇江·统考二模)如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠=__.21.(2022·江苏常州·统考二模)如图,在△ABC 中,AB =AC ,△BAC =100°,BD 平分△ABC ,且BD =AB ,连接AD 、DC .则△BDC 的度数为__________°.三、解答题22.(2022·江苏扬州·统考中考真题)如图,在ABCD 中,BE 、DG 分别平分ABC ADC ∠∠、,交AC 于点E G 、.(1)求证:,BE DG BE DG =∥;(2)过点E 作EF AB ⊥,垂足为F .若ABCD 的周长为56,6EF =,求ABC ∆的面积.23.(2022·江苏常州·模拟预测)如图,在ABC 中,90,C AC BC ∠=︒>,D 为AB 的中点,E 为CA 延长线上一点,连接DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF .作点B 关于直线DF 的对称点G ,连接DG .(1)依题意补全图形;(2)若ADF α∠=.△求EDG ∠的度数(用含α的式子表示);△请判断以线段,,AE BF EF 为边的三角形的形状,并说明理由.24.(2022·江苏宿迁·统考三模)如图,在ABC 中,42B ∠=︒,50C ∠=︒,通过尺规作图,得到直线DE 和射线AF ,仔细观察作图痕迹,完成下列问题:(1)直线DE 是线段AB 的________线,射线AF 是EAC ∠的________线;(2)求EAF ∠的度数.25.(2022·江苏常州·统考二模)如图,在四边形ABCD 中,AB CD ∥,B D ∠=∠,连接AC .(1)求证:AB CD =:(2)用直尺和圆规作图:过点C 作AB 的垂线,垂足为E (不写作法,保留作图痕迹),若四边形ABCD 的面积是20,5AB =,求CE 的长.26.(2022·江苏南通·统考一模)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.27.(2022·江苏徐州·一模)如图,长方形ABCD 中,AB >AD ,把长方形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)图中有 个等腰三角形;(请直接填空,不需要证明)(2)求证:△ADE △△CED ;(3)请证明点F 在线段AC 的垂直平分线上.28.(2022·江苏苏州·统考一模)我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,△ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,△ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED是一片绿色花园,△ACB、△DCE是等腰直角三角形,△ACB=△DCE=90°(0<△BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.参考答案:1.A【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不符合题意;C .不是轴对称图形,故本选项不符合题意;D .不是轴对称图形,故本选项不符合题意.故选A .【点睛】本题考查判断轴对称图形,理解轴对称图形的概念是解答的关键.2.D【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A .不是轴对称图形,故本选项不合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .是轴对称图形,故本选项符合题意.故选:D .【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.3.A【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.C【分析】由70B ∠=︒得110BEF BFE ∠+∠=︒,再根据翻折知BEF DEF ∠=∠,BFE DFE ∠=∠,即可求出12∠+∠的值.【详解】解:70B ∠=︒,110BEF BFE∴∠+∠=︒,翻折,BEF DEF∴∠=∠,BFE DFE∠=∠,2()2110220BED BFD BEF BFE∴∠+∠=∠+∠=⨯︒=︒,121802220140∴∠+∠=︒⨯-︒=︒,故选:C.【点睛】本题考查了翻折的性质以及三角形内角和定理,熟练运用翻折的性质是解题的关键.5.B【分析】要求AEBE的值,主要求出AE和BE的长即可,注意到AC是角平分线,于是作CF△AD交AD的延长线于点F,可以证得两对全等三角形,结合已知数据可以求得AE和BE的长,从而解决问题.【详解】解:作CF△AD交AD的延长线于点F,则△CFD=90°,△CE△AB,△△CEB=90°,△△CFD=△CEB=90°,△△BAC=△DAC,△AC平分△BAD,△CE=CF,△四边形ABCD对角互补,△△ABC+△ADC=180°,又△△CDF+△ADC=180°,△△CBE=△CDF,在△CBE和△CDF中,CEB CFDCBE CDFCE CF,△△CBE△△CDF(AAS),△BE =DF ,在△AEC 和△AFC 中,AECAFC EACFAC AC AC ,△△AEC △△AFC (AAS ),△AE =AF ,设BE =a ,则DF =a ,△AB =15,AD =12,△12+2a =15,得 1.5a =,△AE =12+a =13.5,BE =a =1.5, △13.591.5AE BE ==, 故选B .【点睛】本题考查全等三角形的判定与性质、角平分线的性质,解答本题的关键是巧妙构造全等三角形进而得出等量关系.6.D【分析】利用平行线的性质、角平分线的性质以及对顶角相等知识对选项进行逐一判断即可.【详解】解:A .AB CD ∥,1=3∴∠∠(两直线平行,同位角相等),选项正确,不符合题意. B .AE 平分CAB ∠,1=2∴∠∠(角平分线的性质),选项正确,不符合题意.C .根据对顶角相等可知3=4∠∠,选项正确,不符合题意.D .根据题干信息无法判断45∠=∠,选项错误,符合题意.故选:D【点睛】本题主要考查了平行线的性质、角平分线的性质以及对顶角相等知识,熟知相关性质是解决本题的关键.7.C【分析】根据多边形内角和公式可求出△ABC 的度数,根据正五边形的性质可得AB =BC ,根据等边三角形的性质可得△ABF =△AFB =60°,AB =BF ,可得BF =BC ,根据角的和差关系可得出△FBC 的度数,根据等腰三角形的性质可求出△BFC 的度数,根据角的和差关系即可得答案.【详解】△ABCDE 是正五边形,△△ABC =(52)1805-⨯︒=108°,AB =BC ,△ABF △为等边三角形,△△ABF =△AFB =60°,AB =BF ,△BF =BC ,△FBC =△ABC -△ABF =48°,△△BFC =1(180)2FBC ︒-∠=66°, △AFC ∠=△AFB +△BFC =126°,故选:C .【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键.8.D【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时,△3+3>5,△3,3,5能组成三角形,此时等腰三角形的周长为3+3+5=11(cm ),当5是腰时,△3+5>5,5,5,3能够组成三角形,此时等腰三角形的周长为5+5+3=13(cm ),则三角形的周长为11cm 或13cm .