2015-2016学年度人教版七年级数学下册第八单元测试题及答案

合集下载

人教版七年级下册数学第八章检测卷(附答案)

人教版七年级下册数学第八章检测卷(附答案)

人教版七年级下册数学第八章检测卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1.若方程组的解互为相反数,则m 的值是( )A .﹣7B .10C .﹣10D .﹣122.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( ) A .B .C .D .3.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则|m-n|的值是( )A .5B .3C .2D .14.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .155.已知24221x y m x y m +=-⎧⎨+=+⎩,且x ﹣y <0,则m 的取值范围为( )A .m <12B .m >12C .m >—12D .m <16-6.已知是方程2x ﹣ay=3的一个解,那么a 的值是( )A .1B .3C .﹣3D .﹣1 7.利用加减消元法解方程组,下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(﹣5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(﹣5)+②×28.已知方程组321(1)3x y ax a y ⎧+=⎨--=⎩的解x 和y 互为相反数,则a 的值为( ). A .﹣1 B .﹣2 C .1 D .29.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )A. 14016615x y x y +=⎧⎨+=⎩B. 14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩10.若关于,x y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34 B .43 C .34- D .43- 11.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( ) A .5310186180.9x y x y +=+⎧⎨+=⨯⎩ B .5310186180.9x y x y +=+⎧⎨+=÷⎩C .5310186180.9x y x y +=-⎧⎨+=⨯⎩ D .5310186180.9x y x y +=-⎧⎨+=÷⎩12.已知方程组2425x y x y +=⎧⎨+=⎩,则x y +的值为( )A .1-B .0C .2D .3第II 卷(非选择题)二、填空题(题型注释)的正整数解是 .14.已知,那么x+y 的值为 ,x ﹣y 的值为 .15.定义一种新运算“※”,规定x ※y = 2ax by +,其中a 、b 为常数,且1※2=5,2※1=6, 则2※3=____________ 。

新编人教版七年级数学下第八单元练习题与答案

新编人教版七年级数学下第八单元练习题与答案

初一数学下第8章《二元一次方程组》试题及答案§二元一次方程组一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、若(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则 。

二、选择题 1、方程2x-3y=5,xy=3,33=+y x ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。

A、1 B、2 C、3 D、42、方程2x+y=9在正整数范围内的解有( ) A 、1个 B 、2个 C 、3个 D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是( )A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1 B 、-1 C 、-3 D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A 、2B 、-2C 、2或-2D 、以上答案都不对.6、若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A 、⎩⎨⎧=+=-5253y x y x B 、⎩⎨⎧=--=523x y x y C 、⎩⎨⎧=+=-152y x y x D 、⎩⎨⎧+==132y x y x 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是( )A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、下列说法正确的是( )A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解D、三元一次方程组一定由三个三元一次方程组成10、若方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( ) A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+cy ax y x 27,试确定c a 、的值,使方程组:(1)有一个解; (2)有无数解; (3)没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

人教版数学七年级下册第八单元测试试卷(含答案)(2)

人教版数学七年级下册第八单元测试试卷(含答案)(2)

人教版数学7年级下册第8单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知x=―2y=1是关于x,y的方程组ax+by=1bx+ay=7的解,则(a+b)(a﹣b)的值为( )A.―356B.356C.16D.﹣162.(3分)已知二元一次方程组|x|+x+y=10x+|y|―y=12,则x+y的值等于( )A.﹣2B.185C.9D.223.(3分)有m只鸽子和n个鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.下列四个等式:①6n+3=8n﹣5;②6n+3=8n+5;③m36=m58;④m36=m58.其中正确的有( )个.A.1B.2C.3D.44.(3分)《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为( )A.y=8x―3y=7x+4B.x=8y+3 x=7y―4C.y=8x+3y=7x―4D.x=8y―3 x=7y+45.(3分)爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻9:0010:0011:30里程碑上的数是一个两位数,它的两个数字之和是6是一个两位数,它的十位与个位数字与9:00所看到的正好互换是一个三位数,它比9:00时看到的两位数中间多了个0了则10:00时看到里程碑上的数是( )A.15B.24C.42D.516.(3分)如图,8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的周长为( )A.2cm B.6cm C.12cm D.16cm7.(3分)我国明代数学家程大位所著《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完.大和尚1人分3个馒头,小和尚3人分一个馒头.问大、小和尚各有多少人?若大和尚有x人,小和尚有y人.则下列方程或方程组中,正确的有( )y=100x+3y=100;②x+y=1003x+13y=100;③3x+13(100﹣x)=100;④13y+3(100﹣y)=100.A.0个B.1个C.2个D.3个8.(3分)小刚解出了方程组3x―y=32x+y=△的解为x=4y=□,因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则△、□分别为( )A.17,9B.16,8C.23,15D.15,239.(3分)已知关于x,y的方程组x+y=―a+1x―y=3a+5,给出下列说法:①当a=0时,方程组的解也是方程2x+y=4的一个解;②当x﹣2y>7时,a>0;③不论a取什么实数,2x+y的值始终不变;④若a=1,则x2+4y=0.以上四种说法中正确的有( )个.A.1B.2C.3D.410.(3分)如图,长为y,宽为x的大长方形被分割为5小块,除阴影D,E外,其余3块都是正方形,若阴影E周长为8,下列说法中正确的是( )①x的值为4;②若阴影D的周长为6,则正方形A的面积为1;③若大长方形的面积为24,则三个正方形周长的和为24.A.①②③B.①②C.①③D.②③二.填空题(共5小题,满分15分,每小题3分)11.(3分)已知关于x,y的二元一次方程(3x﹣2y+9)+m(2x+y﹣1)=0,不论m取何值,方程总有一个固定不变的解,这个解是 .12.(3分)根据图中给出的信息,求出当水位上升到50cm,应放入 个大球.13.(3分)中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史,可见其根源的渊远流长.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的15,卖出腊香肠的数量是前两天腊香肠数量和的43,卖出腊肉的数量是第二天腊肉数量的12.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为 元.14.(3分)定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且3*2=6,4*1=7,则5*3= .15.(3分)若x=3y=2是关于x,y的二元一次方程ax﹣by=1的解,则6a﹣4b+3= .三.解答题(共10小题,满分75分)16.(6分)根据小头爸爸与大头儿子的对话,求出大头儿子现在的年龄.小头爸爸:儿子,现在我的年龄比你大23岁.大头儿子:5年后,您的年龄比我的年龄的2倍还多8岁.17.(6分)解方程(组):(1)3m12―1=2m23;(2+m n3=3―m n3=―1.18.(6分)已知关于x,y的方程组x―y=2a+12x+3y=9a―8,其中a是常数.(1)若a=2时,求这方程组的解;(2)若x=y,求这方程组的解;(3)若方程组的解也是方程x﹣6y=2的一个解,求α的值.19.(6分)已知y=ax2+bx+c,当x=1时,y=8;当x=0时,y=2;当x=﹣2时,y=4.(1)求a,b,c的值;(2)当x=﹣3时,求y的值.20.(6分)为了推动我市消费市场快速回暖,加快消费水平复苏和振兴,市人民政府决定,举办“春暖瓯越•温享生活”消费券多次投放活动,每期消费券共可减68元,共5张,其中A型1张,B型2张,C型2张,如下表:A型B型C型满168元减38元满50元减10元满20元减5元在此次活动中,小明父母领到多期消费券.(1)若小明妈妈用三种不同类型的消费券共减了199元,已知她用了3张A型消费券,5张B型的消费券,则用了 张C型的消费券.(2)若小明父母使用消费券共减了230元.①若他们用12张三种不同类型的消费券消费,已知C型比A型的消费券多1张,请求出他们用这三种不同类型的消费券各多少张?②若他们共领到6期消费券(部分未使用),用A,B,C型中的两种不同类型的消费券消费,直接写出他们使用哪两种消费券各多少张.21.(6分)某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)22.(6分)某文具店销售A、B两款文具盒,其中A款文具盒的定价为15元/个,B款文具盒的定价为23元/个,A款文具盒的成本为7元/个,B款文具盒的成本为10元/个.(1)开业当月,该文具店按照定价售出A、B两款文具盒共180个,销售总额为3340元,则A款文具盒和B款文具盒分别销售了多少个?(2)根据开业当月试销售的情况,商家决定第二月将A款文具盒的售价在定价的基础上提高a元,第二月A款文具盒的销量比开业当月降低了2a个,同时商家推出买一个B款文具盒赠送一块成本为1元的橡皮擦的活动,第二月B款文具盒的销量比开业当月提高了a个,结果第二月销售A、B两款文具盒的总利润比开业当月获得的总利润多(76a﹣30)元,求a的值.23.(10分)疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:鼻梁条耳带成本90元/箱230元/箱制作配件数目25000只/卷100000只/卷(1)生产110万片口罩需要鼻梁条 卷,耳带 箱;(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,方案一:全部大包销售;方案二:全部小包销售;方案三:同时采用两种包装方式且恰好用7天完成任务.请你通过计算,为口罩厂做出决策.24.(11分)阅读理解:已知实数x,y满足3x﹣y=5…①,2x+3y=7…②,求x﹣4y和7x+5y 的值.仔细观察两个方程未知数的系数之间的关系,本题可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.利用“整体思想”,解决下列问题:(1)已知二元一次方程组2x+y=7x+2y=8,则x﹣y= ,x+y= ;(2)买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,求购买5支铅笔、5块橡皮5本日记本共需多少元?(3)对于实数x,y,定义新运算:x*y=ax+by+c,其中a,b,c是常数,等式右边是实数运算.已知3*5=15,4*7=28,求1*1的值.25.(12分)阅读探索(1)知识积累解方程组(a―1)+2(b+2)=6 2(a―1)+(b+2)=6.解:设a﹣1=x,b+2=y.原方程组可变为x+2y=62x+y=6,解这个方程组得x=2y=2,即a―1=2b+2=2,所以a=3b=0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m3―1)+2(n5+2)=43(m3―1)―(n5+2)=5.(3)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=3y=4,请直接写出关于m、n的方程组a1(m+2)―b1n=c1a2(m+2)―b2n=c2的解是 .参考答案1.D;2.B;3.B;4.A;5.D;6.D;7.D;8.A;9.D;10.B;11.x=―1,y=3;12.4;13.4300;14.13;15.5;16.解:设大头儿子现在的年龄是x岁,爸爸的年龄是y岁,由题意得:y=x+23y+5=2(x+5)+8,解得:x=10 y=33,答:大头儿子现在的年龄为10岁.17.解:(1)3m12―1=2m23,去分母,得3(3m﹣1)﹣6=2(2m+2),去括号,得9m﹣3﹣6=4m+4,移项,得9m﹣4m=3+6+4,合并同类项,得5m=13,系数化为1,得m=13 5;(2+m n3=3―m n3=―1,设m n2=x,m n3=y,则原方程组化为x+y=3①x―y=―1②,①+②,得2x=2,解得x=1,把x=1代入①,得y=2,∴m n2=1,m n3=2,故m+n=2 m―n=6,解得m=4n=―2.18.解:(1)当a=2时,原方程组变为:x―y=5①2x+3y=10②①×3+②得5x=25∴x=5将x=5代入①得y=0∴这个方程组的解为x=5 y=0(2)当x=y时,2a+1=0,得a=―1 2;把a=―12代入②得x=―52,∴方程组的解为x=―52 y=―52(3)①×3﹣②得x﹣6y=﹣3a+11又∵x﹣6y=2∴﹣3a+11=2∴a=319.解:(1)根据题意得:a+b+c=8①c=2②4a―2b+c=4③,把②代入①,得a+b+2=8④,把②代入③,得4a﹣2b+2=4⑤,由④和⑤组成方程组a+b+2=84a―2b+2=4,解得:a=73,b=113,所以a=73,b=113,c=2;(2)由(1)得:y=73x2+113x+2,当x=﹣3时,y=73×(﹣3)2+113×(﹣3)+2=12.20.解:(1)(199﹣38×3﹣5×10)÷5=7(张).故用了7张C型的消费券.故答案为:7;(2)①设A型消费券x张,B型消费券y张,C型消费券z张,依题意有x+y+z=12z―x=138x+10y+5z=230,解得x=5 y=1 z=6.故A型消费券5张,B型消费券1张,C型消费券6张;②6期消费券有A型6张,B型12张,C型12张,∵38×5+10×4=230(元),38×5+5×8=230(元),∴A型消费券5张,B型消费券4张或A型消费券5张,C型消费券8张.21.解:∵3.75和7.1都不是0.45 0.8 1.5的整数倍,∴甲乙丙3人的用水正好在0﹣10,10﹣20,20以上这3段中,且甲>乙>丙.设丙户用水xt(0≤x≤10),乙户用水(10+y)t(0<y≤10).则有0.45x+3.75=0.8y+0.45×10,即9x﹣16y=15.∵3能够整除9和15,而不能整除16,∴3整除y.∴y=3或6或9.经检验,只有y=3符合题意,则x=7.同理,设甲户用水(20+z)t,则有0.8y+0.45×10+7.10=1.50z+0.45×10+0.8×10,解,得z=1.所以甲户交水费14元,乙户交水费6.9元,丙户交水费3.15元.22.解:(1)设A款文具盒销售了x个,B款文具盒销售了y个,由题意得:x+y=18015x+23y=3340,解得:x=100 y=80,答:A款文具盒销售了100个,B款文具盒销售了80个;(2)由(1)可知,开业当月的利润=(15﹣7)×100+(23﹣10)×80=1840(元),由题意得:(15+a﹣7)(100﹣2a)+(23﹣10﹣1)(80+a)=1840+76a﹣30,解得:a1=a2=5,即a的值为5.23.解:(1)∵每片口罩需要一只鼻梁条、两条耳带,∴1100000÷25000=44(卷),1100000×2÷100000=22(箱).(2)110万片口罩的成本:13000×2+14700+44×90+22×230=49720(元),1片口罩的成本:49720÷1100000=0.0452(元),∵每片口罩还需支出费用大约0.1548元,∴每片口罩的成本:0.0452+0.1548=0.2(元).(3)方案一:全部大包销售:440000100÷800=5.5(天).∴440000100×45.8―6×2000―0.2×440000=201520﹣12000﹣88000=101520(元).方案二:全部小包销售:44000010÷2000=22(天)>7(天)(舍去).方案三:设包装小包的天数为x,由题意得:10×2000x+100×800×(7﹣x)=440000.解得:x=2.∴440000﹣10×2000×2=400000(片).∴2×2000×5.8+400000÷100×45.8﹣7×2000﹣0.2×440000=206400﹣14000﹣88000=104400(元).∵104400>101520,∴选择方案三.24.解:(1)2x+y=7①x+2y=8②,由①﹣②得:x﹣y=﹣1,①+②得:3x+3y=15,∴x+y=5,故答案为:﹣1,5;(2)设铅笔单价为m元,橡皮的单价为n元,日记本的单价为p元,由题意得:20m+3n+2p=32①39m+5n+3p=58②,由①×2﹣②得:m+n+p=6,∴5m+5n+5p=5×6=30,答:购买5支铅笔、5块橡皮5本日记本共需30元;(3)由题意得:3a+5b+c=15①4a+7b+c=28②,由①×3﹣②×2可得:a+b+c=﹣11,∴1*1=a+b+c=﹣11.25.解:(2)设m3―1=x,n5+2=y,∴原方程组可变为:x+2y=43x―y=5,解这个方程组得:x=2 y=1,―1=2 2=1,所以:m=9n=―5;(3)设m+2=x ―n=y,可得:m+2=3―n=4,解得:m=1n=―4.。

