【自考真题】2020年8月高等数学(工专)00022试题
自学考试 《高等数学(工本)》历年真题全套试题
自考00023《高等数学(工本)》历年真题集电子书目录1. 目录 (2)2. 历年真题 (5)2.1 00023高等数学(工本)200404 (5)2.2 00023高等数学(工本)200410 (7)2.3 00023高等数学(工本)200504 (9)2.4 00023高等数学(工本)200507 (11)2.5 00023高等数学(工本)200510 (14)2.6 00023高等数学(工本)200604 (15)2.7 00023高等数学(工本)200607 (18)2.8 00023高等数学(工本)200610 (21)2.9 00023高等数学(工本)200701 (24)2.10 00023高等数学(工本)200704 (26)2.11 00023高等数学(工本)200707 (28)2.12 00023高等数学(工本)200710 (29)2.13 00023高等数学(工本)200801 (34)2.14 00023高等数学(工本)200804 (35)2.15 00023高等数学(工本)200807 (36)2.16 00023高等数学(工本)200810 (38)2.17 00023高等数学(工本)200901 (39)2.18 00023高等数学(工本)200904 (40)2.19 00023高等数学(工本)200907 (42)2.20 00023高等数学(工本)200910 (43)2.21 00023高等数学(工本)201001 (45)2.22 00023高等数学(工本)201004 (46)2.23 00023高等数学(工本)201007 (47)2.24 00023高等数学(工本)201010 (49)2.25 00023高等数学(工本)201101 (50)2.26 00023高等数学(工本)201104 (52)2.27 00023高等数学(工本)201107 (54)2.28 00023高等数学(工本)201110 (55)2.29 00023高等数学(工本)201204 (57)3. 相关课程 (59)1. 目录历年真题()00023高等数学(工本)200404()00023高等数学(工本)200410()00023高等数学(工本)200504()00023高等数学(工本)200507()00023高等数学(工本)200510()00023高等数学(工本)200604()00023高等数学(工本)200607()00023高等数学(工本)200610()00023高等数学(工本)200701()00023高等数学(工本)200704() 00023高等数学(工本)200707() 00023高等数学(工本)200710() 00023高等数学(工本)200801() 00023高等数学(工本)200804() 00023高等数学(工本)200807() 00023高等数学(工本)200810() 00023高等数学(工本)200901() 00023高等数学(工本)200904() 00023高等数学(工本)200907()00023高等数学(工本)200910()00023高等数学(工本)201001()00023高等数学(工本)201004()00023高等数学(工本)201007()00023高等数学(工本)201010()00023高等数学(工本)201101()00023高等数学(工本)201104()00023高等数学(工本)201107()00023高等数学(工本)201110()00023高等数学(工本)201204() 相关课程()2. 历年真题2.1 00023高等数学(工本)200404高等数学(工本)试题(课程代码0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
2020年8月全国自考高等数学(工专)00022真题试题按章节分类(含详解答案)
解:依题意,得
1
1 1
= න (2 + 1) = ∙ 2 + 1
2 3
0
2
3
13
1
ቤ = 27 − 1 =
.
0 6
3
3 1 3
5. 设矩阵 =
,则3 =
1 5 2
9 3 9
3 1 3
A.
B.
1 5 2
3 15 6
解:依题意,得
3 1 3
9 3
3 = 3
=
1 5 2
3 15
9
6
第六章
答案是C.
9 3
C.
3 15
9
6
D.
3 3
1 15
3
2
1 2
12. 行列式 4 3
1 6
4
1 =
−2
第六章
.
答案是90.
解:依题意,得
1 2 4
1 2
4 3 1 = −6 + 2 + 96 − 12 − 6 − −16 = 4 3
1 6 −2
1 6
4
第五章
2
10. න 2 =
0
. 答案是2
解:依题意,得
2 2
0
=
2 2
2 ′
( ) = 2
2 2
.
2 2
..
第五章
1
11. 曲线 = 与直线 = 及 = 2所围平面图形的面积为
.
3
答案是2 + ln2.
