中考数学专题复习之 14 统计(含解析)1 精编

合集下载

2022学年福建省各地中考数学模拟精编试卷(含答案解析)

2022学年福建省各地中考数学模拟精编试卷(含答案解析)

2022学年福建省各地中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=22.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.1563.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.4.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是()A.50和48 B.50和47 C.48和48 D.48和435.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.56.下列方程有实数根的是()A.420x+=B221x-=-C .x+2x−1=0D .111x x x =-- 7.下列各式属于最简二次根式的有( ) A .8B .21x +C .3yD .128.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c9.如图,在平行四边形ABCD 中,E 是边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD′与CE 交于点F ,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )A .40°B .36°C .50°D .45°10.下列各数中,比﹣1大1的是( ) A .0 B .1 C .2 D .﹣311.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( ) A .32,31B .31,32C .31,31D .32,3512.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个B .3个C .2个D .1个二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.不等式组42348x x -+<⎧⎨-≤⎩①②的解集是_____.14.计算:|﹣3|+(﹣1)2= .15.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x 厘米,则依题意列方程为_________.16.江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_______km1.17.抛物线y=(x+1)2 - 2的顶点坐标是______ .18.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=ax+b的图象与反比例函数kyx=的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知10OA=,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.20.(6分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).21.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.22.(8分)已知2是关于x 的方程x 2﹣2mx +3m =0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为_____.23.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.24.(10分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.25.(10分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式; (2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.26.(12分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A ﹣﹣﹣不超过5天”、“B ﹣﹣﹣6天”、“C ﹣﹣﹣7天”、“D ﹣﹣﹣8天”、“E ﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题: (1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是 (选填:A 、B 、C 、D 、E );(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人? 27.(12分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1. (1)求证:无论实数m 取何值,方程总有两个实数根; (2)若方程有一个根的平方等于4,求m 的值.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【答案解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【答案点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.2、C【答案解析】根据中位数的定义进行解答【题目详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【答案点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.3、D【答案解析】测试卷分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.4、A【答案解析】由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.【题目详解】由折线统计图,得:42,43,47,48,49,50,50, 7次测试成绩的众数为50,中位数为48, 故选:A .【答案点睛】本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息. 5、D 【答案解析】根据平均数、中位数、众数和方差的定义逐一求解可得. 【题目详解】 解:A 、平均数为=3,正确;B 、重新排列为1、2、3、3、6,则中位数为3,正确;C 、众数为3,正确;D 、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误; 故选:D . 【答案点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 6、C 【答案解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意; B 22x -≥022x -=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 7、B 【答案解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【题目详解】A=A选项错误;B B选项正确;C=D=D选项错误;故选:B.【答案点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.8、A【答案解析】由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.9、B【答案解析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【题目详解】∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故选B.【答案点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF 和∠AED ′是解决问题的关键. 10、A 【答案解析】用-1加上1,求出比-1大1的是多少即可. 【题目详解】 ∵-1+1=1, ∴比-1大1的是1. 故选:A . 【答案点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”. 11、C 【答案解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1. 故选C . 12、B 【答案解析】分析:根据已知画出图象,把x =−2代入得:4a −2b +c =0,把x =−1代入得:y =a −b +c >0,根据122cx x a⋅=<-,不等式的两边都乘以a (a <0)得:c >−2a ,由4a −2b +c =0得22c a b -=-,而0<c <2,得到102c-<-<即可求出2a −b +1>0. 详解:根据二次函数y =ax 2+bx +c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x =−2代入得:4a −2b +c =0,∴①正确;把x =−1代入得:y =a −b +c >0,如图A 点,∴②错误;∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a (a <0)得:c >−2a , ∴2a +c >0,∴③正确;④由4a −2b +c =0得22c a b -=-, 而0<c <2,∴102c-<-< ∴−1<2a −b <0 ∴2a −b +1>0, ∴④正确.所以①③④三项正确. 故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、2<x≤1 【答案解析】本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集. 【题目详解】 由①得x >2, 由②得x≤1,∴不等式组的解集为2<x≤1. 故答案为:2<x≤1. 【答案点睛】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 14、4. 【答案解析】 |﹣3|+(﹣1)2=4, 故答案为4.15、x+23x=75.【答案解析】测试卷解析:设长方形墙砖的长为x厘米,可得:x+23x=75.16、1.016×105【答案解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【题目详解】解:101 600=1.016×105故答案为:1.016×105【答案点睛】本题考查科学计数法,掌握概念正确表示是本题的解题关键.17、(-1,-2)【答案解析】测试卷分析:因为y=(x+1)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣2),故答案为(﹣1,﹣2).考点:二次函数的性质.18、4 5【答案解析】测试卷分析:根据概率的意义,用符合条件的数量除以总数即可,即1024 105-=.考点:概率三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=3x;y=12x﹣12;(2)54;(1)﹣2<x<0或x>1;【答案解析】(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.(1)根据A、B的横坐标结合图象即可得出答案.【题目详解】解:(1)过A作AM⊥x轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=.把B(﹣2,n)代入反比例函数的解析式得:n=﹣,即B的坐标是(﹣2,﹣),把A、B的坐标代入y=ax+b得:,解得:k=.b=﹣,即一次函数的解析式是y=x﹣.(2)连接OB,∵y=x﹣,∴当x=0时,y=﹣,即OD=,∴△AOB的面积是S△BOD+S△AOD=××2+××1=.(1)一次函数的值大于反比例函数的值时x 的取值范围是﹣2<x <0或x >1,故答案为﹣2<x <0或x >1.【答案点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.20、(1)y=﹣x 2+2x+4;M (1,5);(2)2<m <4;(3)P 1(311,31),P 2(313,31 ),P 3(3,1),P 4(﹣3,7). 【答案解析】测试卷分析:(1)将点A 、点C 的坐标代入函数解析式,即可求出b 、c 的值,通过配方法得到点M 的坐标;(2)点M 是沿着对称轴直线x=1向下平移的,可先求出直线AC 的解析式,将x=1代入求出点M 在向下平移时与AC 、AB 相交时y 的值,即可得到m 的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM 与△BCD 相似,则要进行分类讨论,分成△PCM ∽△BDC 或△PCM ∽△CDB 两种,然后利用边的对应比值求出点坐标.测试卷解析:(1)把点A (3,1),点C (0,4)代入二次函数y=﹣x 2+bx+c 得, 解得 ∴二次函数解析式为y=﹣x 2+2x+4, 配方得y=﹣(x ﹣1)2+5,∴点M 的坐标为(1,5);(2)设直线AC 解析式为y=kx+b ,把点A (3,1),C (0,4)代入得, 解得:∴直线AC 的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC 两边分别交于点E 、点F把x=1代入直线AC 解析式y=﹣x+4解得y=3,则点E 坐标为(1,3),点F 坐标为(1,1)∴1<5﹣m <3,解得2<m <4;(3)连接MC ,作MG ⊥y 轴并延长交AC 于点N ,则点G 坐标为(0,5) ∵MG=1,GC=5﹣4=1∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N 坐标为(﹣1,5),∵NG=GC ,GM=GC , ∴∠NCG=∠GCM=45°, ∴∠NCM=90°,由此可知,若点P 在AC 上,则∠MCP=90°,则点D 与点C 必为相似三角形对应点①若有△PCM ∽△BDC ,则有∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°,若点P 在y 轴右侧,作PH ⊥y 轴, ∵∠PCH=45°,CP=∴PH== 把x=代入y=﹣x+4,解得y=, ∴P 1();同理可得,若点P 在y 轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P 2();②若有△PCM ∽△CDB ,则有 ∴CP==3 ∴PH=3÷=3, 若点P 在y 轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P 在y 轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P 3(3,1);P 4(﹣3,7).∴所有符合题意得点P 坐标有4个,分别为P 1(),P 2(),P 3(3,1),P 4(﹣3,7).考点:二次函数综合题21、(1)11k =-,25k =;(2)0<n <1或者n >1.【答案解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【题目详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x =>的图象上,∴25k =.(2)观察图象可知,满足条件的n的值为:0<n<1或者n>1.【答案点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.22、11【答案解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【题目详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【答案点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质23、3+1【答案解析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.【题目详解】原式=21-1【答案点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.24、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【答案解析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A >y B ,选择B 方式上网学习合算,当x >50时,∵y A =0.6x ﹣8,y B =0.6x ﹣20,y A >y B ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,y A <y B ,选择A 方式上网学习合算,当x=30时,y A =y B ,选择哪种方式上网学习都行,当x >30时,y A >y B ,选择B 方式上网学习合算.【答案点睛】本题考查一次函数的应用.25、(1)y=6x ;(2)454;(3)32<x <1. 【答案解析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算;(3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【题目详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【答案点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.26、(1)见解析;(2)A;(3)800人.【答案解析】(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【题目详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A,故答案为:A;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【答案点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27、(1)证明见解析;(2)m 的值为1或﹣2.【答案解析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.【题目详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于2,∴x=±2 是原方程的根,当x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为1 或﹣2.【答案点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.。

专练14 几何中平移与旋转变换-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)

专练14 几何中平移与旋转变换-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)