人教版最全七年级下册数学第八章同步练习测试题及答案

人教版最全七年级下册数学第八章同步练习测试题及答案

第八章 二元一次方程组 8.1 二元一次方程组复习检测(5分钟):1、下列各式中:(1)3x-y=2 ; (2) 0212=+x y ; (3) y-z=5 ; (4) xy= - 7; (5) 4x-3y ; (6)421=-y x; (7) x+y-z=5 ; (8) 5x+3=x-4y. 属于二元一次方程的个数有( )A .1个B 。

2个C 。

3个D 。

4个 2、已知方程3x+y=2,当x=2时,y=_____;当y=-1时,x=_____. 3、已知x=1,y=-3满足方程5x-ky=3,则k=_______.4、写出满足方程2x-3y=17 的三个不同解。

除了这三个解外,还有没有其它的解?一般地,一个二元一次方程通常有多少个解?5、已知有三对数值:⎩⎨⎧-==11y x ⎩⎨⎧==12y x ⎩⎨⎧==54y x ,哪一对是下列方程组的解?①⎩⎨⎧=+=-104332y x y x ②⎩⎨⎧=--=13433y x x y6、已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-31ny x y mx 的解,求2)(n m -的值。

7、一批零件有1500个,如果甲先做4天后,乙加入合作,再做8天正好完成;如果乙先做5天后,甲加入合作,再做7天也恰好完成。

设甲、乙两人每天分别加工零件x 、y 个,请根据题意列出方程组。

8.2二元一次方程组的解法(1)复习检测(5分钟)1、用含有x 的代数式表示y:(1)2x+y=1; (2)y-3x+1=0(3)4x -y =-1; (4)5x -10y +15=0.2、解下列二元一次方程组:(1)⎩⎨⎧=++=.83,23y x y x (2)⎩⎨⎧-==-.57,1734x y y x(3)⎩⎨⎧=+-=-.1023,5y x y x (4)⎩⎨⎧-=-=-.2.32,872x y y x(5)⎩⎨⎧=--=+894132t s t s (6)⎪⎩⎪⎨⎧=+=-923143y x yx8.2二元一次方程组的解法(2)复习检测(5分钟) 1、填空(1)二元一次方程组⎩⎨⎧=+=-31y x y x 的解是_________。

人教版七年级数学下册第八章测试卷(附答案)

人教版七年级数学下册第八章测试卷(附答案)

人教版七年级数学下册第八章测试卷(附答案)一、单选题(共12题;共24分)1.用加减法解方程组时,若要求消去y,则应( )A. ①×3+②×2B. ①×3−②×2C. ①×5−②×3D. ①×5+②×32.下列方程组中是二元一次方程组的是()A. B. C. D.3.下面三对数值:(1)(2)(3)是方程的解的是()A. (1)B. (2)C. (3)D. (1)和(3)4.一艘内河轮船匀速从甲地开往乙地,沿河岸有一公路,船长看见每隔30分钟有一辆公共汽车从背后开过,而迎面则每隔10分钟有一辆公共汽车开来,假定以甲、乙两地为终点站往返均匀发车,匀速行驶,则每隔()分钟发车一辆?A. 12B. 15C. 18D. 205.方程组的解是()A. B. C. D.6.若2a3x b y+5与5a2-4y b2x是同类项,则()A. B. C. D.7.已知关于的方程是二元一次方程,则的值分别为()A. -1,2B. -1、-2C. -2、-1D. 2,-18.二元一次方程7x+y=15有几组正整数解()A. 1组B. 2组C. 3组D. 4组9.方程组的解为,则被遮盖的前后两个数分别为()A. 1、2B. 1、5C. 5、1D. 2、410.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x个,购买足球y个,可列方程组A. B. C. D.11.关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值是()A. B. C. D.12.对于方程组,把(2)代入(1)得()A. 2x-6x-1=5B. 2(2x-1)-3y=5C. 2x-6x+3=5D. 2x-6x-3=5二、填空题(共7题;共7分)13.二元一次方程的正整数解有________.14.方程2x- y= 1和2x+y=7的公共解是________;15.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.16.已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.17.已知(为常数),则________.18.已知方程组的解满足x+y<0,则m的取值范围为________.19.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法。