故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.C【分析】利用等腰三角形三线合一以及直角三角形斜边上的中线进行求解即可.【详解】△10AB AC ==,AD 平分BAC ∠,△AD BC ⊥,△90ADC ∠=︒,△E 为AC 的中点, △152DE AC ==,故选C .【点睛】本题考查等腰三角形的性质和直角三角形斜边上的中线.熟练掌握等腰三角形三线合一和直角三角形斜边上的中线等于斜边的一半是解题的关键.10.C【分析】分AB 为腰和为底两种情况考虑,画出图形,即可找出点C 的个数.【详解】解:如下图:当AB 为腰时,分别以A 、B 点为顶点,以AB 为半径作圆,可找出格点C 的个数有2个;当AB 为底时,作AB 的垂直平分线,可找出格点C 的个数有1个,所以点C 的个数为:2+1=3.故选:C .【点睛】本题考查了等腰三角形的判定,能分以AB 为底和以AB 为腰两种情况,并画出图形是解题关键. 11.2【分析】根据题意,EB EB '=,当E 点与A 点重合时,符合题意,据此即可求解.【详解】解:△将这张纸片折叠,使得点B 落在边AD 上,点B 的对应点为点B ',△EB EB '=,而B E AE AB ''≥+,当E 点与A 点重合时,5EB AB AB ''===,此时DB '的长最小,△752DB AD AB AD AB ''=-=-=-=.故答案为:2.【点睛】本题考查了折叠的性质,理解当E 点与A 点重合时DB '的长最小是解题的关键.12.35°【分析】由线段垂直平分线的性质和等腰三角形的性质求得△BAD =30°,结合三角形内角和定理求出△CAD ,根据角平分线的定义即可求出△DAE 的度数.【详解】解:△DF 垂直平分线段AB ,△DA =DB ,△△BAD =△B =30°,△△B =30°,△C =50°,△△BAC =180°-△B -△C =180°-30°-50°=100°,△△CAD =△BAC -△BAD =100°-30°=70°,△AE 平分△CAD ,△△DAE =12△CAD =12×70°=35°, 故答案为:35°.【点睛】本题考查作图-基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法.13.2180x y +=【分析】根据平面镜光线反射原理和平行线性质即可求得.【详解】解:△入射光线、反射光线与平面镜所夹的角相等,△反射后的光线n 与镜面α夹角度数为x ︒,△,αβ是两面互相平行的平面镜,△反射后的光线n 与镜面β夹角度数也为x ︒,又由入射光线、反射光线与平面镜所夹的角相等,△反射后的光线k 与镜面β的夹角度数也为x ︒,180x x y ∴︒+︒+︒=︒ ,2180x y ∴+= .故答案为:2180x y +=.【点睛】本题考查了平面镜光线反射原理和平行线性质,掌握反射光线与平面镜所夹的角相等以及两直线平行内错角相等是解题的关键.14.4【分析】由题意可知当点E 为BC 与EF 的交点时,AE+CE 最小,根据垂直平分线的性质得到AE=BE ,可得AE+CE 的最小值为BC .【详解】解:△EF 垂直平分AB ,△A ,B 关于EF 对称,AE=BE ,当点E 为BC 与EF 的交点时,AE+CE 最小,此时,AE+CE=BE+CE=BC=4,故答案为:4.【点睛】本题考查了垂直平分线的性质,解此题的关键是找出符合题意的点E的位置.15.45 2【分析】过G作GH△BC于H,GM△AB于M,由作图步骤可知BG为△ABC的角平分线,可得GM=GH ,然后再结合已知条件和三角形的面积比求得求出S△BCG解答即可.【详解】解:过G作GH△BC于H,GM△AB于M,由作图作法可知:BG为△ABC的角平分线△GM=GH△162921932ABGBCG BCGAB GMS ABS BC SBC GH⋅=====⋅,272BCGS=∴△S△ABC=S△ABG+S△BCG=2745 922 +=故答案为452.【点睛】本题考查了角平分线性质和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.16.70︒【分析】先由线段垂直平分线的性质及30B ∠=︒求出30BAD ∠=︒,再由三角形内角和定理得到100BAC ∠=︒,再根据DAC BAC BAD ∠=∠-∠即可求解.【详解】解:DE 是线段AB 的垂直平分线,30B ∠=︒,DB DA ∴=,30BAD B ∴∠=∠=︒,50C ∠=︒,180100BAC B C ∴∠=︒-∠-∠=︒,70DAC BAC BAD ∴∠=∠-∠=︒,故答案为:70︒.【点评】本题考查的是线段垂直平分线的性质及三角形内角和定理,解题的关键是熟知线段垂直平分线的性质.17.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.18.1【分析】将ABC 的面积拆成两个三角形面积之和,即可间接求出PE PF +的值.【详解】解:连接AP ,如下图:PE AB ⊥于点,E PF AC ⊥于点F ,1ABC APC APB S S S =+= 1122APC APB S S AC PF AB PE +=⋅+⋅ 2AB AC ==,1APC APB S S PF PE +=+=,1PE PF ∴+=,故答案是:1.【点睛】本题考查了等腰三角形的性质,利用面积法解决两边之和问题,解题的关键是:将ABC 的面积拆成两个三角形面积之和来解答.19.70【分析】先利用HL 证明△ABE△△CBF ,可证△BCF=△BAE=25°,即可求出△ACF=45°+25°=70°.【详解】△△ABC=90°,AB=AC ,△△CBF=180°-△ABC=90°,△ACB=45°,在Rt△ABE 和Rt△CBF 中,AB CB AE CF=⎧⎨=⎩, △Rt△ABE△Rt△CBF(HL),△△BCF=△BAE=25°,△△ACF=△ACB+△BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.20.30°##30度【分析】利用任意凸多边形的外角和均为360︒,正多边形的每个外角相等即可求出多边形的边数,再根据正多边形的中心角的概念求出△AOD 的度数,再由正多边形的半径OA =OD ,根据等腰三角形的性质求解即可.【详解】多边形的每个外角相等,且其和为360︒,据此可得多边形的边数为:360940, △△AOD =3×3609︒=120°, △OA =OD ,△△OAD=△ODA=1801202︒-︒=30°,故答案为:30°.【点睛】本题考查了正多边形的外角,正多边形的中心角,等边对等角等知识,熟练掌握相关知识是解题的关键.21.130【分析】延长AD到点E,使得AE=BC,证得DBC△△CAE,设△CDE=△CED=α,表示出△BDC=△ACE=100°+α,然后根据三角形的内角和定理求得已知角即可.【详解】解:△AB=AC,△BAC=100°,△△ABC=△ACB=40°,△BD平分△ABC,△△ABD=△DBC=20°,△BD=AB,△△ADB=△DAB=80°,△△CAD=20°,△△CAD=△DBC,延长AD到点E,使得AE=BC,△BD=AB=AC,△CAD=△DBC=20°,△△DBC△△CAE,△CD=CE,△BDC=△ACE,△△CDE=△CED=α,△△ADB=80°,△△BDE=100°,△△BDC=△ACE=100°+α,△20°+100°+α+α=180°,△α=30°,△△BDC =130°.