word可编辑文档专练14 几何中平移与旋转变换1.实践与探究已知:△ABC和△DOE都是等腰三角形,∠CAB=∠DOE=90°,点O是BC的中点,发现结论:(1)如图1,当OE经过点A,OD经过点C时,线段AE和CD的数量关系是________,位置关系是________.(2)在图1的基础上,将△DOE绕点O顺时针旋转α(0°<α<90°)得到图2,则问题(1)中的结论是否成立?请说明理由.(3)如图3在(2)的基础上,当AE=CE时,请求出α的度数.(4)在(2)的基础上,△DOE在旋转的过程中设AC与OE相交于点F,当△OFC为等腰三角形时,请直接写出α的度数.【答案】(1)AE=CD;AE⊥CD(2)中的结论仍然成立理由如下:连接AO,延长DC交AE于点M,设OE,MD相交于点N∵△ABC是等腰直角三角形,O是BC的中点∴AO=CO,AO⊥BCword可编辑文档∴∠AOC=∠EOD=90°∴∠AOE=∠COD∵OE=OD∴△AOE≌△COD(SAS)∴AE=CD,∠AEO=∠CDO∵∠CDO+∠OND=90°,且∠OND=∠MNE∴∠AEO+∠MNE=90°∴∠DME=90°∴DM⊥AE即DC⊥AE(3)连接OA,如图3,∵AE=CE,OA=OC∴OE是AC的垂直平分线∴∠AOE=∠COE=45°∴α=45°(4)①若OF=FC时,如图4,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°∴∠FOC=45°∵AO⊥BC∴∠AOC=90°∴∠AOF=90°-45°=45°,即α=45°;②当OC=FC时,如图5,∵△ABC是等腰直角三角形,∠BAC=90°,∴∠ACB=45°=67.5°∴∠FOC= 180°−45°2∵AO⊥BC∴∠AOC=90°∴∠AOF=90°-67.5°=22.5°,即α=22.5°;综上所述,α的度数为45°或22.5°.【解析】解:(1)∵△ABC是等腰三角形,∠CAB =90°,∴∠ACB=45°∵点O是BC的中点,∴AO⊥BC∴△AOC是等腰直角三角形,∴AO=CO∵△DOE是等腰三角形,∠DOE=90°,∴EO=DO∴EO-AO=DO-CO即AE=CD∵OE经过点A,OD经过点C,∴AE⊥CD故答案为:AE=CD AE⊥CD2.如图(1),在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现=________;在图(1)中,CEBG(2)拓展探究的大小有无变化?请仅就图(2)的情将图(1)中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG形给出证明;(3)问题解决当矩形DFGE旋转至B,G,E三点共线时,请直接写出线段CE的长.【答案】(1)45的大小无变化.(2)CEBG证明:如图(1),连接BD,DG,由题意可知:∠1=∠EDG,∴∠1+∠2=∠EDG+∠2,即∠CDE=∠BDG,在矩形ABCD中,CD=8,BC=6,∴BD=√CD2+BC2=10,∴CDBD =45,在矩形DFGE中,DE=4,GE=3,∴DG=√DE2+GE2=5,∴DEDG =45,∴CDBD =DEDG,∴ΔCDE∼ΔBDG,∴CEBG =DEDG=45;(3)CE=8√21+125或8√21−125如图(2),图(3):如图(2),当点E在线段BG上,由(2)知,ΔCDE∼ΔBDG,CEBG =45,在Rt△BDE中,DB=10,DE=4,word可编辑文档∴BE=√102−42=2√21∴BG=2√21+3∵CEBG =45∴2√21+3=45∴CE=8√21+125;当点E在BG的延长线上时,由(2)知,ΔCDE∼ΔBDG,CEBG =45,在Rt△BDE中DB=10,DE=4,∴BE=√102−42=2√21∴BG=2√21−3∵CEBG =45∴2√21−3=45∴CE=8√21−125综上所述,CE=8√21+125或8√21−125【解析】(1)解:延长FG交BC于点H,则CH=BH=3,GH=EC=4,∠GHB=90°,∴BG=5,∴CEBG =45,故答案为:45 3.如图(1)【问题探究】如图①,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD ,使AE=AB ,AD=AC ,∠BAE=∠CAD=90°,连接BD ,CE ,试猜想BD与CE的大小关系,不需要证明.(2)【深入探究】如图②,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD ,使AE=AB ,AD =AC ,∠BAE=∠CAD ,连接BD、CE ,试猜想BD与CE的大小关系,并说明理由.(3)【拓展应用】如图③,在△ABC中,∠ACB=45°,以AB为直角边,A为直角顶点向外作等腰直角△ABD ,连接CD ,若AC= √2,BC=3,则CD长为________.【答案】(1)BD=CE(2)解:BD=CE理由:∵∠BAE+∠BAC=∠CAD+∠BAC,即∠CAE=∠DAB,在△CAE和△DAB中,{AE=AB∠CAE=∠DABAC=AD),∴△CAE≌△DAB(SAS),∴BD=CE;(3)√13【解析】(1)证明:∵∠EAB+∠BAC=∠DAC+∠BAC,即∠CAE=∠DAB,在△CAE和△DAB中,{AE=AB∠CAE=∠DABAC=AD),∴△CAE≌△DAB(SAS),∴BD=CE;(3)解:如图,作等腰直角△CAE,使∠CAE=90°,由题(1)得BE=CD,∵EC=√2AC=2,∵∠BCA+∠ACE=90°,∴BE=√BC2+CE2=√32+22=√13.故答案为:√13.4.(1)(问题情境)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB上一点,过点E且垂直于DE的直线交AC于点F.易知BE与CF的数量关系为________.(2)(探索发现)如图②,在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,连结CD,点E为CB的延长线上一点,过点E且垂直于DE的直线交AC的延长线于点F.(问题情境)中的结论还成立吗?请说明理由.(3)(类比迁移)如图③,在等边△ABC中,AB=4,点D是AB中点,点E是射线AC上一点(不与点A、C重合),将射线DE绕点D逆时针旋转60°交BC于点F.当CF=2CE时,CE=________.【答案】(1)BE=CF(2)解:成立,理由如下:∵在Rt△ABC中,D为AB中点,∴CD=BD,又∵AC=BC,∴DC⊥AB,∴∠DBC=∠DCB=45°,∵DE⊥DF,∴∠EDF=90°,∴∠EDB+∠BDF=∠CDF+∠BDF=90°,∴∠CDF=∠BDE,∴∠ADF=∠CDE,∴AF=CE,∴CF=BE;(3)3−√3或−1+√7【解析】解:问题情境:证明:∵在Rt△ABC中,∠ACB=90°,AC=BC,点D为AB中点,∴CD⊥AB,CD=BD=AD=12AB,∠BCD=∠B=45°,∴∠BDC=90°,∵∠EDF=90°,∴∠CDF=∠BDE,在△BDE与△CDF中,∵∠B=∠DCF,BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF(ASA),∴BE=CF;类比迁移:∵△ABC是等边三角形,∴∠A=∠B=60°,∵∠FDE=60°,∴∠BDF=120°−∠ADE,∠AED=120°−∠ADE,∴∠BDF=∠AED,∴△AED∽△BDF,∴ADBF =AEBD,∵点D为AB中点,AB=4,∴AD=BD=2,AC=BC=4,∵CF=2CE,∴设CE=x,则CF=2x,当点E在线段AC上时,∴AE=4−x,BF=4−2x,∴24−2x=4−x2,解得:x=3− √3,x=3+√3(不合题意,舍去),∴CE=3− √3,如图,当点E在AC的延长线上时,∵AE=4+x,BF=4−2x,∴24−2x=4+x2,解得:x=−1+√7,(负值舍去),∴CE=−1+√7.综上所述,CE=3− √3或−1+√7,故答案为:CE=3− √3或−1+√7.5.如图(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=________(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;________(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC=________(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.________【答案】(1)解:∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)α;解:∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α;证明:数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【解析】(2)解:∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α;(3)解:180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α6.将一副三角尺如图①摆放,在RtΔABC中,∠ACB=90∘,∠B=60∘;在RtΔDEF中,∠EDF=90∘,∠E=45∘,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将ΔDEF绕点D顺时针方向旋转角α(0∘<α<60∘),此时的等腰直角三角尺记为ΔDE′F′,DE′交AC于点M,DF′交BC于点N,试判断PM的值是否随着α的变化而变化?如CN的值;反之,请说明理由.果不变,请求出PMCN【答案】(1)解:如图①,∵∠ACB=90°,点D为AB的中点,AB,∴CD=AD=BD=12∴∠ACD=∠A=30°,∴∠ADC=180°−30°×2=120°,∴∠ADE=∠ADC−∠EDF=120°−90°=30°;(2)解:如图②,∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴ΔBCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在ΔDPM和ΔDCN中,{∠PDM=∠CDN∠CPD=∠BCD,∴ΔDPM∽ΔDCN,∴PMCN =PDCD,∵PDCD =tan∠ACD=tan30°=√33,∴PMCN 的值不随着α的变化而变化,是定值√33.7.将两个全等的直角三角形△ABC和△DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图②.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由;(3)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图③中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立.【答案】(1)证明:连接BF,如图,∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,{BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.word可编辑文档(2)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,{BF=BFBC=BE,∴△BCF≌△BEF(HL),∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.(3)解:画出正确图形如图:同(1)得CF=EF,∵△ABC≌△DBE,∴AC=DE,∴AF+FC=AF+EF=AC=DE.∴(1)中的结论AF+EF=DE仍然成立;8.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CEPD',旋转角为a.(1)当点D'恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a之90°,求证:GD'=E'D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△ DCD'与A CBD'能否全等?若能,直接写出旋转角α的值:若不能说明理由.【答案】(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵ CD∥ EF,∴∠α=30°(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=C E′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中{CD′=CD∠GCD′=∠GCE′CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α= 360∘−90∘2=135°,当△BCD′与△DCD′为锐角三角形时,∠ BCD′=∠ DCD′= 12 ∠BCD=45° 则α=360°﹣90∘2=315°,即旋转角a 的值为135°或315°时,△BCD′与△ DCD′全等.9.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“邻好四边形”. (1)概念理解:如图1,在四边形 ABCD 中,添加一个条件,使得四边形 ABCD 是“邻好四边形”,请写出你添加的一个条件________;(2)概念延伸:下列说法正确的是________.(填入相应的序号) ①对角线互相平分的“邻好四边形”是菱形;②一组对边平行,另一组对边相等的“邻好四边形”是菱形; ③有两个内角为直角的“邻好四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“邻好四边形”是正方形; (3)问题探究:如图 2 ,小红画了一个 RtΔABC ,其中 ∠ABC =90° , AB =2 , BC =1 ,并将 RtΔABC 沿 ∠B 的平分线 BB ′ 方向平移得到 ΔA ′B ′C ′ ,连结 AA ′ , BC ′ ,要使平移后的四边形 ABC ′A ′ 是“邻好四边形”应平移多少距离(即线段 BB ′ 的长)? 【答案】 (1)AB=AD (2)①④(3)∵∠ABC=90°,AB=2,BC=1, ∴AC= √5 ,∵将Rt △ABC 平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB ,A′B′=AB=2,B′C′=BC=1,A′C′=AC= √5 ,(I)如图1,当AA′=AB时,BB′=AA′=AB=2;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′= √5;(III)当A′C′=BC′= √5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∠ABC=45°,∴∠ABB′= 12∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′= √2x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=( √5)2 ,解得:x1=1,x2=−2(不合题意,舍去),∴BB′= √2x =√2;(Ⅳ)当BC′=AB=2时,如图4,同理可得:BD2+C′D2=BC′2 ,设B′D=BD=x,则x2+(x+1)2=22 ,解得:x1=−1+√72,x2=−1−√72.(不合题意,均舍去),∴BB′= √2x =−√2+√142.综上所述,要使平移后的四边形ABC′A′是“邻好四边形”应平移2或√5或1或−√2+√142.【解析】(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD;(2)①符合题意,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“邻好四边形”,∴这个四边形有一组邻边相等,∴这个“邻好四边形”是菱形;②不符合题意,理由为:一组对边平行,另一组对边相等的“邻好四边形”也有可能是等腰梯形;③不符合题意,理由为:有两个内角为直角的“邻好四边形”不是平行四边形时,该结论不成立;④符合题意,理由为:一组对边平行,另一组对边相等且有一个内角是直角可得到“四个角都是直角”,则该四边形是矩形,根据“邻边相等的矩形为正方形”,所以④的说法符合题意.故答案是:①④;10.如图1,已知直线MN //GH,且MN和GH之间的距离为1,小明同学制作了两个直角三角形硬纸板ACB和DEF,其中∠ACB=90°,∠DFE=90°,∠BAC=45°,∠EDF=30°,AC=1.小明利用这两块三角板进行了如下的操作探究:(1)如图1,点A在MN上,边BC在GH上,边DE在直线AB上.①将直角三角形DEF沿射线BA的方向平移,当点F在MN上时,如图2,求∠AFE的度数;②将直角三角形DEF从图2的位置继续沿射线BA的方向平移,当以A、D、F为顶点的三角形是直角三角形时,求∠FAN度数;(2)将直角三角形ABC如图3放置,若点A在直线MN上,点C在MN和GH之间(不含MN,GH上),边BC和AB与直线GH分别交于D,K.在△ABC绕着点A旋转的过程中,设∠MAK=n°,∠CDK=(4m﹣2n﹣10)°,则m的取值范围为________.【答案】(1)解:①∵∠DFE=90°,∴∠DEF+∠EDF=90°,∵∠EDF=30°,∴∠DEF=60°,∵∠DEF=∠EAF+∠AFE,∴∠AFE=∠DEF﹣∠EAF=60°﹣45°=15°;②如图,当∠AFD=90°时,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∵∠BAC=45°∴∠ABC=45°,∵MN∥GH,∴∠BAN=∠ABC=45°,∵∠AFD=90°,∴∠FAD+∠ADF=90°,∵∠ADF=30°,∴∠FAD=60°,∴∠FAN=∠FAD﹣∠BAN=60°﹣45°=15°;如图,当∠FAD=90°时,∠FAN=∠FAD﹣∠BAN=90°﹣45°=45°,∴∠FAN度数为15°或45°;(2)70°<m<92.5°【解析】解:(2)如图,∵∠BAC=45°,∠ACB=90°,∴∠AKD+∠CDK=360°-90°-45°=225°,∵MN∥GH,∴∠MAK=∠AKD=n°,∵∠AKD+∠CDK=225°,∴(n+4m-2n-10) °=225°,整理得:n°=(4m-235) °,∵AC=1,且EF和GH之间的距离为1,如图,点C在直线MN上时,点B、K、D重合,∠MAK= n°=180°-45°=135°,如图,点C在直线GH上时,点B、K、D重合,∠MAK= n°=90°-45°=45°,∵点C在MN和GH之间(不含MN、GH上),∴45°<n°<135°,即45°<(4m-235) °<135°,∴m的取值范围是:70°<m<92.5°.故答案为:70°<m<92.5°.11.如图,菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=18,E,F在对角线BD上.(1)若BE=DF,①判断四边形AECF的形状并说明理由;②若BE=AE,求线段EF的长;(2)将(1)中的线段EF从当前位置沿射线BD的方向平移,若平移过程中∠EAO=∠EFA,求此时OF 的长.【答案】(1)解:①∵四边形ABCD为菱形∴AC⊥BD,OA=OC,OB=OD∵BE=DF∴OB-BE=OD-DF∴AC⊥EF且OA=OC,OE=OF ∴四边形AECF是菱形;②由①可知四边形AECF是菱形∴EF=2OE又∵四边形ABCD是菱形∴OB= 12BD=9,OA=12AC=3设OE=x,则AE=BE=9-x在Rt△AOE中,x2+32=(9−x)2,解得x=4 ∴EF=2OE=8(2)解:在(1)的位置下,EF=8,且AC⊥EF ∴∠AOE=∠FOA=90°又∵在平移过程中,∠EAO=∠EFA∴△AOE与△FOA相似如图:①当点E在O点左侧时,△AOE∽△FOA 设OF=x,则OE=8-x此时AOOF =OEAO,即3x=8−x3解得:x1=4+√7,x2=4−√7<4(不合题意,舍去)②当点E在O点右侧时,△AOE∽△FOA设OF=x,则OE=x-8此时AOOF =OEAO,即3x=x−83解得:x1=9,x2=−1(不合题意,舍去)综上所述,OF的长为9或4+√7.12.在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.(1)活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.(思考)图2中的四边形ABDE是平行四边形吗?请说明理由.(2)(发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长. (3)活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).(探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.【答案】(1)解:四边形ABDE是平行四边形.证明:如图,∵△ABC≌△DEF,∴AB=DE,∠BAC=∠EDF,∴AB∥DE,∴四边形ABDE是平行四边形;(2)解:如图1,连接BE交AD于点O,∵四边形ABDE为矩形,∴OA=OD=OB=OE,设AF=x(cm),则OA=OE=12(x+4),∴OF=OA﹣AF=2﹣12x,在Rt△OFE中,∵OF2+EF2=OE2,∴(2−12x)2+32=14(x+4)2,解得:x=94,∴AF=94cm.(3)解:BD=2OF,证明:如图2,延长OF交AE于点H,∵四边形ABDE为矩形,∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,∴∠OBD=∠ODB,∠OAE=∠OEA,∴∠ABD+∠BDE+∠DEA+∠EAB=360°,∴∠ABD+∠BAE=180°,∴AE∥BD,∴∠OHE=∠ODB,word可编辑文档∵EF平分∠OEH,∴∠OEF=∠HEF,∵∠EFO=∠EFH=90°,EF=EF,∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,∴∠EHO=∠EOH=∠OBD=∠ODB,∴△EOH≌△OBD(AAS),∴BD=OH=2OF.。