解:依题意,得
−
2
全国自学考试高等数学(工专)试题含答案09年至11年
全国⾃学考试⾼等数学(⼯专)试题含答案09年⾄11年全国2011年4⽉⾼数(⼯专)试题课程代码:00022⼀、单项选择题1.设f (x )=ln x ,g (x )=x +3,则f [g(x )]的定义域是( ) A.(-3,+∞) B.[-3,+∞) C.(-∞ ,3] D.(-∞,3) 2.当x →+∞时,下列变量中为⽆穷⼤量的是( )A.x 1B.ln(1+x )C.sin xD.e -x 3.=∞→)πsin(1lim 2n nn ( ) A.不存在 B.π2 C.1 D.04.=+++?-1122)111(dx x x x ( ) A.0 B.4π C.2π D.π5.设A 为3阶⽅阵,且A 的⾏列式|A |=a ≠0,⽽A *是A 的伴随矩阵,则|A *|等于( ) A.a B.a1C. a 2D.a 3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分) 6.=++++--∞→)3131313(lim 12n n _________. 7.设函数=≠=0,,0,1sin )(2x a x xx x f 在x =0连续,则a=_________. 8.=∞→xx x 1sinlim _________. 9.y '=2x 的通解为y =_________. 10.设y =sin2x ,则y 〃=_________.11.函数y =e x -x -1单调增加的区间是_________. 12.设?=xdt t x f 0)sin(ln )(,则f '(x )=_________.13.若⽆穷限反常积分4112π=+?+∞dx xA ,则A =_________. 14.⾏列式=aa a 111111_________.15.设矩阵300220111=A ,则=A A '_________.三、计算题(本⼤题共8⼩题,每⼩题6分,共48分)16.设f (x )=(x -a )g (x ),其中g (x )在点x =a 处连续且g (a )=5,求)('a f .18.求微分⽅程0=+xdy y dx 满⾜条件y |x =3=4的特解. 19.已知参数⽅程-=-=,3,232t t y t t x 求22dx y d .20.求函数f (x )=x 3-3x 2-9x +5的极值. 21.求不定积分?+dx e x 13.22.计算定积分1dx xe x .23.问⼊取何值时,齐次⽅程组=-+=-+-=+--,0)2(,0)3(4,0)1(312121x x x x x x λλλ有⾮零解?四、综合题(本⼤题共2⼩题,每⼩题6分,共12分) 24.已知f (x )的⼀个原函数为xx sin ,证明C x xx dx x xf +-=?sin 2cos )('. 25.欲围⼀个⾼度⼀定,⾯积为150平⽅⽶的矩形场地,所⽤材料的造价其正⾯是每平⽅⽶6元,其余三⾯是每平⽅⽶3元.问场地的长、宽各为多少⽶时,才能使所⽤材料费最少?2011年4⽉⾼数⾃考试题答案全国2011年1⽉⾃学考试⾼等数学(⼯专)试题⼀、单项选择题(本⼤题共5⼩题,每⼩题2分,共10分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
【2021年全国自考】高等数学(工专)00022最新历年试题汇编20套真题
1. 全国 2020 年 8 月高等教育自学考试试题 2. 全国 2019 年 4 月高等教育自学考试试题 3. 全国 2018 年 4 月高等教育自学考试试题 4. 全国 2017 年 4 月高等教育自学考试试题 5. 全国 2016 年 4 月高等教育自学考试试题 6. 全国 2015 年 10 月高等教育自学考试试题 7. 全国 2015 年 4 月高等教育自学考试试题 8. 全国 2014 年 10 月高等教育自学考试试题 9. 全国 2014 年 4 月高等教育自学考试试题 10. 全国 2013 年 4 月高等教育自学考试试题 11. 全国 2013 年 1 月高等教育自学考试试题 12. 全国 2012 年 10 月高等教育自学考试试题 13. 全国 2012 年 4 月高等教育自学考试试题 14. 全国 2012 年 1 月高等教育自学考试试题 15. 全国 2011 年 10 月高等教育自学考试试题 16. 全国 2011 年 4 月高等教育自学考试试题 17. 全国 2011 年 1 月高等教育自学考试试题 18. 全国 2010 年 10 月高等教育自学考试试题 19. 全国 2010 年 4 月高等教育自学考试试题 20. 全国 2009 年 10 月高等教育自学考试试题 21. 【赠】全国 2009 年 4 月高等教育自学考试试题 22. 【赠】全国 2008 年 10 月高等教育自学考试试题 23. 【赠】全国 2008 年 4 月高等教育自学考试试题
二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)
6.函数 y =1 − 1 − x2 的定义域为________. x
7.级数 −1 +
1 3
−
1 32
高等数学(工专)自考题-2_真题(含答案与解析)-交互
