2018-2019年潮州市数学押题试卷训练试题(2套)附答案

合集下载

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷(解析版)

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷(解析版)

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷一.选择题(共10小题)1.计算()﹣2的结果是()A .B .C .9D .62.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣13.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A .B .C .D .4.在△ABC 中,如果∠A+∠B =90°,那么△ABC 是()A .直角三角形B .钝角三角形C .锐角三角形D .斜三角形5.一个三角形的两边长分别是3和7,则第三边长可能是()A .2B .3C .9D .106.下列计算结果为a 6的是()A .a 2?a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)37.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于()A .132°B .134°C .136°D .138°8.试通过画图来判定,下列说法正确的是()A .一个直角三角形一定不是等腰三角形B .一个等腰三角形一定不是锐角三角形C .一个钝角三角形一定不是等腰三角形D .一个等边三角形一定不是钝角三角形9.下列各式中的变形,错误的是(()A.=﹣B.=C.=D.=10.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共6小题)11.若m+2=3n,则3m?27﹣n的值是.12.若x2﹣6xy+9y2=0且xy≠0,则的值为.13.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=a,则AB的长为.14.已知a+=3,则a2+的值是.15.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=.16.如图,两个正方形边长分别为a、b,且满足a+b=10,ab=12,图中阴影部分的面积为.三.解答题(共9小题)17.分解因式:(1)5mx2﹣10mxy+5my2(2)4(a﹣b)2﹣(a+b)2.18.计算:(1)3x(2x2﹣x+4)(2)(x+5)(x﹣6)19.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,∠B=∠D.求证:AF=CE.20.为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,,则问题即转化成求AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于,此时x=;(2)请你根据上述的方法和结论,试构图求出代数式的最小值.21.先化简,再求值:(x﹣2+)÷,其中x=﹣.22.在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.23.在等边△ABC中,点P、Q是BC边上的两个动点(不与点B、C重合),点P在点Q的左侧且AP=AQ.(1)如图,若∠BAP=15°,求∠BAQ的度数;。