中考数学专题复习《计数方法》考点专题讲解

中考数学专题复习《计数方法》考点专题讲解

计数方法考点图解技法透析1.计数计数,通俗地说就是数数,即把我们研究的对象的个数数出来.在计数时应遵循的原则是:既不重复也不遗漏.2.计数问题中常运用的方法(1)穷举计数法:当研究对象比较简单数目也不大时,穷举法是最基本而又简单的方法,即把对象的所有可能一一列举出来,最后再求出总数.(2)分类计数法:将研究对象按一定标准分类,然后逐步计数,得出总数,这种方法要用到加法原理.(3)分步计数法:当研究对象较复杂时,为了有序而又正确地思维,我们需要将其分成若干步,然后将每一步的方法数相乘,便可得出总数,这种方法要用到乘法原理.(4)递推过渡法:当研究的对象数目较多又比较复杂时,我们常通过对较少数量对象的观察,采用从简单到复杂,从特殊到一般,探究其变化的规律,最后计算出总数.(5)加法原理和乘法原理:当研究的对象比较复杂,且数目较大时,计数时常常要用到如下两原理:①加法原理:完成一件事情,共有n类办法,第一类办法中又有m1种不同的方法,第二类办法中有m2种不同的方法,第三类办法中又有m3种不同的方法……,第n类办法中有mn种不同的方法,那么完成这件事情共有:m1+m2+m3+…+m n种不同方法.②乘法原理:完成一件事情,共分n个步骤,第一步中又有m1种不同方法,第二步中又有m2种不同方法,第三步中又有m3种不同方法…….第n步中有m n种不同方法,那么完成这件事情共有:m1·m2·m3…·m n种不同方法.3.几何计数问题(1)简单图形个数的计算:这类问题中出现的图形的组成一般比较简单,没有过多的限制条件,但图形数量和计算量都很大,此类计数问题通常需要根据具体问题寻求一定的规律和运用一定的计数方法来解决.(2)条件图形个数的计算:这类问题的图形数目较多且较复杂,所求的是满足某种限制条件的几何图形的个数,解决此类问题的关键是对限制条件的分析,这些条件的要求往往决定了所求图形的不同情况和种类,此为分类计数的重要依据.(3)分割或包围图形个数的计算:它们是指用一类几何图形(如直线)去分割另一类几何图形(如平面或其他封闭图形),或者一类封闭图形包含另一类封闭图形,解决此类问题,除了掌握必要的分割与包含的几何知识之外,还需要借助有关统计的方法和技巧.名题精讲考点1 分类枚举法计数例1 在1到300这300个自然数中,不含有数字3的自然数有_______个.【切题技巧】利用分类枚举法,按数的位数分类;即不含有数字3的一位数有几个;不含数字3的两位数有几个;不含数字3的三位数有几个,最后求出总数.【规范解答】∵不含有数字3的一位数有8个;不含有数字3的两位数有72个;不含有数字3的三位数有162个.∴不含有数字3的自然数共有8+72+162=242个.【借题发挥】分类枚举法就是将所研究对象按某一标准分类,然后把研究对象的各种可能一一列举出来,最后数出总数的方法,这种方法要用到加法原理.在运用枚举法时,必须无一重复,无一遗漏,且枚举法常与分类讨论结合运用,故称为分类枚举法.【同类拓展】1.在1000以内的自然数中,各位数字之和等于16的有多少个?考点2 分步法计数例2 某城市街道如图,一个居民要从A处前往B处,如果规定,只能沿从左向右或从上向下的方向走,那么该居民共有几条可选择的路线?【切题技巧】本例看起来复杂,但可以从简单情况入手寻找规律,按从上向下,从左向右的顺序,从简单情况分步来看复杂问题.如先考虑简单情况如图(1)中的正方形,可知以A到C的方法有2种,再考虑如图(2)中的情况,可以从A到D的方法共有3种……【规范解答】从简单情况入手,先考虑如图(1)中的小正方形,不难发现,从A到C 共有2种方法;再考虑如图(2)中的情况,同样可知:从A到D共有3种方法……从而可总结出下述规律:到右下角终点的走法等于它所在小正方形右上角和左下角走法之和,故依次标出每个小正方形的走法不断累加,即可得到答案.由图(3)可知共有40种走法.【借题发挥】(1)分步计数法就是指当所研究对象较复杂时,为了有序而又正确地思维,将问题分成若干步,最后求出各步的总数.(2)在利用分步法计数时,要克服盲目性和随意性,一定要按照法则或顺序进行、从简单情况人手分步来思考复杂问题是解决问题的常用技巧.(3)分步法常与分类法结合求解.【同类拓展】2.在期中考试中,同学甲、乙、丙、丁分别获得第一、第二、第三、第四名,在期末考试中,他们又是班上的前四名,如果他们当中只有一位的排名与期中考试的排名相同,那么排名情况有_______种可能;如果他们排名都与期中考试中的排名不同,那么排名情况有_______种可能.考点3 递推过渡法计数例3 小美步行上楼的习惯是每次都只跨一级或两级,若她要从地面(0级)步行到第9级,问她共有多少种不同的上楼梯的方式.【切题技巧】因为楼梯台阶较多,我们可以先考虑以简单入手.(1)若只有1级台阶,则只有唯一上楼梯方式;(2)若有2级台阶,则有两种上楼梯的方式:①一级一级地上;②一步两级地上;(3)若有3级台阶,则有三种上楼梯的方式:①一级一级地上,②先一级后2级地上,③先2级后1级地上……如此类推.【规范解答】设小美上第n级楼梯有a n种上法,通过分析易知a1=1,a2=2,a4=5,a n+2=a n+1+a n,n=1,2,3,…,从而递推可得:a5=8,a6=13,a7=21,a8=34,a9=55.所以小美共有55种不同的上楼梯的方式.【借题发挥】(1)当研究对象比较复杂时,要很自然地想到从特殊到一般的思维方式.即从特殊的简单的情况人手探索变化的规律,(2)用递推过渡法计数时先要从最简单情况和特殊情况入手分析,发挥观察、归纳猜想的思想方法,最终探索出变化规律,且在探索一般的规律时,应注意抓住问题的实质为最后计数提供依据.【同类拓展】3.平面上n个圆(n为正整数),最多能把平面分成多少个部分?考点4 加法原理和乘法原理法计数例4 观察如图所示的图形:根据图(1)、(2)、(3)的规律,则图(4)中三角形的个数为_______.【切题技巧】通过观察知:图(1)中三角形的个数为:1+4=5(个);图(2)中三角形的个数为:1+4+3×4=17(个);图(3)中三角形的个数为1+4+3×4+32×4=53(个),由图(1)(2)(3)中三角形的个数的规律,可知图(4)中三角形的个数为1+4+3×4+32×4+33×4=1+4+12+36+108=161(个)【规范解答】 161个【借题发挥】(1)按本例中图(1)、(2)、(3)……的图形规律,则图(n)中三角形的个数为:1+4+3×4+32×4+33×4+…+3n-1×4(个). (2)当研究对象为比较复杂的计数问题中,我们常需要用到加法原理与乘法原理,而且还需要对研究对象进行分析,从简单情形入手,通过观察、归纳、猜想,最后找出其变化规律,再依据规律计算其个数.【同类拓展】4.一个三角形最多将平面分成两部分,两个三角形最多将平面分成8个部分,10个三角形最多将平面分成多少个部分?n个三角形呢?例5 分正方形ABCD的每条边为四等分,取分点(不包括正方形的四个顶点)为顶点可以画出多少个三角形?【切题技巧】显然构成三角形的3个顶点不可能共线,即3个顶点不可能在正方形的同一边上,故最多有2个顶点在正方形的同一边上;又因为三角形顶点只能取分点,故必须在正方形的边上.因此只有两种情况:(1)三角形的顶点分别在正方形的三边长;(2)三角形的顶点分别在正方形的两条边上.【规范解答】分两类计算:(1)第一类:如图(1)三角形的顶点分别在正方形的在三条边上.首先,从4条边中取3条有4种取法;其次从每条边上取一点,各有3种取法,故总共计有4×3×3×3=108(个)三角形.(2)第二类如图(2),三角形的两个顶点位于正方形的一条边上,而第三个顶点在正方形的另一条边上.首先,从4条边取1条有4种取法,在这边3个分点中取2点,也有3种取法;其次,从其余3边中的9点中取1点,有9种取法,故共有4×3×9=108(个)三角形.综上所述,两类合计,共有216个三角形.【借题发挥】(1)在使用加法原理和乘法原理时一定要明确两者的不同之处:在用加法原理时,完成一件事有n类方法,都能完成这件事,而用乘法原理时,完成一件事情可分为n步,只有每一步都完成了,这件事情才得以完成.(2)运用加法原理的关键在于合理适当地进行分类,使所分类既不重复又不遗漏;而运用乘法原理的关键在于分步骤,要正确地设计分步程序,使每步之间既互相联系,又彼此独立.【同类拓展】5.至少有两个数字相同的三位数共有( )个.A.280 B.180 C.252 D.396参考答案1.69个.2.9(种).3.n2-n+2(个部分).4.10个三角形最多将平面分成272个部分,n个三角形最多将平面分成(3n2-3n+2)个部分.5.C。