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

精选初中数学七年级下册第8章《二元一次方程组》单元检测试卷(含答案)

人教版七年级数学下册第八章二元一次方程组单元测试题一、选择题。

1.已知下列方程组:(1)3{ 2x y y ==-,(2)32{ 24x y y +=-=,(3)1+3{ 10x y x y =--=,(4)1+3{ 10x y x y=-=,其中属于二元一次方程组的个数为( )A. 1B. 2C. 3D. 4 2.已知方程组54{58x y x y +=+=,则x ﹣y 的值为( )A. 2B. ﹣1C. 12D. ﹣43.用一根绳子环绕一棵大树,若环绕大树3周,绳子还多4尺,若环绕大树4周,绳子又少了3尺,则环绕大树一周需要绳子( )A. 5尺B. 6尺C. 7尺D. 8尺4.甲、乙、丙、丁四人到文具店购买同一种笔记本和计算器,购买的数量及总价分别如下表所示.若其中一人的总价算错了,则此人是( )A.甲B .乙C .丙D .丁5.如果是方程组 的解,那么下列各式中成立的是( )A. a +4c =2B. 4a +c =2C. 4a +c +2=0D. a +4c +2=06.某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能计算出x ,y 的是( )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 7.二元一次方程组的正整数解有( )组解A. 0B. 3C. 4D. 6 8.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. B. C. D.9.解方程组2{78ax by cx y +=-=时,一学生把c 看错得2{ 2x y =-=,已知方程组的正确解是3{2x y ==-,则a 、b 、c 的值是( )A. a 、b 不能确定,c=-2B. a 、b 、c 不能确定C. a=4,b=7,c=2D. a=4,b=5,c=-210.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为( )A. 46B. 64C. 57D. 75 二、填空题(每小题3分,共15分)1.若2x a +1-3y b -2=10是一个二元一次方程,则a -b =________.2.若方程组⎩⎪⎨⎪⎧2x +y =*,3x -y =3的解为⎩⎨⎧x =2,y =#,则“*”“#”的值分别为________.象限.3.已知等式y =kx +b ,当x =1时,y =2;当x =2时,y =-3.若x =-1,则y =________.4.若m ,n 为实数,且|2m+n ﹣,则(m+n )2018的值为________ .5.若235,{ 323x y x y +=-=-则2(2x +3y)+3(3x -2y)=________.6.对于X 、Y 定义一种新运算“*”:X*Y=aX+bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=__________ . 三、解答题 1.解方程组:(1)(2);2.解关于x 、y 的方程组时,甲正确地解得方程组的解为,乙因为把c抄错了,在计算无误的情况下解得方程组的解为,求a、b、c的值.3.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、(1)求p,q的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?4.已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.5.某商场计划从一厂家购进若干部新型手机以满足市场需求.已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;(2)在(1)的条件下,求盈利最多的进货方案.参考答案一、选择题。

人教版七年级下册数学第八章测试卷附答案

人教版七年级下册数学第八章测试卷附答案

第八章-二元一次方程组一、单选题1.一个两位数,十位数字与个位数字和为6,这样的两位数中,是正整数的有()A. 6个B. 5个 C. 3个 D. 无数个2.下列各组数中①;②;③;④是方程的解的有( )A. 1个 B. 2 C. 3 个D. 4个3.下列方程中,是二元一次方程的是()A. -y=6B. +=1C. 3x-y2=0D. 4xy=34.二元一次方程组的解为()A. B.C. D.5.已知方程组,则x﹣y的值为()A. -1B. 0C. 2D. 36.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元,则购买铅笔11支,作业本5本,圆珠笔2支共需()A. 4.5元B. 5元 C. 6元 D. 6.5元7.下列方程组中,是二元一次方程组的是()A. B. C.D.8.笼中有x只鸡y只兔,共有36只脚,能表示题中数量关系的方程是()A. x+y=18B. x+y=36C.4x+2y=36 D. 2x+4y=369.二元一次方程x+2y=5在实数范围内的解()A. 只有1个B. 只有2个 C. 只有3个 D. 有无数个二、填空题10.请写出一个你所喜欢的二元一次方程组________11.若+(2a+3b﹣13)2=0,则a+b= ________.12.已知,则a+b等于________.13.若关于x、y的二元一次方程组的解满足x+y=1,则a的值为________.14.请构造一个二元一次方程组,使它的解为.这个方程组是________.15.已知|x﹣y+2|+(2x+y+4)2=0.则x y=________.16.将方程5x﹣y=1变形成用含x的代数式表示y,则y=________.17.方程组的解是________.三、计算题18.解方程组:.19.解下列二元一次方程组:(1)(2)20.解下列方程组:(1)(2)四、综合题21.已知y=kx+b,当x=1时,y=﹣2;当x=﹣1时,y=4.(1)求k、b的值;(2)当x取何值时,y的值小于10?答案一、单选题1.【答案】 A【解析】【解答】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选:A.【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.2.【答案】 B【解析】【解答】解:把①代入得左边=10=右边;把②代入得左边=9≠10;把③代入得左边=6≠10;把④代入得左边=10=右边;所以方程的解有①④2个.故答案为:B【分析】能使二元一次方程的左边和右边相等的未知数的值就是二元一次方程的解,二元一次方程有无数个解,根据定义将每一对x,y的值分别代入方程的左边算出答案再与右边的10比较,若果相等,x,y的值就是该方程的解,反之就不是该方程的解。