广东省潮州市2018-2019学年高二下学期期末考试数学(理)试题Word版含解析

广东省潮州市2018-2019学年高二下学期期末考试数学(理)试题Word版含解析

广东省潮州市2018-2019学年下学期期末考试高二数学(理)试题一、选择题(本大题共12小题,每小题5分,共60分)1. 复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.【答案】C【解析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.2. 下列说法正确的是()A. 两个变量的相关关系一定是线性相关B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于0C. 在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加1个单位D. 对分类变量与,随机变量的观测值越大,则判断“与有关系”的把握程度越大【答案】D【解析】分析:A. 两个变量的相关关系不一定是线性相关;B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.详解:A. 两个变量的相关关系不一定是线性相关;也可以是非线性相关;B. 两个随机变量的线性相关线越强,则相关系数的绝对值就越接近于1;C.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位D.正确.故选D.点睛:本题考查了两个变量的线性相关关系的意义,线性回归方程,相关系数,以及独立性检验等,是概念辨析问题.3. “因为指数函数是增函数(大前提),而是指数函数(小前提),所以是增函数(结论)”.上面推理错误的原因是()A. 大前提错误B. 小前提错误C. 推理形式错误D. 大前提和小前提都错误【答案】A【解析】试题分析:大前提:指数函数是增函数错误,只有在时才是增函数考点:推理三段论4. 已知随机变量服从正态分布,且,则()A. -2B. 2C. 4D. 6【答案】D【解析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.5. 在的展开式中,含项的系数为()A. 10B. 15C. 20D. 25【答案】B【解析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项令可得,,∴展开式中x2项的系数为15,在的展开式中,含项的系数为:15.故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.6. 若,则实数的值为()A. 1B. -2C. 2D. -2或1【答案】A【解析】分析:据积分的定义计算即可.详解:解得或(舍).故选A点睛:本题考查的知识点是定积分,根据已知确定原函数是解答的关键.7. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思是“有一个人走378里,第一天健步行走,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地.”请问第三天走了()A. 60里 B. 48里 C. 36里 D. 24里【答案】B【解析】试题分析:由题意知,此人每天走的里数构成公比为的等比数列,设等比数列的首项为,则有,,,所以此人第天和第天共走了里,故选C.考点:1、阅读能力及建模能力;2、等比数列的通项及求和公式.8. 若函数的导函数的图象如图所示,则的图象有可能是()A. B.C. D.【答案】C【解析】分析:先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间.详解:由的图象易得当时故函数在区间上单调递增;当时,f'(x)<0,故函数在区间上单调递减;故选:C.点睛:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.9. 小明同学喜欢篮球,假设他每一次投篮投中的概率为,则小明投篮四次,恰好两次投中的概率是()A. B. C. D.【答案】D【解析】分析:利用二项分布的概率计算公式:概率即可得出.详解::∵每次投篮命中的概率是,∴在连续四次投篮中,恰有两次投中的概率.故在连续四次投篮中,恰有两次投中的概率是.故选D.点睛:本题考查了二项分布的概率计算公式,属于基础题.10. 函数在区间上的最大值是2,则常数()A. -2B. 0C. 2D. 4【答案】C【解析】分析:求出函数的导数,得到函数的单调区间,求出函数的最大值是,则值可求.详解:令,解得:或,令,解得:∴在递增,在递减,,故答案为:2点睛:本题考查利用导数求函数在闭区间上的最值,考查了导数的综合应用,属于基础题.11. 已知正项等差数列满足:,等比数列满足:,则()A. -1或2B. 0或2C. 2D. 1【答案】C【解析】分析:根据数列的递推关系,结合等差和等比数列的定义和性质求出数列的通项公式即可得到结论.详解:由,得,∵是正项等差数列,∴,∵是等比数列,则,即故选:D.点睛:本题主要考查对数的基本运算,根据等差数列和等比数列的性质,求出数列的通项公式是解决本题的关键.12. 已知函数,若且对任意的恒成立,则的最大值是()A. 2B. 3C. 4D. 5【答案】B【解析】分析:问题转化为对任意恒成立,求正整数的值.设函数,求其导函数,得到其导函数的零点位于内,且知此零点为函数的最小值点,经求解知,从而得到0,则正整数的最大值可求..详解:因为,所以对任意恒成立,即问题转化为对任意恒成立.令,则令,则,所以函数在上单调递增.因为所以方程在上存在唯一实根,且满足.当时,,即,当时,,即,所以函数在上单调递减,在上单调递增.所以所以因为),故整数的最大值是3,故选:B.点睛:本题考查了利用导数研究函数的单调区间,考查了数学转化思想,解答此题的关键是,如何求解函数的最小值,属难题.二、填空题(本大题共4小题,每小题5分,共20分)13. 已知,那么__________.【答案】8【解析】分析:利用排列数公式展开,解方程即可.详解:,解得.即答案为8.点睛:本题考查排列数公式的应用,属基础题.14. 曲线在点处的切线方程为__________.【答案】【解析】试题分析:因为,所以,则在点处的切线斜率为,所以切线方程为,即;故填.考点:导数的几何意义.15. 将4个大小相同、颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有__________种.