故答案为:130.【点睛】本题考查了等腰三角形的判定和性质、全等三角形的判定等知识,解题的关键是根据题意结合等腰三角形的性质得到各个角之间的关系.22.(1)见详解(2)84【分析】(1)由平行四边形的性质证()ABE CDG ASA ∆≅∆即可求证;(2)作EQ BC ⊥,由ΔΔΔABC ABE EBC S S S =+即可求解;【详解】(1)证明:在ABCD 中,△//AB CD ,△BAE DCG ∠=∠,△BE 、DG 分别平分ABC ADC ∠∠、,ABC ADC ∠=∠,△ABE CDG ∠=∠,在ABE ∆和CDG ∆中,△BAE DCG AB CD ABE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩ △()ABE CDG ASA ∆≅∆,△BE DG AEB CGD =∠=∠,,△BE DG ∥.(2)如图,作EQ BC ⊥,△ABCD 的周长为56,△28AB BC +=,△BE 平分ABC ∠,△6EQ EF ==, △()1138422ABC ABE EBC S S S EF AB EQ BC AB BC ∆∆∆=+=⋅+⋅=+=. 【点睛】本题主要考查平行四边形的性质、三角形的全等、角平分线的性质,掌握相关知识并灵活应用是解题的关键.23.(1)补图见解析;(2)△90EDG α∠=︒-;△以线段,,AE BF EF 为边的三角形是直角三角形,理由见解析.【分析】(1)根据题意画出图形解答即可;(2) △根据轴对称的性质解答即可;△根据轴对称的性质和全等三角形的判定和性质得出AE GE =,进而解答即可.【详解】解:(1)补全图形,如图所示,(2)△△ADF α∠=,△180BDF α∠=︒-,由轴对称性质可知,180GDF BDF α∠=∠=︒-,△DF DE ⊥,△90EDF ∠=︒,△1809090EDG GDF EDF αα∠=∠-∠=︒--︒=︒-,△以线段,,AE BF EF 为边的三角形是直角三角形,如图,连接,GF GE ,由轴对称性质可知,,GF BF DGF B =∠=∠,△D 是AB 的中点,△AD BD =,△GD BD =,△AD GD =,△90,GDE EDA DE DE α∠=∠=︒-=,△GDE ADE ≌,△,EGD EAD AE GE ∠=∠=,△90EAD B ∠=︒+∠,△90EGD B ∠=︒+∠,△9090EGF EGD DGF B B ∠=∠-∠=︒+∠-∠=︒,△以线段,,GE GF EF 为边的三角形是直角三角形,△以线段,,AE BF EF 为边的三角形是直角三角形.【点睛】此题考查全等三角形的判定和性质,关键是根据轴对称的性质和全等三角形的判定和性质解答.24.(1)线段垂直平分;角平分(2)23°【分析】(1)根据作图痕迹判断即可;(2)根据角平分线的性质、线段垂直平分线的性质进行求解即可;【详解】(1)解:根据作图痕迹可知,直线DE 是线段AB 的线段垂直平分线;射线AF 是EAC ∠的角平分线;(2)△DE 垂直平分AB△AE BE =△42BAE B ∠=∠=︒△50C ∠=︒△180180504828BAC B C ∠=︒-∠-∠=︒-︒=-︒︒△884246EAC BAC BAE ∠=∠-∠=︒-︒=︒△AF 平分EAC ∠ △11462322EAF EAC ∠=∠=⨯︒=︒ 【点睛】本题主要考查线段垂直平分线的性质、角平分线的性质,掌握相关性质并灵活应用是解题的关键.25.(1)见解析(2)图见解析,4【分析】(1)运用已知条件,证得ABC 和CDA 全等即可证得AB CD =.(2)运用尺规作图的方法,过点C 作AB 的垂线.由(1)中结论ABC CDA △△≌,得到1102ABC ABCDS S ==四边形△,再运用三角形面积公式,求得CE 的长. (1)证明:△AB CD ∥,△BAC DCA ∠=∠,在ABC 和CDA 中,B D BAC DCA AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△ABC CDA △△≌(AAS )△AB CD =.(2)解:作图如下,△ABC CDA △△≌, △12ABC ABCD S S =四边形△.△四边形ABCD 的面积是20,△10ABC S =△, △1102AB CE ⋅=, △5AB =,△4CE =.【点睛】本题考查了全等三角形的判定与性质,以及尺规作图法,证明ABC CDA △△≌是解题的关键.26.(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出△ADE ,再利用平行线的性质求出△ ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1)BE 平分ABC ∠,∴ABE EBC ∠=∠. DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2)65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒, 即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.27.(1)2(2)证明见解析(3)证明见解析【分析】(1)由题意知CE =BC =AD ,△EAC =△BAC =△DCA ,有△ACF 为等腰三角形;在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩,知ADE CED △△≌,有△DEA =△EDC ,有△DEF 为等腰三角形; (2)在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩,可得ADE CED △△≌; (3)由于ADE CED △△≌,DEA EDC ∠=∠,DEF EDF ∠=∠,有EF DF =,AE CD =,故AE EF CD DF -=-,FA FC =进而可得出结果.(1)解:有△ACF 和△DEF 共2个等腰三角形证明如下:由折叠的性质可知CE =BC =AD ,△EAC =△BAC△AB CD△△EAC =△DCA△△ACF 为等腰三角形;在ADE 和CED △中△AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩△()ADE CED SSS ≌△△△△DEA =△EDC△△DEF 为等腰三角形;故答案为:2.(2)证明:△四边形ABCD 是长方形△AD CE =,AE CD =由折叠的性质可得:BC CE =,AB AE =△AD CE =,AE CD =在ADE 和CED △中,AD CE AE CD DE ED =⎧⎪=⎨⎪=⎩△()ADE CED SSS △△≌.(3)证明:由(1)得ADE CED △△≌△DEA EDC ∠=∠,即DEF EDF ∠=∠△EF DF =又△AE CD =△AE EF CD DF -=-△FA FC =△点F 在线段AC 的垂直平分线上.【点睛】本题考查了几何图形折叠的性质,矩形,等腰三角形的判定与性质,三角形全等,垂直平分线等知识.解题的关键在于灵活运用知识.28.(1)见解析;(2)见解析;(3)42000元.【分析】(1)如图1,作ABC ∆的中线AE ,AEC ∆与ABE ∆的面积相等(作中线BF 也可以); (2)如图2,过点E 作EH GA ⊥交GA 的延长线于H .