中考数学专题复习题 数据的收集与整理(含解析)-人教版初中九年级全册数学试题

中考数学专题复习题 数据的收集与整理(含解析)-人教版初中九年级全册数学试题

2017-2018年中考数学专题复习题:数据的收集与整理一、选择题1.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是A. 调查方式是全面调查B. 样本容量是360C. 该校只有360个家长持反对态度D.该校约有的家长持反对态度2.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为A. 70B. 720C. 1680D. 23703.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数大约为A. bnB. anC.D.4.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图根据图某某息,可以估算出该校喜爱体育节目的学生共有A. 300名B. 250名C. 200名D. 150名5.从总体中抽取一部分数据作为样本去估计总体的某种属性下面叙述正确的是A. 样本容量越大,样本平均数就越大B. 样本容量越大,样本的方差就越大C. 样本容量越大,样本的极差就越大D. 样本容量越大,对总体的估计就越准确6.为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是A. 随机抽取100位女性老人B. 随机抽取100位男性老人C. 随机抽取公园内100位老人D. 在城市和乡镇各选10个点,每个点任选5位老人7.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷不完整:8.准备在“国产片,科幻片,动作片,喜剧片,亿元大片”中选取三个作为该问题的备选答案,选取合理的是A. B. C. D.9.设计问卷调查时,下列说法不合理的是A. 提问不能涉及提问者的个人观点B. 问卷应简短C. 问卷越多越好D. 提问的答案要尽可能全面10.下列说法中,正确的是A. 为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B. 在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D. 给定一组数据,则这组数据的中位数一定只有一个11.下列说法中,正确的是A. 一组数据,,0,1,1,2的中位数是0B. 质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式C. 购买一X福利彩票中奖是一个确定事件D. 分别写有三个数字,,4的三X卡片卡片的大小形状都相同,从中任意抽取两X,则卡片上的两数之积为正数的概率为二、填空题12.学校为了考察我校七年级同学的视力情况,从七年级的10个班共540名学生中,每班抽取了8名进行分析,在这个问题中总体是______ ,样本容量是______ .13.一个口袋里有10个白球和一些黑球,为了估计口袋里有多少黑球,小明随机从口袋里摸出一球,记下颜色,在放回,不断重复上述过程,小明共摸了50次,有10次摸到白球,因此可以估计口袋里有______个黑球.14.为估计鱼塘里有多少条鱼,从鱼塘捕100条做上记号,然后放回鱼塘,当有记号的鱼完全混合于鱼群后,再捕200条,其中带有记号的鱼有20条,估计这个鱼塘里有______条鱼.15.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量根据得到的调查数据,绘制成如图所示的扇形统计图若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有______名.16.近几年,人们的环保意识逐渐增加,“白色污染”现象越来越受到人们的重视小颖同学想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为采用______ 方式合适一些.17.某市有100万人口,在一次对城市标志性建筑方案的民意调查中,随机调查了1万人,其中有6400人同意甲方案则由此可估计该城市中,同意甲方案的大约有______ 万人.18.某商店对一种名牌衬衫抽测结果如下表:抽检件数10 20 100 150 200 300不合格件数0 1 3 4 6 9如果销售1000件该名牌衬衫,至少要准备______ 件合格品,供顾客更换.19.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图该年级共有700人,估计该年级足球测试成绩为D等的人数为______人20.图1为城市女生从出生到15岁的平均身高统计图,图2是城市某女生从出生到12岁的身高统计图.21.请你根据以上信息预测该女生15岁时的身高约为______ ,你的预测理由是______ .22.进行数据的收集调查时,在明确调查问题、确定调查对象后,还要完成以下4个步骤:展开调查得出结论记录结果选择调查方法,但它们的顺序弄乱了,正确的顺序应该是______ 填写序号即可.三、计算题23.在“创优”活动中,我市某校开展收集废电池的活动,该校初二班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:单位:个:48,51,53,47,49,50,求这七天该班收集废旧电池个数的平均数,并估计四月份天计该班收集废旧电池的个数.24.某水果店有200个菠萝,原计划以元千克的价格出售,现在为了满足市场需要,水果店决定将所有的菠萝去皮后出售以下是随机抽取的5个菠萝去皮前后相应的质量统计表单位:千克:去皮前各菠萝的质量去皮后各菠萝的质量计算所抽取的5个菠萝去皮前的平均质量和去皮后的平均质量,并估计这200个菠萝去皮前的总质量和去皮后的总质量.根据的结果,要使去皮后这200个菠萝的销售总额与原计划的销售总额相同,那么去皮后的菠萝的售价应是每千克多少元?25.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.26.教育支出频数分布表分组频数频率26189a b2合计40注:每组数据含最小值,不含最大值根据以上提供的信息,解答下列问题:频数分布表中的______,______;补全频数分布直方图;请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?27.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图校服型号以身高作为标准,共分为6个型号根据以上信息,解答下列问题:28.该班共有______ 名学生;29.在扇形统计图中,185型校服所对应的扇形圆心角的大小为______ ;30.该班学生所穿校服型号的众数为______ ,中位数为______ ;31.如果该校预计招收新生600名,根据样本数据,估计新生穿170型校服的学生大约有多少名?【答案】1. D2. C3. D4. C5. D6. D7. C8. C9. D10. D11. 七年级540名学生的视力情况;8012. 4013. 100014. 240015. 抽样调查16. 6417. 3018. 5619. 170厘米;12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米20.21. 解:这7天收集电池的平均数为:个估计四月份天计该班收集废旧电池的个数个答:这七天收集的废旧电池平均数为50个,四月份该班收集的废电池约1500个.22. 解:抽取的5个菠萝去皮前的平均质量为千克,去皮后的平均质量为千克,这200个菠萝去皮前的总质量为千克,去皮后的总质量为千克.原计划的销售额为元根据题意,得去皮后的菠萝的售价为元千克.23. 3;24. 50;;165和170;170。

2020年中考数学一轮复习《第14讲:三角形及其性质》精练(含答案).docx

2020年中考数学一轮复习《第14讲:三角形及其性质》精练(含答案).docx

第14讲三角形及其性质A组基础题组一、选择题1.在△ABC中,∠A∶∠B∶∠C=3∶4∶5,则∠C等于( )A.45°B.60°C.75°D.90°2.到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点3.下列说法错误的是( )A.三角形三条中线交于三角形内一点B.三角形三条角平分线交于三角形内一点C.三角形三条高交于三角形内一点D.三角形的中线、角平分线、高都是线段4.在△ABC中,AB=4a,BC=14,AC=3a,则a的取值范围是( )A.a>2B.2<a<14C.7<a<14D.a<145.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P 使得S△PAB=S△PCD,则满足此条件的点P( )A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)6.在△ABC中,AB=13,AC=15,高AD=12,则BC的长是( )A.14B.4C.14或4D.以上都不对二、填空题7.(2018滨州)在△ABC中,若∠A=30°,∠B=50°,则∠C=.8.(2018枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=--.现已知△ABC的三边长分别为1,2,,则△ABC的面积为.9.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为.10.已知:a、b、c是△ABC的三边长,且M=(a+b+c)(a+b-c)(a-b-c),那么M 0.(填“>”“<”或“=”)三、解答题11.一个飞机零件的形状如图所示,按规定∠A应等于90°,∠B,∠D 应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?12.已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF 的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.B组提升题组一、选择题1.已知锐角三角形的边长分别是2,3,x,那么x的取值范围是( )A.1<x<B.C.<x<5D.<x<2.(2017浙江湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于( )A.1B.C.D.2二、填空题3.如图,平面上直线a,b分别经过线段OK的两个端点(如图),则a,b 相交所成的锐角是.4.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=°.5.如图,在△ABC中,AD为BC边上的中线,已知AC=5,AD=4,则AB的取值范围是.对比训练上题中若作修改“AC=5,AB=4,求AD的取值范围”,怎样计算?三、解答题6.已知∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON 上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x= ;③当∠BAD=∠BDA时,x= ;(2)如图2,若AB⊥OM,则是否存在这样的x值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.第14讲三角形及其性质A组基础题组一、选择题1.C 180°×=180°×=75°,即∠C=75°.故选C.2.D3.C4.B5.D6.C二、填空题7.答案100°解析∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°-30°-50°=100°.故答案为100°.8.答案 1解析∵S=--,△ABC的三边长分别为1,2,,则△ABC的面积为:∴S△ABC=--)=1,故答案为1.9.答案 5解析∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×5=10,又∵EF是△ABC的中位线,∴EF=×10=5.10.答案<解析根据三角形的三边关系可得,a+b+c>0,a+b-c>0,a-b-c<0,由实数运算得M<0.三、解答题11.解析能.理由如下:延长DC与AB相交于点E.易知∠BED=∠D+∠A=120°,∵∠BCD=∠B+∠BED=130°≠143°.∴这个零件不合格.12.解析 1)△CDF是等腰直角三角形.证明如下: ∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC.在△FAD与△DBC中,,,,∴△FAD≌△DBC SAS),∴FD=DC,∴△CDF是等腰三角形.易知∠BDC+∠DCB=90°,∠FDA=∠DCB.∴∠BDC+∠FDA=90°,即∠FDC=90°,∴△CDF是等腰直角三角形.2)∠APD的度数是一个固定的值.理由如下:如图,作AF⊥AB于A,且AF=BD,连接DF,CF.由(1)得△CDF是等腰直角三角形,∴∠FCD=45°.由题意得AF∥CE,且AF=BD=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.B组提升题组一、选择题1.B 因为32-22=5,32+22=13,所以5<x2<13,即<x<.故选B.2.A 连接CP并延长,交AB于点D.∵P是Rt△ABC的重心,∴CD是Rt△ABC的中线,∴PD=CD.∵∠ACB=90°,∴CD=AB=3,∴PD=CD=1,∵AC=BC,CD是Rt△ABC的中线,∴CD⊥AB.∴点P到AB所在直线的距离等于1.故选A.二、填空题3.答案30°解析由三角形的外角性质得,a,b相交所成的锐角的度数是100°-70°=30°,故答案为30°.4.答案10解析设∠A=x°,根据三角形两内角之和等于第三个角的外角、等腰三角形的性质,知∠ACB为x°,∴∠CBD=∠CDB=2x°,∴∠DCE=∠DEC=3x°,同理可得:∠EDF=∠EFD=4x°,∠FEG=∠FGE=5x°,∵∠1+∠FGE=180°,∴∠FGE=50°,∠A=10°.5.答案3<AB<13解析如图,过点B作平行于AC的直线,与AD的延长线交于点E,则△ACD≌△EBD,∴AD=ED,AC=EB,∵AC=5,AD=4,∴在△ABE中,AE=8,BE=AC=5,∴3<AB<13.对比训练<AD<三、解答题6.解析 1)①∵∠MON=40°,OE平分∠MON,∴∠AOB=∠BON=20°.∵AB∥ON,∴∠ABO=∠BON=20°.②∵∠BAD=∠ABD,∴∠BAD=20°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°.③∵∠BAD=∠BDA,∠ABO=20°.∴∠BAD=80°.∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°.故答案为①20°;②120;③60.(2)存在.理由如下:①当点D在线段OB上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50;②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,当x=20、35、50、125时,存在这样的x值,使得△ADB中有两个相等的角.。