【答案】10【解析】分析:根据题意,可得1号盒子至少放一个,最多放2个小球,即分两种情况讨论,分别求出其不同的放球方法数目,相加可得答案.详解:根据题意,每个盒子里的球的个数不小于该盒子的编号,分析可得,可得1号盒子至少放一个,最多放2个小球,分情况讨论:①1号盒子中放1个球,其余3个放入2号盒子,有种方法;②1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,故答案为:10.点睛:本题考查组合数的运用,注意挖掘题目中的隐含条件,全面考虑.属中档题.16. 已知数列的前项和为,,且满足,若,,则的最小值为__________.【答案】-14【解析】分析:由,即利用等差数列的通项公式可得:当且仅当时,.即可得出结论.详解:由由,即.∴数列为等差数列,首项为-5,公差为1.可得:,当且仅当时,.已知,则最小值为即答案为-14.点睛:本题考查了数列递推关系、等差数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共6小题,共70分.解答应写出证明过程或解题步骤)17. 某种产品的广告费用支出(万元)与销售(万元)之间有如下的对应数据:若由资料可知对呈线性相关关系,试求:(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)据此估计广告费用支出为10万元时销售收入的值.(参考公式:,.)【答案】(1);(2).【解析】分析:(1)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再做出的值,得到线性回归方程.(3)把所给的的值代入线性回归方程,求出的值,这里的的值是一个预报值,或者说是一个估计值.详解:(1)由题目条件可计算出,,,,故y关于x的线性回归方程为.(2)当时,,据此估计广告费用支出为10万元时销售收入为万元.点睛:本题考查线性回归方程的求法和应用,本题解题的关键是看出这组变量是线性相关的,进而正确运算求出线性回归方程的系数,属基础题.18. 已知的展开式中第五项的系数与第三项的系数之比是.求:(1)展开式中各项系数的和;(2)展开式中系数最大的项.【答案】(1);(2)和.【解析】分析:(1)由条件求得,令,可得展开式的各项系数的和.(2)设展开式中的第项、第项、第项的系数分别为,,.若第项的系数最大,则,解不等式即可.详解:展开式的通项为.依题意,,得.(1)令,则各项系数的和为.(2)设展开式中的第项、第项、第项的系数分别为,,.若第项的系数最大,则 , 得.于是系数最大的项是和.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.19. 某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,如图所示:试根据图表中的信息解答下列问题:(1)求全班的学生人数及分数在之间的频数;(2)为快速了解学生的答题情况,老师按分层抽样的方法从位于,和分数段的试卷中抽取8份进行分析,再从中任选3人进行交流,求交流的学生中,成绩位于分数段的人数的分布列和数学期望.【答案】(1),20;(2).【解析】解:(1)由茎叶图可知,分数在[50,60)上的频数为4,频率为0.008×10=0.08,故全班的学生人数为=50.分数在[70,80)之间的频数等于50-(4+14+8+4)=20.(2)按分层抽样原理,三个分数段抽样数之比等于相应人数之比.又[70,80),[80,90)和[90,100]分数段人数之比等于5∶2∶1,由此可得抽出的样本中分数在[70,80)之间的有5人,分数在[80,90)之间的有2人,分数在[90,100]之间的有1人.从中任取3人,共有C83=56种不同的结果.被抽中的成绩位于[70,80)分数段的学生人数X的所有取值为0,1,2,3.它们的概率分别是:P(X=0)==,P(X=1)==,P(X=2)===,P(X=3)===.∴X的分布列为∴X的数学期望为E(X)=0×+1×+2×+3×==.20. 公差不为0的等差数列的前项和为,若,,,成等比数列.(1)求数列的通项公式;(2)设,证明对任意的,恒成立.【答案】(1);(2)证明见解析.【解析】试题分析:(1)由已知,把此等式用公差表示出来,解得后可得通项公式;(2)由(1)计算出,为了证明不等式,要想办法求出和,但此和不可能求出,为了证不等式,由(),这样和通过放缩后就可求得,从而证得不等式成立.试题解析:(1)设数列的公差为由题∵,∴(2)由(1)得,∴,当时,成立.当时,,∴成立,所以对任意的正整数,不等式成立.考点:等差数列的通项公式,放缩法证明不等式.21. 设函数,,,其中是的导函数.(1)令,,,求的表达式;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】分析:(1)求出的解析式,依次计算即可得出猜想;(2)已知恒成立,即恒成立.设 (x≥0),则φ′(x)==-=,对进行讨论,求出的最小值,令恒成立即可;详解:由题设得,g(x)= (x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得g n(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即g k(x)=.那么,当n=k+1时,g k+1(x)=g(g k(x))==,即结论成立.由①②可知,结论对n∈N+成立.所以g n(x)=.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)- (x≥0),则φ′(x)==-=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0,即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.综上可知,a的取值范围是(-∞,1].点睛:本题考查了函数的单调性判断与最值计算,数学归纳法证明,分类讨论思想,属于中档题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知在平面直角坐标系中,直线的参数方程是(是参数),以原点为极点,轴正半轴建立极坐标系,曲线的极坐标方程.(1)判断直线与曲线的位置关系;(2)设为曲线上任意一点,求的取值范围.【答案】(1)相离;(2).【解析】试题分析:本题考查参数方程与普通方程、极坐标方程与直角坐标方程的转化,圆的参数方程的应用以及直线和圆的位置关系的判断。