人教版七年级数学下册第八章达标测试卷含答案

人教版七年级数学下册第八章达标测试卷含答案

人教版七年级数学下册第八章达标测试卷一、选择题(每小题3分,共30分)1.下列不是二元一次方程组的是( )A.⎩⎨⎧2x +9y =0,x +y =0B.⎩⎨⎧3x =1,4y =1C.⎩⎪⎨⎪⎧1x +9y =0,x =1D.⎩⎨⎧x =3,y =2 2.将方程2x +y =3写成用含x 的式子表示y 的形式,正确的是( )A .y =2x -3B .y =3-2xC .x =y 2-32D .x =32-y 23.下列是二元一次方程3x -2y =12的解的是( )A.⎩⎨⎧x =6,y =6B.⎩⎨⎧x =2,y =3C.⎩⎨⎧x =2,y =-9D.⎩⎨⎧x =4,y =0 4.由方程组⎩⎨⎧x +m =7,y -1=m可得出x 与y 的关系式是( ) A .x +y =8 B .x +y =1 C .x +y =-1 D .x +y =-85.方程(m -2 024)x |m |-2 023+(n +5)y |n |-4=2 025是关于x ,y 的二元一次方程,则( )A .m =±2 024,n =±5B .m =2 024,n =5C .m =-2 024,n =-5D .m =-2 024,n =56.用加减法解方程组⎩⎨⎧2x -3y =4,①3x +2y =-2,② 下列解法正确的是( ) A .①×3+②×2,消去yB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×3,消去x7.在等式y =kx +b 中,当x =2时,y =-4;当x =-2时,y =8,则这个等式是( )A .y =-3x +2B .y =3x +2C .y =3x -2D .y =-3x -28.若单项式15a 3x +y b x -y 与-14a 3b 4x +y 的和仍是单项式,则x +y 的值是( )A .4B .-1C .1D .-39.已知关于x ,y 的方程组⎩⎨⎧3x +2y =a +2,2x +3y =2a的解满足x +y =4,则a 的值为( ) A.23 B .2 C .4 D .610.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金质量相同),乙袋中装有白银11枚(每枚白银质量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子质量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为( )A.⎩⎨⎧11x =9y ,(10y +x )-(8x +y )=13B.⎩⎨⎧10y +x =8x +y ,9x +13=11y C.⎩⎨⎧9x =11y ,(8x +y )-(10y +x )=13D.⎩⎨⎧9x =11y ,(10y +x )-(8x +y )=13 二、填空题(每小题3分,共15分)11.若⎩⎨⎧x =1,y =4是方程kx +y =3的一个解,则k 的值为________. 12.若方程组⎩⎨⎧ax +y =5,x +by =-1的解为⎩⎨⎧x =2,y =1,则点P (a ,b )在第________象限. 13.一艘轮船在相距90 km 的甲、乙两地之间匀速航行,从甲地到乙地顺流航行需要用 6 h ,逆流航行比顺流航行多用 4 h ,则该轮船在静水中的速度为________km/h.14.5个大小形状完全相同的长方形纸片,在平面直角坐标系中摆成如图所示的图案,已知B (-8,5),则点A 的坐标为__________.15.已知关于x ,y 的方程组⎩⎨⎧3x +5y =m +2,2x +3y =m .给出下列结论:①⎩⎨⎧x =3,y =-4是方程组的解;②当m =2时,x ,y 的值互为相反数;③无论m 取何值,x ,y 都满足关系式x +2y =2;④x ,y 的值都为自然数的解有2对,其中正确的是________.(填序号)三、解答题(一)(每小题8分,共24分)16.用适当的方法解下列方程组.(1)⎩⎨⎧x -3y =1,2x +y =-5;(2)⎩⎪⎨⎪⎧3x -5y =3,x 3-y 3=1;(3)⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2;(4)⎩⎨⎧x -y -5z =4,2x +y -3z =10,3x +y +z =8.17.已知⎩⎨⎧x =1,y =3和⎩⎨⎧x =0,y =-2都是方程ax -y =b 的解,求a +2b 的平方根.18.解关于x ,y 的方程组⎩⎨⎧ax +by =9,3x -cy =-2时,甲正确地解出⎩⎨⎧x =2,y =4;乙因为把c 抄错了,误解为⎩⎨⎧x =4,y =-1.求a ,b ,c 的值.四、解答题(二)(每小题9分,共27分)19.已知m 满足⎩⎨⎧x +2y -m =0,2x +y +1+2m =0,且满足|x +y -2 024|+|2 024-x -y |=0,求m 的值.20.若关于x ,y 的二元一次方程组⎩⎨⎧3x -5y =36,bx +ay =-8和⎩⎨⎧2x +5y =-26,ax -by =-4有相同的解. (1)求这两个方程组的解;(2)求(2a +b )2 024的值.21.如图,深圳某学校为了美化校园,在长为60 m 、宽为32 m 的长方形空地中,沿着平行于长方形各边的方向,分割出三个形状、大小一样的正方形和两个形状、大小一样的长方形作为花圃.设小正方形的边长为a m ,小长方形的长和宽分别为b m 、c m.(1)请用含有a ,b ,c 的式子表示AB ,AD 的长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S .五、解答题(三)(每小题12分,共24分)22.在一节复习课上,李老师让同学们探索下面的问题:某电器公司计划用甲、乙两种汽车运送190台家电到农村销售,已知甲种汽车每辆可运送家电20台,乙种汽车每辆可运送家电30台,且每辆汽车均按规定满载,一共用了8辆汽车运送.(1)小宇同学根据题意列出了一个尚不完整的方程组⎩⎨⎧x +y =?,20x +30y =*.请写出小宇所列方程组中未知数x ,y 表示的意义:x 表示______________,y 表示__________.该方程组中“?”处的数应是________,“*”处的数应是________;(2)小琼同学的思路是设甲种汽车运送m 台家电,乙种汽车运送n 台家电.下面请你按照小琼的思路列出方程组,并求甲种汽车的数量.(3)如果每辆甲种汽车的运费是180元,每辆乙种汽车的运费是300元,那么该公司运完这190台家电的总运费是多少?23.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修理8套,甲小组每天修理16套桌凳;学校每天需付甲小组修理费80元,付乙小组修理费120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天;(2)在修理桌凳的过程中,学校要派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案最省钱?试比较说明.答案一、1.C 2.B 3.D 4.A 5.D 6.C 7.A8.B 9.D 10.D二、11.-1 12.四 13.12 14.(-3,6) 15.②③④三、16.解:(1)⎩⎨⎧x -3y =1,①2x +y =-5,②由①,得x =1+3y ,③ 把③代入②,得2(1+3y )+y =-5,解得y =-1.把y =-1代入③,得x =-2.∴原方程组的解为⎩⎨⎧x =-2,y =-1.(2)方程组整理可得⎩⎨⎧3x -5y =3,①x -y =3,②②×3-①,得2y =6,解得y =3,将y =3代入②,得x -3=3,解得x =6,∴原方程组的解为⎩⎨⎧x =6,y =3.(3)设x +y =a ,x -y =b ,则原方程组可变为⎩⎪⎨⎪⎧a 2+b 3=6,4a -5b =2.解得⎩⎨⎧a =8,b =6.∴⎩⎨⎧x +y =8,x -y =6.解得⎩⎨⎧x =7,y =1.∴原方程组的解是⎩⎨⎧x =7,y =1.(4)⎩⎨⎧x -y -5z =4,①2x +y -3z =10,②3x +y +z =8,③①+②,得3x -8z =14,④③-②,得x +4z =-2,⑤ 联立④和⑤组成方程组⎩⎨⎧3x -8z =14,x +4z =-2,解得⎩⎨⎧x =2,z =-1,把x =2,z =-1代入①,得2-y +5=4,解得y =3,∴原方程组的解是⎩⎨⎧x =2,y =3,z =-1.17.解:根据题意,得⎩⎨⎧a -3=b ,0-(-2)=b ,解得⎩⎨⎧a =5,b =2.∴a +2b =5+2×2=9,∴a +2b 的平方根为±3.18.解:把⎩⎨⎧x =2,y =4代入方程组,得⎩⎨⎧2a +4b =9,①6-4c =-2.②由②,得c =2.把⎩⎨⎧x =4,y =-1代入ax +by =9,得4a -b =9.③ 联立①③,得⎩⎨⎧2a +4b =9,4a -b =9,解得⎩⎨⎧a =2.5,b =1.即a =2.5,b =1,c =2.四、19.解:∵|x +y -2 024|+|2 024-x -y |=0,∴⎩⎨⎧x +y -2 024=0,2 024-x -y =0.∴x +y =2 024. 由⎩⎨⎧x +2y -m =0,2x +y +1+2m =0可得3x +3y =-m -1,即x +y =-m +13,∴-m +13=2 024.解得m =-6 073.20.解:(1)∵关于x ,y 的二元一次方程组⎩⎨⎧3x -5y =36,bx +ay =-8和⎩⎨⎧2x +5y =-26,ax -by =-4有相同的解,∴⎩⎨⎧3x -5y =36,2x +5y =-26,解得⎩⎨⎧x =2,y =-6.∴这两个方程组的解为⎩⎨⎧x =2,y =-6.(2)由(1)可得⎩⎨⎧2a +6b =-4,2b -6a =-8,解得⎩⎨⎧a =1,b =-1.∴(2a +b )2 024=(2×1-1)2 024=1.21.解:(1)根据题意,得AB =(3a +2c )m ,AD =(3a +2b )m.(2)根据题意,得⎩⎨⎧3a +2b =60,3a +2c =32,a =2c ,解得⎩⎨⎧a =8,b =18,c =4.∴S =3×82+2×18×4=336(m 2).答:花圃的总面积S 为336 m 2.五、22.解:(1)甲种汽车的数量;乙种汽车的数量;8;190(2)根据题意,得⎩⎪⎨⎪⎧m +n =190,m 20+n 30=8,解得⎩⎨⎧m =100,n =90, ∴甲种汽车的数量为10020=5(辆).(3)由(2)可知甲种汽车需要5辆,乙种汽车需要9030=3(辆),根据题意,得5×180+3×300=1 800(元).答:该公司运完这190台家电的总运费是1 800元.23.解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得⎩⎨⎧16x =(16+8)y ,x -y =20,解得⎩⎨⎧x =60,y =40.答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5 400(元);方案②:学校需付费用为40×(120+10)=5 200(元);方案③:学校需付费用为96016+(16+8)×(120+80+10)=5 040(元). ∵5 040<5 200<5 400,∴方案③最省钱.。

