数值分析在电力系统潮流计算中的应用

合集下载

电力系统潮流计算及其应用研究

电力系统潮流计算及其应用研究

电力系统潮流计算及其应用研究随着人们生活质量的提高和生产力的不断发展,电力系统在社会经济中的地位逐渐得到了凸显。

而电力系统的潮流计算是电力系统分析和控制的核心内容之一。

本文将围绕电力系统潮流计算及其应用进行探讨。

一、电力系统潮流计算的概述电力系统潮流计算是指针对电力系统中各节点电压和电流的计算与求解过程。

潮流计算可以用于电力系统的分析、规划、控制、保护等方面。

随着电力系统规模的不断扩大,潮流计算也出现了新的问题和挑战。

例如,新能源的不断接入、交流/直流混合输电方式、复杂的电力市场等,都给潮流计算提出了更高的要求和挑战。

在电力系统潮流计算中,关键的数学模型称为潮流方程。

潮流方程的基本形式为:$f (P_{i},Q_{j},U_{i},U_{j})=0$。

其中,$P_{i}$和$Q_{i}$分别表示节点i的有功和无功负荷,$U_{i}$和$U_{j}$为节点i和节点j的电压,f()表示一种和节点电压和电流相关的函数关系。

通过求解这个方程,实现对电力系统节点电压和电流的计算和求解。

二、电力系统潮流计算方法目前,电力系统潮流计算方法可大致分为以下两类:直接方法和迭代方法。

直接方法又称为解析法,指通过矩阵方程的解析求解,不需要迭代步骤。

这种方法在计算速度快的情况下,精度较高。

但它仅适用于小型电力系统的计算。

迭代方法通常基于牛顿-拉弗逊法(Newton-Raphson, N-R法)或基于幂法(Power flow,PF)的方法。

此类方法通常效果更为准确,但相对计算量较大。

其中,N-R法更适用于负荷变化频繁、电压变化范围大的情况;而PF法则更适用于单一负荷和电压初始值稳定的情况。

三、电力系统潮流计算的应用电力系统潮流计算在电力系统的现代化建设和运用管理中发挥着重要作用。

这里我们将列举几个典型的应用案例。

1.电力系统计算和规划潮流计算可以为电力系统的规划与设计提供基础性的数据支撑。

例如,电力系统的负载分布、设备容量和位置、线路配置和传递能力,都可以根据先前的潮流计算结果和情况来做出判断和选择。

电力系统中的潮流计算与分析

电力系统中的潮流计算与分析

电力系统中的潮流计算与分析摘要本文介绍了电力系统中的潮流计算与分析,潮流计算是电力系统计算的基础,通过对电力系统中的电流、电压和功率进行计算和分析,可以有效地评估电力系统的稳定性和安全性。

在本文中,我们讨论了潮流计算的原理和方法,并介绍了一种基于改进的高斯-赛德尔迭代算法的潮流计算方法。

同时,我们还介绍了一种基于Python语言的潮流计算程序的设计和实现,该程序可以对电力系统进行潮流计算和分析,并生成相关的报告和图表。

最后,我们利用该程序对IEEE 14节点测试系统进行了潮流计算和分析,并分析了系统的稳定性和安全性。

关键词:电力系统;潮流计算;高斯-赛德尔迭代算法;Python语言AbstractThis paper introduces the load flow calculation and analysis in power system. Load flow calculation is the basis of power system calculation. By calculating and analyzing the current, voltage and power in the power system, the stability and safety of the power system can be effectively evaluated. In this paper, we discuss the principles and methods of load flow calculation, and introduce an improved Gauss-Seidel iterative algorithm based load flow calculation method. At the same time, we also introduce the design and implementation of a load flow calculation program based on the Python language. The program can perform load flow calculation and analysis on the power system, and generate relevant reports and charts. Finally, we use the program to perform load flow calculation and analysis on the IEEE 14-bus test system, and analyze the stability and safety of the system.Keywords: power system; load flow calculation; Gauss-Seidel iterative algorithm; Python language一、引言电力系统是现代工业和生活的基础设施之一,它承担着输送和分配电能的重要任务。

电力系统中潮流计算与优化方法研究与应用

电力系统中潮流计算与优化方法研究与应用

电力系统中潮流计算与优化方法研究与应用概述:电力系统是当今社会中不可或缺的基础设施之一,而潮流计算和优化方法是电力系统的核心研究内容。

随着电力负荷的增加,传统的电力系统已经不再能满足人们对电能的需求。

因此,对电力系统的潮流计算和优化方法的研究和应用显得尤为重要。

本文将讨论电力系统中潮流计算和优化方法的研究和应用。

一、潮流计算方法的研究与应用1.1 潮流计算的概念和原理潮流计算是对电力系统中各个节点的电流、电压和功率进行计算和分析的过程。

这个过程是通过电力系统的拓扑结构和负载改变来进行的。

潮流计算的基本原理是基于功率平衡方程和各个节点之间的电压相等条件。

最常见的潮流计算方法有直流潮流计算和交流潮流计算。

1.2 潮流计算的方法和技术在电力系统中,潮流计算是一个复杂的问题,因此需要使用一些方法和技术来解决。

目前,常用的潮流计算方法有牛顿-拉夫逊法(Newton-Raphson)、高斯-赛德尔法(Gauss-Seidel)、恢复牛顿法(Fast Decoupled Newton),以及分布式潮流计算方法。

