六年级奥数. 计算.计算基本功强化(ABC级).学生版
六年级奥数.计算.计算基本功强化(abc级).学生版
六年级奥数.计算.计算基本功强化(A B C级).学生版work Information Technology Company.2020YEAR计算基本功强化知识框架一、基本运算律及公式1.加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
2.减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)3.乘、除法1)商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m÷=⨯÷⨯=÷÷÷≠ ,0n≠2)在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷3)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).如:a b c a c b b c a⨯÷=÷⨯=÷⨯4)在乘、除混合运算中,去掉或添加括号的规则去括号情形:括号前是“×”时,去括号后,括号内的乘、除符号不变.括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c⨯⨯=⨯⨯⨯÷=⨯÷()()a b c a b c a b c a b c÷⨯=÷÷÷÷=÷⨯添括号情形:括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()() a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷5)两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c⨯÷⨯=÷⨯÷=÷⨯÷上面的性质都可以推广到多个数的情形.二、加减法中的速算与巧算1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)\三、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
六年级奥数.数论.整除问题ABC级.学生版
六年级奥数.-数论.整除问题-(ABC级).学生版数的整除知识框架一、整除的定义:当两个整数a和b(b≠0),a被b除的余数为零时(商为整数),则称a被b整除或b整除a,也把a叫做b的倍数,b叫a的约数,记作b|a,如果a被b除所得的余数不为零,则称a不能被b整除,或b不整除a,记作b a.二、常见数字的整除判定方法1.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;4.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;5.如果一个数从数的任何一个位置随意切开所组成的所有数之和是9的倍数,那么这个数能被9整除;6.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
7.若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
8.若一个整数的个位数字截去,再从余下的数中,加个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果和太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版
一、 质数与合数一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。
一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。
要特别记住:0和1不是质数,也不是合数。
质数有无限多个。
最小的质数是2。
合数有无限多个。
最小的合数是4。
常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.常用质数整理:101、103、107、109、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、1993、1997、1999、2003、401、223、2011、2017.三、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外知识框架质数合数、约数倍数1. 求最大公约数的方法● 分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;● 短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;● 辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15.2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数四、 倍数的概念与最小公倍数1. 倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数1) 公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数2) 最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
2018最新六年级奥数.杂题.逻辑推理(ABC级).学生版
知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲逻辑推理一、列表推理法【例1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?余老师薇芯:69039270【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【巩固】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【例4】六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。
2018六年级奥数.数论.质数、合数、约数、倍数(ABC级).学生版
质数合数、约数倍数知识框架一、质数与合数一个大于1的自然数,如果除了1和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数)。
一个大于1的自然数,如果除了1和它本身,还能被其他自然数整除,那么它就叫做合数。