人教版七年级数学下册第8章测试卷及答案 (1).doc

人教版七年级数学下册第8章测试卷及答案 (1).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】人教版数学七年级第八章单元测试卷一、选择题:(每小题3分,共24分)1.(3分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=2.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.3.(3分)二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解4.(3分)方程的公共解是()A.B.C.D.5.(3分)若方程组的解x、y的值相等,则a的值为()A.﹣4 B.4 C.2 D.16.(3分)若实数满足(x+y+2)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣2 C.2或﹣1 D.﹣2或17.(3分)方程组的解是()A.B.C.D.8.(3分)某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.B.C.D.二、填空题(每空2分,共24分)9.(4分)已知方程2x+3y﹣4=0,用含x的代数式表示y为:y=;用含y 的代数式表示x为:x=.10.(4分)在二元一次方程﹣x+3y=2中,当x=4时,y=;当y=﹣1时,x=.11.(4分)若x3m﹣3﹣2y n﹣1=5是二元一次方程,则m=,n=.12.(2分)已知是方程x﹣ky=1的解,那么k=.13.(2分)已知|x﹣1|+(2y+1)2=0,且2x﹣ky=4,则k=.14.(2分)二元一次方程x+y=5的正整数解有.15.(2分)以为解的一个二元一次方程是.16.(4分)已知是方程组的解,则m=,n=.三、解方程组(每小题8分,共16分)17.(8分)(1)(用加减消元法)(2)(用代入消元法)18.(8分)(1)(2).四、解答题(本题共个6小题,每题6分,共36分)19.(6分)当y=﹣3时,二元一次方程3x+5y=﹣3和3y﹣2ax=a+2(关于x,y 的方程)有相同的解,求a的值.20.(6分)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?21.(6分)将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只.问有笼多少个?有鸡多少只?22.(6分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?23.(6分)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?24.(6分)(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?参考答案与试题解析一、选择题:(每小题3分,共24分)1.(3分)下列方程中,是二元一次方程的是()A.3x﹣2y=4z B.6xy+9=0 C.+4y=6 D.4x=【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.【解答】解:A、3x﹣2y=4z,不是二元一次方程,因为含有3个未知数;B、6xy+9=0,不是二元一次方程,因为其最高次数为2;C、+4y=6,不是二元一次方程,因为不是整式方程;D、4x=,是二元一次方程.故本题选D.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.2.(3分)下列方程组中,是二元一次方程组的是()A.B.C.D.【考点】96:二元一次方程组的定义.【分析】二元一次方程的定义:含有两个未知数,并且未知数的项的最高次数是1的方程叫二元一次方程.二元一次方程组的定义:由两个二元一次方程组成的方程组叫二元一次方程组.【解答】解:根据定义可以判断A、满足要求;B、有a,b,c,是三元方程;C、有x2,是二次方程;D、有x2,是二次方程.故选A.【点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程.3.(3分)二元一次方程5a﹣11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解【考点】92:二元一次方程的解.【分析】对于二元一次方程,可以用其中一个未知数表示另一个未知数,给定其中一个未知数的值,即可求得其对应值.【解答】解:二元一次方程5a﹣11b=21,变形为a=,给定b一个值,则对应得到a的值,即该方程有无数个解.故选B.【点评】本题考查的是二元一次方程的解的意义,当不加限制条件时,一个二元一次方程有无数个解.4.(3分)方程的公共解是()A.B.C.D.【考点】88:同解方程;97:二元一次方程组的解.【专题】11 :计算题.【分析】此题要求公共解,实质上是解二元一次方程组.【解答】解:把方程y=1﹣x代入3x+2y=5,得3x+2(1﹣x)=5,x=3.把x=3代入方程y=1﹣x,得y=﹣2.故选C.【点评】这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.5.(3分)若方程组的解x、y的值相等,则a的值为()A.﹣4 B.4 C.2 D.1【考点】9C:解三元一次方程组.【分析】根据题意可得x=y,将此方程和原方程组联立,组成三元一次方程组进行求解,即可求出x,y,a的值.【解答】解:由题意可得方程x=y,将此方程代入原方程组的第二个方程得:4x+3x=14,则x=y=2;然后代入第一个方程得:2a+2(a﹣1)=6;解得:a=2.故选C.【点评】本题关键在于根据题意等出第三个方程,此方程和原方程组的第二个方程可得出x,y的值,将x,y的值代入第一个方程即可得出a值.6.(3分)若实数满足(x+y+2)(x+y﹣1)=0,则x+y的值为()A.1 B.﹣2 C.2或﹣1 D.﹣2或1【考点】98:解二元一次方程组.【专题】36 :整体思想.【分析】其根据是,若ab=0,则a、b中至少有一个为0.【解答】解:因为(x+y+2)(x+y﹣1)=0,所以(x+y+2)=0,或(x+y﹣1)=0.即x+y=﹣2或x+y=1.故选D.【点评】本题需要将(x+y)看做一个整体来解答.其根据是,若ab=0,则a、b 中至少有一个为0.7.(3分)方程组的解是()A.B.C.D.【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】解决本题关键是寻找式子间的关系,寻找方法降元,观察发现两式中y 的系数互为相反数,所以可以直接将两式相加去y,解出x的值,将x的值代入①式中求出y的值.【解答】解:将①式与②相加得,3x=6解得,x=2,将其代入①式中得,y=1,此方程组的解是:故选A.【点评】本题考查的是二元一次方程的解法之一:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求得未知数的值,将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数.8.(3分)某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】此题中的等量关系有:①某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2【解答】解:根据某年级学生共有246人,则x+y=246;②男生人数y比女生人数x的2倍少2人,则2x=y+2.可列方程组为.故选B.【点评】找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.二、填空题(每空2分,共24分)9.(4分)已知方程2x+3y﹣4=0,用含x的代数式表示y为:y=;用含y的代数式表示x为:x=.【考点】解二元一次方程.【分析】把方程2x+3y﹣4=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后系数化1就可用含x的式子表示y 的形式:y=;写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后系数化1就可用y的式子表示x的形式:x=.【解答】解:(1)移项得:3y=4﹣2x,系数化为1得:y=;(2)移项得:2x=4﹣3y,系数化为1得:x=.【点评】本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式或用含y的式子表示x的形式.10.(4分)在二元一次方程﹣x+3y=2中,当x=4时,y=;当y=﹣1时,x=﹣10.【考点】93:解二元一次方程.【分析】本题只需把x或y的值代入解一元一次方程即可.【解答】解:把x=4代入方程,得﹣2+3y=2,解得y=;把y=﹣1代入方程,得﹣x﹣3=2,解得x=﹣10.【点评】本题关键是将二元一次方程转化为关于y的一元一次方程来解答.二元一次方程有无数组解,当一个未知数的值确定时,即可求出另一个未知数的值.11.(4分)若x3m﹣3﹣2y n﹣1=5是二元一次方程,则m=,n=2.【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑,求常数m、n的值.【解答】解:因为x3m﹣3﹣2y n﹣1=5是二元一次方程,则3m﹣3=1,且n﹣1=1,∴m=,n=2.故答案为:,2.【点评】二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.12.(2分)已知是方程x﹣ky=1的解,那么k=﹣1.【考点】92:二元一次方程的解.【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出k的值.【解答】解:把代入方程x﹣ky=1中,得﹣2﹣3k=1,则k=﹣1.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程.13.(2分)已知|x﹣1|+(2y+1)2=0,且2x﹣ky=4,则k=4.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x、y的值,再代入所求代数式计算即可.【解答】解:由已知得x﹣1=0,2y+1=0.∴x=1,y=﹣,把代入方程2x﹣ky=4中,2+k=4,∴k=4.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.(2分)二元一次方程x+y=5的正整数解有解:.【考点】93:解二元一次方程.【专题】11 :计算题.【分析】令x=1,2,3…,再计算出y的值,以不出现0和负数为原则.【解答】解:令x=1,2,3,4,则有y=4,3,2,1.正整数解为.故答案为:.【点评】本题考查了解二元一次方程,要知道二元一次方程的解有无数个.15.(2分)以为解的一个二元一次方程是x+y=12.【考点】92:二元一次方程的解.【专题】26 :开放型.【分析】利用方程的解构造一个等式,然后将数值换成未知数即可.【解答】解:例如1×5+1×7=12;将数字换为未知数,得x+y=12.答案不唯一.【点评】此题是解二元一次方程的逆过程,是结论开放性题目.二元一次方程是不定个方程,一个二元一次方程可以有无数组解,一组解也可以构造无数个二元一次方程.不定方程的定义:所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数.16.(4分)已知是方程组的解,则m=1,n=4.【考点】97:二元一次方程组的解.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.在求解时,可以将代入方程组得到m和n的关系式,然后求出m,n的值.【解答】解:将代入方程组,得,解得.【点评】此题比较简单,解答此题的关键是把x,y的值代入方程组,得到关于m,n的方程组,再求解即可.三、解方程组(每小题8分,共16分)17.(8分)(1)(用加减消元法)(2)(用代入消元法)【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】(1)方程组整理后,两方程相加消去y求出x的值,进而求出y的值,即可确定出方程组的解;(2)由第一个方程表示出x,代入第二个方程消去x求出y的值,进而求出x 的值,即可确定出方程组的解.【解答】解:(1)方程组整理得:,①+②得:2x=0,即x=0,将x=0代入②得:y=1,则方程组的解为;(2),由①得:x=25﹣y,代入②得:50﹣2y﹣y=8,即y=14,将y=14代入得:x=25﹣14=11,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)(1)(2).【考点】98:解二元一次方程组.【专题】11 :计算题.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)方程组整理得:,②﹣①得:10y=20,即y=2,将y=2代入①得:x=5.5,则方程组的解为;(2)方程组整理得:,②×3﹣①×2得:x=4,将x=4代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.四、解答题(本题共个6小题,每题6分,共36分)19.(6分)当y=﹣3时,二元一次方程3x+5y=﹣3和3y﹣2ax=a+2(关于x,y 的方程)有相同的解,求a的值.【考点】98:解二元一次方程组.【分析】首先把y=﹣3代入3x+5y=﹣3中,可解得x的值,再把x,y的值代入3y﹣2ax=a+2中便可求出a的值.【解答】解:当y=﹣3时,3x+5×(﹣3)=﹣3,解得:x=4,把y=﹣3,x=4代入3y﹣2ax=a+2中得,3×(﹣3)﹣2a×4=a+2,解得:a=﹣.【点评】此题主要考查了二元一次方程的解的问题,把握住方程的解的定义是解题的关键.20.(6分)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?【考点】9A:二元一次方程组的应用.【分析】设0.8元的邮票买了x枚,2元的邮票买了y枚,根据购买邮票13枚,共花去20元钱,可列方程组求解.【解答】解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得,解得,买0.8元的邮票5枚,买2元的邮票8枚.【点评】本题考查理解题意的能力,关键是找到枚数和钱数做为等量关系,可列方程组求解.21.(6分)将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只.问有笼多少个?有鸡多少只?【考点】CE:一元一次不等式组的应用.【专题】12 :应用题.【分析】设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.【解答】解:设笼有x个.,解得:8<x<11x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只.【点评】本题考查理解题意能力,关键是看到将不足40只鸡放入若干个笼中,最后答案不符合的舍去.22.(6分)甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/时,乙的速度是y千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.【解答】解:设甲的速度是x千米/小时,乙的速度是y千米/小时,,.故甲的速度是4千米/时,乙的速度是2千米/时.【点评】本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.23.(6分)有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?【考点】9A:二元一次方程组的应用.【专题】12 :应用题.【分析】本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35.算出1辆大车与1辆小车一次可以运货多少吨后,再算3辆大车与5辆小车一次可以运货多少吨.【解答】解:设大货车每辆装x吨,小货车每辆装y吨根据题意列出方程组为:解这个方程组得所以3x+5y=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题应注意不能设直接未知数,应先算出1辆大车与1辆小车一次可以运货多少吨后再进行计算.24.(6分)(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?【考点】93:解二元一次方程.【专题】26 :开放型.【分析】要求关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,首先要解这个方程,其解x=,根据题意的要求让其为整数,故m的值只能为±1,±7.【解答】解:存在,四组.∵原方程可变形为﹣mx=7,∴当m=1时,x=﹣7;m=﹣1时,x=7;m=7时,x=﹣1;m=﹣7时,x=1.【点评】此题只需把m当成字母已知数求解,然后根据条件的限制进行分析求解.。