1.3 潮流计算的应用潮流计算在电力系统中有着广泛的应用。

它可以用于解决电力系统中的潮流问题,评估电网状态和电力负荷,确定电力系统的输电能力,并为电力系统的规划和调度提供支持。

此外,潮流计算还可以用于分析电力系统的稳定性,提高电力系统的可靠性和安全性。

二、优化方法的研究与应用2.1 优化方法的概念和原理电力系统的优化问题是指找到一组最佳的控制策略或调整参数,使电力系统的某些性能指标达到最优。

优化方法的基本原理是通过最小化或最大化目标函数来寻找最优解。

在电力系统中,常见的优化问题包括最小化功率损耗、最大化输电能力和优化发电调度等。

2.2 优化方法的方法和技术优化问题是一个多目标、多约束的问题,因此需要使用一些方法和技术来解决。

常用的优化方法包括线性规划、非线性规划、遗传算法、粒子群算法等。

此外,在电力系统中还可以采用模糊数学、神经网络和支持向量机等方法来解决优化问题。

潮流计算算法在电力系统中的应用研究

潮流计算算法在电力系统中的应用研究

潮流计算算法在电力系统中的应用研究一、引言电力系统是现代社会的重要基础设施,它的稳定运行对经济发展和人民生活至关重要。

在电力系统的运行过程中,潮流计算算法起着至关重要的作用。

潮流计算算法是指通过数学模型和计算方法来解决电力系统中潮流分布、功率平衡等问题的一种算法。

本文旨在探讨潮流计算算法在电力系统中的应用研究,以期能够提高电力系统的安全稳定运行和效率。

二、潮流计算算法的基本概念潮流计算算法是电力系统计算的核心算法,它的主要任务是求解电力系统在给定负荷和发电机有限水平下的电压、功率和电流等相关参数。

潮流计算算法主要包括直流潮流计算算法和交流潮流计算算法。

直流潮流计算算法是最基本的潮流计算方法,它假设系统中只有直流,并以直流电压、功率和电流为主要计算对象。

交流潮流计算算法是在直流潮流计算算法的基础上考虑电力系统的交流特性,以交流电压、功率和电流为主要计算对象。

三、潮流计算算法的应用领域潮流计算算法广泛应用于电力系统的各个领域,包括电网规划、电网分析、电网调度和电网运行等。

在电网规划方面,潮流计算算法可以用于电网的优化配置、线路的选址以及电网的扩容规划等方面,以提高电网的供电能力和可靠性。

在电网分析方面,潮流计算算法可以用于评估电网的稳定性和可靠性,以及分析电网中的潮流分布和潮流方向等问题。

在电网调度方面,潮流计算算法可以用于优化电力系统的发电机组合、负荷分配以及电力交易等方面,以提高电网的经济性和运行效率。

在电网运行方面,潮流计算算法可以用于实时监测电网的潮流状态和电力质量,以及预测电网中的潮流变化和电力负荷等问题。

四、潮流计算算法的发展趋势随着电力系统的规模不断扩大、运行复杂度不断增加,潮流计算算法也面临着更多的挑战和需求。

在未来的发展中,潮流计算算法将向以下几个方向发展。

首先,潮流计算算法将更加注重电力系统的可扩展性和可靠性。

随着电力系统的规模和运行复杂度的增加,传统的潮流计算算法已经无法满足实际需求。

电力系统潮流计算与分析

电力系统潮流计算与分析

电力系统潮流计算与分析概述:电力系统潮流计算与分析是电力系统运行中的重要步骤,它涉及到对电力系统的节点电压、线路潮流以及功率损耗等进行精确计算和分析的过程。

通过潮流计算和分析,电力系统运行人员可以获得关键的运行参数,从而保持电力系统的稳定运行。

本文将从潮流计算的基本原理、计算方法、影响因素以及潮流分析的实际应用等方面进行论述。

潮流计算的基本原理:潮流计算的基本原理是基于电力系统的节点电压和线路潮流之间的平衡关系进行计算。

在电力系统中,电源会向负载供电,而线路损耗会导致电压降低。

潮流计算就是要确定电力系统中各个节点的电压和线路潮流,以保持系统的稳定运行。

通过潮流计算,可以得到节点电压、线路潮流以及负荷功率等关键参数。

潮流计算的方法:潮流计算可以分为迭代法和直接法两种方法。

1. 迭代法:迭代法是潮流计算中最常用的方法,它基于电力系统的牛顿—拉夫逊法(Newton-Raphson method)来进行计算。

迭代法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程建立节点电流方程组;c. 利用牛顿—拉夫逊法迭代求解节点电压;d. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。

2. 直接法:直接法是潮流计算中的另一种方法,它基于电力系统的潮流松弛法(Gauss-Seidel method)来进行计算。

直接法的基本步骤如下:a. 假设节点电压的初值;b. 根据节点电压初值和电力系统的潮流方程,按照节点顺序逐步计算节点电压;c. 判断是否满足收敛条件,如果不满足,则返回第二步重新计算,直至满足收敛条件。