要特别记住:0和1不是质数,也不是合数。
质数有无限多个。
最小的质数是2。
合数有无限多个。
最小的合数是4。
常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴值得注意的是很多题都会以质数2的特殊性为考点.⑵除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,K,再列出所有不大于K的质数,用这些质数去除p,我们可以先找一个大于且接近p的平方数2如没有能够除尽的那么p就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.常用质数整理:101、103、107、109、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、1993、1997、1999、2003、401、223、2011、2017.三、约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1.求最大公约数的方法●分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;●短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;●辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷= ;6003151285÷= ;315285130÷= ;28530915÷= ;301520÷= ;所以1515和600的最大公约数是15.2.最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3.求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各个分数的分子的最大公约数b ;b a即为所求.4.约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数四、倍数的概念与最小公倍数1.倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数1)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数2)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。
六年级奥数.应用题.浓度问题(ABC通用).学生版
一、 基本概念与关系(1) 溶质“干货”、“纯货”——被溶解的物质 (2) 溶剂“溶质之外的物质”——用来溶解溶质的物质 (3) 溶液溶液=溶质+溶剂——溶质与溶质的混合体(4) 浓度——溶质的量占溶液的量的百分比 二、 基本方法(1) 寻找不变量,按基本关系或比例求解 (2) 浓度三角(如右图所示) (3) 列方程或方程组求解(1) 重点:浓度问题中的基本关系,不变量的寻找,浓度三角 (2) 难点:复杂问题中列表法、浓度三角以及方程与方程组的综合运用重难点知识框架浓度问题=100%=100%+⨯⨯溶质溶质浓度溶液溶质溶液::乙溶液质量甲溶液质量z-y x-zz-y x-z 乙溶液浓度y %甲溶液浓度x %混合浓度z%一、 抓住不变量和浓度基本关系解决问题【例 1】某种溶液由40克食盐浓度15%的溶液和60克食盐浓度10%的溶液混合后再蒸发50克水得到, 那么这种溶液的食盐浓度为多少?【巩固】 一容器内有浓度为25%的糖水,若再加入20千克水,则糖水的浓度变为15%,问这个容器内原来含有糖多少千克?【例 2】 浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?【巩固】 浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?【例 3】 买来蘑菇10千克,含水量为99%,晾晒一会儿后,含水量为98%,问蒸发掉多少水份?例题精讲【巩固】1000千克葡萄含水率为96.5%,一周后含水率降为96%,这些葡萄的质量减少了千克.【例4】将含农药30%的药液,加入一定量的水以后,药液含药24%,如果再加入同样多的水,药液含药的百分比是________.【巩固】一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%,第三次再加入同样多的水,盐水的含盐百分比将变为_______%.二、通过浓度三角解决浓度和实际生活中的配比问题【例5】有浓度为20%的盐水300克,要配制成40%的盐水,需加入浓度为70%的盐水多少克?【巩固】将75%的酒精溶液32克稀释成浓度为40%的稀酒精,需加入水多少克?【例6】瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【巩固】有两种溶液,甲溶液的酒精浓度为15%,盐浓度为10%,乙溶液中的酒精浓度为45%,盐浓度为5%.现在有甲溶液1千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度是盐浓度的3倍?【例7】甲瓶中酒精的浓度为70%,乙瓶中酒精的浓度为60%,两瓶酒精混合后的浓度是66%.如果两瓶酒精各用去5升后再混合,则混合后的浓度是66.25%.问原来甲、乙两瓶酒精分别有多少升?【巩固】纯酒精含量分别为60%、35%的甲、乙两种酒精混合后的纯酒精含量为40%.如果每种酒精都多取20克,混合后纯酒精的含量变为45%.求甲、乙两种酒精原有多少克?【例8】甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为62%.如果每种酒精取的数量比原来都多取15升,混合后纯酒精含量为63.25%.第一次混合时,甲、乙两种酒精均取了多少升?【巩固】甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为8%的硫酸溶液600千克,乙容器中装有浓度为40%的硫酸溶液400千克.均取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?【例9】某班有学生48人,女生占全班的37.5%,后来又转来女生若干人,这时人数恰好是占全班人数的40%,问转来几名女生?【巩固】小明到商店买红、黑两种笔共66支.红笔每支定价5元,黑笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,黑笔按定价80%付钱,如果他付的钱比按定价少付了18%,那么他买了红笔多少支?【例10】有两包糖,第一包糖由奶糖和水果糖组成,其中14为奶糖;第二包糖由酥糖和水果糖组成,其中15为酥糖.将两包糖混合后,水果糖占78%,那么奶糖与酥糖的比例是________.【巩固】某商品76件,出售给33位顾客,每位顾客最多买三件.如果买一件按原定价,买两件降价10%,买三件降价20%,最后结算,平均每件恰好按原定价的85%出售.那么买三件的顾客有多少人?三、综合运用各种方法解决多溶液、多次配比问题【例11】甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。