中考数学统计知识点总结

中考数学统计知识点总结

中考数学统计知识点总结一、统计的基本概念1. 数据:通过观察、实验或调查获得的事实或现象。

2. 统计:对数据进行收集、整理、分析和归纳的过程。

3. 统计数据:用数值描述的数据,可以是数字,也可以是其他符号。

4. 总体:对研究对象全体的描述。

5. 样本:从总体中抽取的一部分数据。

6. 统计图表:用直观的图形和表格展示数据的方式,包括柱状图、折线图、饼图等。

7. 频数与频率:频数是某个数值在一组数据中出现的次数,频率是某个数值在一组数据中出现的次数与数据总数的比值。

二、数据的整理和描述1. 数据的整理:包括对数据的收集、整理和清洗,确保数据的准确性和完整性。

2. 数据的描述:通过统计指标等方法描述数据的特征和规律。

3. 集中趋势:平均数、中位数、众数是常用的描述数据集中趋势的统计指标。

4. 离散程度:极差、方差、标准差等是常用的描述数据离散程度的统计指标。

5. 分布形状:偏度、峰度等是常用的描述数据分布形状的统计指标。

三、统计图表的应用1. 柱状图:用长方形的长度代表数据的大小,适合表示不同类别数据的数量对比。

2. 折线图:用线段的变化代表数据的趋势,适合表示时间序列数据的变化情况。

3. 饼图:用圆形的扇形面积代表数据的比例,适合表示各类别数据的占比情况。

4. 散点图:用散点的分布形状代表数据的关联程度,适合表示两个变量之间的相关性。

5. 条形图:用长方形的宽度代表数据的大小,适合表示不同类别数据的比较。

6. 雷达图:用射线的长度代表数据的大小,适合表示多个变量的对比情况。

四、概率的基本概念1. 随机事件:在一定条件下可能发生也可能不发生的事件。

2. 样本空间:随机试验可能出现的所有结果的集合。

3. 事件:样本空间的一个子集,指随机试验的结果之一或几个。

4. 概率:用来描述随机事件发生可能性大小的数值。

5. 等可能性事件:每个事件发生的概率都相等的事件。

6. 独立事件:一个事件的发生不受另一个事件发生的影响。

2020年中考数学考点专项突破卷14平行四边形(含解析)

2020年中考数学考点专项突破卷14平行四边形(含解析)

专题14.1平行四边形精选考点专项突破卷(一)考试范围:平行四边形;考试时间:90分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·湖南中考真题)已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形2.(2019·湖北中考真题)如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为()A.60°B.65°C.70°D.75°3.(2016·辽宁中考真题)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.144.(2019·黑龙江中考真题)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数1yx=上,顶点B在反比例函数5yx=上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A.32B.52C.4D.65.(2019·海南中考真题)如图,在ABCD Y 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .216.(2019·山东中考真题)如图,E 是ABCD Y 边AD 延长线上一点,连接BE ,CE ,BD ,BE 交CD 于点F .添加以下条件,不能判定四边形BCED 为平行四边形的是( )A .ABD DCE ∠=∠B .DF CF =C .AEB BCD ∠=∠ D .AEC CBD ∠=∠7.(2019·广东中考真题)如图,平行四边形ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是( )A .EH=HGB .四边形EFGH 是平行四边形C .AC⊥BD D .ABO ∆的面积是EFO ∆的面积的2倍8.(2019·广西中考真题)如图,在ABC ∆中,,D E 分别是,AB BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .B F ∠=∠ B .B BCF ∠=∠C .AC CF =D .AD CF =9.(2016·浙江中考真题)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③10.(2017·山东中考模拟)如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关二、填空题(每小题4分,共28分) 11.(2018·湖北中考真题)如图,已知▱ABCD 的对角线AC ,BD 交于点O ,且AC=8,BD=10,AB=5,则△OCD 的周长为_____.12.(2019·四川中考真题)如图,▱ABCD 的对角线AC 、BD 相交于点O ,点E 是AB 的中点,BEO ∆的周长是8,则BCD ∆的周长为_____.13.(2015·江苏中考真题)如图,▱ABCD 中,E 为AD 的中点,BE ,CD 的延长线相交于点F ,若△DEF 的面积为1,则▱ABCD 的面积等于 .14.(2013·江苏中考真题)如图,在Y ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG⊥AE,垂足为G ,BG=,则EF +CF 的长为 cm 。

专题15 统计(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【无答案】

专题15 统计(讲+练)-【2022年】中考数学二轮复习核心专题复习攻略【无答案】

专题15 统计复习考点攻略考点一全面调查与抽样调查1.全面调查:为一特定目的而对所有考察对象进行的全面调查叫做全面调查.2. 抽样调查:为一特定目的而对部分考察对象进行的调查叫做抽样调查.3. 调查的选取:当受客观条件限制,无法对所有个体进行全面调查时,往往采用抽样调查.4. 抽样调查样本的选取:(1)抽样调查的样本要有代表性(2)抽样调查的样本数目要足够大.【例1】下列采用的调查方式中,合适的是()A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式考点二总体、个体、样本及样本容量1.总体:所要考察对象的全体叫做总体.2. 个体:总体中的每一个考察对象叫做个体.3. 样本:从总体中抽取的部分个体叫做样本.4. 样本容量:样本中个体的数目叫做样本容量.【例2】为了了解我县4000名初中生的身高情况,从中抽取了400名学生测量身高,在这个问题中,样本是()A.4000 B.4000名C.400名学生的身高情况D.400名学生考点三几种常见的统计图表1.条形统计图:条形统计图就是用长方形的高来表示数据的图形.特点(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别.2. 折线统计图:用几条线段连成的折线来表示数据的图形. 特点: 易于显示数据的变化趋势.3.扇形统计图:(1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图.(2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比.(3)扇形的圆心角=360°×百分比. 4.频数分布直方图:(1)每个对象出现的次数叫频数.(2)每个对象出现的次数与总次数的比(或者百分比)叫频率,频数和频率都能够反映每个对象出现的频繁程度.(3)频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.(4)频数分布直方图的绘制步骤: ①计算最大值与最小值的差; ②决定组距与组数;③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点; ④列频数分布表;⑤画频数分布直方图:用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图.【例3】某校为了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示的两幅统计图.由图中所给信息知,扇形统计图中C 等级所在的扇形圆心角的度数为( )考点四 平均数、众数、中位数1. 平均数:一般地,如果有n 个数1x ,2x ,…,n x ,那么,121()n x x x x n=+++…叫做这n 个数的平均数,x 读作“x 拔”.2. 加权平均数:如果n 个数中,1x 出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里12k f f f n +++=…),那么,根据平均数的定义,这n 个数的平均数可以表示为1122k kx f x f x f x n+++=…,这样求得的平均数x 叫做加权平均数,其中f 1,f 2,…,f k 叫做权.3. 众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.4. 中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【例4】某鞋店试销一种新款男鞋,试销期间销售情况如下表:则该组数据的下列统计量中,对鞋店下次进货最具有参考意义的是( ) A .中位数B .平均数C .众数D .方差方差在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即2222121[()()()]n s x x x x x x n=-+-++-…. 【例5】 已知一组数据x 1,x 2,x 3,…,x n 的方差为2,则另一组数据3x 1,3x 2,3x 3,…,3x n 的方差为 .第一部分 选择题一、选择题(本题有10小题,每题3分,共30分)1. 今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是( ) A .这1000名考生是总体的一个样本 B .近4万名考生是总体 C .每位考生的数学成绩是个体D .1000名学生是样本容量2. 某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是()A.6B.6.5C.7D.83.某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的扇形统计图,已知该学校2560人,被调查的学生中骑车的有21人,则下列四种说法中,不正确的是()A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车部分所对应的圆心角为54°4.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多5. 某校七年级共720名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生的成绩达到优秀,估计该校七年级学生在这次数学测试中,达到优秀的学生人数约有()A.140人B.144人C.210人D.216人6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,1315,.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是187D.中位数是137.如图,下面是甲乙两位党员使用“学习强国APP”在一天中各项目学习时间的统计图,根据统计图对两人各自学习“文章”的时间占一天总学习时间的百分比作出的判断中,正确的是()A .甲比乙大B .甲比乙小C .甲和乙一样大D .甲和乙无法比较8. 某车间工人在某一天的加工零件数只有5件,6件,7件,8件四种情况.图中描述了这天相关的情况,现在知道7是这一天加工零件数的唯一众数.设加工零件数是7件的工人有x 人,则( )A .16x >B .16x =C .1216x <<D .12x =9.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是( )A .甲平均分高,成绩稳定B .甲平均分高,成绩不稳定C .乙平均分高,成绩稳定D .乙平均分高,成绩不稳定10.某科普小组有5名成员,身高分别为(单位:cm )160,165,170,163,167,增加1名身高为165 cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A .平均数不变,方差不变B .平均数不变,方差变小C .平均数变小,方差不变D .平均数不变,方差变大第二部分 填空题二、填空题(本题有6小题,每题4分,共24分)11.为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 .12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为_____.14.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.15.我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有人16.某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:86,88,90,92,94,方s=.后来老师发现每人都少加了2分,每人补加2分后,这5人新成绩的方差差为28.02s=__________.新第三部分解答题二、解答题(本题有6小题,共46分)17. 小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.18.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70;72;74;75;76;76;77;77;77;78;79 c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9 m八79.2 79.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有__________人;(2)表中m的值为__________;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.20.天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了__________名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为__________度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?21.由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了____________名学生;(2)在扇形统计图中,m的值是___________,D对应的扇形圆心角的度数是________________;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.22.某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?。

中考数学专题复习《统计》知识点梳理及典型例题讲解课件

中考数学专题复习《统计》知识点梳理及典型例题讲解课件

反映一组数据
优数据的信息
中位数
缺点 易受极端值的影响
优点
众数
在生活实际中应用较多,是人们
反映一组数据
特别关心的一个量
的多数水平
当各个数据的重复次数大致相等
缺点
时,众数的意义不大
2.数据的波动
(1)在一组数据x1,x2,…,xn中,各数据与它们的平均数ҧ
3.(2023·聊城)4月15日是全民国家安全教育日.某校为了摸清该
校1500名师生的国家安全知识掌握情况,从中随机抽取了150
名师生进行问卷调查.这项调查中的样本是( C )
A.1500名师生的国家安全知识掌握情况
B.150
C.从中抽取的150名师生的国家安全知识掌握情况
D.从中抽取的150名师生
稍微减小一点;
④列频数分布表;
⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长
方形的高表示频数,绘制频数分布直方图.
(5)组中值是上下限之间的中点数值,以代表各组标志值的
一般水平.
上限+下限
一般情况下,组中值=
.
2
2.各统计图的特点
扇形统
计图
统计图 条形统计图
频数分布直方
折线统计图

图形
特点
第5题图
B.样本中C等级所占百分比是10%
C.D等级所在扇形的圆心角为15°
D.估计全校学生A等级大约有900人

6.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班
级相应平均分的折线统计图,则下列判断错误的是( D )
A.甲的数学成绩高于班级平均分,且成绩
比较稳定
B.乙的数学成绩在班级平均分附近波动,