影响潮流计算的因素:1. 负荷:电力系统中的负荷是潮流计算中的重要因素之一,负荷的变化会导致节点电压和线路潮流的波动。

因此,在进行潮流计算时,需要准确地估计各个节点的负荷。

2. 发电机:发电机是电力系统的电源,它的输出功率和电压会影响潮流计算中的节点电压和线路潮流。

电力行业的电力系统潮流计算与分析

电力行业的电力系统潮流计算与分析

电力行业的电力系统潮流计算与分析电力系统是一个复杂的能源交互网络,其潮流计算与分析对于电力行业的运营和规划至关重要。

本文将介绍电力系统潮流计算的基本原理、方法以及应用,并对一些常见的电力系统问题进行分析和解决。

一、电力系统潮流计算原理电力系统潮流计算是指通过建立和求解电力系统的节点电压和支路潮流等参数的方程组,来分析电力系统中各个节点和支路的电压、功率等参数。

其基本原理是基于电力系统中的潮流方程和节点电压平衡方程。

电力系统潮流方程是描述电力系统节点之间潮流传输关系的基本方程。

在潮流计算中,常用的潮流方程有M端潮流方程、PQ端潮流方程和PV端潮流方程。

这些方程反映了电力系统中不同类型节点的潮流传输特性,是潮流计算的基础。

节点电压平衡方程是电力系统潮流计算中的重要方程。

它根据电力系统的拓扑结构和能量守恒原理,描述了电力系统中各个节点的电压平衡关系。

通过求解节点电压平衡方程,可以得到电力系统中各个节点的电压值,从而确定电力系统的潮流分布情况。

二、电力系统潮流计算方法电力系统潮流计算方法包括迭代法、直接法和混合法等。

其中,迭代法是最常用和最经典的方法。

1. 迭代法迭代法是通过反复迭代计算来逼近电力系统的潮流计算结果。

常用的迭代法有高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。

高斯-赛德尔法是一种基于节点顺序更新的迭代法,通过交替更新节点电压和支路潮流,逐渐逼近潮流计算结果。

牛顿-拉夫逊法是一种基于牛顿迭代法的改进方法,通过利用电压-节点功率雅可比矩阵的特性,加快了潮流计算的收敛速度。

快速潮流法是一种针对大规模电力系统的高效迭代法,通过合理的迭代策略和加速技术,提高了潮流计算的效率和准确性。

2. 直接法直接法是一种通过求解线性方程组来直接得到电力系统的潮流计算结果的方法。

常用的直接法有节点导纳矩阵法和母线导纳矩阵法等。

节点导纳矩阵法是一种基于电力系统拓扑结构的直接法,通过建立节点导纳矩阵和节点电流矩阵,求解节点电流和支路潮流。

数值分析在电力系统中的应用

数值分析在电力系统中的应用

数值分析在电力系统中的应用数值分析是一种基于数学模型和计算方法的科学技术,广泛应用于各个领域。

在电力系统中,数值分析也发挥着重要的作用。

本文将探讨数值分析在电力系统中的应用,并介绍相关的技术和方法。

一、概述电力系统是指由发电、输电、配电等组成的系统,其目的是将电能从发电厂传输到用户。

电力系统的运行和调控需要大量的电力理论和技术支持,而数值分析正是其中一种重要的技术手段。

二、电力系统模拟电力系统模拟是数值分析在电力系统中最为常见和重要的应用之一。

通过建立电力系统的数学模型,并利用计算机进行模拟计算,可以评估电力系统的运行状态、安全性能和经济性等指标。

1.潮流计算潮流计算是电力系统模拟的基础工作,用于计算电力系统中各个节点的电压、相角和功率等参数。

通过数值算法和迭代方法,可以得到电力系统的潮流分布情况,从而评估系统的工作状态和负荷容量。

2.短路计算短路计算是评估电力系统短路电流的一种方法。

通过建立电力系统的等值短路模型,并利用数值分析方法,可以计算短路电流的大小和分布,为电力系统的保护和控制提供依据。

3.稳定性分析稳定性分析是评估电力系统运行状态的重要手段。

通过数值模拟和动态计算,可以分析电力系统在干扰和故障等情况下的稳定性表现,预测系统的动态响应和稳定边界,从而优化系统调度和控制。

三、电力系统优化电力系统优化是数值分析在电力系统中的另一重要应用。

通过建立电力系统的数学模型,并利用优化算法和计算方法,可以实现电力系统的经济优化和能源优化。

1.潮流优化潮流优化是通过调整电力系统中的输电线路、变压器等设备参数,实现系统功率分配和负荷均衡的最优化问题。

通过数值分析和遗传算法等优化方法,可以优化电力系统的潮流分布,减少线路损耗和调节压降。

2.经济调度经济调度是通过优化电力系统中各个发电机组的出力计划,实现电力系统的经济运行。

通过数值分析和最优化方法,可以评估不同发电机组的经济性和可行性,并制定最优的发电计划,以实现电力系统的经济调度。

潮流计算算法在电力系统中的应用研究

潮流计算算法在电力系统中的应用研究

潮流计算算法在电力系统中的应用研究潮流计算算法是电力系统运行与规划中重要的技术手段之一,它用于分析电力系统中各个节点之间的电力传输、功率分配和系统稳定性等关键问题。

本文将探讨潮流计算算法在电力系统中的应用研究,从算法基本原理、算法改进与优化、并网电力系统中的应用以及未来的发展方向等方面展开阐述。

**一、潮流计算算法的基本原理**潮流计算是一种基于电力系统网络模型和电力系统运行条件的数学计算方法,旨在通过求解电力系统中各个节点的电压幅值和相角来反映电力系统的潮流分布情况。

在传统的电力系统计算中,潮流计算算法主要是基于牛顿-拉夫逊法和高斯-赛德尔法等迭代方法进行求解。

这些算法通过不断迭代求解节点功率不平衡方程,直至节点功率不平衡小于设定的收敛值为止。

这些算法具有较好的稳定性和可靠性,但在处理大规模电力系统和复杂运行模式时存在一定的计算复杂度和收敛速度的问题。

**二、潮流计算算法的改进与优化**为了提高潮流计算算法的性能和计算效率,许多学者和研究人员对现有算法进行了改进和优化。

一方面,基于数值优化方法、等效机理和矩阵分解等技术,研究者们提出了基于等效模型的潮流计算算法,用以降低系统维度和计算复杂度。

另一方面,基于改进的迭代方法、预处理技术和并行计算等手段,研究者们针对各种约束条件和问题,优化了传统的潮流计算算法。

这些改进与优化的算法在电力系统计算中,具有更好的计算速度和收敛性,能够应对日益复杂的电力系统运行和控制需求。

**三、潮流计算算法在并网电力系统中的应用**潮流计算算法在电力系统运行与规划中具有广泛的应用价值。

其中,在并网电力系统中的应用是其中的重要方向之一。

以风电和光伏发电为代表的可再生能源,与传统发电方式存在较大的差异和不确定性,因此需要通过潮流计算算法来预测、分析和调度其对电力系统的影响。

此外,在电力系统调度和运行控制中,潮流计算算法也扮演着重要的角色。

通过潮流计算算法,可以对系统的潮流分布、节点电压、功率损耗等参数进行预测和调整,以实现电力系统的安全稳定运行。

电力系统的潮流计算与分析

电力系统的潮流计算与分析

电力系统的潮流计算与分析引言电力是现代社会不可或缺的能源,电力系统的稳定运行和高效管理对整个社会经济发展起着重要作用。

而电力系统的潮流计算与分析是电力系统运行和管理的重要工具。

本文将探讨电力系统潮流计算与分析的原理、方法以及应用领域,旨在增进读者对该领域的了解。

一、电力系统潮流计算的原理电力系统潮流计算是指在给定电网拓扑结构、负荷需求和发电机输出等条件下,通过数学模型计算各节点的电压幅值和相位角,以获取电网各元件的电流分布和功率流向。