高等数学(工专)自考题-2(总分100, 做题时间90分钟)第一部分选择题一、单项选择题1.下列为复合函数的是______A.y= B.y=C.y= D.y=arcsinxSSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:B[解析] A项y= 与D项y=arcsinx均为基本初等函数.C= 不是函数而B项y= 可看成由y=e u,u= ,v=1+sinx构成的复合函数.2.设=0,则级数______SSS_SINGLE_SELA 一定收敛且和为0B 一定收敛但和不一定为0C 一定发散D 可能收敛也可能发散该题您未回答:х该问题分值: 2答案:D[解析] 对于级数,若它的前n项和sn =u1+u2+…+un,当n→∞时无限趋于常数s,即=s,则称级数,收敛,并称s是级数的和,记为=s;若极限不存在,则称级数发散.因此=0只是级数收敛的必要条件,而不是充分条件,如调和级数就是发散的,但=0.因此,=0,则级数可能收敛也可能发散.3.当x→0时,下列函数中是无穷小量的是______A.B.2x-1C.D.x 2 +sinxSSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:D[解析] 由于=0.4.下列反常积分中收敛的是______A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:D[解析] 设f(x)是无穷区间[a,+∞)上的连续函数,如果极限存在,则称此极限为函数f(x)在无穷区间[a,+∞)上的反常积分(或称无穷限积分),此时也称反常积分收敛,如果上述极限不存在,函数f(x)在[a,+∞)上的反常积分就没有意义,习惯上称反常积分发散,但此时记号不再表示数值.本题中选项A不存在,因此发散;同理,选项B、C的极限也不存在,故均属发散性反常积分;选项D=0,则称反常积分收敛.5.下列矩阵中与矩阵乘法可交换的是______A.B.C.D.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 2答案:C[解析] 由于第二部分非选择题二、填空题1.极限=______.SSS_FILL该题您未回答:х该问题分值: 3[解析]2.曲线y=2x 2 +3x-26上点M处的切线斜率是15,则点M的坐标是______.SSS_FILL该题您未回答:х该问题分值: 3(3,1) [解析] ∵y"=4x+3=15,∴x=3,又y(3)=2×3 2+3×3-26=1,∴点M的坐标是(3,1).3.设y= ,则dy=______.SSS_FILL该题您未回答:х该问题分值: 3[解析] dy====4.设y=x x,则dy=______.SSS_FILL该题您未回答:х该问题分值: 3x x (lnx+1)dx [解析] 利用对数求导法,lny=xlnx,(lny)"=(xlnx)",=lnx+1,因此y"=y(lnx+1)=x x (lnx+1),所以dy=x x (lnx+1)dx.5.函数y= 单调减少的区间是______.SSS_FILL该题您未回答:х该问题分值: 3(-∞,0] [解析] 设函数f(x)在[a,b]上连续,在(a,b)内可导.(1)如果在(a,b)内f"(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f"(x)<0,那么函数f(x)在[a,b]上单调减少.本题中,当x>0时,f(x)=(lnx)"= >0,故函数f(x)在(0,+∞)上单调增加;当x≤0时,f"(x)=(1-x)"=-1<0,故函数f(x)在(-∞,0]上单调减少.6.曲线y=2lnx+x 2 -1的拐点是______.SSS_FILL该题您未回答:х该问题分值: 3(1,0) [解析] 函数的定义域是(0,+∞),且由y"=0得,x=1,x=-1(舍).在区间(0,1)内,y"<0;在区间(1,+∞)内,y">0,又y|x=1=0,所以拐点是(1,0).7.设F(x)是f(x)的一个原函数,则∫f(1-2x)dx=______.SSS_FILL该题您未回答:х该问题分值: 3[解析] 设f(x)是定义在区间I上的一个函数.如果F(x)是区间I上的可导函数,并且对任意的x∈I均有F"(x)=f(x),则称F(x)是f(x)在区间I上的一个原函数.根据题意∫f(1-2x)dx= =8.设f(x)= ,则f"(x)=______.SSS_FILL该题您未回答:х该问题分值: 3arctanx[解析] 设Ф(x)=,则Ф"(x)==f(x),f"(x)=arctanx.9.设行列式,元素aij 对应的代数余子式记为Aij,则a21A11+a22A12+a23 A13=______.SSS_FILL该题您未回答:х该问题分值: 30 [解析] a21 A11+a22A12+a23A13=a21·(-1) 1-1=a21 (a22a23-a23a32)-a22(a21a33-a23a31)+a23(a21a32-a22 a31)=a21a22a33-a21a23a32-a21a22a33+a22a23a31+a21a23a32 -a22a23a31=0.10.设3×1矩阵A= ,B= ,则A·B T =______.SSS_FILL该题您未回答:х该问题分值: 3[解析] A·B T ==三、计算题1.求极限.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6==2.