中考数学专题复习卷 数据的整理与分析(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 数据的整理与分析(含解析)-人教版初中九年级全册数学试题

数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。

3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。

.5【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。

初三数学专题解析统计(含答案)

初三数学专题解析统计(含答案)

初三数学专题解析·统计22.为了更好地宣传“2010年上海世博会”,某中学举行了一次“迎世博知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图(如图5).请根据图中的信息回答下列问题:(1)此样本抽取了多少名学生的成绩?(2)此样本数据的中位数落在哪一个范围内?(写出该组的分数范围)(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩学生的人数约为多少名?22.(1)222323628120++++=,此样本抽取了120名学生的成绩. ……………………………………………(3分) (2)中位数落在80.5~90.5这个范围内.……………………………………………(3分)(3)3628900480120+⨯=(名) 所以该校获得优秀成绩学生的人数约480名.………………………………………(4分)21.某学校对应聘者甲、乙、丙进行面试,并从专 业知识、语言表达、仪表形象三方面给应聘者打分, 每一方面满分20分,最后的打分制成条形统计图 (如图六).根据图中提供的信息,完成下列问题: (1)在专业知识方面3人得分的中位数是______; 在语言表达方面3人得分的众数是___________;在仪表形象方面___________________最有优势. (2)如果专业知识、语言表达、仪表形象三个 方面的重要性之比为10∶7∶3,那么作为校长,应 该录用哪一位应聘者?为什么?图5 甲 乙 丙 甲 乙 丙 甲 乙 丙 专业知识 语言表达 仪表形象(图六)21.解:(1) 16; 15; 丙.………………………………………………………(3分)(2)甲:1(1410177123)14.7520⨯⨯+⨯+⨯=;…………………………………(1分) 乙:1(1810157113)15.920⨯⨯+⨯+⨯=;……………………………………(1分)丙:1(1610157143)15.3520⨯⨯+⨯+⨯=; …………………………………(1分)答:作为校长,我录用乙应聘者.……………………………………………………(2分) 因为,乙的加权平均分最高,说明乙的综合条件较好,更适合做教师,所以录用乙.(2分)22.某区为了了解九年级学生身体素质情况,从中随机抽取了部分学生进行测试,测试成绩的最高分为30分,最低分为23分,按成绩由低到高分成五组(每组数据可含最大值,不含最小值),绘制的频率分布直方图中缺少了28.5~30分的一组(如图4).已知27~28.5分一组的频率为0.31,且这组学生人数比25.5~27分的学生多了28人.根据图示及上述相关信息解答下列问题: (1) 从左至右前三组的频率依次为:___________________;(2) 在图4中补画28.5~30分一组的小矩形;(3) 测试时抽样人数为________;(4) 测试成绩的中位数落在___________组;(5) 如果全区共有3600名九年级学生,估计成绩大于27分的学生约有__________人. 22.(1)0.06,0.15,0.24; (2)小长形的高频率为0.24,高为0.16; (3)400; (4)27~28.5分; (5)1980.……………………………………(每题2分) 21.某学校为了了解该学校初一年级学生双休日上网的情况,随机调查了该学校初一年级的25名学生,得到了上周双休日上网时间的一组样本数据,其频数分布直方图如图所示: (1)请补全频数分布直方图;(2)这组样本数据的中位数是 小时,众数是 小时,平均数是 小时; (3)初一年级的小明同学上周双休日上网的时间为4小时,他认为自己上周双休日上网的时间比年级里一半以上的同学多,你认为小明的想法正确吗?请说明理由.)图421.(1)略;…………………………(2分)(2)3;4;3.36;…………………………(2分+2分+2分)(3)正确。

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题含答案全套

人教版九年级数学上册中考专题复习题1.类比归纳专题:配方法的应用2.类比归纳专题:一元二次方程的解法3.易错易混专题:一元二次方程中的易错问题4.考点综合专题:一元二次方程与其他知识的综合5.解题技巧专题:抛物线中与系数a,b,c有关的问题6.易错易混专题:二次函数的最值或函数值的范围7.难点探究专题:抛物线与几何图形的综合(选做)8.抛物线中的压轴题9.易错专题:抛物线的变换10.解题技巧专题:巧用旋转进行计算11.旋转变化中的压轴题12.类比归纳专题:圆中利用转化思想求角度13.类比归纳专题:切线证明的常用方法14.解题技巧专题:圆中辅助线的作法15.解题技巧专题:圆中求阴影部分的面积16.考点综合专题:圆与其他知识的综合17.圆中的最值问题18.抛物线与圆的综合19.易错专题:概率与放回、不放回问题类比归纳专题:配方法的应用——体会利用配方法解决特定问题◆类型一 配方法解方程1.一元二次方程x 2-2x -1=0的解是( )A .x 1=x 2=1B .x 1=1+2,x 2=-1- 2C .x 1=1+2,x 2=1- 2D .x 1=-1+2,x 2=-1- 22.用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为⎝⎛⎭⎫t -742=8116 D .3x 2-4x -2=0化为⎝⎛⎭⎫x -232=1093.利用配方法解下列方程:(1)(2016·淄博中考)x 2+4x -1=0;(2)(x +4)(x +2)=2;(3)4x 2-8x -1=0;(4)3x 2+4x -1=0.◆类型二 配方法求最值或证明 4.代数式x 2-4x +5的最小值是( ) A .-1 B .1 C .2 D .55.下列关于多项式-2x 2+8x +5的说法正确的是( )A .有最大值13B .有最小值-3C .有最大值37D .有最小值1 6.(2016-2017·夏津县月考)求证:代数式3x 2-6x +9的值恒为正数.7.若M =10a 2+2b 2-7a +6,N =a 2+2b 2+5a +1,试说明无论a ,b 为何值,总有M >N .◆类型三 完全平方式中的配方 8.如果多项式x 2-2mx +1是完全平方式,则m 的值为( )A .-1B .1C .±1D .±29.若方程25x 2-(k -1)x +1=0的左边可以写成一个完全平方式,则k 的值为( )A .-9或11B .-7或8C .-8或9D .-6或7◆类型四 利用配方构成非负数求值 10.已知m 2+n 2+2m -6n +10=0,则m +n 的值为( )A .3B .-1C .2D .-211.已知x 2+y 2-4x +6y +13=0,求(x +y )2016的值.答案:类比归纳专题:一元二次方程的解法——学会选择最优的解法◆类型一 一元二次方程的一般解法方法点拨: 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;当方程二次项系数为1,且一次项系数为偶数时,可用配方法;若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;如果方程不能用直接开平方法和因式分解法求解,则用公式法.1.用合适的方法解下列方程:(1)⎝⎛⎭⎫x -522-14=0;(2)x 2-6x +7=0;(3)x 2-22x +18=0;(4)3x (2x +1)=4x +2.◆*类型二 一元二次方程的特殊解法 一、十字相乘法方法点拨:例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确), 第2种拆法:2x -2x =0(错误), 所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1. 2.解一元二次方程x 2+2x -3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程____________.3.用十字相乘法解下列一元二次方程: (1)x 2-5x -6=0; (2)x 2+9x -36=0.二、换元法方法点拨:在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.4.若实数a ,b 满足(4a +4b )(4a +4b -2)-8=0,则a +b =_______.5.解方程:(x 2+5x +1)(x 2+5x +7)=7.1.解:(1)移项,得⎝⎛⎭⎫x -522=14, 两边开平方,得x -52=±14, 即x -52=12或x -52=-12,∴x 1=3,x 2=2;(2)移项,得x 2-6x =-7,配方,得x 2-6x +9=-7+9,即(x -3)2=2, 两边开平方,得x -3=±2, ∴x 1=3+2,x 2=3-2;(3)原方程可化为8x 2-42x +1=0. ∵a =8,b =-42,c =1,∴b 2-4ac =(-42)2-4×8×1=0, ∴x =-(-42)±02×8=24,∴x 1=x 2=24; |(4)原方程可变形为(2x +1)(3x -2) =0,∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.2. x -1=0或x +3=0.3.解:(1)原方程可变形为(x -6)(x +1) =0,∴x -6=0或x +1=0, ∴x 1=6,x 2=-1;(2)原方程可变形为(x +12)(x -3) =0,∴x +12=0或x -3=0, ∴x 1=-12,x 2=3. 4.-12或15.解:设x 2+5x +1=t ,则原方程化为t (t +6)=7,∴t 2+6t -7=0,解得t =1或-7.当t =1时,x 2+5x +1=1,x 2+5x =0, x (x +5)=0,∴x =0或x +5=0,∴x 1=0,x 2=-5; 当t =-7时,x 2+5x +1=-7,x 2+5x +8=0,∴b 2-4ac =52-4×1×8<0,此时方程 无实数根.∴原方程的解为x 1=0,x 2=-5.易错易混专题:一元二次方程中的易错问题◆类型一 利用方程或其解的定义求待定系数时,忽略“a ≠0”1.(2016-2017·江都区期中)若关于x的方程(a +3)x |a |-1-3x +2=0是一元二次方程,则a 的值为______.【易错1】2.关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则a 的值是( )A .-1B .1C .1或-1D .-1或0 3.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0的常数项为0.(1)求m 的值; (2)求方程的解.◆类型二 利用判别式求字母取值范围时,忽略“a ≠0”及“a 中的a ≥0”4.(2016-2017·抚州期中)若关于x 的一元二次方程(m -2)2x 2+(2m +1)x +1=0有解,那么m 的取值范围是( )A .m >34B .m ≥34C .m >34且m ≠2D .m ≥34且m ≠25.已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k的取值范围是________.6.若m 是非负整数,且关于x 的方程(m -1)x 2-2x +1=0有两个实数根,求m 的值及其对应方程的根.◆类型三 利用根与系数关系求值时,忽略“Δ≥0”7.(2016·朝阳中考)关于x 的一元二次方程x 2+kx +k +1=0的两根分别为x 1,x 2,且x 21+x 22=1,则k 的值为_______.【易错2】 8.已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.【易错2】◆类型四 与三角形结合时忘记取舍 9.已知三角形两边长分别为2和9,第三边的长为一元二次方程x 2-14x +48=0的根,则这个三角形的周长为( )A .11B .17C .17或19D .1910.在等腰△ABC 中,三边分别为a ,b ,c ,其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是________.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为_________.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与一次函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x -m=0无实数根,则一次函数y=(m+1)x +m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是______.◆类型三一元二次方程与二次根式的综合12.(达州中考)方程(m-2)x2-3-mx +14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠213.(包头中考)已知关于x的一元二次方程x2+k-1x-1=0有两个不相等的实数根,则k的取值范围是______.答案:12.B 13.解题技巧专题:抛物线中与系数a,b,c有关的问题◆类型一由某一函数的图象确定其他函数图象的位置1.二次函数y=-x2+ax-b的图象如图所示,则一次函数y=ax+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限第1题图第2题图2.已知一次函数y=-kx+k的图象如图所示,则二次函数y=-kx2-2x+k的图象大致是()3.已知函数y=(x-a)(x-b)(其中a>b)的图象如图所示,则函数y=ax+b的图象可能正确的是()第3题图第4题图4.如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是()◆类型二由抛物线的位置确定代数式的符号或未知数的值5.(2016·新疆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是【方法10】()A.a>0B.c<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小第5题图第7题图6.(2016·黄石中考)以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是【方法10】()A.b≥54B.b≥1或b≤-1C.b≥2 D.1≤b≤27.(2016·孝感中考)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2016·天水中考)如图,二次函数y =ax2+bx+c(a≠0)的图象与x轴交于A,B 两点,与y轴交于点C,且OA=OC,则下列结论:①abc<0;②b2-4ac4a>0;③ac-b+1=0;④OA·OB =-ca .其中正确结论的序号是____________.答案:易错易混专题:二次函数的最值或函数值的范围——类比各形式,突破给定范围求最值◆类型一 没有限定自变量的范围求最值 1.函数y =-(x +1)2+5的最大值为_______. 2.已知二次函数y =3x 2-12x +13,则函数值y 的最小值是【方法11】( )A .3B .2C .1D .-13.已知函数y =x(2-3x),当x 为何值时,函数有最大值还是最小值?并求出最值.◆类型二 限定自变量的取值范围求最值4.(2016-2017·双台子区校级月考)函数y =x 2+2x -3(-2≤x ≤2)的最大值和最小值分别是( )A .4和-3B .-3和-4C .5和-4D .-1和-45.二次函数y =-12x 2+32x +2的图象如图所示,当-1≤x ≤0时,该函数的最大值是【方法11】( )A .3.125B .4C .2D .06.已知0≤x ≤32,则函数y =x 2+x +1( ) A .有最小值34,但无最大值B .有最小值34,有最大值1C .有最小值1,有最大值194D .无最小值,也无最大值◆类型三 限定自变量的取值范围求函数值的范围7.从y =2x 2-3的图象上可以看出,当-1≤x ≤2时,y 的取值范围是( )A .-1≤y ≤5B .-5≤y ≤5C .-3≤y ≤5D .-2≤y ≤18.已知二次函数y =-x 2+2x +3,当x ≥2时,y 的取值范围是( )A .y ≥3B .y ≤3C .y >3D .y <39.二次函数y =x 2-x +m(m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a -1时,函数值CA .y <0B .0<y <mC .y >mD .y =m◆类型四 已知函数的最值,求自变量的取值范围或待定系数的值10.当二次函数y =x 2+4x +9取最小值时,x 的值为( )A .-2B .1C .2D .911.已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A.3 B.-1C.4 D.4或-112.已知y=-x(x+3-a)+1是关于x 的二次函数,当x的取值范围在1≤x≤5时,y在x=1时取得最大值,则实数a的取值范围是()A.a=9 B.a=5 C.a≤9 D.a≤513.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=70°.若二次函数y=(a+b)x2+(a+b)x-(a-b)的最小值为-a2,则∠A=_______度.14.★已知函数y=-4x2+4ax-4a-a2,若函数在0≤x≤1上的最大值是-5,求a的值.答案:难点探究专题:抛物线与几何图形的综合(选做)——代几结合,突破面积及点的存在性问题◆类型一二次函数与三角形的综合一、全等三角形的存在性问题1.如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;(2)若抛物线与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.二、线段(或周长)的最值问题及等腰三角形的存在性问题2.(2016·凉山州中考)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P 的坐标;(3)点M也是直线l上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M的坐标.◆类型二二次函数与平行四边形的综合3.如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,A点在B点左侧.若点E在x轴上,点P 在抛物线上,且以A,C,E,P为顶点的四边形是平行四边形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.如图,抛物线y=12x2+x-32与x轴相交于A,B两点,顶点为P.(1)求点A,B的坐标;(2)在抛物线上是否存在点E,使△ABP 的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A,B,P,F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.◆类型三 二次函数与矩形、菱形、正方形的综合5.如图,在平面直角坐标系中,点A 在抛物线y =x 2-2x +2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连接BD ,则对角线BD 的最小值为________.第5题图 第6题图6.如图,抛物线y =ax 2-x -32与x 轴正半轴交于点A(3,0).以OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF.则a =,点E 的坐标是_________________.7. (2016·新疆中考)如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4). (1)求抛物线的解析式及顶点坐标; (2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.8.(2016·百色中考)正方形OABC 的边长为4,对角线相交于点P ,抛物线l 经过O ,P ,A 三点,点E 是正方形内的抛物线l 上的动点.(1)建立适当的平面直角坐标系,①直接写出O ,P ,A 三点的坐标; ②求抛物线l 的解析式;(2)求△OAE 与△OCE 面积之和的最大值.答案:拔高专题抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。