六年级奥数.应用题.经济问题(ABC级).学生版
一、解决经济问题的要点(1) 树立“进”与“出”的理念经济问题其实涉及的是两件事:一个是“进”,即到手里多少钱;一个是“出”,即给别人多少钱.二者的差价即为盈利或亏损. (2) 明确单位“1”经济问题中的单位“1”通常是成本(进价),但有时也会有所变化,例如标价等.二、基本公式(1) 涉及利润的公式=+售价成本利润1=⨯+售价成本(利润率) 100%100%-=⨯=⨯售价成本利润率利润成本成本1=+售价成本利润率定价=成本×(1+期望利润的百分数) (2) 涉及存贷的公式利率=利息和本金的比 利息=本金×利率×期数 (3) 涉及税务的公式含税价格=不含税价格×(1+增值税税率)三、基本方法(1) 比率问题,设字母或设数知识框架经济问题(1) 重点:涉及多种商品的经济问题、价格变动问题 (2) 难点:涉及多种商品的经济问题、价格变动问题一、单物品出售问题【例 1】 一千克商品随季节变化降价出售,如果按现价降价10%,仍可获利180元,如果降价20%就要亏损240元,这种商品的进价是多少元?【巩固】 某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是________元.【例 2】 某家商店决定将一批苹果的价格降到原价的70%卖出,这样所得利润就只有原计划的13.已知这批苹果的进价是每千克6元6角,原计划可获利润2700元,那么这批苹果共有多少千克?例题精讲重难点【巩固】某商家决定将一批苹果的价格提高20%,这时所得的利润就是原来的两倍.已知这批苹果的进价是每千克6元,按原计划可获利润1200元,那么这批苹果共有多少千克?【例3】商店以每件50元的价格购进一批衬衫,售价为70元,当卖到只剩下7件的时候,商店以原售价的8折售出,最后商店一共获利702元,那么商店一共进了多少件衬衫?【巩固】某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【例4】过年时,某商品打八折销售,过完年,此商品提价________%可恢复原来的价格【巩固】某公司股票当年下跌20%,第二年上涨多少才能保持原值?【例5】王老板以2元/个的成本买入菠萝若干个,按照定价卖出了全部菠萝的45后,被迫降价为:5个菠萝只卖2元,直至卖完剩下的菠萝,最后一算,发现居然不亏也不赚,那么王老板一开始卖出菠萝的定价为元/个.【巩固】某商品按每个5元的利润卖出4个的钱数,与按每个20元的利润卖出3个的钱数一样多,这种商品每个成本是多少元?【例6】成本0.25元的练习本1200本,按40%的利润定价出售.当销掉80%后,剩下的练习本打折扣出售,结果获得的利润是预定的86%,问剩下的练习本出售时是按定价打了什么折扣?【巩固】某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售.由于定价过高,无人购买.后来不得不按38%的利润重新定价,这样出售了其中的40%.此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果.结果,实际获得的总利润是原定利润的30.2%.那么第二次降价后的价格是原定价的百分之多少?【例7】某商店到苹果产地去收购苹果,收购价为每千克1.2元.从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.5元.如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克多少元?【巩固】果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为________元.【例8】某汽车工厂生产汽车,由于钢铁价格上升,汽车的成本也上升了10%,于是工厂以原售价提高5%的价格出售汽车,虽然如此,工厂每出售一辆汽车所得的利润还是减少了20%,求钢铁价格上升之前的利润率.【巩固】某种商品的利润率是20%.如果进货价降低20%,售出价保持不变,那么利润率将是多少?【例9】春节期间,原价100元/件的某商品按以下两种方式促销:第一种方式:减价20元后再打八折;第二种方式:打八折后再减价20元.那么,能使消费者少花钱的方式是第种.【巩固】甲、乙两店都经营同样的某种商品,甲店先涨价10%后,又降价10%;乙店先涨价15%后,又降价15%.此时,哪个店的售价高些?【例10】某商店到苹果产地去收购苹果,收购价为每千克1.2元.从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.5元.如果在运输及销售过程中的损耗是10%,那么商店要想实现25%的利润率,零售价应是每千克多少元?【巩固】果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840元,预计损耗为1%,如果希望全部进货销售后能获利17%,每千克苹果零售价应当定为________元.二、多物品出售问题【例11】某人在某国用5元钱买了两块鸡腿和一瓶啤酒,当物价上涨20%后,5元钱恰好可买一块鸡腿和一瓶啤酒,当物价又上涨20%,这5元钱能否够买一瓶啤酒?【巩固】甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价.后来都按定价的90%打折出售,结果仍获利131元.甲种商品的成本是元.三、利率纳税问题【例 12】 银行整存整取的年利率是:二年期为11.7%,三年期为12.24%,五年期为13.86%.如果甲、乙二人同时各存人一万元,甲先存二年期,到期后连本带利改存三年期;乙存五年期.五年后,二人同时取出,那么谁的收益多,多多少元?【巩固】 王明把3000元钱存入银行,年利率2.1%,每年取出后在次存入,这样三年后一共能取出多少元钱?【随练1】 一千克商品按20%的利润定价,然后又按8折售出,结果亏损了64元,这千克商品的成本是多少元?【随练2】 商店以每双13元购进一批拖鞋,售价为14.8元,卖到还剩5双时,除去购进这批拖鞋的全部开销外还获利88元.问:这批拖鞋共有多少双?