人教版初一数学下册第8章《二元一次方程组》单元试卷(详细答案版)

人教版初一数学下册第8章《二元一次方程组》单元试卷(详细答案版)

2、下列二元一次方程组中,以x=13x+y=5B、x-y=13x+y=-5C、x-2y=-33x+y=5D、x-y=3 b=1.2.则方程组2(x+2)-3(y-1)=13,y=2.2B、x=8.3y=1.2C、x=10.3y=2.2D、x=10.36、已知3x+y=12,人教版初一数学下册第八章二元一次方程组水平测试题一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是()A、xy=5B、6x=5yC、x+1y=6D、4x+y2=6y=2为解的是()A、x-y=13x+y=43、解方程组8x+52y=1,比较简便的方法是()8x-2y=3.A、代入法B、加减法C、试数法D、无法确定4、若方程组的解是()2a-3b=13,3a+5b=30.9.的解是a=8.3,3(x+2)+5(y-1)=30.9.A、x=6.3y=0.25、若二元一次方程3x-2y=1的解为正整数,则x的值为()A、奇数B、偶数C、奇数或偶数D、0x+3y=8.那么x+y的值是()A、0B、5C、-1D、17、如果3x3m-2n-4y n-m+12=0是二元一次方程,那么m、n的值分别为()A、2、3B、2、1C、-1、2D、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为()A、3个B、4个C、5个D、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果每个同学分5本则多出5本,则五年级共有同学()名。

1y = x ⋅ 25%.B 、 x + y = 180,x = y ⋅ 25%. C 、 x + y = 180,x - y = 25%. D 、 x + y = 180.2、已知满足二元一次方程组 2 x + y = 5, y = -2 是方程组ax + by = 1,(A 、9B 、10C 、11D 、4210、为保护生态环境,某山区将一部分耕地改为林地。

人教版七年级数学下册第八单元测试题和答案(可编辑修改word版)

人教版七年级数学下册第八单元测试题和答案(可编辑修改word版)

12(第6题)七年级数学第八章《二元一次方程组》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共24分)1、下列各组数是二元一次方程的解是( )⎩⎨⎧=-=+173x y y x A 、 B 、 C 、 D 、⎩⎨⎧==21y x ⎩⎨⎧==10y x ⎩⎨⎧==07y x ⎩⎨⎧-==21y x 2、方程 的解是 ,则a ,b 为( )⎩⎨⎧=+=+10by x y ax ⎩⎨⎧-==11y x A 、 B 、 C 、 D 、⎩⎨⎧==10b a ⎩⎨⎧==01b a ⎩⎨⎧==11b a ⎩⎨⎧==0b a 3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )A 、14B 、2C 、-2D 、-44、解方程组 时,较为简单的方法是( )⎩⎨⎧=-=+534734y x y x A 、代入法 B 、加减法 C 、试值法 D 、无法确定5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A 、B 、⎩⎨⎧=+-=18050y x y x ⎩⎨⎧=++=18050y x y x C 、 D 、⎩⎨⎧=+-=9050y x y x ⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )A 、6,10B 、7,9C 、8,8D 、9,78、两位同学在解方程组时,甲同学由正确地解出,乙同学因把C ⎩⎨⎧=-=+872y cx by ax ⎩⎨⎧-==23y x 写错了解得 ,那么a 、b 、c 的正确的值应为()⎩⎨⎧=-=22y xA 、a =4,b =5,c =-1B 、a =4,b =5,c =-2C 、a =-4,b =-5,c =0D 、a =-4,b =-5,c =2二、填空(每小题3分,共18分)9、如果是方程3x -ay =8的一个解,那么a =_________。

人教版数学七年级下册 第8章 二元一次方程组 综合测试(含答案)

人教版数学七年级下册 第8章 二元一次方程组 综合测试(含答案)

人教版数学七年级下册第8章二元一次方程组综合测试一、单选题1.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=02.若方程组18mx nynx my-=⎧⎨+=⎩的解是21xy=⎧⎨=⎩,则m n,的值分别是()A.2,1B.2,3C.1,8D.无法确定3.二元一次方程x+2y=12的正整数解有( )组.A.5 B.6 C.7 D.无数4.若二元一次方程组2224x yx y+=⎧⎨-=⎩,的解为x ay b=⎧⎨=⎩,,则a+b的值为()A.0B.1C.2D.45.方程组324451x yx y+=⎧⎨-=⎩中,用加减消元法化成一元一次方程正确的是()A.23x+22=0B.7x=18C.23y=13D.-7y=196.《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为()A.56145x yx y y x+=⎧⎨+=+⎩B.56156x yx y y x+=⎧⎨-=-⎩C.65156x yx y y x+=⎧⎨+=+⎩D.65145x yx y y x+=⎧⎨-=-⎩7.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名,设获得一等奖的学生有x名,二等奖的学生有y名,根据题意可列方程组为()A.528201630x yx y+=⎧⎨+=⎩B.302016528x yx y+=⎧⎨+=⎩C.305282016x yx y+=⎧⎪⎨+=⎪⎩D.528302016x yx y+=⎧⎪⎨+=⎪⎩8.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y 元,则根据题意列二元一次方程组得( )A .329557230x y x y +=⎧⎨+=⎩B .239557230x y x y +=⎧⎨+=⎩C .329575230x y x y +=⎧⎨+=⎩D .239575230x y x y +=⎧⎨+=⎩ 9.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米,设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A .207717066x y x y +=⎧⎪⎨+=⎪⎩ B .207717066x y x y -=⎧⎪⎨+=⎪⎩ C .207717066x y x y -=⎧⎪⎨-=⎪⎩ D .7717066772066x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩ 10.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天11.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?( ) A .300元 B .310元 C .320元 D .330元12.某车间一个工人将一根长为100cm 的钢材裁剪成规格为6cm 与10cm 的两种钢条(假设裁剪中没有消耗,并允许有不超过2cm 的余料),则该工人裁剪的方案有( ) A .3种B .4种C .5种D .6种 二、填空题13.方程组524x y x y +=⎧⎨-=⎩的解是_____. 14.将方程52x y +=写成用含x 的代数式表示y ,则y =_______________.15.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.16.某中学七(2)班学生去劳动实践基地开展实践劳动,在劳动前需要分成x 组,若每组11人,则余下一人,若每组12人,则有一组少4人,若每组分配7人,则该班可分成_____组.17.若关于x ,y 的二元一次方程组{x +y =5k x −y =9k的解也是二元一次方程2x +3y =6的解,则k 的值为_______________.18.一个两位数,十位数与个位数的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是_______.19.几个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是68x y =⎧⎨=⎩,求方程组111222326326a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解.”乙说:“它们的系数有一定的规律,可以试试.”丙说:“能不能把第二个方程组的两个方程的两边都除以6,通过换元替换的方法来解决.”参考他们的讨论,你认为这个题目的解应该是_______.20.有甲、乙、丙三种商品,如果甲购3件,乙2件,丙1件共需420元,购甲1件,乙2件,丙3件共需380元,那么购甲、乙、丙三种商品各一件共需__________.三、解答题21.解方程组(1)623x y x y +=⎧⎨-=⎩; (2) 2232x y x y =⎧⎨-=⎩ . 22.m 为何值时,方程组3523518x y m x y m -=⎧⎨+=-⎩的解互为相反数?求这个方程组的解. 23.小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。

2015年新人教版七年级数学下第八章《二元一次方程组》单元测试试卷及答案

2015年新人教版七年级数学下第八章《二元一次方程组》单元测试试卷及答案

2015年新⼈教版七年级数学下第⼋章《⼆元⼀次⽅程组》单元测试试卷及答案第⼋章《⼆元⼀次⽅程组》单元测试题⼀、填空题(每⼩题3分,共24分)1、将⽅程3x-y=1变形成⽤x 的代数式表⽰y ,则y =___________2、写出⼀个以23x y =??=?为解的⼆元⼀次⽅程组__________________ 。

3、在⽅程83=-ay x 中,如果==13y x 是它的⼀个解,那么a 的值为4、如果0512=-+=+-y x y x ,那么=x _________,=y _________5、若m n y x --213和m n y x --52是同类项,则m= n=6、在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = 。