广东省潮州市2018-2019学年高一上学期期末教学质量检测数学试题 Word版含解析

广东省潮州市2018-2019学年高一上学期期末教学质量检测数学试题 Word版含解析

已知全集,集合,则B.D.试题分析:,考点:集合的运算.已知直线过点,且与直线平行,则的方程为(B.D.的方程为,所以的方程为函数在区间上的最小值是B. C. D. 4【答案】在该区间单调递减故当下列函数中,是偶函数又在区间B. C. D.【答案】,,则的关系是与与 D.内,也可能与平面已知函数,若的值是B. 或C. 或D.,【详解】当解得,解得考查了分段函数值计算关键利用每个分段函数都等于,方程的实数解的个数为A. 2B. 3C. 1D. 4【详解】令故有2个交点,故选A.【点睛】考查了数形结合思想,关键将函数解的问题转化为函数交点个数的问题8.在圆上一点的切线与直线垂直,则A. 2B.C.D.【答案】A【解析】【分析】结合圆方程,计算切线斜率,利用直线相互垂直满足的斜率关系【详解】该圆的圆心坐标为,则切线的斜率为,,【点睛】考查了直线垂直的判定如图,正方体的棱线长为,线段上有两个动点,且三棱锥,故正确;由∥平面,可知为三棱锥的高,,三棱锥的体积为已知函数满足且当时,,,A. B. C. D.为偶函数则当都为增函数,故在,,结合单调性的关系,故【点睛】考查了偶函数的性质+的定义域为)∪(题需满足,【详解】函数y=+有意义,需满足,解得且故答案为:,【点睛】这个题目考查了具体函数的定义域问题,常见的有:对数,要求真数大于化简【答案】7,故答案为:7若圆锥的侧面积为,底面积为,则该圆锥的体积为【答案】【解析】试题分析:因为,圆锥的侧面积为,底面积为所以,解得,考点:圆锥的几何特征若函数在上是单调函数,则实数【答案】【详解】结合单调性满足的条件可知故【点睛】考查了二次函数单调性的性质,关键得出当区间位于对称轴的两边时才能保证单调已知集合,,全集当时,求;若;)或,所以,,,有,-1或-1【点睛】本题考查了集合并集的运算及集合间的包含关系及空集的定义,属简单题.已知函数.判断并证明函数的奇偶性;若)要判断函数的奇偶性,只要检验与结合中是奇函数可知解:是奇函数的定义域为设任意是奇函数由知,是奇函数,则,即即解得【点睛】本题主要考查了奇函数的定义及性质的简单应用,属于基础试题.,圆,直线.求圆被直线l截得的弦长;为何值时,圆C因为圆的圆心坐标为则圆心的距离为被圆截得的弦长为的公共弦直线为,因为该弦平行于直线:,,,经检验符合题意,所以的值为【点睛】本题考查了直线与圆的位置关系应用问题,是基础题.均为菱形,且求证:求证:平面推导出,由此能证明,推导出,,由此能证明平面【详解】证明:,面,面,且,所以,,平面的函数是奇函数.用定义证明上为减函数;若对于任意,不等式恒成立,求(3) k<-)为即可;恒成立等价于恒成立,求函数为上的奇函数,∴,得经检验)任取,则.∵,∴,又∴,∴为上的减函数3)∵,不等式,为奇函数,∴,为减函数,∴.恒成立,而考点:1.。

广东省潮州市2018_2019学年高二数学下学期期末教学质量检测试题理(含解析)