证明()AHE ACB AAS ∆≅∆,推出EH BC =可得结论; (3)首先,过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆≅∆,得AM BN =,则22100ACD BCE m S S ∆∆==;其次,过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆≅∆,得到AN CD =,再证()ACN CBE SAS ∆≅∆,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积得12BCE S BE CF ∆=⋅,求出70()CF m =,即可求解. (1)如图1中,作ABC ∆的中线AE ,AEC ∆与ABE ∆的面积相等(作中线BF 也可以);(2)证明:如图,过点E 作EH GA ⊥交GA 的延长线于H ;四边形ABDE ,四边形ACFG 都是正方形,AE AB ∴=,AC AG =,90EAB CAG HAC ∠=∠=∠=︒,EAH BAC ∴∠=∠,90H ACB ∠=∠=︒,()AHE ACB AAS ∴∆≅∆,EH BC ∴=,12ABC S AC BC ∆=⋅⋅,12EAG S AG EH ∆=⋅⋅, ABC EAG S S ∆∆∴=,ABC ∴∆与AEG ∆为偏等积三角形;(3)首先,过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图所示,则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒,180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ∠=∠,ACM BCN ∠=∠,AC BC =,()ACM BCN AAS ∴∆≅∆,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, 22100ACD BCE S S m ∆∆∴==,其次,如图,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中,N GCD ∠=∠,AGN DGC ∠=∠,AG DG =,()AGN DGC AAS ∴∆≅∆,AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒,90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒,BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中,AN CE =,CAN BCE ∠=∠,AC CB =,()ACN CBE SAS ∴∆≅∆,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒,90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥,12BCE S BE CF ∆=⋅,2100BCE ACD S S ∆∆==, CF ∴=22210070()60BCE S m BE ∆⨯==, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是三角形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆≅∆和ACN CBE ∆≅∆是解题的关键,属于中考常考题型.。
九年级数学中考复习《轴对称最短路径问题》解答题专题提升训练
九年级数学中考复习《轴对称最短路径问题》解答题专题提升训练(附答案)1.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点D,交AC于点E,连接BE.(1)若∠ABC=68°,求∠AED的度数;(2)若点P为直线DE上一点,AB=8,BC=6,求△PBC周长的最小值.2.如图,在平面直角坐标系中,已知A(﹣4,3),B(﹣1,﹣2).(1)请在x轴上画出点C,使|AC﹣BC|的值最大.(2)点C的坐标为,|AC﹣BC|的最大值为.3.探究:如图所示,C为线段BD上一动点,分别过点B,点D作AB⊥BD,ED⊥BD,分别连接AC,EC.已知AB=5,ED=1,BD=8.设CD=x.(1)AC+CE的值为.(用含x的代数式表示)(2)请问:当点A、C、E时,AC+CE的值最小,最小值为.(3)根据(2)中的规律和结论,请构图并求出代数式+的最小值.4.在一平直河岸l同侧有A、B两个村庄,A、B到l的距离分别是3km和2km,AB=akm (a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l 于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2=P A+PB(km)(其中点A'与点A关于l对称,A'B与l交于点P).观察计算:(1)在方案一中,d1=km(用含a的式子表示);(2)在方案二中,组长小强为了计算d2的长,作了如图3所示的辅助线,请你按小强同学的思路计算,d2=km(用含a的式子表示).探索归纳:(3)①当a=4时,比较大小:d1d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1d2(填“>”、“=”或“<”);(4)请你把a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,如何对这两个方案进行选择?5.如图,Rt△ABC中,∠C=90°,AB=15,AC=12,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)M,N分别为AC,BE上的动点,连接AN,MN,求AN+MN的最小值.6.已知:M、N分别是∠AOB的边OA、OB上的定点,(1)如图1,若∠O=∠OMN,过M作射线MD∥OB(如图),点C是射线MD上一动点,∠MNC的平分线NE交射线OA于E点.试探究∠MEN与∠MCN的数量关系;(2)如图2,若P是线段ON上一动点,Q是射线MA上一动点.∠AOB=20°,当MP+PQ+QN取得最小值时,求∠OPM+∠OQN的值.7.如图,等边△ABC(三边相等,三个内角都是60°的三角形)的边长为10cm,动点D 和动点E同时出发,分别以每秒1cm的速度由A向B和由C向A运动,其中一个动点到终点时,另一个也停止运动,设运动时间为ts,0<t≤10,DC和BE交于点F.(1)在运动过程中,CD与BE始终相等吗?请说明理由:(2)连接DE,求t为何值时,DE∥BC;(3)若BM⊥AC于点M,点P为BM上的点,且使PD+PE最短.当t=7s时,PD+PE 的最小值为多少?请直接写出这个最小值,无需说明理由.8.Rt△ABC中,∠B=90°,AB=2,BC=4,AC的中垂线DE交AC于D,交BC于点E.(1)如图1,连接AE,则AE=;(2)如图2,延长DE交AB的延长线于点F,连接CF,请求出CF的长;(3)如图3,点P为直线DE上一动点,点Q为直线AB上一动点,则BP+PQ的最小值为.9.如图,△ABC内接于半径为2的⊙O,其中∠ABC=45°,∠ACB=60°,CD平分∠ACB 交⊙O于D,点M、N分别是线段CD、AC上的动点,求MA+MN的最小值.10.最值问题.(1)如图1,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,求AP+BP+CP 的最小值.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC、PM,能使PC+PM的长度最短.