7、⼀个长⽅形周长是42cm ,宽⽐长少3cm ,如果设长xcm ,宽为ycm ,根据题意列⽅程组为8、⽅程3x+y=9的在正整数范围内的解是_____ ;⼆、选择题(每⼩题3分,共24分)9、⽅程组=+=-521y x y x 的解是()(A )=-=21y x (B )-==12y x (C )==21y x (D )==12y x10、如果⽅程09,72,42=+-=--=+kx y y x y x 有公共解,则k 的值是()(A )3- (B )3(C )6(D )6-11、已知=+=+25ay bx by ax 的解是==34y x 则()(A )==12b a(B )-==12b a(C )=-=12b a(D )-=-=12b a12、甲⼄两数之和是42,甲数的3倍等于⼄数的4倍,求甲⼄两数.若设⼄数为x ,甲数为y 则得下列⽅程组()A ==+y x y x 3442B ==+y x y x 4342C ==-3442y x yx D =-=-04342y x x y13、根据图1提供的信息,可知⼀个杯⼦的价格是()(A )51元(B )35元(C )8元(D )7.5元14、⽅程组⽤代⼊法消去x ,所得y 的⼀元⼀次⽅程为:() A.3-2y -1-4y =2 B.3(1-2y )-4y =2 C.3(2y -1)-4y =2D. 3-2y -4y =215、⼀副三⾓板按如图2⽅式摆放,且1∠的度数⽐2∠的度数⼤50,若设1x ∠=,2y ∠=,则可得到⽅程组为()(A )50180x y x y =-??+=?,(B )50180x y x y =+??+=?,(C )5090x y x y =-??+=?,(D )5090x y x y =+??+=?,16、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于() A 32 B23 C 1 D -1三、解⽅程组(每⼩题4分,共20分)17、10325u v u v +=??-=?(⽤代⼊法) 18、=+=-1732623y x y x共43元共94元(图1)(图2)34221x y x y -=??+=?19、23143216x y x y +=??+=? 20、 4253715x yx y ?-=-=??21、??-=++=+-=++2004c b a c b a c b a四、解答题(每⼩题5分,共20分)22、若⽅程组=+=-63232y x ky x 中的x 和y 互为相反数,求k 的值23、已知⽅程组351ax by x cy +=??-=?,,甲正确地解得23x y =??=?,,⽽⼄粗⼼,把c 看错了,解得36x y =??=?,,请确定c b a ,,的值24、在等式52-+=bx ax y 中,当1-=x 时,0=y ,当2=x 时,3=y ,求5=x 时,y 的值25、先阅读,然后解⽅程组.解⽅程组10,4()5x y x y y --=??--=?①②时,可由①得 1.x y -=③,然后再将③代⼊②得415y ?-=,求得1y =-,从⽽进⼀步求得0,1.x y =??=-?这种⽅法被称为“整体代⼊法”,请⽤这样的⽅法解下列⽅程组:2320,23529.7x y x y y --=??-+?+=??五、列⼆元⼀次⽅程组解应⽤题(4分+6分,共10分) 26、根据图给出的信息,求每件恤衫和每瓶矿泉⽔的价格。

七年级数学(下册)第八章单元测试试卷及答案

七年级数学(下册)第八章单元测试试卷及答案

七年级数学(下册)第八章单元测试卷二元一次方程组一、选择题:(每小题3分,共33分)1、若方程mx -2y =3x +4是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠3C 、m ≠-3D 、m ≠2 2、下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩ C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩3、一个两位数的十位数字与个位数字的和是7。

如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是( )。

A 、36 B 、25 C 、61 D 、164、由132x y-=,可以得到用x 表示y 的式子是( ) A .223x y -= B .2133x y =- C .223x y =- D .223xy =-5、方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩6、对于二元一次方程组⎩⎨⎧=--=+17541974y x y x 用加减法消去x ,得到的方程是( )A 、2y =-2B 、2y =-36C 、12y =-36D 、12y =-27、若方程组⎩⎨⎧=-+=+3)1(134y k kx y x 的解x 和y 的值相等,则k 的值为( )。

A 、 4B 、 11C 、 10D 、12 8、方程x +y =6的非负整数解有( )。

A 、 6个B 、 7个C 、 8个D 、无数个9、一轮船顺流航行的速度为a 千米/小时,逆流航行的速度为b 千米/小时,(a>b>0)。

那么船在静水中的速度为( )千米/小时。

A 、b a + B 、)(21b a - C 、)(21b a + D 、b a - 10、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,求改变后林地面积和耕地面积各多少平方千米。

人教版数学七年级下册第八单元测试试卷(含答案)

人教版数学七年级下册第八单元测试试卷(含答案)

人教版数学7年级下册第8单元·时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列方程中,是二元一次方程的有( )①5x―2y=12②74y―116z=―a③x y2―1=3④xy﹣x=5⑤x﹣z=﹣1A.1个B.2个C.3个D.4个2.(3分)若x=1y=―2和x=―1y=―4是某二元一次方程的解,则这个方程为( )A.x+2y=﹣3B.2x﹣y=0C.y=3x﹣5D.x﹣3=y 3.(3分)由3x﹣2y=6可以得到用x表示y的式子为( )A.y=―32x+3B.y=3x2+3C.y=3x2―3D.y=―3x2―34.(3分)已知二元一次方程组5x+2y=20①4x―y=8②,若用加减法消去y,则正确的是( )A.①×1+②×1B.①×1+②×2C.①×1﹣②×1D.①×1﹣②×2 5.(3分)以下方程组中,是二元一次方程组的是( )A ―y3=1z=2B.2x2+y=13y―x=4C―y3=2y=5D.x+y=73y―x=06.(3分)已知m+2n=―42m+n=9,则代数式m﹣n的值是( )A.﹣5B.5C.﹣13D.137.(3分)一个两位数,十位数字比个位数字大4;将这个两位数的十位数字与个位数字对调后,比原数减少了36,求原两位数.若设原两位数十位数字是x,个位数字是y,则列出方程组为( )A.x―y=410x+y=10y+x―36B.x+y=410x+y=10y+x―36C.x―y=410x+y―36=10y+x D.y―x=410x+y―36=10y+x8.(3分)《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y 辆车,根据题意,所列方程组正确的是( )A.3(x―2)=y2x+9=y B.3(y―2)=x 2y+9=xC.3(x―2)=y2y+9=x D.3(y―2)=x 2x+9=y二.填空题(共7小题,满分21分,每小题3分)9.(3分)已知方程组2x―y=5x+y=1,则x﹣2y的值为 .10.(3分)若方程x+y=3,x﹣y=1和x+2my=0有公共解,则m的取值为 .11.(3分)二元一次方程2x+3y=12的正整数解为 .12.(3分)当m= 时,方程(m2﹣4)x2+(m+2)x+(m+1)y=5是二元一次方程.13.(3分)若(a﹣2)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a的值为 .14.(3分)某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了 间.15.(3分)若x=3y=5是某个二元一次方程的一个解,则该方程可能是 (请写出满足条件的一个答案即可).三.解答题(共10小题,满分75分)16.(7分)解下列方程组:(1)x―y=3x+y=1;(2)3(x―1)=y+55(y―1)=3(x+5).17.(7分)某年级为了奖励知识竞赛的优胜者,年级组派李老师去超市买钢笔和笔记本作为奖品.该超市某品牌的笔记本每本a元,钢笔每支b元.若购买4本笔记本和2支钢笔,需70元;若购买3本笔记本和1支钢笔,则需45元.求a、b的值.18.(7分)在纪念中国抗日战争胜利76周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲、乙两种,甲种票比乙种票每张贵6元;买甲种票8张,乙种票10张共用去480元,求甲、乙两种门票的价格各多少元?19.(7分)阅读材料:善思考的小军在解方程组2x+5y=3①4x+11y=5②时,采用了一种“整体代入”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y③;把方程①代入③,得:2×3+y=5,所以y=﹣1;把y=﹣1代入①得,x=4,所以方程组的解为x=4y=―1.请你模仿小军的“整体代入”法解方程组3x―2y=5①9x―4y=19②.20.(7分)2022年北京冬奥会期间体育中心将举行短道速滑比赛,观看短道速滑比赛的门票分为两种:A种门票600元/张,B种门票120元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A,B两种门票共15张,总费用5160元,求旅行社为这个旅行团代购的A种门票和B种门票各多少张?(要求列方程组解答)21.(7分)(列二元一次方程组求解)某商场购进商品后,加价30%作为销售价,商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲,乙两种商品,分别抽到九折和八折,共付款546元,两种商品原销售价之和为650元.甲、乙商品进价分别为多少元?22.(7分)学校计划从某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;2辆甲型货车比3辆乙型货车满载一次少运输200盆花卉.1辆甲型货车满载一次可运输多少盆花卉?1辆乙型货车满载一次可运输多少盆花卉?23.(7分)《九章算术》中记载这样一道问题.原文:“今有五雀六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置而放,重量相等.5只雀、6只燕的总重量为1斤,问雀、燕每只各重多少斤?”请解答上述问题.24.(7分)2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资.某口罩厂现安排A,B两组工人共150人加工口罩,A组工人每人每小时可加工口罩50个,B 组工人每人每小时可加工口罩70个,A,B两组工人每小时一共可加工口罩9100个.试问:A,B两组工人各多少人?25.(12分)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?参考答案1.B;2.D;3.C;4.B;5.D;6.D;7.C;8.B;9.4;10.﹣1;11.x=3y=2;12.2;13.﹣2;14.10;15.x+y=8(答案不唯一);16.解:(1)x―y=3①x+y=1②,①+②,得2x=4,解得x=2,将x=2代入①得,y=﹣1,∴方程组的解为x=2y=―1;(2)3(x―1)=y+55(y―1)=3(x+5),化简方程组可得3x―y=8①3x―5y=―20②,①﹣②得,4y=28,解得y=7,将y=7代入①得,x=5,∴方程组的解为x=5 y=7.17.解:依题意得:4a+2b=703a+b=45,解得:a=10b=15.答:a的值为10,b的值为15.18.解:设甲种门票的价格是x元,乙种门票的价格是y元,依题意得:x―y=68x+10y=480,解得:x=30y=24.答:甲种门票的价格是30元,乙种门票的价格是24元.19.解:将方程②变形为:9x﹣6y+2y=19,即3(3x﹣2y)+2y=19③,将方程①整体代入③中,得3×5+2y=19,解得:y=2,将y=2代入①,得3x﹣2×2=5,解得:x=3,∴方程组的解是x=3 y=2.20.解:设旅行社为这个旅行团代购A种门票x张,B种门票y张,依题意得:x+y=15600x+120y=5160,解得:x=7 y=8.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.21.解:设甲商品进价为x元,乙商品进价为y元,依题意得:(1+30%)(x+y)=65090%×(1+30%)x+80%×(1+30%)y=546,解得:x=200y=300.答:甲商品进价为200元,乙商品进价为300元.22.解:设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,依题意得:x+3y=17003y―2x=200,解得:x=500y=400.答:1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.23.解:设每只雀重x斤,每只燕重y斤,依题意得:4x+y=5y+x 5x+6y=1,解得:x=219y=338.答:每只雀重219斤,每只燕重338斤.24.解:设A组有x名工人,B组有y名工人,依题意得:x+y=15050x+70y=9100,解得:x=70y=80.答:A组有70名工人,B组有80名工人.25.解:(1)设每名熟练工每月可以安装x辆电动汽车,每名新工人每月可以安装y辆电动汽车,依题意,得:x+2y=82x+3y=14,解得:x=4 y=2.答:每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车.(2)设还需要招聘m名新工人才能完成一个月的生产计划,依题意,得:4×30+2m=200,解得:m=40.答:还需要招聘40名新工人才能完成一个月的生产计划.。