求函数y= 的导数y".SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6y"====3.设由参数方程确定的函数为y=y(x),求.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6先求出一阶导数:= = =再求:= == ==4.设f(x)=x 2 e -x,求f(x)的单调区间与极值.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6f(x)=x 2 e -x在定义域(-∞,+∞)内可导,并且f"(x)=-x 2 e -x +2xe -x =xe -x (2-x)令f"(x)=0得驻点x=0,2驻点将定义域划分成了3个小区间,列表讨论如下:(-∞,0) 0 (0,2) 2 (2,+∞) f"(x) - 0 + 0 -f(x) ↘ 0 ↗ ↘故(-∞,0)和(2,+∞)为f(x)的单调递减区间(0,2)为单调递增区间.f(0)=0为极小值,f(2)= 为极大值.5.求不定积分.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6== -=6.求∫xsin 2 xdx.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 67.计算定积分.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 68.判断线性方程组是否有解:SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6对方程组的增广矩阵进行行初等变换:由此即知原方程组无解.四、综合题1.某厂每批生产A商品x台的费用为C(x)=5x+200(万元),得到的收入为R(x)=10x-0.01x 2 (万元),问每批生产多少台,才能使利润最大?SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6根据题意,利润=收入-费用即 P(x)=R(x)-C(x)≥0即 10x-0.01x 2 -(5x+200)≥0x 2 -500x+20000≤044≤x≤456当x=44时,P(x)=10×44-0.01×44 2 -5×44+200=0.64(万元)当x=456时,P(x)=10×456-0.01×456 2 -5×456+200=1872.064(万元)所以当x=456时,P(x)值最大.答:每批生产456台,才能使利润最大.2.求由上半圆周y= 与直线y=x所围成的图形绕直线x=2旋转一周所得旋转体的体积.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 6∴旋转体的体积=V=V1 -V2=1。
高等数学(工专)考试试题及答案
1全国2010年10月自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数y=ln x 1在(0,1)内( )A.是无界的B.是有界的C.是常数D.是小于零的2.极限=-+∞→x x e lim ( )A.∞B.0C.e -1D.-∞3.设f (x )=1+x xsin ,则以下说法正确的是( )A.x =0是f (x )的连续点B.x =0是f (x )的可去间断点C.x =0是f (x )的跳跃间断点D.x =0是f (x )的第二类间断点 4.[]⎰+dx x x dx d)sin (cos =( )A.cos x +sin x +CB.cos x -sin xC.cos x +sin xD.cos x -sin x +C5.矩阵⎥⎦⎤⎢⎣⎡=1021A 的逆矩阵是( )A.⎥⎦⎤⎢⎣⎡--1021 B.⎥⎦⎤⎢⎣⎡-1021 C.⎥⎦⎤⎢⎣⎡-1021 D.⎥⎦⎤⎢⎣⎡-1021 二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
26.如果级数的一般项恒大于0.06,则该级数的敛散性为__________.7.若20)(lim x x f x →=2,则x x f x cos 1)(lim 0-→=____________.8.设f (x )=e x +ln4,则)(x f '=____________.9.函数f (x )=(x +2)(x -1)2的极小值点是________________。