课堂检测【随练3】 文具店有一批笔记本,按照30%的利润定价.当售出这批笔记本的80%的时候,经理决定开展促销活动,按照定价的一半出售剩余的笔记本.这样,当这批笔记本完全卖出后,实际获得利润的百分比是.【作业1】 一件衣服,第一天按原价出售,没人来买,第二天降价20%出售,仍无人问津,第三天再降价24元,终于售出.已知售出价格恰是原价的56%,这件衣服还盈利20元,那么衣服的成本价多少钱?【作业2】 某书店出售一种挂历,每售出1本可获得18元利润.售出一部分后每本减价10元出售,全部售完.已知减价出售的挂历本数是原价出售挂历的2/3.书店售完这种挂历共获利润2870元.书店共售出这种挂历多少本?【作业3】 商店以80元一件的价格购进一批衬衫,售价为100元,由于售价太高,几天过去后还有150件没卖出去,于是商店九折出售衬衫,又过了几天,经理统计了一下,一共售出了180件,于是将最后的几件衬衫按进货价售出,最后商店一共获利2300元.求商店一共进了多少件衬衫?家庭作业【作业4】某种商品的利润率为25%,如果现在进货价提高了20%,商店也随之将零售价提高8%,那么此时该商品的利润率是多少?【作业5】某商品按定价出售,每个可获利润45元,如果按定价的70%出售10件,与按定价每个减价25元出售12件所获的利润一样多,那么这种商品每件定价元.【作业6】甲、乙两商店中某种商品的定价相同.甲商店按定价销售这种商品.销售额是7200元;乙商店按定价的八折销售,比甲商店多售出15件.销售额与甲商店相同.则甲商店售出件这种商品.【作业7】昨天和今天,学校食堂买了同样多的蔬菜和肉,昨天付了250元,今天付了280元,原因如图所示,那么,今天蔬菜付了元.【作业8】商店购进1000个十二生肖玩具,运途中破损了一些.未破损的好玩具卖完后,利润率为50%;破损的玩具降价出售,亏损了10%.最后结算,商店总的利润率为39.2%.商店卖出的好玩具有多少个?【作业9】“新新”商贸服务公司,为客户出售货物收取销售额的3%作为服务费,代客户购买物品收取商品定价的2%作为服务费.今有一客户委托该公司出售自产的某种物品和代为购置新设备,已知该公司共扣取了客户服务费264元,客户恰好收支平衡.问所购置的新设备花费了多少元?【作业10】某体育用品商店进了一批篮球,分一级品和二级品.二级品的进价比一级品便宜20%.按优质优价的原则,一级品按20%的利润率定价,二级品按15%的利润率定价,一级品篮球比二级品篮球每个贵14元.一级品篮球的进价是每个多少元?【作业11】某商家按定价的80%(八折)出售,仍能获得20%的利润,定价时期望的利润百分数是多少?【作业12】某商品按照零售价10元卖出20件所得到的利润和按照零售价9元卖出30件所得到的利润相等,求该商品的进货价.【作业13】电器厂销售一批电冰箱,每台售价2400元,预计获利7.2万元,但实际上由于制作成本提高了16,所以利润减少了25%.求这批电冰箱的台数.【作业14】某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客再在8折的基础上要求再让利150元,如果真是这样,商店是盈利还是亏损?【作业15】某公司要到外地去推销产品,产品成本为3000元.从公司到的外地距离是400千米,运费为每件产品每运1千米收1.5元.如果在运输及销售过程中产品的损耗是10%,那么公司要想实现25%的利润率,零售价应是每件多少元?【作业16】体育用品商店用3000元购进50个足球和40个篮球.零售时足球加价9%,篮球加价11%,全部卖出后获利润298元.问:每个足球和篮球的进价是多少元?【作业17】甲、乙两种商品成本共200元.商品甲按30%的利润定价,商品乙按20%的利润定价.后来两种商品都按定价的九折销售,结果仍获得利润27.7元.问甲种商品的成本是多少元?【作业18】小李现有一笔存款,他把每月支出后剩余的钱都存入银行.已知小李每月的收入相同,如果他每月支出1000元,则一年半后小李有存款8000元(不计利息);如果他每月支出800元,则两年后他有存款12800元(不计利息).小李每月的收入是______元,他现在存款_______元.教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
2018六年级奥数.杂题.逻辑推理(ABC级).学生版
知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲逻辑推理一、列表推理法【例1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?欢迎关注:奥数轻松学余老师薇芯:69039270【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【巩固】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?欢迎关注:奥数轻松学余老师薇芯:69039270【例4】六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。
六年级奥数专题 计数方法(学生版)
计数方法,掌握常见的计数方法,会使用这些方法来解决问题最简单的计数问题,只需一一列举就可以;复杂的计数问题则需要借助排列与组合的相关知识予以解决.一般地,从n 个不同的元素中,任取m(m ≤n)个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m 个元素的一个排列.我们主要来研究满足某种条件的排列的个数.相同的排列应满足:它们所含的元素均相同;它们的顺序也一样.一般地,从n 个不同元素中取出m 个元素的排列的个数称为从n 个不同元素中取出m 个元素的排列数,记作:m n A (m ≤n).从n 个元素中取出m 个元素排成一排,有多少种排法,是从n 个元素中取出m 个元素的排列数.这个问题可以看成有m 个位置,从n 个元素中取m 个元素放到m 个位置中,可分m 个步骤:第①步:第1个位置有n 种选择;第②步:第2个位置有n-1种选择;第③步:第3个位置有n-2种选择;……第m 步:第m 个位置有n-m+1种选择.由乘法原理:m n A = n ×(n- 1)×(n- 2)×…×(n-m+1).——乘积中共有m 项特别地,当m=n 时,()1...21m n n n A A n n ==⨯-⨯⨯叫做n 个元素的全排列数.1×2×3×…×n 称为n 的阶乘,记作n!因此()!!m n n A n m =- (m ≤n). 排列数乘积形式的公式:m n A =n ×(n- 1)×(n- 2)×…×(n-m+1).排列数阶乘形式的公式:()!!m n n A n m =- (m ≤n).