人教版七年级数学上册第一章1.4有理数的乘除法-中考试题汇编含精讲解析

人教版七年级数学上册第一章1.4有理数的乘除法-中考试题汇编含精讲解析

人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.(X•珠海)的倒数是()A.B.C.2 D.﹣23.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣35.(X•自贡)的倒数是()A.﹣2 B.2 C.D.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣29.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.310.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2 11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2 14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣216.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±117.(X•黔东南州)的倒数是()A.B.C.D.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2 20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.222.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.324.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.二.填空题(共1小题)27.(X•湘潭)的倒数是.人教版七年级数学上册第一章1.4有理数的乘除法X年中考试题汇编含精讲解析参考答案与试题解析一.选择题(共26小题)1.(X•徐州)﹣2的倒数是()A.2 B.﹣2 C.D.﹣考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(X•珠海)的倒数是()A.B.C.2 D.﹣2考点:倒数.分析:根据倒数的定义求解.解答:解:∵×2=1,∴的倒数是2.故选C.点评:倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.(X•黄石)﹣5的倒数是()A.5 B.C.﹣5 D.考点:倒数.分析:乘积是1的两数互为倒数,所以﹣5的倒数是﹣.解答:解:﹣5与﹣的乘积是1,所以﹣5的倒数是﹣.故选D.点评:本题主要考查倒数的概念:乘积是1的两数互为倒数.4.(X•佛山)﹣3的倒数为()A.﹣B.C.3 D.﹣3考点:倒数.专题:存在型.分析:根据倒数的定义进行解答即可.解答:解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.点评:本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.5.(X•自贡)的倒数是()A.﹣2 B.2 C.D.考点:倒数.专题:常规题型.分析:根据倒数的定义求解.解答:解:﹣的倒数是﹣2.故选:A.点评:本题主要考查了倒数的定义,解题的关键是熟记定义.6.(X•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7.(X•宿迁)的倒数是()A.﹣2 B.2 C.D.考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.(X•巴中)﹣2的倒数是()A.2 B.C.﹣D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.(X•成都)﹣3的倒数是()A.﹣B.C.﹣3 D.3考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.10.(X•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.11.(X•广安)的倒数是()A.5 B.﹣5 C.D.﹣考点:倒数.分析:根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.解答:解:的倒数是5.故选A.点评:此题主要考查倒数的意义,关键是求一个数的倒数的方法.12.(X•攀枝花)﹣3的倒数是()A.﹣B.3 C.D.±考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.故选:A.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.(X•毕节市)﹣的倒数的相反数等于()A.﹣2 B.C.﹣D.2考点:倒数;相反数.分析:根据倒数和相反数的定义分别解答即可.解答:解:﹣的倒数为﹣2,所以﹣的倒数的相反数是:2.故选;D.点评:此题主要考查了倒数和相反数的定义,要求熟练掌握.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.14.(X•无锡)﹣3的倒数是()A.3 B.±3 C.D.﹣考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是,故选D点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.15.(X•眉山)﹣2的倒数是()A.B.2 C.﹣D.﹣2考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣2的倒数是,故选C.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.(X•龙岩)﹣1的倒数是()A.﹣1 B.0 C.1 D.±1考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:﹣1的倒数是﹣1,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.17.(X•黔东南州)的倒数是()A.B.C.D.考点:倒数.分析:根据倒数的定义,互为倒数的两数乘积为1,﹣×(﹣)=1即可解答.解答:解:根据倒数的定义得:﹣×(﹣)=1,因此倒数是﹣.故选D.点评:本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.(X•娄底)X的倒数为()A.﹣X B.X C.﹣D.考点:倒数.分析:利用倒数的定义求解即可.解答:解:X的倒数为.故选:D.点评:本题主要考查了倒数的定义,解题的关键是熟记倒数的定义.19.(X•乌鲁木齐)﹣2的倒数是()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.20.(X•海南)﹣X的倒数是()A.﹣B.C.﹣X D.X考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵﹣X×(﹣)=1,∴﹣X的倒数是﹣,故选:A.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.21.(X•盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.22.(X•贵港)3的倒数是()A.3 B.﹣3 C.D.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数3的倒数是.故选:C.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.23.(X•义乌市)计算(﹣1)×3的结果是()A.﹣3 B.﹣2 C.2 D.3考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣1)×3=﹣1×3=﹣3.故选A.点评:本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.24.(X•六盘水)下列运算结果正确的是()A.﹣87×(﹣83)=7221 B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66 D.考点:有理数的乘法;有理数大小比较;有理数的减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A点评:此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.25.(X•台湾)算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.考点:有理数的乘法.分析:根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.解答:解:原式=××=,故选:D.点评:本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.26.(X•天津)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣D.考点:有理数的除法.分析:根据有理数的除法,即可解答.解答:解:(﹣18)÷6=﹣3.故选:A.点评:本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.二.填空题(共1小题)27.(X•湘潭)的倒数是 2 .考点:倒数.分析:根据倒数的定义,的倒数是2.解答:解:的倒数是2,故答案为:2.点评:此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

专题14 直角三角形-备战2022年中考数学题源解密(原卷版)

专题14 直角三角形-备战2022年中考数学题源解密(原卷版)

专题14 直角三角形考向1 直角三角形及其性质与判定【母题来源】(2021·浙江丽水)【母题题文】如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A.B.C.D.【母题来源】(2021·浙江宁波)【母题题文】如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=.若E,F分别为AB,BC的中点,则EF的长为()A.B.C.1 D.【母题来源】(2021·浙江金华)【母题题文】如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.【母题来源】(2021·浙江杭州)【母题题文】已知线段AB,按如下步骤作图:①作射线AC,使AC⊥AB;②作∠BAC的平分线AD;③以点A为圆心,AB长为半径作弧,交AD于点E;④过点E作EP⊥AB于点P,则AP:AB=()A.1:B.1:2 C.1:D.1:【母题来源】(2021·浙江丽水)【母题题文】小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM=2EM,则“奔跑者”两脚之间的跨度,即AB,CD之间的距离是.【母题来源】(2021·浙江衢州)【母题题文】将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且AB=4,点E在AD上,DE=AD,将这副三角板整体向右平移个单位,C,E两点同时落在反比例函数y=的图象上.【母题来源】(2021·浙江嘉兴)【母题题文】如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A′,连结A′C,A′P.在运动过程中,点A′到直线AB距离的最大值是;点P到达点B时,线段A′P扫过的面积为.【试题分析】以上试题考察了直角三角形的定义、性质、以及判定三个考点;【命题意图】直角三角形是中考数学中比较重要的问题背景,不管是全等三角形还是特殊三角形以及后续的相似三角形,牵涉或者转化成了直角三角形,问题的突破口可能也就出来了。

中考数学专题统计与概率(解析版)

中考数学专题统计与概率(解析版)
请根据图中信息回答下面的问题:
(1)本次抽样调查了多少户贫困户?
(2)抽查了多少户C类贫困户?并补全统计图;
(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?
(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了名学生;
求 的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为;
②列表如图所示:
共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为 .
【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.
4.(2019年江西中考)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,
则a=(87+88)÷2=87.5,
b=91,
c= =5.8,
故答案为:87.5,91,5.8;

2021年中考数学专题复习 专题14 角平分线问题(教师版含解析)

2021年中考数学专题复习 专题14 角平分线问题(教师版含解析)

专题14 角平分线问题1.角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.2.作角平分线角平分线的作法(尺规作图)①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;③过点P 作射线OP ,射线OP 即为所求.3.角平分线的性质(1)定理:角平分线上的点到角的两边的距离相等。