10.行列式10011y x yx =_________________________.11.设⎪⎩⎪⎨⎧==3232t y t x ,则=dx dy___________________.12.如果在[a ,b ]上f (x )≡2,则⎰ba dx x f )(2=_______________________.13.若F (x )为f (x )在区间I 上的一个原函数,则在区间I 上,⎰dx x f )(=_______.14.无穷限反常积分⎰+∞e x x dx2ln =_____________________.15.设A 是一个3阶方阵,且|A |=3,则|-2A |_________________.三、计算题(本大题共8小题,每小题6分,共48分)16.求极限200coslim x tdtt xx ⎰→.17.求微分方程y xdx dy=的通解.18.设y =y (x )是由方程e y +xy =e 确定的隐函数,求0=x dx dy.19.求不定积分⎰dx xe x .20.求曲线y =ln(1+x 2)的凹凸区间和拐点.21.设f (x )=x arctan x -)1ln(212x +,求)1(f '.22.计算定积分dx x x x ⎰-+++012241133.23.求解线性方程组3⎪⎩⎪⎨⎧=++-=++=++.02315,9426,323321321321x x x x x x x x x四、综合题(本大题共2小题,每小题6分,共12分)24.求函数f (x )=x 4-8x 2+5在闭区间[0,3]上的最大值和最小值.25.计算由曲线y =x 2,y =0及x =1所围成的图形绕x 轴旋转而成的旋转体的体积.2010年10月自考高等数学(工专)参考答案45678。
2020_年成人高校专升本招生全国统一考试高等数学(二)
2021/11~1222.(8分)已知函数f (x )=e x cos x ,求f ″(π2).23.(8分)计算10∫1+x 3√d x .24.(8分)计算∫x sin x d x .25.(8分)求微分方程y ″-y ′-2y =0的通解.26.(10分)求曲线y=x 3-3x 2+2x +1的凹凸区间与拐点.27.(10分)将函数f (x )=12+x 展开成(x -1)的幂级数,并求其收敛区间.28.(10分)已知区域D={(x ,y )|x 2+y 2≤1,0≤y ≤x },计算D∬xy d x d y .本试题共150分,考试时间150分钟。
一、选择题:1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.lim x →1x 2+x +1x 2-x +2=A.12 B.1C.32D.22.lim x →0(1+2x )13x=A.e 16 B.e23C.e32D.e 63.设函数f (x )=3+x 5,则f ′(x )=A.1+x 4B.x 4C.5x4D.15x 44.设函数y=x +2sin x ,则d y =A.(1-2cos x )d x B.(1-cos x )d x C.(1+2cos x )d xD.(1+cos x )d x5.设函数f (x )=2ln x ,则f ″(x )=A.-2x2B.2x2C.-1x 2D.1x26.∫3x5d x=A.34x 4+CB.-34x4+CC.35x4+C 2020年成人高校专升本招生全国统一考试2021/11~12D.-35x4+C 7.2-2∫(1+x )d x=A .-4B .0C .2D .48.设函数z=x 3+xy 2+3,则əz əy =A.3x 2+y 2B.3x 2+2xy C.2y D.2xy9.把3本不同的语文书和2本不同的英语书排成一排,则2本英语书恰好相邻的概率为A.25 B.12C.35D.4510.设函数z=x 2-4y 2,则d z =A.2x d x -8y d y B.2x d x -4y d y C.x d x -y d y D.x d x -4y d y二、填空题:11~20小题,每小题4分,共40分。
2020年自考高等数学(工专)考试题库及答案
2020年自考高等数学(工专)考试题库及答案第一章(函数)之内容方法函数是数学中最重要的基本概念之一。
它是现实世界中量与量之间的依赖关系在数学中的反映,也是高等数学的主要研究对象。
本章主要阐明函数的概念,函数的几个简单性态,反函数,复合函数,初等函数及函数关系的建立等。
重点是函数的概念与初等函数,难点是复合函数。
1-2 函数的概念函数的定义:y=f(x)(x∈D),其中x是自变量,f为对应法则,y为因变量,D是定义域。
∀(对任意)x∈D,∃!(有唯一)y与x对应。
y所对应的取值范围称为函数的值域。
当自变量x取平面的点时,即x=(x1,x2)时,f(x)是二元函数;当x取空间中的点x=(x1,x2,x3)时,f(x)是三元函数。
函数的表示法主要有两种。
其一是解析法,即用代数式表达函数的方法。
例如y=f(x)=e x,符号函数,其中后者是分段函数。
其二是图示法。
如一元函数可表示为平面上的一条曲线,二元函数可表示为空间中的一张曲面等。
给定一个函数y=f(x),则会求函数的定义域,值域,特殊点的函数值等是最基本的要求。
应综合考虑分母不能为0,偶次根式中的表达式应大于等于0,对数函数的真数应大于0等情形。
1-3 函数的简单性态1.单调性:称函数f(x)在区间I(含于定义域内)单调增,若∀x1,x2∈I,当x1<x2时f(x1)≤f(x2);称函数在区间I(含于定义域内)单调减,若∀x1,x2∈I,当x1<x2时f(x1)≥f(x2).单调增函数和单调减函数统称为单调函数,I称为单调区间。
判断一个函数f(x)在区间I是否为单调函数,可用单调性的定义或者用第四章中函数在I中的导数的符号。
2.奇偶性:设函数f(x)的定义域D关于原点对称。
如果∀x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果∀x∈D,有f(-x) = -f(x),则称f(x)为奇函数。
判断一个函数的奇偶性时一般用定义。
在几何上,偶函数的图像关于y轴对称,而奇函数的图像关于原点对称。