有时我们只需从若干元素中取出一些就可以了,这种问题称为组合问题,组合问题与排列问题的区别就是:组合问题是将元素取出即可,不需排序,而排列问题是取出后要进行排序.一般地,从n 个不同元素中任取m(m ≤n)个不同的元素并成一组,叫做从n 个不同元素中取出,n 个元素的组合.从n 个不同元素中,每次取出m 个元素的组合总数,叫做从n 个不同元素中取出m 个元素的组合数,记作m n C (m ≤n).从n 个元素中取出m 个元素的排列问题可以看成分两步完成:第①步:从n 个元素中取出m 个元素,这时有多少种取法?实际上就是从n 个元素中取出m 个元素的组合数m n C ;第②步:对取出的m 个元素进行排列,排法数就是m m A .由乘法原理可知:m m m n n m A C A =⨯,因此,m m n n m mA C A =. 将排列数公式代人得:()()().1...1.1...3.2.1m n n n n m C m m --+=-或 ()!!!m n n C n m m =- 常用的计数方法有:分类枚举、插板、整体、递推、排除、概率等等。
六年级奥数. 数论.余数问题(ABC级).学生版
一、带余除法的定义及性质1、 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
2、 余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.二、三大余数定理:1. 余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。
例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2 2. 余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差。
例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3知识框架余数问题-1=2.当余数的差不够减时时,补上除数再减。
例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
2018六年级奥数.数论.平方数、奇偶性、位置原理(ABC级).学生版
知识框架一、完全平方数常用性质1.特征1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
平方数、奇偶性、位值原理7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
奥数:小学奥数.进制的性质及应用(ABC级).学生版
一、 数的进制(1) 十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
(2) 二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
(3) k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,.(4) k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+() 十进制表示形式:1010101010n n n n N a a a --=+++; 二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数.(5) k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、 进制间的转换:知识结构进制的性质与应用一般地,十进制整数化为k进制数的方法是:除以k取余数,一直除到被除数小于k为止,余数由下到上按从左到右顺序排列即为k进制数.反过来,k进制数化为十进制数的一般方法是:首先将k进制数按k的次幂形式展开,然后按十进制数相加即可得结果.如右图所示:八进制十进制二进制十六进制重难点1.几进制就是逢几进一,借一当几。
小学奥数基础教程附练习题和答案六年级讲全册版(终审稿)
小学奥数基础教程附练习题和答案六年级讲全册版Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】小学数学奥数基础教程(六年级)本教程共30讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
也就是说,6.借助第三个数进行比较。
有以下几种情况:(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。
注意,(2)与(3)的差别在于,(2)中借助的数k小于原来的两个分数m和n;(3)中借助的数k大于原来的两个分数m和n。
六年级奥数.应用题.分数百分数应用题(ABC级).学生版
一、 解决分百应用题的关键关键——找出“量”与“率”的对应. 要点——“标准量”,即单位“1”的寻找.二、 单位“1”的标志与线索(1) 明显标志 “占”、“是”、“比”、“相当于”这些词语后面的对象.例:a 是(占、相当于)b 的几分之几,就把b 看作单位“1”. 甲比乙多(少)几分之几,就把乙看作单位“1”. (2) 隐含线索题目没有明确给出比较对象,需要分析增加(减少)了谁的几分之几,一般是指增加(减少)了前面那种状态的几分之几,也就是说前面那种状态下的量就是单位“1”.例:水结成冰后体积增加了几分之几,意思是增加了原来状态(水)的几分之几.三、 “率”的寻找方法明示的“率”自不必说. 没有明确指出的“率”,一般可以画线段图,通过分析整体的组成来找出.四、 常用解题模式(1) 量÷对应率=单位“1” (2) 分数即份数,设数解决(3) 多对象多状态多维度,列表解决(1) 重点:单位“1”和“率”的寻找方法、分百应用题的解题模式(2) 难点:借助线段图寻找隐含的“率”、列表法的应用、三种常见解题模式的适用范围知识框架重难点分数百分百应用题一、 单位“1”不变【例 1】 五年级男生有50人,女生有40人.(1)女生人数是男生人数的几分之几? (2)男生人数比女生人数多几分之几? (3)女生人数比男生人数少几分之几?(4)女生比男生少的人数是全班人数的几分之几?【巩固】 一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重______千克.【例 2】 下图中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例. 由图可知,这本书共有 页.【巩固】 水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原来库存量多六分之一,原来库存水果多少万斤?