广东省潮州市2018_2019学年高二数学下学期期末教学质量检测试题理(含解析)
【答案】36 【解析】 【分析】
从剩余的 4 个字母中选取 2 个,再将这 2 个字母和整体 ab 进行排列,根据分步计数原理求得
结果.
【详解】由于 ab 已经选出,故再从剩余的 4 个字母中选取 2 个,方法有 C42 6 种, 再将这 2 个字母和整体 ab 进行排列,方法有 A33 6 种, 根据分步计数原理求得所有的排列方法共有 6 6 36 种,故答案为 36.
x
即当 x 0 时, xf x f x 0 ,即 h x 0 ,此时函数 h x 单调递增, 当 x 0 时, xf x f x 0 ,即 h x 0 ,此时函数 h x 单调递减, ∴当 x 0 时,函数 h x 取得极小值,同时也是最小值 h 0 0 , ∴当 x 0 时, h x 0 ,∴ h x 1无解,即 xf x 1无解, 即函数 g x f x 1 0 的零点个数为 0 个,故答案为 0.
2 0
31 0 3 ,故选 C.
0
【点睛】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.
7.欧拉公式 eix=cos x+isin x(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函
数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,
被誉为“数学中的天桥”.根据欧拉公式可知,e2i 表示的复数在复平面中对应的点位于( )
6.在平面直角坐标系中,由坐标轴和曲线
y
cos
x
0
x
3 2
所围成的图形的面积为(

A. 2
5
B.
2
C. 3
D. 4
【答案】C
【解析】
【分析】
根据余弦函数图象的对称性可得 S 3 2 cos xdx ,求出积分值即可得结果. 0

广东省潮州市2018_2019学年高二数学下学期期末教学质量检测试题文(含解析)

广东省潮州市2018_2019学年高二数学下学期期末教学质量检测试题文(含解析)

【答案】D 【解析】 【分析】 根据补集和并集的定义可得解.
【详解】因为全集U 0,1,3,5.6,8 ,集合 A 1,5,8
所以 CU A 0,3, 6,得 CU A B 0, 2,3, 6 .故选 D .
【点睛】本题考查集合的补集和并集,属于基础题.
2.函数 f x
x 1 的定义域为() x2
13.已知函数 f x x sinx 1,且 f a 3,则 f a __________.
【答案】 1
【解析】 【分析】
由函数的解析式代入 a 和 a ,观察其关系可得解.
【 详 解 】 依 题 意 , f a a sin a 1 3 , 即 a sin a 2 ; 故
-7-
精品文档,欢迎下载!
1 x2
【答案】D
D.
-6-
精品文档,欢迎下载!
【解析】
【分析】
做出两支函数的图象,观察其交点可得选项.
【详解】函数
y
1 e
x
ln
x
的两个零点即函数
y
1 x e

y
ln
x
两个交点的横坐标,作
出两个函数的图象,如图,
由图不难发现: 0 x2 1, x1 1,
1 x2
1,0
1 x1
2.选择题每小题选出答案后,用 2B 铅笔把答题卷上对应题目的答案标号涂黑:如需改动,用
橡皮擦干净后,再选涂其它答案;不能答在试卷上.
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在各题自指定区域内相应位置上:
如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液.不按以上要求
A. 2
B. 2

2018-2019学年广东省潮州市潮安区八年级(上)期末数学试卷(解析版)

2018-2019学年广东省潮州市潮安区八年级(上)期末数学试卷(解析版)