①请通过画图指出点P的位置.②求出PC+PM的最短长度.11.如图,在△ABC中.AB=AC,点E在线段BC上,连接AE并延长到G,使得EG=AE,过点G作GD∥BA分别交BC,AC于点F,D.(1)求证:△ABE≌△GFE;(2)若GD=3,CD=1,求AB的长度;(3)过点D作DH⊥BC于H,P是直线DH上的一个动点,连接AF,AP,FP,若∠C =45°,在(2)的条件下,求△AFP周长的最小值.12.如图,直线a∥b,点A,点D在直线b上,射线AB交直线a于点B,CD⊥a于点C,交射线AB于点E,AB=12cm,AE:BE=1:2,P为射线AB上一动点,P从A点开始沿射线AB方向运动,速度为1cm/s,设点P运动时间为t,M为直线a上一定点,连接PC,PD.(1)当t=m为何值时,PC+PD有最小值,求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系,并说明理由;(3)当t>m(m为(1)中的取值)时,直接写出∠PCM、∠PDA与∠CPD的关系.13.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.请说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.14.如图1,点P是正方形ABCD对角线BD上一点(不与B,D重合),PE⊥BC于点E,PF⊥CD于点F,连接P A、EF.(1)请探究线段AP与线段EF的大小关系;(2)如图2,若AB=4,点H是AD的中点,求AP+HP的最小值.15.如图1,菱形ABCD的对角线AC、BD相交于点O,且AC=6cm,BD=8cm,分别过点B、C作AC与BD的平行线相交于点E.(1)判断四边形BOCE的形状并证明;(2)点G从点A沿射线AC的方向以2cm/s的速度移动了t秒,连接BG,当S△ABG=2S时,求t的值.△OBG(3)如图2,长度为3cm的线段GH在射线AC上运动,求BG+BH的最小值.16.问题提出:(1)如图①,在△ABC中,AD是ABC边BC的高,点E是BC上任意点,若AD=3,则AE的最小值为;(2)如图②,在等腰△ABC中,AB=AC,∠BAC=120°,DE是AC的垂直平分线,分别交BC、AC于点D、E,DE=1cm,求△ABD的周长;问题解决:(3)如图③,某公园管理员拟在园内规划一个△ABC区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路AB、BC和AC,满足∠BAC=90°,点A到BC的距离为2km.为了节约成本,要使得AB、BC、AC之和最短,试求AB+BC+AC的最小值(路宽忽略不计).17.如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A',连接A'B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.18.如图,在三角形ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为D,P为AD上的动点,Q在BA的延长线上,且∠CPQ=60°.(1)如图,当P与A、D不重合时,PC与PQ的数量关系是什么?说明理由;(2)M为BC上的动点,N为AB上的动点,BC=5,直接写出AM+MN的最小值.19.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若∠ADE=60°,AB=AC=2,点D在线段BC上,①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;②当四边形ADCE的周长取最小值时,直接写出BD的长;(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.20.【背景介绍】勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.【小试牛刀】把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:S梯形ABCD=,S△EBC=,S四边形AECD=,则它们满足的关系式为,经化简,可得到勾股定理.【知识运用】(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D 为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC =16千米,则两个村庄的距离为千米(直接填空);(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.【知识迁移】借助上面的思考过程与几何模型,求代数式+的最小值(0<x<16)参考答案1.解:(1)∵AB=AC,∠ABC=68°,∴∠C=∠ABC=68°,∴∠A=180°﹣∠C﹣∠ABC=180°﹣68°﹣68°=44°,∵DE垂直平分AB,∴∠ADE=90°,∴∠AED=90°﹣∠A=90°﹣44°=46°;(2)当点P与点E重合时,△PBC的周长最小,理由:∵PB+PC=P A+PC≥AC,∴当点P与点E重合时,P A+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=AB+BC=8+6=14.2.解:(1)如图所示;(2)设直线AB′的解析式为y=kx+b,把A(﹣4,3),B′(﹣1,2)代入得,解得,∴直线AB′的解析式为y=﹣x+,令y=0,则0=﹣x+,解得x=5,∴C(5,0),∵AB′==,∴|AC﹣BC|的最大值为,故答案为:(5,0),.3.解:(1)AC+CE=+=+,故答案为:+;(2)当A、C、E三点共线时,AC+CE的值最小,过A点作AF平行于BD交ED的延长线于点F,得矩形ABDF,连接AE.则DF=AB=5,AF=BD=8,EF=ED+DF=5+1=6,所以AE===10,则AC+CE的最小值为10.故答案为:三点共线,10;(3)如图2所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED =3,连接AE交BD于点C,设BC=x,则AE的长即为代数式+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13即代数式+的最小值为13.4.解:(1)∵如图1,作A关于执行l的对称点A′,连接P A′,∵A和A'关于直线l对称,∴P A=P A',d1=PB+BA=PB+P A'=a+2;故答案为:a+2;(2)因为BK2=a2﹣1,A'B2=BK2+A'K2=a2﹣1+52=a2+24,所以d2=;故答案为:;(3)①当a=4时,d1=6,d2=,d1<d2;②当a=6时,d1=8,d2=,d1>d2;故答案为:<,>;(4)d12﹣d22=(a+2)2﹣()2=4a﹣20.①当4a﹣20>0,即a>5时,d12﹣d22>0,∴d1﹣d2>0,∴d1>d2;②当4a﹣20=0,即a=5时,d12﹣d22=0,∴d1﹣d2=0,∴d1=d2;③当4a﹣20<0,即a<5时,d12﹣d22<0,∴d1﹣d2<0,∴d1<d2;综上可知:当a>5时,选方案二;当a=5时,选方案一或方案二;当1<a<5时,选方案一.5.(1)证明:在Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,在△BDF与△ABC中,,∴△BDF≌△ABC(AAS);(2)解:∵AB=15,AC=12,∴BC==9,∵△ABC≌△BDF,∴DF=BC=9,BF=AC=12,∴FC=BF+BC=9+12=21.