潮流计算的核心是建立电力系统的节点电压和传输功率的联立方程组,并通过求解方程组得到节点电压和功率流向的数值解。

潮流计算的基本原理是基于电力系统的各节点之间存在有功功率平衡和无功功率平衡,即电力系统各节点的有功功率和无功功率之和等于节点的负荷功率和发电机输出功率之和。

通过对电力系统进行潮流计算,可以得出各节点的电压、功率因数、功率损耗等参数,为电力系统的运行和管理提供依据。

二、电力系统潮流计算的方法1. 直流潮流计算方法直流潮流计算方法是一种较为简化的计算方法,适用于较小规模的电力系统以及初步的潮流计算。

该算法假设电力系统中各节点电压的相角都为零,即所有节点电压相位角均取0°,从而简化了潮流计算的计算量。

然而,直流潮流计算方法无法考虑电网的无功功率平衡,无法准确得到节点的功率因数和无功功率分布。

2. 迭代法潮流计算方法迭代法是一种常用的潮流计算方法,其基本思路是通过反复迭代计算节点电压和功率分布,直到达到收敛条件为止。

迭代法潮流计算方法常用的算法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

迭代法潮流计算方法能较好地考虑电网的无功功率平衡,可以获得较为准确的节点电压和功率分布。

3. 双切迭代法潮流计算方法双切迭代法是一种相对较新的潮流计算方法,其基本思路是通过分析电力系统的分割区域,将电力系统划分为多个小区域进行潮流计算,并通过切割和迭代的方式逐步求解整个电力系统。

数值计算在电力领域的应用

数值计算在电力领域的应用

数值分析在电力领域的部分应用摘要:通过对电力领域工程实际问题的分析,依据该问题的本质特征,抽象出相对应的数学模型。

对该模型采用数值分析的解法,求得其近似解。

本文主要分析了数值计算在电力系统潮流计算、电力系统暂态稳定性分析和开关电力电子电路稳定性分析方面的灵活应用。

体现了数值计算在电力研究领域中的重要作用和其在运用过程中的灵活性。

关键词:电力系统;潮流计算;暂态稳定;开关电路0 引言人们在认识、研究现实世界中某个客观存在的实物时,往往并不是直接研究那个实际对象,而是集中在模型上进行研究。

所谓模型就是人们为了一定目的,对客观事物的某一部分进行简缩、抽象和提炼出来的替代物,它集中反映客观事物中人们所需要研究的那部分特征。

数学模型是将模型的特征、内在规律用数学的语言和符号来描述的数学表述或数学结构。

在实际的电力领域方面的,往往将所研究的实际事物,抽象为数学模型,研究其内在规律,解决实际的工程问题。

本文主要介绍了数值分析在电力网络中的潮流计算、电磁暂态稳定性计算以及开关电力电子电路仿真计算稳定性分析方面的应用。

1 电力系统潮流计算电力系统潮流计算是对复杂电力系统正常和故障条件下稳态运行状态的计算。

其目的是求取电力系统在给定运行方式下的节点电压和功率分布,用以检查系统各元件是否过负荷、各点电压是否满足要求、功率分布和分配是否合理以及功率损耗等,是电力系统计算分析中的一种最基本的计算。

依据网络的拓扑结构、基尔霍夫定律以及元器件的伏安特性做出数学模型。

然后采用数值计算的方法求出其近似解。

潮流计算方程为非线性代数方程,其形式如下: )(X F X =1.1采用高斯-赛德尔迭代法如果)(k X是变量X 的初始估计值,则迭代格式为][)()1(k k X F X =+当连续迭代的结果的差的绝对值小于某一特定值时,就得到方程的解。

ε≤-+||||)()1(k k X X 这里,ε是要求的精度。

1.2采用牛顿-拉夫逊迭代法牛顿-拉夫逊法是一种广泛适用的解非线性代数方程的方法。

数值分析王兵团答案

数值分析王兵团答案

数值分析王兵团答案【篇一:数值分析大作业】解法在电力系统潮流计算中的应用学院:电气工程学院专业:电气工程自动化学生姓名:常方宇学号:15121392指导教师:王兵团老师北京交通大学2016年2月lu分解法在电力系统潮流计算中的应用摘要:结合专业相关知识,在对电力系统进行潮流计算的过程中,应用lu分解法对修正方程的矩阵进行求解,对算法进行改进,加快了潮流计算的速度。

关键词:lu分解法;潮流计算;pq分解法1. 概述潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如母线上的电压(幅值及相角)、网络中的功率分布及功率损耗等。

目前计算机潮流计算的方法主要有牛顿-拉夫逊算法和pq分解法。

牛顿-拉夫逊算法是数学上求解非线形方程组的有效方法,具有较好的收敛性,曾经是潮流计算中应用比较普遍的方法。

pq快速分解法是从牛顿-拉夫逊算法演变而来的,是将纯数学的牛顿-拉夫逊算法与电力系统具体特点相结合并进行简化与改进而得出的。

pq快速分解法比牛顿-拉夫逊算法大大提高了计算速度和节省了内存。

2. lu分解法简介在线性代数中, lu分解(lu decomposition)是矩阵分解的一种,可以将一个矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积(有时是它们和一个置换矩阵的乘积)。

lu分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行列式。

lu分解在本质上是高斯消元法的一种表达形式。

实质上是将a通过初等行变换变成一个上三角矩阵,其变换矩阵就是一个单位下三角矩阵。

这正是所谓的杜尔里特算法(doolittle algorithm):从下至上地对矩阵a做初等行变换,将对角线左下方的元素变成零,然后再证明这些行变换的效果等同于左乘一系列单位下三角矩阵,这一系列单位下三角矩阵的乘积的逆就是l矩阵,它也是一个单位下三角矩阵。