2018-2019学年广东省潮州市潮安区八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中只有一个是正确的,请将所选选项的字母填在题目后面的括号内.1.(3分)(﹣)﹣1=()A.B.C.3D.﹣32.(3分)芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00 000 201kg,用科学记数法表示10粒芝麻的重量为()A.2.01×10﹣6kg B.2.01×10﹣5kgC.20.1×10﹣7kg D.20.1×10﹣6kg3.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.4.(3分)已知△ABC中,∠A=20°,∠B=70°,那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形5.(3分)一个三角形的三边长分别为x、2、3,那么x的取值范围是()A.2<x<3B.1<x<5C.2<x<5D.x>26.(3分)下列各式中计算正确的是()A.t10÷t9=t B.(xy2)3=xy6C.(a3)2=a5D.x3x3=2x6 7.(3分)如图,已知AB∥CD,CE交AB于点F,若∠E=20°,∠C=45°,则∠A的度数为()A.5°B.15°C.25°D.35°8.(3分)图中的三角形被木板遮住了一部分,这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能9.(3分)下列式子从左到右的变形一定正确的是()A.=B.=C.=D.=10.(3分)根据下列已知条件,能唯一画出△ABC的是()A.AB=5,BC=3,AC=8B.AB=4,BC=3,∠A=30°C.∠C=90°,AB=6D.∠A=60°,∠B=45°,AB=4二、填空题:本大题共6小题,每小题4分,共24分.请将下列各题的正确答案填写在橫线上.11.(4分)计算:﹣y2•(﹣y)3•(﹣y)4=.12.(4分)当x=2018时,分式的值为.13.(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.14.(4分)若a2+b2=12,ab=﹣3,则(a﹣b)2的值应为.15.(4分)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=°.16.(4分)用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a,b的等式为.三、解答题(一):本大题共3小题,每小题6分,共18分17.(6分)分解因式:(1)m2﹣4mn+4n2(2)2x2﹣18.18.(6分)计算:(x﹣2)(x+5)﹣x(x﹣2).19.(6分)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.四、解答题(二):本大题共3小题,每小题7分,共21分20.(7分)如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使P A+PB最小(不写作法,保留作图痕迹)21.(7分)已知a2﹣2a﹣2=0,求代数式的值.22.(7分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.五、解答题(三):本大题共3小题,每小题9分,共27分23.(9分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠P AC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.24.(9分)观察探索:①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1④(x﹣1)(x4+x3+x2+x+1)=x5﹣1…(1)根据规律写出第⑤个等式:;(2)求27+26+25+24+23+22+2的值;(3)请求出22018+22017+22016+…+22+2的个位数字.25.(9分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠F AC的平分线交BC于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.2018-2019学年广东省潮州市潮安区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中只有一个是正确的,请将所选选项的字母填在题目后面的括号内.1.【解答】解:(﹣)﹣1=﹣3.故选:D.2.【解答】解:一粒芝麻重量约有0.00 000 201kg,10粒芝麻的重量为0.0000201kg=2.01×10﹣5kg故选:B.3.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.4.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.5.【解答】解:∵三角形的三边长分别为2,3,x,∴3﹣2<x<2+3,即1<x<5.故选:B.6.【解答】解:A、t10÷t9=t,正确;B、(xy2)3=x3y6,错误;C、(a3)2=a6,错误;D、x3x3=x6,错误;故选:A.7.【解答】解:∵AB∥CD,∠C=45°,∴∠EFB=∠C=45°,∵∠E=20°,∴∠A=∠EFB﹣∠E=25°,故选:C.8.【解答】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角.故选:D.9.【解答】解:A、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故A 错误;B、c=0时,错误;C、分子分母都除以3,故C正确;D、分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D错误;故选:C.10.【解答】解:(1)∵AB+BC=5+3=8=AC,∴不能画出△ABC;(2)已知AB、BC和BC的对角,不能画出△ABC;(3)已知一个角和一条边,不能画出△ABC;(4)已知两角和夹边,能画出△ABC;故选:D.二、填空题:本大题共6小题,每小题4分,共24分.请将下列各题的正确答案填写在橫线上.11.【解答】解:原式=﹣y2•(﹣y)3+4=﹣y2•(﹣y7)=y9,故答案为:y9.12.【解答】解:当x=2018时,==x﹣3=2018﹣3=2015,故答案为:2015.13.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.14.【解答】解:a2+b2=12①,ab=﹣3②,②×2得2ab=﹣6 ③①﹣③得(a﹣b)2=a2﹣2ab+b2=12﹣(﹣6)=18,故答案为:18.15.【解答】解:如图,∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣30°=90°,∴∠5+∠6=180°﹣80°=90°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=72°.故答案为:72.16.【解答】解:S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.三、解答题(一):本大题共3小题,每小题6分,共18分17.【解答】解:(1)m2﹣4mn+4n2=(m﹣2n)2;(2)2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).18.【解答】解:原式=x2+5x﹣2x﹣10﹣x2+2x=5x﹣10.19.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中,∴△BAC≌△ECD(SAS),∴CB=ED.四、解答题(二):本大题共3小题,每小题7分,共21分20.【解答】解:(1)如图所示;C点坐标为;(4,﹣4),D点坐标为:(﹣4,4);(2)连接BD交y轴于点P,P点即为所求;21.【解答】解:原式===.∵a2﹣2a﹣2=0,∴a2﹣2a=2.∴原式=.22.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.五、解答题(三):本大题共3小题,每小题9分,共27分23.【解答】解:(1)图象如图所示;(2)在等边△ABC中,AC=AB,∠BAC=60°,由对称可知:AC=AD,∠P AC=∠P AD,∴AB=AD,∴∠ABD=∠D,∵∠P AC=20°,∴∠P AD=20°,∴∠BAD=∠BAC+∠P AC+∠P AD=100°,∴,∴∠AEB=∠D+∠P AD=60°.(3)结论:CE+AE=BE.理由:在BE上取点M使ME=AE,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴,∴∠AEB=60﹣x+x=60°.∴△AME为等边三角形,易证:△AEC≌△AMB,∴CE=BM,∴CE+AE=BE.24.【解答】解:(1)第⑤个等式是:(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(2)27+26+25+24+23+22+2=2×(22017+22016+…+22+2+1)=2×[(2﹣1)×(26+25+24+23+22+2+1)]=2×(27﹣1)=28﹣2=254;(3)22018+22017+22016+…+22+2=2×(22017+22016+…+22+2+1)=2×[(2﹣1)×(22017+22016+…+22+2+1)]=2×[(22018﹣1)=22019﹣2,∵21的个位数字是2,22的个位数字是4,23的个位数字是8,24的个位数字是6,25的个位数字是2,…,∴2n的个位数字是以2、4、8、6四个数字一循环.2019÷4=504…3,所以22019的个位数字是8,22019﹣2的个位数字是6.故答案为:(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1.25.【解答】解:(1)∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.∵△ABD和△AFD关于直线AD对称,∴△ADB≌△ADF,∴∠B=∠AFD=40°,AB=AF∠BAD=∠F AD=θ,∴AF=AC.∵AG平分∠F AC,∴∠F AG=∠CAG.在△AGF和△AGC中,,∴△AGF≌△AGC(SAS),∴∠AFG=∠C.∵∠DFG=∠AFD+∠AFG,∴∠DFG=∠B+∠C=40°+40°=80°.答:∠DFG的度数为80°;(2)①当GD=GF时,∴∠GDF=∠GFD=80°.∵∠ADG=40°+θ,∴40°+80°+40°+θ+θ=180°,∴θ=10°.当DF=GF时,∴∠FDG=∠FGD.∵∠DFG=80°,∴∠FDG=∠FGD=50°.∴40°+50°+40°+2θ=180°,∴θ=25°.当DF=DG时,∴∠DFG=∠DGF=80°,∴∠GDF=20°,∴40°+20°+40°+2θ=180°,∴θ=40°.∴当θ=10°,25°或40°时,△DFG为等腰三角形;②当∠GDF=90°时,∵∠DFG=80°,∴40°+90°+40°+2θ=180°,∴θ=5°.当∠DGF=90°时,∵∠DFG=80°,∴∠GDF=10°,∴40°+10°+40°+2θ=180°,∴θ=45°,综上所述,当θ=5°或45°时,△DFG为直角三角形.。