例题精讲【例3】小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页?【巩固】已知小明家2007年总支出是24300元,各项支出情况如图所示,其中教育支出是______元.【例4】小静的书架上有三种不同种类的书,其中漫画书比故事书多2本,小说书比故事书少2本,已知故事书比小说书多25%,那么漫画书比故事书多百分之几?【巩固】小红和小明帮刘老师修补一批破损图书.图中信息计算,小红和小明一共修补图书本.【例5】菜地里黄瓜得到丰收,收下全部的38时,装满了4筐还多36千克,收完其余的部分时,又恰好装满8筐,求共收黄瓜多少千克?【巩固】菜园里西红柿获得丰收,收下全部的38时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?【例6】春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩平均身高比男孩高10%,这个班男孩的平均身高是厘米.【巩固】我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收6.9元,用量超过8立方米的除交6.9元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是82.26元,8月份煤气费是40.02元,又知道8月份煤气用量相当于1月份的715,那么超过8立方米后,每立方米煤气应收多少元?二、单位“1”变化【例7】养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【巩固】学校男生比女生多37,女生比男生少几分之几?【例8】学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【巩固】工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【例9】某校三年级有学生240人,比四年级多14,比五年级少15.四年级、五年级各多少人?【巩固】把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【例10】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【巩固】王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【例11】某校四年级原有两个班,现在要重新编为三个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多110,那么原一班有多少人?【巩固】某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有人,二车间有人.三、单位“1”统一【例12】甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。
小学奥数--六年级简便计算(学生版)
六年级奥数-----简便计算简便运算(1)一、典型例题例1. (1)9999×7778+3333×6666 (2)765×64×0.5×2.5×0.125例2.399.6×9-1998×0.8 例3.654321×123456-654322×123455二、熟能生巧1.(1)888×667+444×666 (2)9999×1222-3333×6662.(1)400.6×7-2003×0.4 (2)239×7.2+956×8.23.(1)1989×1999-1988×2000 (2)8642×2468-8644×2466三、拓展演练1.1234×4326+2468×2837 2.275×12+1650×23-3300×7.5 3.7654321×1234567-7654322×1234566四、星级挑战★1.31÷5+32÷5+33÷5+34÷5 ★★★2.3333×4+5555×5+7777×7★★★3.99+99×99+99×99×99 ★★★4. 48.67×67+3.2×486.7+973.4×0.05简便运算(2)一、夯实基础在进行分数的运算时,可以利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还可以运用分数拆分的方法使一些复杂的分数数列计算简便。
同学们在进行分数简便运算式,要灵活、巧妙的运用简算方法。
让我们先回忆一下基本的运算法则和性质:乘法结合律:a×b×c=a×(b×c )=(a×c )×b乘法分配律:a×(b +c )=a×b +a×c a×(b -c )=a×b -a×c 拆分:n n )1(1-=11-n -n 1n k n a)(-=k a (k n -1-n 1)二、典型例题例1.(1)2006÷200620072006 (2)9.1×4.8×421÷1.6÷203÷1.3例2.(1)200620042005120062005⨯+-⨯ (2)(972+792)÷(75+95)例3. 211⨯+321⨯+431⨯……+100991⨯三、熟能生巧1. (1)238÷238239238(2)3.41×9.9×0.38÷0.19÷3103÷1.12.(1)186548362361548362-⨯⨯+ (2)(98+173+116)÷(113+75+94)3. 211⨯+321⨯+431⨯+541⨯+651⨯+761⨯四、拓展演练1.(1)123131÷41391 (2)43×2.84÷353÷(121×1.42)×1542.(1)143138058419921991584204--⨯⨯+ (2)(962524367363+)÷(32258127321+)3.311⨯+532⨯+752⨯+……+99972⨯+101992⨯六、星级挑战★1. 21+41+61+81+161+321+641 ★★2. 351+352+353+……+3534★★★3.421⨯+642⨯+862⨯+……+50482⨯ ★★★4. 131-127+209-3011+4213-5615简便运算(3)一、夯实基础等差数列的一些公式:项数=(末项-首项)÷公差+1某项=首项+公差×(项数-1)等差数列的求和公式:(首项+末项)×项数÷2二、典型例题例1. 2+4+6+8……+198+200例2.0.9+9.9+99.9+999.9+9999.9+99999.9 例3.2008×20092009-2009×20082008三、熟能生巧1.1+3+5+7+……+65+67 2.9+99+999+9999+999993.1120×122112211221-1221×112011201120四、拓展演练1.(1)0.11+0.13+0.15+……+0.97+0.99(2)8.9×0.2+8.8×0.2+8.7×0.2+……+8.1×0.2 2.(1)98+998+9998+99998+999998 (2)3.9+0.39+0.039+0.0039+0.000393.(1)1234×432143214321-4321×123412341234 (2)2002×60066006-3003×40044004六、星级挑战★1.(1)438.9×5 (2)47.26÷5 (3)574.62×25 (4)14.758÷0.25★★2. (44332-443.32)÷(88664-886.64)★★3. 1.8+2.8+3.8+……+50.8★★★4.2002-1999+1996-1993+1990-1987+……+16-13+10-7+4。