如图,连接DN,∵顶点A与顶点D关于BE对称,∴AN=DN.如使得AN+MN最小,只需D、N、M在一条直线上,由于点M、N分别是AC和BE上的动点,作DM1⊥AC,交BE于点N1,垂足为M1,∵DF∥AC,∴AN+MN的最小值等于DM1=FC=21.6.解:(1)设∠O=∠OMN=α,∴∠MNB=2α,∵MD∥OB,∴∠AMD=α,∵NE平分∠MNC,∴∠MNE=∠ENC,设∠MNE=β,∴∠CNB=2α﹣2β,∵MD∥OB,∴∠MCN=2α﹣2β,∴∠EMC+∠MEN=∠ENC+∠MCN,∴β+2α﹣2β=α+∠MEN,∴∠MEN=α﹣β,∴2∠MEN=∠MCN;(2)作M点关于OB的对称点M',N点关于OA的对称点N',连接M'N'与OB、OA分别交于点P、点Q,连接ON'、OM',∴MP+PQ+QN=M'N',此时MP+PQ+QN的值最小,由对称性可知,∠OQN'=∠OQN,∠OPM'=∠OPM,∴∠OPM'=∠AOB+∠OQP=∠AOB+(180°﹣∠OQN'),∵∠AOB=20°,∴∠OM'P=200°﹣∠OQN',∴∠OPM+∠OQN=200°.7.解:(1)由已知可得AD=t,EC=t,∴AD=CE,∵△ABC是等边三角形∴∠A=∠ACB=60°,BC=AC,∴△ADC≌△CEB(SAS),∴BE=CD,∴CD与BE始终相等;(2)∵DE∥BC,∴=,∵AB=AC=10,∴AD=AE,∴t=10﹣t,∴t=5;(3)∵BM⊥AC,∴BM平分∠ABC,作D点关于BM的对称点D'交BC于点D',连接D'E,交BM于点P,∵DP=D'P,∴DP+PE=D'P+PE=D'E,∵t=7,∴AE=BD=3,AD=CE=7,∵DD'⊥BM,BM⊥AC,∴DD'∥AC,∵BD=BD',∠ABC=60°,∴DD'=3,∴四边形ADD'E是平行四边形,∴AD=D'E=7,∴PD+PE的最小值为7.8.解:(1)∵DE是AC的中垂线,∴AE=CE,设AE=CE=x,则BE=BC﹣CE=4﹣x,在Rt△ABE中,由勾股定理得:22+(4﹣x)2=x2,解得:x=,即AE=,故答案为:;(2)∵DE是AC的中垂线,∴AF=CF,设AF=CF=y,则BF=y﹣2,在Rt△BCF中,由勾股定理得:(y﹣2)2+42=y2,解得:y=5,即CF的长为5;(3)方法一:连接CF,过B作BM⊥CF于M,交直线DE于P',过P'作P'Q'⊥BF于Q',如图3所示:∵DE是AC的中垂线,∴AF=CF,∴∠AFD=∠CFD,∵P'M⊥CF,P'Q'⊥BF,∴P'M=P'Q',则点M与Q'关于DE对称,此时BM=BP'+P'M=BP'+P'Q',即BP+PQ的值最小=BM,由(2)得:AF=CF=5,AB=2,∴BF=AF﹣AB=3,∵∠CBF=180°﹣∠ABC=90°,∴△BCF的面积=CF×BM=BF×BC∴BM===,即BP+PQ的最小值为,故答案为:.方法二:作点B关于DE的对称点H,交DF于G,过点H作HQ⊥AB于Q,交DE于点P,如图4所示:则点P、Q就是使BP+PQ最小的点,由对称得:∠AFD=∠CFD,∠AFD=∠HFD,BP=HP,FB=FH,∴∠CFD=∠HFD,∴点C、H、F三点共线.BP+PQ=HP+PQ=HQ,由“垂线段最短”得:BP+PQ的最小值为HQ.在等腰△BFH中,∵FB=FH,HQ⊥BF过B作BM⊥CF于M,∴HQ=BM(等腰三角形两腰上的高相等).由方法一得:BM=.∴BP+PQ的最小值为.故答案为:.9.解:连接OA,OC,∵∠ABC=45°,OA=OC=2,∴∠AOC=90°,∴AC===2.过点A作AE⊥AC,交CD于点E,过点E作EA′⊥BC于点A′过点A′作A′N′⊥AC于点N′,∵CD平分∠ACB交⊙O于D,∴点A与点A′关于直线CD对称,∴A′N′的长即为MA+MN的最小值,AC=A′C=2,∵∠ACB=60°,∴A′N′=A′C•sin60°=2×=,即MA+MN的最小值是.10.解:(1)从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2,解得x=1.4,在Rt△ABP中,,∴AP+BP+CP=AC+BP=5+4.8=9.8.故答案为:9.8﹒(2)如图,过点C作CO⊥AB于O,延长BO到C',使OC'=OC,连接MC',交AB于P,则点P为所求;②此时MC′=PM+PC'=PM+PC的值最小,连接AC′,∵CO⊥AB,AC=BC,∠ACB=90°,∴,∵CO=OC'′,CO⊥AB,∴AC′=CA=AM+MC=8,∴∠OC′A=∠OCA=45°,∴∠C'AC=90°,∴C′A⊥AC,∴.∴PC+PM的最小值为,故答案为:.11.(1)证明:如图1中,∵GD∥AB,∴∠B=∠EFG,在△ABE和△GFE中,,∴△ABE≌△GFE(AAS).(2)解:如图1中,∵AB=AC,∴∠B=∠ACB,∵DF∥AB,∴∠DFC=∠B,∴∠DFC=∠DCF,∴DC=DF=1,∵DG=3,∴FG=DG﹣DF=2,∵△ABE≌△GFE,∴AB=GF=2.(3)解:如图2中,∵AB=AC=2,∴∠B=∠C=45°,∴∠BAC=90°,∵AB∥FD,∴∠FDC=∠BAC=90°,即FD⊥AC∵AC=AB=2,CD=1,∴DA=DC,∴F A=FC,∴∠C=∠F AC=45°,∴∠AFC=90°,∴DF=DA=DC=1,∴AF=,∵DH⊥CF,∴FH=CH,∴点F与点C关于直线PD对称,∴当点P与D重合时,△P AF的周长最小,最小值=△ADF的周长=2+.12.解:(1)在△PCD中,PC+PD≥CD,当取等号时,P,C,D在同一条直线上,即点P与点E重合,此时PC+PD最小,∴AP=AE,∵AE:BE=1:2,AB=12cm,∴AE=AB=4cm,∴t==4s,故m=4时,PC+PD有最小值;(2)当t<m即t<4时,点P在AE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM=∠CPH,∠PDA=∠DPH,∴∠PCM+∠PDA=∠CPH+∠DPH,∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠PDA=∠CPD,∴当t<4时,∠PCM+∠PDA=∠CPD;(3)当t>m即t>4时,点P在BE上,过点P作PH∥a,如图:又∵a∥b,∴PH∥a∥b,∴∠PCM+∠CPH=180°,∠PDA+∠DPH=180°,∴∠PCM+∠CPH+∠PDA+∠DPH=360°,又∵∠CPD=∠CPH+∠DPH,∴∠PCM+∠CPD+∠PDA=360°,即当12≥t>4时,∠PCM+∠CPD+∠PDA=360°.当t>12时,同法可得∠PCM=∠CPD+∠PDA.综上所述,t>4时,∠PCM+∠CPD+∠PDA=360°或∠PCM=∠CPD+∠PDA.13.解:利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.14.解:(1)过点P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点(点P不与点B、D重合),∴GB=GP,同理:PE=BE,∵AB=BC=GF,∴AG=AB﹣GB,FP=GF﹣GP=AB﹣GB,∴AG=PF,在△AGP和△FPE中,,∴△AGP≌△FPE(SAS),∴AP=EF;(2)取CD的中点G,连接AG,交BD于P,∵四边形ABCD是正方形,H是AD的中点,G是CD的中点,∴H、G关于BD对称,由轴对称确定最短路线问题,点P即为所求作的使AP+HP最小的点,AP+HP的最小值为AG的长度,∵AB=4,∴AD=4,DG=2,∴AG===2,∴AP+HP的最小值为2.15.