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷(解析版)

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷(解析版)

2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷一.选择题(共10小题)1.计算()﹣2的结果是()A.B.C.9D.62.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣13.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.4.在△ABC中,如果∠A+∠B=90°,那么△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.斜三角形5.一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.106.下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)37.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°8.试通过画图来判定,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形9.下列各式中的变形,错误的是(()A .=﹣B .=C .=D .=10.在下列各组条件中,不能说明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,∠C =∠FB .AC =DF ,BC =EF ,∠A =∠DC .AB =DE ,∠A =∠D ,∠B =∠ED .AB =DE ,BC =EF ,AC =DF 二.填空题(共6小题)11.若m +2=3n ,则3m •27﹣n 的值是 .12.若x 2﹣6xy +9y 2=0且xy ≠0,则的值为 . 13.如图,在△ABC 中,∠ACB =90°,CD 是高,∠A =30°,若BD =a ,则AB 的长为 .14.已知a +=3,则a 2+的值是 .15.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β= .16.如图,两个正方形边长分别为a 、b ,且满足a +b =10,ab =12,图中阴影部分的面积为 .三.解答题(共9小题)17.分解因式:(1)5mx 2﹣10mxy +5my 2(2)4(a ﹣b )2﹣(a +b )2.18.计算:(1)3x (2x 2﹣x +4)(2)(x+5)(x﹣6)19.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,∠B=∠D.求证:AF=CE.20.为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,,则问题即转化成求AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于,此时x=;(2)请你根据上述的方法和结论,试构图求出代数式的最小值.21.先化简,再求值:(x﹣2+)÷,其中x=﹣.22.在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.23.在等边△ABC中,点P、Q是BC边上的两个动点(不与点B、C重合),点P在点Q的左侧且AP=AQ.(1)如图,若∠BAP=15°,求∠BAQ的度数;(2)在图2中,作点Q关于直线AC的对称点M,连接AM、PM.①依题意将图2补全(不必用尺规作图);②AM和PM相等吗?如果相等,说明理由;如果不等,为什么?24.探索(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22017+22016+22015+…+22+2+1的值的个位数字是几.25.如图,四边形ABCD中,AB∥CD,AD∥BC,连接AC,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)求证:△ABC≌△CDA.(2)请直接写出图中所有的等腰三角形(不添加字母);(3)图中阴影部分的△AB′O和△CDO是否全等?若全等请给出证明;若不全等,请说明理由.2018-2019学年广东省潮州市金山中学八年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题)1.计算()﹣2的结果是()A.B.C.9D.6【分析】将化成3﹣1再用幂的乘方即可得出结论.【解答】解:()﹣2=(3﹣1)﹣2=32=9,故选:C.【点评】此题主要考查了幂的乘方,负整数指数幂,熟记a﹣p=是解本题的关键.2.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在以下绿色食品,永洁环保,节能,绿色环保四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在△ABC中,如果∠A+∠B=90°,那么△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.斜三角形【分析】根据三角形的内角和是180°计算可得∠C=90°,进而得到结论.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=90°,∴∠C=90°.∴该三角形是直角三角形.故选:A.【点评】本题考查了三角形的内角和定理,解决本题的关键是熟记三角形内角和为180°.5.一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.10【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得7﹣3<x<7+3,再解即可.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.6.下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.7.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.8.试通过画图来判定,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形【分析】根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).【解答】解:A 、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;B 、如等边三角形,既是等腰三角形,也是锐角三角形,故该选项错误;C 、如顶角是120°的等腰三角形,是钝角三角形,也是等腰三角形,故该选项错误;D 、一个等边三角形的三个角都是60°.故该选项正确.故选:D .【点评】此题考查了三角形的分类方法,理解各类三角形的定义.9.下列各式中的变形,错误的是(( )A .=﹣B .=C .=D .= 【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【解答】解:A 、=﹣,故A 正确;B 、分子、分母同时乘以﹣1,分式的值不发生变化,故B 正确;C 、分子、分母同时乘以3,分式的值不发生变化,故C 正确;D 、≠,故D 错误;故选:D .【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.10.在下列各组条件中,不能说明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,∠C =∠FB .AC =DF ,BC =EF ,∠A =∠D C .AB =DE ,∠A =∠D ,∠B =∠E D .AB =DE ,BC =EF ,AC =DF 【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A 、AB =DE ,∠B =∠E ,∠C =∠F ,可以利用AAS 定理证明△ABC ≌△DEF ,故此选项不合题意;B 、AC =DF ,BC =EF ,∠A =∠D 不能证明△ABC ≌△DEF ,故此选项符合题意;C 、AB =DE ,∠A =∠D ,∠B =∠E ,可以利用ASA 定理证明△ABC ≌△DEF ,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.填空题(共6小题)11.若m+2=3n,则3m•27﹣n的值是.【分析】直接利用幂的乘方运算法则再结合同底数幂的乘法运算法则计算得出答案.【解答】解:∵m+2=3n,∴m﹣3n=﹣2,∴3m•27﹣n=3m•3﹣3n=3m﹣3n=3﹣2=.故答案为:.【点评】此题主要考查了幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.12.若x2﹣6xy+9y2=0且xy≠0,则的值为2.【分析】由x2﹣6xy+9y2=0知(x﹣3y)2=0,从而得出x=3y,代入计算可得.【解答】解:∵x2﹣6xy+9y2=0,∴(x﹣3y)2=0,则x﹣3y=0,即x=3y,所以原式===2,故答案为:2.【点评】本题主要考查分式的值,解题的关键是掌握因式分解的应用与整体代入思想求分式的值的能力.13.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,若BD=a,则AB的长为4a.【分析】根据在直角三角形中,30°角所对的直角边等于斜边的一半解答.【解答】解:∵CD是高,∠A=30°,∴∠BCD=30°,∴BC=2BD=2a,∵∠ACB=90°,∠A=30°,∴AB=2BC=4a,故答案为:4a.【点评】本题考查的是含30度角的直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.14.已知a+=3,则a2+的值是7.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.15.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=240°.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°故答案是:240°.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.16.如图,两个正方形边长分别为a 、b ,且满足a +b =10,ab =12,图中阴影部分的面积为 32 .