这类算法的复杂度一般在(三分之二的n三次方) 左右。

3. 潮流计算pq分解法的步骤(1)节点导纳矩阵的形成?自导纳的形成对节点i,其自导纳yii是节点i以外的所有节点都接地时节点i对地的总导纳。

电力系统潮流计算应用

电力系统潮流计算应用

电力系统潮流计算应用摘要:电力是国家的重要能源行业,电力的发展离不开科学的规划和系统的设计,有效的电力计算是确保电力开发和设计工作质量的基础,因此,在电力事业加速发展的大潮下更应该做好电力计算的相关工作。

潮流计算是研究电力运行和电力系统方案的重要技术手段,是电力系统分析中最基础的数学计算。

目前常见的电力系统潮流计算有:人工智能潮流计算方法、现代内点理论潮流计算方法、符号分析潮流计算方法和双向迭代并行潮流计算方法,以及针对配电网的模糊潮流计算方法等,上述潮流计算方法各据特点,但都存在一定的优缺点,电力科技人员应该在详细了解各种潮流计算方法的基础上,确定其适用范围,结合实际的电力潮流计算工作,选择有效的潮流计算方式。

关键词:电力系统;潮流计算;应用引言电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

1 潮流计算主要方法及评价当今电力兄潮流计算方法多种多样,每个潮流计算方法都有其独具的优势,但是这些算法依据的基本方程式都是一致的。

收敛速度快、可对大部分病态条件求解、内存量适中是各种形式牛顿法的共同优点。

计算量大、可能不收敛重病态条件、保证初值良好、复杂的编程是其局限性。

功率偏差型和电流偏差型算法是的根据就是不同的f(x)f(x)表达式。

功率偏差型算法在功率偏差型算法中,雅克比阵随着每次迭代重兴形成,雅克比真是高度稀疏阵,并且不是对称的。

电流偏差型算法直角坐标形式,复电流偏差量修正方程式,所有节点和PQ节点零注入,修正方程:2潮流计算的推广概念(1)状态估计。

在一般潮流计算中,未知量数等于已知量和方程式数。

未知量数小于已知量和方程式数是状态估计。

表征系统实际运行状态的状态量可以在实际测量系统有偏差时利用冗余变量求得,其方法有递推状态估计法等。

数值分析在电力系统中的应用

数值分析在电力系统中的应用

数值分析在电力系统中的应用随着科技的不断发展,电力系统的规模和复杂性也逐渐增加。

为了确保电力系统的安全、稳定和高效运行,数值分析在电力系统中的应用越来越受到重视。

本文将介绍数值分析在电力系统中的四个方面的应用:电力系统建模与仿真、电力系统优化、电力系统故障诊断和电力系统风险评估。

一、电力系统建模与仿真电力系统建模与仿真是电力系统分析的基础。

通过将电力系统的各个组成部分抽象成数学模型,可以对系统进行仿真和分析。

数值分析方法可以在计算机上进行大规模电力系统的仿真,在短时间内得到电力系统的运行情况。

这对于电力系统规划、设计以及故障分析都具有重要意义。

二、电力系统优化电力系统优化是通过数值计算方法对电力系统进行调度和控制的过程。

通过优化算法,可以得到电力系统的最佳经济调度策略、发电机的最佳出力以及线路的最佳传输功率等信息,从而使电力系统的运行更加高效和稳定。

三、电力系统故障诊断电力系统故障诊断是通过数值分析技术对电力系统中的故障进行检测和分析。

故障诊断可以及时准确地发现电力系统中的故障,采取相应的措施修复故障,避免故障扩大化。

数值分析方法可以利用电力系统的实时状态数据,通过数学模型进行故障定位和故障诊断,提高故障处理的速度和准确性。

四、电力系统风险评估电力系统风险评估是通过数值计算方法对电力系统中的潜在风险进行评估和预测。

通过建立概率模型和风险评估模型,可以对电力系统的可靠性和安全性进行分析,确定电力系统存在的风险并采取相应的措施进行预防和减轻。

数值分析方法可以对电力系统的过载、短路、电压稳定等方面的风险进行分析和评估,为电力系统的运行提供参考依据。

综上所述,数值分析在电力系统中的应用具有重要的意义。

它可以为电力系统的设计、运行和维护提供科学的依据,提高电力系统的安全性、稳定性和经济性。

随着数值分析方法的不断发展,相信在未来,数值分析在电力系统中的应用将会更加广泛和深入。

基于大数据分析的电力系统潮流计算与优化研究

基于大数据分析的电力系统潮流计算与优化研究

基于大数据分析的电力系统潮流计算与优化研究随着电力系统的发展和智能化程度的提高,大数据分析在电力系统潮流计算与优化研究中扮演着重要的角色。

本文将探讨基于大数据分析的电力系统潮流计算与优化研究,并分析其应用前景和挑战。

一、电力系统潮流计算的概念与重要性潮流计算是电力系统的基本分析方法之一,用于计算电力系统中各节点的电压幅值、相角以及各支路上的功率流向。

潮流计算可以评估电网的稳定性、电压稳定性以及潮流分布,为电力系统的运行与规划提供参考依据。

二、大数据分析在电力系统潮流计算中的作用1. 数据采集和处理:大数据技术可以实时采集电力系统的运行数据,包括电流、电压、温度等。

通过数据清洗、聚合和融合等技术,可以提取出有效的特征信息,为后续的潮流计算提供数据支持。

2. 模型构建和优化:利用大数据分析技术,可以建立复杂的电力系统模型,并考虑多种因素的影响,如风电、光伏发电等可再生能源的波动性。

通过优化算法,可以对电力系统进行潮流计算和优化调度,提高电网的运行效率和可靠性。

3. 风险预测与安全评估:结合大数据分析技术,可以实时监测电力系统各节点的电压、负载和功率等指标,并进行异常检测和故障诊断。

通过对电网运行状态的实时分析和预测,可以提前发现潜在的风险和问题,并及时采取措施,保障电力系统的可靠运行。

三、基于大数据分析的电力系统潮流计算与优化研究的应用前景1. 提高电力系统运行效率:通过对电力系统的潮流计算和优化调度,可以实现电网的负荷均衡、输电损耗的降低,提高电力系统的运行效率。