新编人教版七年级数学下第八单元练习题与答案

新编人教版七年级数学下第八单元练习题与答案

初一数学下第8章《二元一次方程组》试题及答案一、填空题1、二元一次方程4x-3y=12,当x=0,1,2,3时,y=____2、在x+3y=3中,假设用x 表示y ,则y= ,用y 表示x ,则x=3、已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k=______时,方程为一元一次方程;当k=______时,方程为二元一次方程。

4、对二元一次方程2(5-x)-3(y-2)=10,当x=0时,则y=____;当y=0时,则x=____。

5、方程2x+y=5的正整数解是______。

6、假设(4x-3)2+|2y+1|=0,则x+2= 。

7、方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。

8、假设21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。

二、选择题1、方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有〔 〕个。

A、1 B、2 C、3 D、42、方程2x+y=9在正整数范围内的解有〔 〕 A 、1个 B 、2个 C 、3个 D 、4个3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是〔 〕A 、10x+2y=4B 、4x-y=7C 、20x-4y=3D 、15x-3y=64、假设是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 〔 〕A 、1 B 、-1 C 、-3 D 、以上答案都不对5、在方程(k 2-4)x 2+(2-3k)x+(k+1)y+3k=0中,假设此方程为二元一次方程,则k 值为〔 〕A 、2B 、-2C 、2或-2D 、以上答案都不对.6、假设⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是〔 〕A 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x 7、在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 〔 〕A 、35-=x yB 、3--=x yC 、35+=x yD 、35--=x y8、已知x=3-k,y=k+2,则y与x的关系是〔 〕A、x+y=5 B、x+y=1 C、x-y=1 D、y=x-19、以下说法正确的选项是〔 〕A、二元一次方程只有一个解B、二元一次方程组有无数个解C、二元一次方程组的解必是它所含的二元一次方程的解D、三元一次方程组一定由三个三元一次方程组成10、假设方程组⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是〔 〕 A、k=6 = B、k=10 C、k=9 D、k=101三、解答题1、解关于x 的方程)1(2)4)(1(+-=--x a x a a2、已知方程组⎩⎨⎧=+=+c y ax y x 27,试确定c a 、的值,使方程组: 〔1〕有一个解; 〔2〕有无数解; 〔3〕没有解3、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
(第6题)
七年级数学第八章《二元一次方程组》测试卷
班级 _______ 姓名 ________ 坐号 _______ 成绩 _______
一、选择题(每小题3分,共24分)
1、下列各组数是二元一次方程⎩
⎨⎧=-=+173x y y x 的解是( ) A 、⎩⎨⎧==21y x B 、⎩⎨⎧==10y x C 、⎩⎨⎧==07y x D 、⎩⎨⎧-==2
1y x 2、方程⎩
⎨⎧=+=+10by x y ax 的解是 ⎩⎨⎧-==11y x ,则a ,b 为( ) A 、⎩⎨⎧==10b a B 、⎩⎨⎧==01b a C 、⎩⎨⎧==1
1b a D 、⎩⎨⎧==00b a 3、|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( )
A 、14
B 、2
C 、-2
D 、-4
4、解方程组⎩⎨⎧=-=+5
34734y x y x 时,较为简单的方法是( ) A 、代入法 B 、加减法 C 、试值法 D 、无法确定
5、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )
A 、赔8元
B 、赚32元
C 、不赔不赚
D 、赚8元
6、一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )
A 、⎩⎨⎧=+-=18050y x y x
B 、⎩⎨⎧=++=18050y x y x
C 、⎩⎨⎧=+-=9050y x y x
D 、⎩⎨⎧=++=9050y x y x 7、李勇购买80分与100分的邮票共16枚,花了14元6角,购买80分与100分的邮票的枚数分别是( )
A 、6,10
B 、7,9
C 、8,8
D 、9,7
8、两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确地解出⎩
⎨⎧-==23y x ,乙同学因把C 写错了解得 ⎩⎨⎧=-=2
2y x ,那么a 、b 、c 的正确的值应为( )
A 、a =4,b =5,c =-1
B 、a =4,b =5,c =-2
C 、a =-4,b =-5,c =0
D 、a =-4,b =-5,c =2
二、填空(每小题3分,共18分)
9、如果⎩⎨⎧-==1
3y x 是方程3x -ay =8的一个解,那么a =_________。

10、由方程3x -2y -6=0可得到用x 表示y 的式子是_________。

11、请你写出一个二元一次方程组,使它的解为⎩⎨
⎧==21y x ,这个方程组是_________。

12、100名学生排成一排,从左到右,1到4循环报数,然后再自右向左,1到3循环报数,那么,既报4又报3的学生共有___________名。

13、在一本书上写着方程组21x py x y +=⎧⎨+=⎩的解是 0.5x y =⎧⎨=⎩
口 ,其中,y 的值被墨渍盖住了,不过,我们可解得出p =___________。

14、某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。

已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为_________________。

三、解方程组(每题5分,共15分)
15、233511x y x y +=⎧⎨
-=⎩ 16、32522(32)28
x y x x y x +=+⎧⎨+=+⎩
17、⎪⎪⎩⎪⎪⎨⎧=+=+24
4263n m n m
四、(每题6分,共24分)
18、若方程组 275x y k x y k
+=+⎧⎨-=⎩ 的解x 与y 是互为相反数,求k 的值。

2x y 4y 32-332-3图(1)图(2)
19、对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算。

已知:2※1=7 ,(-3)※3=3 ,求13
※b 的值。

20、如图,在3×3的方格内,填写了一些代数式和数
(1)在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值。

(2)把满足(1)的其它6个数填入图(2)中的方格内。

21、已知2003(x +y )2 与|
21x +23y -1|的值互为相反数。

试求:(1)求x 、y 的值。

(2)计算x
2003+y 2004 的值。

五、(第23题9分,第24题10分,共19分)
22、某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子,现有此种布料600米,请你帮助设计一下,该如何分配布料,才能使运动服成套而不致于浪费,能生产多少套运动服?
23、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:
(1)甲、乙两组单独工作一天,商店应各付多少元?
(2)已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店此付费用较少?
(3)若装修完后,商店每天可盈利200元,你认为如何安排施工有利用商店经营?说说你的理由。

(可以直接用(1)(2)中的已知条件)
参考答案
一、1、A ;2、B ;3、D ;4、B ;5、D ;6、D ;7、B ;8、C
二、9、-1; 10、2
63-x ;11、略;12、8;13、3;14、42万元,26万元 三、15、⎩⎨⎧==12y x 16⎩⎨⎧-=-=12y x 17、⎩⎨⎧==4
4n m 18、-6 19、9253 四、20、①⎩⎨⎧=-=1
1y x ② 21、 ① ⎩
⎨⎧-=-=11y x ② 0 五、22、360米布料做上衣,240米布料做裤子,共能做240套运动服。

23、(1)设甲单独做一天商店应付x 元,乙单独做一天商店应付y 元。

依题意 得:⎩⎨⎧=+=+34801263520)(8y x y x 解得:⎩
⎨⎧==140300y x (2)请甲组单独做需付款300×12=3600元,请乙组单独做需付款140×24=3360元,因为3600>3360,所以请乙组单独做,商店应付费用较少。

(3)由(2)知:①甲组单独做12天完成,需付款3600元,乙组单独做24天完成,需付款3360元,由于甲组装修完比乙组装修完商店早开张12天,12天可以盈利200×12=2400元,即选择甲组装修相当只付装修费用1200元,所以选择甲单独做比选择已单独做合算。

②由(1)知,甲、乙同时做需8天完成,需付款3520元又比甲组单独做少用4天,4天可以盈利200×4=800元,3520-800=2720元,这个数字又比甲单独做12天用3600元和算。

综上所述,选择甲、乙两组合做8天的方案最佳。

-2
325
1-30-14。

相关文档
最新文档