【分析】将a +b =10两边平方,利用完全平方公式展开,将ab 的值代入求出a 2+b 2的值,即为两正方形的面积之和;由两个正方形的面积减去两个直角三角形的性质即可求出阴影部分面积.【解答】解:将a +b =10两边平方得:(a +b )2=a 2+b 2+2ab =100,将ab =12代入得:a 2+b 2+24=100,即a 2+b 2=76,则两个正方形面积之和为76;∴S 阴影=S 两正方形﹣S △ABD ﹣S △BFG =a 2+b 2﹣a 2﹣b (a +b )=(a 2+b 2﹣ab )=×(76﹣12)=32.故答案为:32.【点评】此题考查了整式的混合运算,以及化简求值,熟练掌握完全平方公式是解本题的关键.三.解答题(共9小题)17.分解因式:(1)5mx 2﹣10mxy +5my 2(2)4(a ﹣b )2﹣(a +b )2.【分析】(1)首先提公因式5m ,再利用完全平方公式进行分解即可;(2)直接利用平方差进行分解即可.【解答】解:(1)原式=5m (x 2﹣2xy +y 2)=5m (x ﹣y )2.(2)原式=[2(a ﹣b )]2﹣(a +b )2=[2(a ﹣b )+(a +b )][2(a ﹣b )﹣(a +b )]=(3a ﹣b )(a ﹣3b ).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.计算:(1)3x(2x2﹣x+4)(2)(x+5)(x﹣6)【分析】(1)依据单项式乘多项式法则进行计算即可.(2)依据多项式乘多项式法则进行计算即可.【解答】解:(1)原式=3x•2x2﹣3x•x+3x•4=6x3﹣3x2+12x.(2)原式=x2﹣6x+5x﹣30=x2﹣x﹣30.【点评】本题主要考查的是多项式乘多项式,熟练掌握多项式乘多项式法则是解题的关键.19.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,∠B=∠D.求证:AF=CE.【分析】由AD∥BC得∠A=∠C,再由已知条件可证明△ADF≌△CBE(ASA),AF=CE.【解答】证明:∵AD∥BC∴∠A=∠C在△ADF和△CBE中∴△ADF≌△CBE(ASA)∴AF=CE.【点评】本题考查了全等三角形的判定和性质,若判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件,是基础知识要熟练掌握.20.为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,,则问题即转化成求AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于10,此时x=;(2)请你根据上述的方法和结论,试构图求出代数式的最小值.【分析】(1)根据两点之间线段最短可知AC+CE的最小值就是线段AE的长度.过点E作EF∥BD,交AB的延长线于F点.在Rt△AEF中运用勾股定理计算求解.(2)由(1)的结果可作BD=12,过点A作AF∥BD,交DE的延长线于F点,使AB=2,ED=3,连接AE交BD于点C,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值就是代数式的最小值.【解答】解:(1)过点E作EF∥BD,交AB的延长线于F点,根据题意,四边形BDEF为矩形.AF=AB+BF=5+1=6,EF=BD=8.∴AE==10.即AC+CE的最小值是10.=10,∵EF∥BD,∴=,∴=,解得:x=.(2)过点A作AF∥BD,交DE的延长线于F点,根据题意,四边形ABDF为矩形.EF=AB+DE=2+3=5,AF=DB=12.∴AE==13.即AC+CE的最小值是13.【点评】本题主要考查了最短路线问题以及勾股定理应用,利用了数形结合的思想,通过构造直角三角形,利用勾股定理求解是解题关键.21.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.【分析】(1)根据题意可以得到相应的分式方程,从而可以解答本题;(2)根据题意和第(1)问中的结果可以分别求得三种方式的费用,从而可以解答本题.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件.23.在等边△ABC中,点P、Q是BC边上的两个动点(不与点B、C重合),点P在点Q的左侧且AP=AQ.(1)如图,若∠BAP=15°,求∠BAQ的度数;(2)在图2中,作点Q关于直线AC的对称点M,连接AM、PM.①依题意将图2补全(不必用尺规作图);②AM和PM相等吗?如果相等,说明理由;如果不等,为什么?【分析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由三角形外角的性质即可得到∠APQ的度数,即可得出∠PAQ,进而得到∠BAQ的度数;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.【解答】解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APQ=∠AQP,∵△ABC是等边三角形,∴∠B=60°,又∵∠BAP=15°,∴∠AQB=∠APQ=∠BAP+∠B=75°,∴∠PAQ=30°,∴∠BAQ=15°+30°=45°;(2)①如图2,作点Q关于直线AC的对称点M,连接AM、PM.②相等.∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AM=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.24.探索(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1(x﹣1)(x4+x3+x2+x+1)=x5﹣1(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22017+22016+22015+…+22+2+1的值的个位数字是几.【分析】(1)利用规律得出第五个等式即可;(2)原式变形后,利用得出的规律计算即可得到结果;(3)原式变形后,利用得出的规律计算得到结果,即可做出判断.【解答】解:(1)第五个等式(x﹣1)(x5+x4+x3+x2+x+1)=x6﹣1;(2)原式=(2﹣1)(25+25+24+23+22+2+1)=27﹣1=127;(3)原式=(2﹣1)(22017+22016+22015+…+22+2+1)=22018﹣1,则个位上数字是4﹣1=3.【点评】本题考查了多项式乘多项式,尾数特征,规律型:数字的变化类,熟练掌握运算法则是解本题的关键.25.如图,四边形ABCD中,AB∥CD,AD∥BC,连接AC,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.(1)求证:△ABC≌△CDA.(2)请直接写出图中所有的等腰三角形(不添加字母);(3)图中阴影部分的△AB′O和△CDO是否全等?若全等请给出证明;若不全等,请说明理由.【分析】(1)由AB与CD平行,AD与BC平行,利用两直线平行内错角相等得到两对角相等,再由公共边AC,利用ASA即可得到△ABC与△CDA全等,得证;(2)△AOC和△ABB′都为等腰三角形,理由为:由AD与BC平行,利用两直线平行内错角相等得到一对角相等,再由△AB′C和△ABC关于AC所在的直线对称,得到两三角形全等,由全等三角形的对应角相等得到一对角相等,等量代换得到∠ACB=∠ACB′,利用等角对等边得到OA =OC,即△AOC为等腰三角形;由全等三角形的对应边相等得到AB=AB′,即△ABB′为等腰三角形;(3)△AB′O和△CDO全等,理由为:由△AB′C全等于△ABC,且△ABC全等于△CDA,得到△AB′C全等于△CDA,根据全等三角形的对应边相等得到两对边相等,利用等量代换及等式的性质,得到△AB′O和△CDO三对边相等,利用SSS可得出两三角形全等,得证.【解答】解:(1)证明:∵AB∥CD,AD∥BC,∴∠DAC=∠BCA,∠ACD=∠BAC,在△ABC和△CDA中,,∴△ABC≌△CDA(ASA);(2)图中所有的等腰三角形有:△OAC,△ABB′,△CBB′;∵AD∥BC,∴∠DAC=∠ACB,又∵△AB′C和△ABC关于AC所在的直线对称,∴△AB′C≌△ABC,∴∠ACB=∠ACB′,AB=AB′,即△ABB′为等腰三角形,∴∠DAC=∠ACB′,∴OA=OC,即△OAC为等腰三角形,∵CB=CB′,∴△CBB′为等腰三角形;(3)△AB′O≌△CDO,理由为:证明:∵△AB′C≌△ABC,且△ABC≌△CDA,∴△AB′C≌△CDA,∴B′C=DA,AB′=CD,又OA=OC,∴DA﹣OA=B′C﹣OC,即OB′=OD,在△AB′O和△CDO中,,∴△AB′O≌△CDO.【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质,以及轴对称性质,利用了转化及等量代换的思想,熟练掌握判定与性质是解本题的关键.。

2019届高三冲刺押题卷(二)数学(理)试题含答案

2019届高三冲刺押题卷(二)数学(理)试题含答案

哈尔滨市第六中学2019届高考冲刺押题卷(二)数学试卷(理工类)考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.做答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.做答第Ⅱ卷时,请按题号顺序在各题目规定的答题区域内做答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持答题卡面清洁,不得折叠、不要弄破、弄皱,不准用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量b a,满足)2,1(2m ba ,),1(mb ,且a 在b 方向上的投影是552,则实数m()A .5 B.5 C.2 D.22.已知等差数列}{n a 中,11a ,前10项的和等于前5的和,若06a a m,则m ()A .10 B.9 C.8 D.23.若z 为复数,0:zz p ,2:z q 为实数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件 D.既不充分也不必要条件4.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为xx x n ln )(的结论(素数即质数,43429.0lg e ).根据欧拉得出的结论,如下流程图中若输入n 的值为100,则输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。

相关文档
最新文档