六年级奥数.计算.计算满分冲刺(ABC级).学生版
一、 重算理、重法则、重过程。
(一) 算理和法则是计算的依据。
正确的运算必须建筑在透彻地理解算理的基础上,学生的头脑中算理清楚,法则记得牢固,做四则计算题时,就可以有条不紊地进行。
如何讲清算理呢?(二) 如在分数加法教学中,先引导学生讲述算理,概括法则,既使学生搞清了算理,又使学生掌握了法则,为以后学习也打下了基础。
(三) 计算法则是计算方法的程序化和规则化,不懂算理,光靠机械训练也能掌握,但无法适应千变万化的具体情况,更谈不上灵活运用。
因此必须处理好算理和算法之间的关系,引导学生循“理”入“法”,以“理”驭“法”,并通过智力活动,促进计算技能的形成。
计算法则是学生正确进行四则运算的依据,可以注意通过典型例题,讲清计算的步骤和方法。
运算定律和性质,是讲清计算法则和简便算法的基础,可以通过具体式题的计算,引导学生进行观察、比较、分析,找出共同特征,然后加以归纳,使学生认识定律、性质的实际意义。
特别要重视在学生理解的基础上,使他们学会应用运算定律、性质,使一些计算简便的方法,不断提高学生的计算能力。
二、 有效的练习是提高计算能力的重要手段。
为了促使学生熟练掌握计算的技能技巧,形成计算能力,加强练习是必要的,但是练习要注意科学性,讲究实效,练习设计应注意以下几点:(一) 突出法则重点练:一看、二想、三说的互补法训练,使学生眼、脑、口并用,大大促进了学生创造思维能 (二) 容易混淆的对比练:通过对比,不仅巩固了基础知识,而且培养了学生的观察力和注意力。
(三) 经常出错反复练:根据学生平时计算中的错误随时登记,分析归类,有针对性地反复练,起到事半功倍的作用。
(四) 多种类型综合练:为了使学生牢固地掌握计算法则,可以把相似类型的基本题综合在一道混合式题中,使法则在分辨中得到巩固。
知识框架计算满分冲刺(五) 启发学生思考,创造性地练:设计一些题目,启发学生选择最佳算法,怎样简便就怎样算。
直接按法则计算此类题,比较繁难,如果认真观察思考,一旦发现其中的奥妙,就可以化难为易,同时可以发展学生的创造力。
六年级奥数 计算 突破繁分数(ABC级).学生版
六年级奥数计算突破繁分数(ABC级).学生版六年级奥数计算突破繁分数(abc级).学生版突破繁分数科学知识框架一、定义:在一个分数的分子和分母里,至少存有一个又所含分数,这样形式的分数,叫作繁分数。
繁分数中,把分子部分和分母部分分开的那条分数线,叫做繁分数的主分数线(也叫主分线)。
主分线比其他分数线要长一些,书写位置要取中。
在运算过程中,主分线要对准等号。
如果一个繁分数的分子部分和分母部分又是繁分数,我们就把最长的那条主分线,叫做中主分线,依次向上为上一主分线,上二主分线……;依次向下叫下一主分线,下二主分线……;两端的叫末主分线。
根据分数与乘法的关系,分数乘法的运算也可以译成繁分数的形式。
二、繁分数化简把繁分数化成最简分数或整数的过程,叫作繁分数的化简。
繁分数化简通常使用以下四种方法:(1)先找到中主分线,确认出来分母部分和分子部分,然后这两部分分别展开排序,每部分的排序结果,能约分的要约分,最后写成“分子部分÷分母部分”的形式,再求出最后结果。
此题也可以重写成分数乘法的运算式,再展开排序。
分级讲义体系六年级奥数.排序.突破繁分数(abc级).学生版page1of18(2)繁分数化简的另一种方法就是:根据分数的基本性质,经繁分数的分子部分、分母部分同时倍增大相同的倍数(这个倍数必须是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数。
(3)繁分数的化简通常由下至上,由左至右,逐次展开化简。
繁分数的分子部分和分母部分有时也出现是小数的情况,如果分子部分与分母部分都就是小数,可以依据分数的基本性质,把它们都化成整数,然后再展开排序。
如果是分数和小数混合出现的形式,可按照分数、小数四则混合运算的方法进行处理。
即:把小数化成分数,或把分数化成小数,再进行化简。
当分子部分和分母部分都统一成小数后,化简的方法就是:中间约分时,把小数看作整数,但必须特别注意小数点不要点错边线。
学而思小学六年级奥数电子版教材
例 3 已知 ABCD 是平行四边形,BC:CE=3:2,三角形 ODE 的面积为 6 平方厘米.则阴影部 分的面积是 平方厘米.
铺垫 右图中 ABCD 是梯形,ABED 是平行四边形,已知三角形面积如图所示(单位:平 方厘米),阴影部分的面积是 平方厘米。
7
例 4 如图所示,BD、CF 将长方形 ABCD 分成 4 块,△DEF 的面积是 4 平方厘米,△CED 的面积是 6 平方厘米.问:四边形 ABEF 的面积是多少平方厘米?
小升初重点题型精讲
例 1 如图, 等腰直角三角形 ABC 的腰为 10 厘米; 以 A 为圆心, EF 为圆弧, 组成扇形 AEF; 阴影部分甲与乙的面积相等.求扇形所在的圆的面积。
巩固 三角形 ABC 是直角三角形,阴影 I 的面积比阴影Ⅱ的面积小 25cm2,AB=8cm,求
BC 的长度.
例 2 在一个边长为 2 厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图 中阴影部分的面积为 平方厘米.
4. 如图,有一个边长是 5 的立方体,如果它的左上方截去一个边分别是 5,3,2 的长 方体,那么它的表面积减少了百分之 .
5. 选项中有 4 个立方体,其中是用左边图形折成的是(
)
第 3 讲 小升初专项训练·几何二
11
四五年级经典难题回顾
ห้องสมุดไป่ตู้
例 1 如右图所示,直角三角形 ABC 的斜边 AB 长为 10 厘米,∠ABC= 60°,此时 BC 长 5 厘米.以点 B 为中心,将△ABC 顺时针旋转 120°,点 A、C 分别到达点 E、D 的位置.求 AC 边扫过的图形即图中阴影部分的面积.(л取 3)
.