2. 优化可再生能源的集成:大数据分析技术可以有效处理可再生能源的波动性和季节性问题,实现可再生能源的高效集成和利用。

同时,可以通过潮流计算优化电力系统中可再生能源的利用率和安全性。

3. 提升电力系统供电可靠性:通过大数据分析技术,可以实时监测电力系统的运行状态,及时发现和处理潜在的故障和问题,提高电力系统的供电可靠性。

4. 实现智能化管理:基于大数据分析的电力系统潮流计算与优化研究可以为电力系统提供智能化管理方案,如智能配电网的优化调度、电力设备的故障预测等,提升电力系统的智能化水平。

数值分析在电力系统潮流计算中的应用

数值分析在电力系统潮流计算中的应用

数值分析在电力系统潮流计算中的应用电力系统潮流计算是电力系统运行分析的重要组成部分,其主要目的是确定电力系统各节点的电压幅值和相角。

数值分析技术在电力系统潮流计算中的应用,可以提高计算效率和精度,减少计算复杂度。

首先,数值分析技术可以用来计算电力系统中各个节点的电压幅值和相角。

电力系统中节点数众多,采用解析解法计算复杂度高、计算时间长。

而采用数值分析技术,可以将电力系统的节点方程离散化,转化为数学模型进行计算。

常用的数值分析方法包括牛顿-拉夫逊法、高斯-赛德尔迭代法等。

这些方法可以通过迭代计算来求解电力系统潮流,能够快速计算出各节点的电压幅值和相角。

其次,数值分析技术可以用来计算电力系统中各个支路的功率、电流和潮流损耗等。

电力系统中的支路数目庞大,采用解析解法计算耗时较长。

而数值分析技术可以通过建立支路方程进行离散化,将复杂的电力系统模型转化为数学模型进行计算。

这样可以快速计算出各支路的功率、电流和潮流损耗等参数。

另外,数值分析技术在电力系统潮流计算中还可以用来解决电力系统中的不平衡问题。

电力系统中各个节点的电压、电流等参数不一定完全对称,可能存在不平衡的情况。

数值分析技术可以通过建立不平衡方程来描述电力系统的不平衡情况,并采用迭代计算的方法求解出各节点的不平衡电压和电流值。

这样可以更全面地分析和评估电力系统的运行情况,提高系统的稳定性和可靠性。

此外,数值分析技术还可以用来进行电力系统潮流的灵敏度分析。

灵敏度分析是指在给定的电力系统工作点上,计算各个参数对潮流计算结果的敏感程度。

通过灵敏度分析,可以确定各个参数对电力系统潮流的影响程度,有助于制定合理的调度策略和运行方案。

总的来说,数值分析技术在电力系统潮流计算中的应用主要体现在以下几个方面:计算电力系统各节点的电压幅值和相角、计算电力系统支路的功率、电流和潮流损耗、解决电力系统的不平衡问题以及进行电力系统潮流的灵敏度分析。

这些应用可以提高电力系统潮流计算的效率和精度,为电力系统的运行分析提供支持。

数值计算方法在电力系统优化中的应用研究

数值计算方法在电力系统优化中的应用研究

数值计算方法在电力系统优化中的应用研究随着电力系统规模的不断扩大和电力质量的不断提高,如何优化电力系统的运行效率和降低能源消耗成为了当今电力领域的重要课题。

数值计算方法作为一种强大的工具,在电力系统优化中发挥了重要作用。

本文将从电力系统模型建立、稳态分析、优化方法和应用案例等几个方面,探讨数值计算方法在电力系统优化中的应用研究。

电力系统模型建立是电力系统优化的基础工作之一。

数值计算方法可以用来建立电力系统的数学模型,并通过模型求解来解决问题。

在电力系统模型建立方面,常见的数值计算方法包括潮流计算、节点分析、线路参数计算等。

潮流计算是电力系统稳态分析的基础,它通过求解电力系统中节点电压和功率的分布来确定系统各组分的工作状态。

数值计算方法可以通过迭代算法,高效地求解潮流计算问题,提高计算效率和准确性。

稳态分析是电力系统优化中的重要环节。

数值计算方法可以用来解决电力系统中的功率流、短路、稳定等问题,为系统优化和运行提供支持。

功率流计算是稳态分析的核心问题之一,它可以用来确定电力系统中各个节点的电压和功率分布情况。

数值计算方法可以通过牛顿-拉夫逊法、高斯-赛德尔法等算法,进行功率流计算,提高计算效率和准确性。

此外,数值计算方法还可以用来进行电力系统的短路计算和稳定计算等,分析电力系统的可靠性和安全性。

优化方法是电力系统优化的关键。

在电力系统中,存在着多个目标函数和多个约束条件,如何在目标函数和约束条件之间找到一个最优解,是优化方法面临的挑战。

数值计算方法可以用来解决多目标优化和约束优化问题。

在多目标优化中,常见的数值计算方法包括遗传算法、粒子群算法、模拟退火算法等,这些方法可以通过不同的优化策略,在多个目标函数之间寻找到一组最优解。

在约束优化中,数值计算方法可以通过拉格朗日乘子法、内点法等算法,将约束条件纳入目标函数中,实现约束和目标的一体化求解。

数值计算方法在电力系统优化中的应用不仅局限于数学模型的求解,还涉及到实际电力系统的应用案例。

潮流计算在电力系统分析的作用

潮流计算在电力系统分析的作用

潮流计算在电力系统分析的作用
随着科技的日益发展,电力系统的规模和复杂性不断增加,分析电力系统的数据成为了,电力行业的一项重要任务。

潮流计算作为一种专门的电力系统分析方法,具有广泛的应用前景,可以有效地解决电力系统的综合分析问题。

首先,潮流计算是基于电力系统的数学模型,旨在研究有功、无功功率以及电压等基本物理量之间的关系。

它可以有效地模拟电力系统的运行状态,确定电力系统中电压、有功和无功功率等量的特性,从而达到更加全面的电力系统分析目的。

此外,潮流计算也可以用于确定电力系统的配置参数和阻抗,以及计算由电源系统造成的潮流和电压谐波。

其次,潮流计算可以用来评估电力系统的安全性和稳定性。

电力系统中,频繁发生的电力事故,对用户、系统和社会都会造成重大危害,而潮流计算可以帮助研究电力系统中发生故障时的潮流和电压变化情况,从而帮助企业了解电力系统的运行状态,安全性和稳定性。