符号语言:∵OP 平分∠AOB ,AP ⊥OA ,BP ⊥OB ,∴AP=BP.12(2)逆定理:到角的两边距离相等的点在角的平分线上。

符号语言:∵ AP ⊥OA ,BP ⊥OB ,AP=BP ,∴点P 在∠AOB 的平分线上.注意:三角形的角平分线。

三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD =∠CAD 且点D 在BC 上.说明:AD 是ΔABC 的角平分线∠BAD =∠DAC =∠BAC (或∠BAC =2∠BAD =2∠DAC) . (1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.4.角平分线的综合应用21(1)为推导线段相等、角相等提供依据和思路;(2)在解决综合问题中的应用.【例题1】(2020•襄阳)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是( )A.132°B.128°C.122°D.112°【答案】C【分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=12∠BEF=58°,由平行线的性质即可得到结论.【解析】∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=12∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.【对点练习】(2020长春模拟 )如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为( )A.44° B.40° C.39° D.38°【答案】C.【解析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再用平行线的性质解答即可.∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,【点拨】本题考查三角形内角和定理、平行线性质、角平分线定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14 统计(含解析)一、选择题1.(2分)(2016•南京)若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( )A .1B .6C .1或6D .5或6【考点】方差.【分析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C .【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相同解决问题,属于中考常考题型.2.(3分)(2016•苏州)根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学)A .25,27B .25,25C .30,27D .30,25【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25, 故选D .【点评】本题考查众数、中位数的定义,解题的关键是记住众数、中位数的定义,属于基础题,中考常考题型. 3.(3分)(2016•泰州)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )A .平均数是1B .众数是﹣1C .中位数是0.5D .方差是3.5【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【解答】解:这组数据的平均数是:(﹣1﹣1+4+2)÷4=1;﹣1出现了2次,出现的次数最多,则众数是﹣1;把这组数据从小到大排列为:﹣1,﹣1,2,4,最中间的数是第2、3个数的平均数,则中位数是221+-=0.5; 这组数据的方差是:41 [(﹣1﹣1)2+(﹣1﹣1)2+(4﹣1)2+(2﹣1)2]=4.5; 则下列结论不正确的是D ;故选D .【点评】此题考查了方差、平均数、众数和中位数,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=n1 [(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2];一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.(3分)(2016•黄石)黄石农科所在相同条件下经试验发现蚕豆种子的发芽率为97.1%,请估计黄石地区1000斤蚕豆种子中不能发芽的大约有( )A .971斤B .129斤C .97.1斤D .29斤【考点】用样本估计总体.【专题】探究型.【分析】根据蚕豆种子的发芽率为97.1%,可以估计黄石地区1000斤蚕豆种子中不能发芽的大约有多少,本题得以解决.【解答】解:由题意可得,黄石地区1000斤蚕豆种子中不能发芽的大约有:1000×(1﹣97.1%)=1000×0.029=29斤, 故选D .【点评】本题考查用样本估计总体,解题的关键是明确题意,注意求得是不能发芽的种子数.5.(3分)(2016•荆州)我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据的平均数和众数分别是( )A .7,6B .6,5C .5,6D .6,6【考点】众数;算术平均数.【分析】根据众数定义确定众数;应用加权平均数计算这组数据的平均数.【解答】解:平均数为6,数据6出现了3次,最多,故众数为6,故选D .【点评】此题考查了加权平均数和众数的定义,属基础题,难度不大.6.(3分)(2016•宿迁)一组数据5,4,2,5,6的中位数是( )A .5B .4C .2D .6【考点】中位数.【分析】先将题目中数据按照从小到大排列,从而可以得到这组数据的中位数,本题得以解决.【解答】解:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A .【点评】本题考查中位数,解题的关键是明确中位数的定义,注意找中位数前要先把题目中的数据按照从小到大或从大到小的顺序排列.A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列,最中间的数是第6、7个数的平均数,则这12名队员年龄的中位数是19192=19(岁);19岁的人数最多,有5个,则众数是19岁.故选D.【点评】此题考查了中位数和众数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(2分)(2016•沈阳)已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是7【考点】众数;中位数.【分析】根据众数和中位数的定义求解.【解答】解:数据:3,4,6,7,8,8的众数为8,中为数为6.5.故选B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数定义.9.(3分)(2016•包头)一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4B.4和4C.4和4.8D.5和4【考点】中位数;算术平均数.【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:2,3,4,4,5,6,故中位数为:(4+4)÷2=4;平均数为:(2+3+4+4+5+6)÷6=4.故选:B.【点评】本题考查了中位数的定义和平均数的求法,解题的关键是牢记定义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.(3分)(2016•济宁)在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【专题】计算题;数据的收集与整理.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D【点评】此题考查了众数与中位数,熟练掌握各自的定义是解本题的关键.11.(4分)(2016•漳州)上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数,8.0【分析】将小明投球的5次成绩按从小到大的顺序排列,根据数的特点结合众数和中位数的定义即可得出结论.【解答】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.0,8.2,8.2.其中8.2出现2次,出现次数最多,8.0排在第三,∴这组数据的众数与中位数分别是:8.2,8.0.故选D.【点评】本题考查了众数和中位数,解题的关键是熟记众数和中位数的定义.本题属于基础题,难度不大,解决该题型题目时,将数据按照一定顺序(从小到大或从大到小)进行排列,根据该组数据中数的特点结合众数和中位数的定义即可得出结论.12.(3分)(2016•梅州)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为()A.3 B.4 C.5 D.6【考点】众数;中位数.【分析】根据众数的定义先求出x的值,再根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案.【解答】解:∵一组数据3,x,4,5,6的众数是3,∴x=3,把这组数据按照从小到大的顺序排列为:3,3,4,5,6,最中间的数是4,则这组数据的中位数为4;故选B.【点评】本题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.13.(3分)(2016•百色)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调【考点】极差;加权平均数;中位数;众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.【点评】此题考查了极差,平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差【考点】统计量的选择.【分析】由表可知,运动鞋尺码为23.0cm的人数最多,故经理做决定应该是根据穿哪种尺码的运动鞋人数最多,即众数.【解答】解:由表可知,运动鞋尺码为23.0cm的人数最多,所以经理决定本月多进尺码为23.0cm的女式运动鞋主要根据众数.故选A.【点评】本题主要考查了统计量的选择的知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.15.(2016•毕节市)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是(A)A.52和54 B.52 C.53 D.54【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.【点评】本题考查了众数,一组数据中出现次数做多的数叫做众数,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.16.(2016•贵阳)2016年6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数17.(3分)(2016•安顺)某校九年级(1)班全体学生2016年初中毕业体育考试的成绩统计如表:A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分【考点】众数;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:24545+=45, 平均数为:40650748845644642539235⨯+⨯+⨯+⨯+⨯+⨯+⨯=44.425. 故错误的为D .故选D .【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.18.(3分)(2016•南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A .80分B .82分C .84分D .86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解: 由加权平均数的公式可知, 故选D .【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式是解题的关键.月31日最高气温(℃)的统计结果: A .32℃,32℃B .32℃,33℃C .33℃,33℃D .32℃,30℃【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中32是出现次数最多的,故众数是32;处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32. 故选A .8040%9060%32548640%60%1x ⨯+⨯+===+1222n n n x f x f x f x f f f +++=+++【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.(3分)(2016•丽水)某校对全体学生开展心理健康知识测试,七、八、九三个年级共B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【考点】统计表.【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选;D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm 【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.22.(4分)(2016•永州)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是( )A .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小【考点】方差;算术平均数;中位数;众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A 、879885x ++++=甲=8,796995x ++++=乙=8,故此选项正确; B 、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C 、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D 、∵2S 甲=15×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]= 15×2=0.4, 2S 乙=15×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]= 15×8=1.6, ∴2S 甲<2S 乙,故D 正确;故选:C .【点评】本题主要考查平均数、众数、中位数及方差,熟练掌握这些统计量的意义及计算公式是解题的关键.23.(5分)(2016•益阳)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为( )A .67、68B .67、67C .68、68D .68、67【分析】根据次数出现最多的数是众数,根据中位数的定义即可解决问题.【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68. 将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选C .【点评】本题考查众数、中位数的定义,记住众数、中位数的定义是解决问题的关键,属于中考常考题型.则这个队队员年龄的众数和中位数分别是( )A .11,10B .11,11C .10,9D .10,11【考点】众数;中位数.⋯⋯【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是11112=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.25.(3分)(2016•衡阳)要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.标准差是方差的平方根,也能反映数据的波动性;故要判断他的数学成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.【解答】解:方差是衡量波动大小的量,方差越小则波动越小,稳定性也越好.故选:D【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.26.(3分)(2016•娄底)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数.故选:B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.27.(3分)(2016•邵阳)在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.80【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故选B .【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.28.(3分)(2016•孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下 )5D .3,2,5【考点】方差;中位数;众数.【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据28出现的次数最多,出现了3次,则这组数据的众数是28; 把这组数据从小到大排列,最中间两个数的平均数是(28+28)÷2=28,则中位数是28; 这组数据的平均数是:(27×2+28×3+30)÷6=28,则方差是:222122728328[2830286]1⨯⨯-+⨯-+-=()()(); 故选A .【点评】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n 个数据,x1,x2,…xn 的平均数为,则方差29.(3分)(2016•宜昌)在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动,其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( )A .18B .19C .20D .21【考点】众数;条形统计图.【分析】根据众数的概念:一组数据中出现次数最多的数据叫做众数,求解即可.【解答】解:由条形图可得:年龄为20岁的人数最多,故众数为20.故选C .【点评】本题考查了众数的知识,解答本题的关键是掌握众数的概念:一组数据中出现次数最多的数据叫做众数.30.(3分)(2016•舟山)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )A.平均数B.中位数C.众数D.方差【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【解答】解:知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.31.(4分)(2016•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对重庆市居民日平均用水量的调查B.对一批LED节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查【考点】全面调查与抽样调查.【专题】计算题;数据的收集与整理.【分析】利用普查与抽样调查的定义判断即可.【解答】解:A、对重庆市居民日平均用水量的调查,抽样调查;B、对一批LED节能灯使用寿命的调查,抽样调查;C、对重庆新闻频道“天天630”栏目收视率的调查,抽样调查;D、对某校九年级(1)班同学的身高情况的调查,全面调查(普查),则最适合采用全面调查(普查)的是对某校九年级(1)班同学的身高情况的调查.故选D【点评】此题考查了全面调查与抽样调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.32.(3分)(2016•无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7【考点】众数.【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.【点评】本题考查了众数的定义以及统计表,解题的关键是找出哪个进球数出现的次数最多.本题属于基础题,难度不大,解决该题型题目时,根据统计表中得数据,结合众数的定义找出该组数据的众数是关键.33.(3分)(2016•株洲)甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统如果你是教练员,你的选择是()A .甲B .乙C .丙D .丁【考点】方差.【分析】首先比较平均数,然后比较方差,方差越小,越稳定.【解答】解:∵甲丙x x=9.7,S 2甲>S 2乙,∴选择丙.故选C . 【点评】此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.34. (3分)(2016•淮安)在“市长杯”足球比赛中,六支参赛球队进球数如下(单位:个):3,5,6,2,5,1,这组数据的众数是( )A .5B .6C .4D .2【考点】众数.【分析】众数就是出现次数最多的数,据此即可求解.【解答】解:∵进球5个的有2个球队,∴这组数据的众数是5.故选A .【点评】本题为统计题,考查众数的意义,解题的关键是通过仔细的观察找到出现次数最多的数.35.(2016•丹东)一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A .8,6B .7,6C .7,8D .8,7【考点】众数;中位数【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7.故选D .【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.36.(3分)(2016•宁夏)为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是( )。

相关文档
最新文档