解:(1)结论:四边形BOCE是矩形.理由:∵BE∥OC,EC∥OB,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形BOCE是矩形.(2)如图2中,∵四边形ABCD是菱形,∴OA=OC=3cm,OB=OD=4cm,∵S△ABG=2S△OBG,∴AG=2OG,∴2t=2(3﹣2t)或2t=2(2t﹣3),解得t=1或t=3,∴满足条件的t的值为1或3.(3)如图2中,设OG=x,则BG+BH=+,欲求BG+BH的最小值,相当于在x轴上找一点P(x,0),使得点P(x,0)到A(0,4)和B(3,4)的距离最小,如图3中,作点B关于x轴的对称点B′,连接AB′交x轴于P,连接BP,此时P A+PB的值最小,∵A(0,4),B′(3,﹣4),∴AP+PB=AP+PB′=AB′==,∴BG+BH的最小值为.16.解:(1)∵AD是ABC边BC的高,点E是BC上任意点,AD=3,则AE的最小值为3,故答案为:3;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣120°)=30°,∵DE是AC的垂直平分线,∴AD=CD,∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=120°﹣30°=90°,在Rt△CDE中,DE=1cm,∴AD=CD=2DE=2cm,在RtABD中,BD=2AD=2CD=4(cm),AB=AD tan60°=2(cm),∴△ABD的周长为:AD+BD+AB=2+4+2=6+2(cm).(3)延长CB到点D,使得AB=DB,延长BC到点E,使得CE=AC,连接AD、AE,∴∠ADB=∠DAB=ABC,∠AEC=∠CAE=ACB,AB+BC+AC=DB+BC+CE =DE,∴DE的最小值即为AB+BC+AC的最小值.∵∠DAB+∠CAE=(∠ABC+∠ACB)=(180°﹣∠BAC)=45°,∴∠DAE=∠DAB+∠CAE+∠BAC=135°,以DE为斜边向下作等腰直角三角形ODE,以点O为圆心,OD为半径作圆O,∠EAD =180°﹣DOE=135°,∴点A在弦DE所对的劣弧,过点A作AP⊥DE于P,过点O作OH⊥DE于H,连接OA,则AP=2,设DH=x,则DE=2x,OH=x,OA=OD=x,则AP+OH≤AO,可得2+x≤x,∴x≥.∴DE的最小值为2x==4+4.∴AB+BC+AC的最小值为(4+4)km.17.解:(1)方案1:AC+AB=1+5=6,方案2:,∵,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,(或)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4﹣x)2+128x=1∴,即:;故当DQ=3或时,△ABQ为等腰三角形.18.解:(1)PQ=PC,理由:如图1,连接BP,∵AB=AC,AD⊥BC,∴AD是BC的垂直平分线,∴BP=PC,∴∠BPD=∠CPD,∵AB=AC,AD⊥BC,∴∠DAC=∠BAC=60°,∴∠APQ=180°﹣∠DAQ﹣∠BQP=180°﹣120°﹣∠BQP=60°﹣∠BQP,∵∠APQ+∠CPQ+∠DPC=180°,∴∠DPC=180°﹣∠APQ﹣∠CPQ=180°﹣(60°﹣∠BQP)﹣60°=60°+∠BQP,∴∠DBP=90°﹣∠BPD=90°﹣∠DPC=90°﹣(60°+∠BQP)=30°﹣∠BQP,∵∠DBP+∠PBQ=30°,∴∠PBQ=30°﹣∠DBP=30°﹣(30°﹣∠BQP)=∠BQP,∴BP=PQ,∵BP=PC,∴PQ=PC;(2)如图2,作A关于BC的对称点A',作A'N⊥AB于点N,交BC于点M,则此时AM+MN 的值最小,且AM+MN=A'N,∵AB=AC,∠BAC=120°,∴∠BAD=60°连接A'B,∴△A'BA是等边三角形,∴A'N=BD=,即:AM+MN的最小值是.19.解:(1)①∠BCE+∠BAC=180°;②如图1∵△ABD≌△ACE,∴BD=EC,∵四边形ADCE的周长=AD+DC+CE+AE=AD+DC+BD+AE=BC+2AD,∴当AD最短时,四边形ADCE的周长最小,即AD⊥BC时,周长最小;∵AB=AC,∴BD=BC=1;(2)∠BCE+∠BAC=180°;理由如下:如图2,AD与CE交于F点,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AFE=∠CFD,∴∠EAF=∠ECD,∵∠BAC=∠F AE,∠BCE+∠ECD=180°,∴∠BCE+∠BAC=180°;20.解:【小试牛刀】答案为:a(a+b),b(a﹣b),c2,a(a+b)=b(a﹣b)+c2.【知识运用】(1)如图2①,连接CD,作CE⊥AD于点E,∵AD⊥AB,BC⊥AB,∴BC=AE,CE=AB,∴DE=AD﹣AE=25﹣16=9千米,∴CD===41千米,∴两个村庄相距41千米.故答案为41.(2)如图2②所示:设AP=x千米,则BP=(40﹣x)千米,在Rt△ADP中,DP2=AP2+AD2=x2+242,在Rt△BPC中,CP2=BP2+BC2=(40﹣x)2+162,∵PC=PD,∴x2+242=(40﹣x)2+162,解得x=16,即AP=16千米.【知识迁移】:如图3,代数式+的最小值为:=20.。
中考数学专题复习卷:轴对称、平移与旋转(含解析)
轴对称、平移与旋转一、选择题1.下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C、平行四边形是中心对称图形不是轴对称图形,故不符合题意;D、矩形是轴对称图形,有两条对称轴,故符合题意,故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据轴对称图形的定义,再一一判断即可。
2.下列图形中,是轴对称图形但不是中心对称图形的是()A. 正三角形B. 菱形C. 直角梯形D. 正六边形【答案】C【解析】:A.正三角形是轴对称图形,不是中心对称图形,故正确,A符合题意;B.菱形既是轴对称图形,又是中心对称图形,故错误,B不符合题意;C.直角梯形既不是轴对称图形,也不是中心对称图形,故错误,C不符合题意;D.正六边形既是轴对称图形,又是中心对称图形,故错误,D不符合题意;故答案为:A.【分析】根据轴对称图形和中心对称图形定义一一判断对错即可得出答案.3.将抛物线y=-5x +l向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为().A. y=-5(x+1) -1B. y=-5(x-1) -1C. y=-5(x+1) +3D. y=-5(x-1) +3【答案】A【解析】:将抛物线y=-5x+l向左平移1个单位长度,得到的抛物线解析式为:y=-5(x+1)2+1再向下平移2个单位长度得到的抛物线为:y=-5(x-1)+1-2即y=-5(x+1)-1故答案为:A【分析】根据二次函数图像的平移规律:上加下减,左加右减,将抛物线y=ax2向上或向下平移m个单位,再向左或向右平移n个单位即得到y=a(x±n)2±m。
根据平移规则即可得出平移后的抛物线的解析式。
即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【解析】:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