此外,电力系统的实际运行往往比设计时要复杂得多,潮流计算的有效应用可以优化电力系统的运行状态,提高电效和电量的利用效率,让电力系统的运行更加安全稳定。

最后,潮流计算可以用于构建电力系统的控制系统,使电力系统能够自动运行,实现自动控制、调节和保护。

这将有助于更有效地管理电力工程,减少工程费用,提升运行效率。

综上所述,潮流计算作为电力系统分析的有效手段,可以更加全
面地把握电力系统的运行状态,优化电力系统的运行,为电力行业的发展提供有效的技术支持。

因此,电力行业应当加大对潮流计算的研究,开发更加高效的计算技术,为提高电力系统的安全性、稳定性和可靠性做出积极的贡献。

电力系统经济调度中潮流计算的应用分析

电力系统经济调度中潮流计算的应用分析

电力系统经济调度中潮流计算的应用分析摘要潮流计算是电力调度中最重要也是最基本的计算之一,它应用于电力系统中实时电价计算、输电权分配、网络阻塞管理等多方面。

文章根据介绍了潮流计算的传统方法和人工智能方法,提出潮流计算在电网经济调度中的运用。

关键词潮流计算;目的;经济调度随着电力规模的不断加大,对潮流计算方程的要求也越来越高,对于这种规模的方程不是采用任何数学方法都能保证给出准确答案的,因此,这也成为了电力系统研究人员不断寻求更可靠的潮流计算方法的动力。

1潮流计算的概述电力的潮流分传统方法和人工智能方法。

1)潮流计算的传统方法。

传统的潮流计算方法有线性规划法、非线性规划法、及二次规划法。

传统方法的优点是:能按照目标函数的导数信息确定搜索方向,因此计算速度较快;解析过程清晰,结果的可信度高。

其缺点是:对目标函数及约束条件有一定限制,必要时需要做简化和近似处理;要么采用复杂的混合整数规划算法直接处理,要么将离散变量连续化处理,求其最优值后,很有可能便最优解变成不可行解。

2)潮流计算的人工智能方法。

人工智能是一种新兴的方法,该方法不像传统方法那样依赖于精确的数学模型。

具有代表性的有遗传法、模拟退火法、粒子群优化算法等。

人工智能方法的优点是:①与导数无关性。

工程上很多优化问题的目标函数是不可导的,若采取前一类方法只能对其进行假设和近似,这显然影响到解的真实性。

②随机性。

容易跳出局部极值点,它们是一类全局优化算法;③内在并行性,它的操作对象是一组可行解,对其内在并行性的开发可在一定程度上克服其性能上的不足。

其缺点是:①表现不稳定,算法在同一问题的不同实例计算中会有不同的效果,造成计算结果的可信度不高;②按概率进行操作,不能保证百分之百获得最优解;③算法中的某些控制参数需要凭经验人为地给出,需要一定量的试验或专家经验。

2潮流计算在电力系统中经济调度的应用在电力系统调度方式改进过程中,利用潮流计算程序,建立电网模型,根据潮流计算的结果,从中找出经济的运行条件,调度运行人员调整运行方式,使设备经济运行,节能调度具体化。

数值分析在电力系统潮流计算中的应用

数值分析在电力系统潮流计算中的应用

数值分析在电力系统潮流计算中的应用摘要:电力系统是一个复杂的网络,由于其中的模块大多为非线性,所以在分析计算时很难求出解析解.而电力系统需要进行实时的平衡与调整,以确保电力的正常输送,所以对电网的稳态运行状况与暂态分析都很重要,这当中就需要用到数值分析的方法.本文就会将介绍数值分析方法在电力系统潮流计算中的应用.关键词:数值分析;电力系统;潮流计算;N-R法;PQ分解法1.引言电力系统及其自动化学科是电气工程的一个二级学科,研究对象是以电力系统各单元为核心的有关发电、输电、配电等过程的电网设施。

所以其研究的内容主要则包括电力系统运行、电网分析、电力电子技术、高电压技术以及继电保护等。

电力系统是由发电厂、输电线路、供配电所和用电侧等环节组成的一个电能生产与消费链。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。

电力系统中各种电压的变电所及输配电线路组成的整体,称为电力网,简称电网。

电网又分为输电网和配电网,其中电压等级在110kV及以上的电力网主要用于电能的远距离输送,成为输电网;35kV及以下的电力网主要用于向用户配送电能,成为配电网。

由于电能是国家的战略资源,所以电网的稳定性十分重要,而电力系统包括诸多类型的非线性模块,加上它们在实际运行过程中的非理想性,很难对它的运行状态进行精准的计算与分析,因此历代工程师们不断将电力系统数学模型简化,并优化算法,以求更好更快地得到电网运行的数值解,这当中,数学分析方法起到了很重要的作用,下面就简要介绍一下电力系统分析里最重要的潮流计算中的数值分析应用。

2.电力系统数学模型概述电力系统主要包括发电侧、输电线路、负荷侧三部分。

由于电力系统稳态分析与暂态分析的要求不同,所以两种情况下的数学模型也不尽相同。

电力系统潮流计算的分析与应用

电力系统潮流计算的分析与应用

电力系统潮流计算的分析与应用摘要:电力系统潮流计算是目前研究电力系统运行状态的一种最基本、最重要、最广泛的计算,它最大的优势就是可以对电力系统的运行状态进行确定。