5. 计算:11×29 + 12×28 + … + 19×21 =
六年级奥数.计算.计算军火库之公式与结论(ABC级).学生版
一、等差数列的相关公式 (1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()② 项数公式:项数=(末项-首项)÷公差+1 ③ 求和公式:和=(首项+末项)⨯项数÷2(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.二、常用公式 1. (1)1232n n n ⨯+++++=; 2. 2222(1)(21)1236n n n n ⨯+⨯+++++=;3. ()2223333(1)1231234n n n n ⨯+++++=++++=; 4. ()()()213572112311321n n n n n +++++-=++++-++-++++=;5. 等比数列求和公式:0111111(1)1n n n a q S a q a q a q q --=++⋅⋅⋅+=-(1q ≠);6. 平方差公式:()()22a b a b a b -=+-;7. 完全平方公式:()2222a b a ab b +=++,()2222a b a ab b -=-+;用文字表述为:两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:()2222a b a ab b ±=±+.为便于记忆,可形象的叙述为:“首平方,尾平方,2倍乘积在中央”. 三、常用技巧 1.1001abcabc abc =⨯;知识框架计算军火库之公式与结论2. 10101ababab ab =⨯;3.··10.1428577=,··20.2857147=,··30.4285717=, ··40.5714287=,··50.7142857=,··60.8571427=;4. 1111111111123321n n n ⨯=个个,其中9n ≤.本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基本运算律及公式
1.加法
加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a +b =b +a
其中a ,b 各表示任意一数.例如,7+8=8+7=15
总结:多个数相加,任意交换相加的次序,其和不变.
加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与
第一个数相加,他们的和不变。
即:a +b +c =(a +b )+c =a +(b +c )
其中a ,b ,c 各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).
总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
2.减法
在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”. 例如:a -b -c =a -c -b ,a -b +c =a +c -b ,其中a ,b ,c 各表示一个数.
在加减法混合运算中,去括号时:
如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;
如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”. 如:a +(b -c )=a +b -c
a -(
b +
c )=a -b -c
a -(
b -
c )=a -b +c
在加、减法混合运算中,添括号时:
如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;
如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a +b -c =a +(b -c )
a -
b +
c =a -(b -c )
知识框架
计算基本功强化
a-b-c=a-(b+c)
3.乘、除法
1)商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.
即:()()()()0
a b a n b n a m b m m
÷=⨯÷⨯=÷÷÷≠
,0
n≠
2)在连除时,可以交换除数的位置,商不变.即:a b c a c b
÷÷=÷÷
3)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).
如:a b c a c b b c a
⨯÷=÷⨯=÷⨯
4)在乘、除混合运算中,去掉或添加括号的规则
去括号情形:括号前是“×”时,去括号后,括号内的乘、除符号不变.
括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.
即()()
a b c a b c a b c a b c
⨯⨯=⨯⨯⨯÷=⨯÷
()()
a b c a b c a b c a b c
÷⨯=÷÷÷÷=÷⨯
添括号情形:括号前是“×”时,原符号不变;
括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.
即
()()
()() a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷
÷÷=÷⨯÷⨯=÷÷
5)两个数之积除以两个数之积,可以分别相除后再相乘.即
()()()()()()
a b c d a c b d a d b c
⨯÷⨯=÷⨯÷=÷⨯÷
上面的性质都可以推广到多个数的情形.
二、加减法中的速算与巧算
1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有
相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.
2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.
3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.
4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多
加的数减去,把少加的数加上)\
三、乘法凑整
思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:425100
⨯=,81251000
⨯=,520100
⨯=
123456799111111111
⨯=(去8数,重点记忆)
711131001
⨯⨯=(三个常用质数的乘积,重点记忆)
理论依据:乘法交换率:a×b=b×a
乘法结合率:(a×b) ×c=a×(b×c)
乘法分配率:(a+b) ×c=a×c+b×c
积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)
四、分数与小数混合运算的技巧
在分数、小数的四则混合运算中,到底是把分数化成小数,还是把小数化成分数,这不仅影响到运算过程的繁琐与简便,也影响到运算结果的精确度,因此,要具体情况具体分析,而不能只机械地记住一种化法:小数化成分数,或分数化成小数。
技巧1:一般情况下,在加、减法中,分数化成小数比较方便。
技巧2:在加、减法中,有时遇到分数只能化成循环小数时,就不能把分数化成小数。
此时要将包括循环小数在内的所有小数都化为分数。
技巧3:在乘、除法中,一般情况下,小数化成分数计算,则比较简便。
技巧4:在运算中,使用假分数还是带分数,需视情况而定。
技巧5:在计算中经常用到除法、比、分数、小数、百分数相互之间的变,把这些常用的数互化数表化对学习非常重要。
在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;
在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算.
【例 1】 计算:
20052004200320022001200019991998199719967654321+--++--++-⋅⋅⋅--++--+
【巩固】 计算:
198919881987198619851984198319821981198019791978987654321
++---+++---+⋅⋅⋅+++---+++
重难点
例题精讲。