中考数学第一轮复习坐标系专题训练
中考数学第一轮复习专题训练一、填空题:(每题3分,共36分)1、点A (3,-2)关于 x 轴对称的点是_____。
2、P (2,3)关于原点对称的点是_____。
3、P (-2,3)到 轴的距离是_____。
4、小红坐在第 5 排 24 号用(5,24)表示,则(6,27)表示小红坐在第__排___号。
5、以坐标平面内点A (2,4),B (1,0),C (-2,0)为顶点的三角形的面积是__。
6、如图1,△AOB 的顶点A 的坐标为_____。
7、如图1,△AOB 沿x 轴向右平移1个单位后,得到△A'O'B',则点A'的坐标为____。
8、如图2,矩形ABOC 的长OB =3,宽AB =2,则点A___。
9、如图3,正方形的边为2,则顶点C的坐标为_____。
10、如图4,△AOB 和它缩小后得到的△COD 。
则△AOB 和△COD 的相似比为____。
11、小东要在电话中告诉同学如图5的图形,他应当怎样描述。
_________________________。
12、如图6,一个机器人从O 点出以,向正东方走3米到达A 点,再向正北方走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东走15米到达A 5点,按如此规律走下去,当机器人走到A 6点时,离O点的距离是_____米。
二、选择题:(每题 4 分,共 24 分) 1、若点A (m ,n )在第三象限,则点B (-m ,n),在( )A 、第一象限B 、第二象限C 、第三名象限D 、第四象限2、若P (m ,2)与点Q (3,n )关于 轴的对称,则m 、n 的值是( ) A 、-3,2 B 、3,-2 C 、-3,-2 D 、3,2 3、A 在B 的北偏东30°方向,则B 在A 的( )A 、北偏东30°B 、北偏东60°C 、南偏西30°D 、南偏西60°4、下列说法正确的是( )A 、两个等腰三角形必是位似图形B 、位似图形必是全等图形C 、两个位似图形对应点连线可能无交点D 、两个位似形对应点连线只有一个交点5、将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是( )yy x 东 (6)x )A 、关于 x 轴对称B 、关于 轴对称C 、关于原点对称D 、原图形向 轴负方向平移1个单位6、如图,每个小正方形的边长为1个单位,对于A 、B 的位置,下列说法错误的是( )A 、B 向左平移 2 个单位再向下移 2 个单位与 A 重合B 、A 向左平移 2 个单位再向下移 2 个单位与 B 重合C 、B 在 A 的东北方向且相距 22 个单位D 、若点 B 的坐标为(0,0),则点 A 的坐标为(-2,-2)三、解答题:(每题 9 分,共 54 分)1、在如图所示的国际象棋棋盘中,双方四只子的位置分别是A (b ,3),B (d ,5),C (f ,7),D (h ,2),请在图中描出它们的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009中考数学第一轮复习 轴对称专题训练
一、填空题:(每题 3 分,共 36 分)
1、正方形是轴对称图形,它有____条对称轴。
2、角是轴对称图形,它的对称轴是_____________。
3、汉字中,有很多字是轴对称图形,如“王”、“工”等,请你再写出三个不同的轴对称汉字________。
4、已知p 点在线段AB 的垂直平分线上,且PB =4cm ,则PA =____cm 。
5、等腰△ABC 中,AB =AC ,D 为BC 中点,则∠ADB =____。
6、补全图形,使它成对轴对称图形。
7、一枚印章上刻有,那么印在纸上的数字是____。
8、如图,△ABC 中,AD 垂直平分BC 边,AB =5,CD =3,
那么△ABC 周长为____。
9、我国传统木结构房屋,窗子常用各种图案装饰,如图
是一种常见的图案,这个图案有____条对称轴。
10、如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,DE =4cm , 则DF =____cm 。
11
、不重合的两点的对称轴是____________。
12、在照镜子时,小明发现其上衣右上部有一个口袋,则小明上衣上的口袋应在___。
二、选择题:(每题 4 分,共 24 分)
1、下列几何图形中,①线段;②角;③圆;④等腰三角形;⑤直角三角形;其中是轴对称图形的有( )
A 、1个
B 、2个
C 、3个
D 、4个
2、下列图案中,有且只有三条对称轴的是( )
A B C D 3、观察下图中各组图形,其中不是轴对称的是( )
537 第6题
A
B C
第8题
第9题
┐
┐ A
E F D
B
C
第10题
A B C D 4、将一张矩形的纸对折,然后用笔尖在上面扎出“B ”,再把它铺开,你可见到( )
A
B
C
D
5、下列说法错误的是( )
A 、若A ,A' 是以BC 为轴对称的点,则 AA' 垂直平分BC
B 、线段的一条对称轴是它本身所在的直线
C 、一条线段的一个端点的对称点是另一个端点
D 、等边三角形是轴对称图形
6、在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是( ) A 、21:02 B 、21:05 C 、20:15 D 、20:05 三、解答题:(每题 9 分,共 54 分) 1、画出下列图形的对称轴。
① ② ③
2、以虚线为对称轴,画出已知图形的轴对称图形。
3、在由小正方形组成的L 形的图中,用三种不同方法添画一个小正方形,使它成
为轴对称图形。
A B
∶
方法一方法二方法三
4、已知:在△ABC中,AB<AC,BC边上的垂直平分DE交BC于点D,交AC 于点E,AC=8cm,△ABE的周长是14cm,求AB的长。
5、在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,且∠BAD∶∠BAC=1∶3,求∠B的度数。
6、如图所示,牧童在A处放牛,他的家在B处,晚上回家时要到河边l让牛饮一次水,则饮水的地点选在何处,牧童所走的路程最短?
四、(10分)如图,将一张正六边形纸沿虚线对折3次,
得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪
一条线。
①猜一猜,将纸打开后你会得到怎样的图形?
②这个图形有几条对称轴。
五、(12分)已知,矩形AOBC,以O为坐标原点,OB、OA分别在x 轴,轴
上,点A坐标为(0,3),∠OAB=60°,以OA为轴对折后,使点C落在点D处,求
点D坐标。
六、(14分)已知,矩形ABCD
①作出点C关于BD所在直线的对称点C'
②连结C'B,C'D,若△C'BD与△ABD 面积的2
3
,求∠CBD的度数。
y
x
A B D C
答案:
(十三)
一、1、42、角平分线所在的直线3、日田由4、45、90°6、略7、5378、
16
9、210、411、这两点为端点的线段的中垂线12、左上部
二、1、D2、D3、C4、C5、A6、B
三、1-3略4、AB=6cm5、∠B=22.5°6、略
四、①轴对称图形三条
五、解:C(33,3)、D(-33,3)
六、①如图②∠CBD=30°∵S△BED=2
3
S△ABD∴S△AEB∶S△BED=1∶2∴EB=ED∵
AE
EB
=
1
2
∴∠ABE=30°∠AEB=60°∴∠EBC=∠AEB=60°易知BD平分∠CBE
∴∠CBD=1
2
∠EBC=30°。