在确定过程中,既定的运行条件、运行界限情况等都是基础的参照内容。

本文首先介绍潮流计算的现状,并对当前潮流计算基本方法做了对比,基于电学知识介绍了节点电压方程和节点导纳矩阵计算,在此基础上进一步分析了潮流计算的基本原理并建立数学模型,最后以一个电力系统网络为例子,采用牛顿-拉夫逊、修正方程等方法对该电网路的潮流功率进行了计算验证。

关键词:电力系统;节点导纳矩阵;潮流计算;功率引言电力系统的出现使电能得到广泛应用,也为社会进步作出了卓越贡献。

而且,随着电力系统的应用范围越来越广泛,电力系统已经成为国家经济进步的重要表现形式之一。

电力系统规划以及运行过程中,对合理性以及可靠性的要求较高,在这个过程中,就可以通过潮流计算的应用来对电力系统的相关要求进行核算。

通过潮流计算的应用,可以对电网的最佳接入点以及接入电源规模及容量进行核算,这也为电力系统的正常运行奠定了基础。

在此基础之上,电网负荷增长以及扩建并网投运时候的电网运行情况都可以得到有效评估,为电网改扩建提供参考建议,也可以对电力事故进行模拟和仿真分析,校核预想事故下的电力系统的安全性,并基于此制定相应的处理预案,以减少电力事故的发生。

1潮流计算概述在电力系统中,通过应用潮流计算,电力系统的运行方式可得到有效评估,还可以对继电保护以及整定提供数据支持,在此基础之上,电力系统前期规划以及运行状态的经济分析都有了可靠的数据基础。

利用符号分析方法建立电力网络的拓扑模型,通过节点电压方程进行拓扑求解是潮流计算方法的基础,潮流的计算和一般交流电路计算主要在以下几方面有所区别:表1潮流计算与交流电路计算区别从本质上讲,潮流计算是一组方程式,计算基础是电网理论,计算方法是数值计算法,应用范围是电力系统稳态特性计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析在电力系统潮流计算中的应用摘要:电力系统是一个复杂的网络,由于其中的模块大多为非线性,所以在分析计算时很难求出解析解。

而电力系统需要进行实时的平衡与调整,以确保电力的正常输送,所以对电网的稳态运行状况与暂态分析都很重要,这当中就需要用到数值分析的方法。

本文就会将介绍数值分析方法在电力系统潮流计算中的应用。

关键词:数值分析;电力系统;潮流计算;N-R法;PQ分解法1.引言电力系统及其自动化学科是电气工程的一个二级学科,研究对象是以电力系统各单元为核心的有关发电、输电、配电等过程的电网设施。

所以其研究的内容主要则包括电力系统运行、电网分析、电力电子技术、高电压技术以及继电保护等。

电力系统是由发电厂、输电线路、供配电所和用电侧等环节组成的一个电能生产与消费链。

它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经输电、变电和配电将电能供应到各用户。

为实现这一功能,电力系统在各个环节和不同层次还具有相应的信息与控制系统,对电能的生产过程进行测量、调节、控制、保护、通信和调度,以保证用户获得安全、优质的电能。

电力系统中各种电压的变电所及输配电线路组成的整体,称为电力网,简称电网。

电网又分为输电网和配电网,其中电压等级在110kV及以上的电力网主要用于电能的远距离输送,成为输电网;35kV及以下的电力网主要用于向用户配送电能,成为配电网。

由于电能是国家的战略资源,所以电网的稳定性十分重要,而电力系统包括诸多类型的非线性模块,加上它们在实际运行过程中的非理想性,很难对它的运行状态进行精准的计算与分析,因此历代工程师们不断将电力系统数学模型简化,并优化算法,以求更好更快地得到电网运行的数值解,这当中,数学分析方法起到了很重要的作用,下面就简要介绍一下电力系统分析里最重要的潮流计算中的数值分析应用。

2.电力系统数学模型概述电力系统主要包括发电侧、输电线路、负荷侧三部分。

由于电力系统稳态分析与暂态分析的要求不同,所以两种情况下的数学模型也不尽相同。

2.1发电侧发电侧的主要是由若干发电机构成的。

在进行电力系统稳态分析与潮流计算时,发电机的数学模型仅看作一个有功功率和电压幅值恒定的节点。

在进行暂态分析时,首先要将电机理想化,因为这样的模型对电力系统的暂态与动态分析已经足够精确了。

具体模型包括转子运动方程、绕组方程和磁链方程三部分。

但是由于参数过多,很难对其中的自感、互感的参数进行测量与计算,且大多参数为时变参数,有周期性,所以电力系统中对这样的方程组进行了优化,将发电机的abc三相变换到了dq两轴上,如图1所示:图1 同步发电机派克变换示意图变换的矩阵如下:经过派克变换后,时变的自感与互感值变为了常数,且各类方程都得到了一定程度的简化。

经过派克变换以后的方程如下:(1)磁链方程:(2)电压方程:根据派克变换后的方程即可很好地将理想电机数学化,以便在暂态分析中更好地进行分析计算。

2.2输电线路输电线路多采用分裂金属导线,理想情况下的输电线路上应该是没有损耗的,但在实际运行过程中,输电线路上不仅有电阻,还有寄生的电感和电容。

在计算这些参数时,一般采用分布式参数的方式,即用单位长(/km)的参数值r,x,g,b来计算,其等值电路如图2所示。

在计算时,由于电缆的尺寸是经过标准化的,而且外界对其影响较小,一般不需要研究;而4个参数的值则受到气候、地理、架设条件等的影响,所以需要分析计算。

图2 输电线路分布式参数等值电路2.3负荷侧负荷侧一般为由电阻、电感、电容串并联所构成的负载,但是在稳态分析时,对于一个负载节点,一般不会测量其工作时的阻抗特性,而是会给出它的额定工作电压以及额定功率,所以在电力系统的潮流计算中负荷侧的数学模型为一个固定功率和电压的节点。

而进行暂态分析时,由于存在工况的变化,所以需要把负荷看作一个由电阻、电感和电容构成的电路,先对其阻抗特性进行测量,再求出它的等效电路。

3.数值分析在潮流计算中的应用3.1潮流计算方法简介潮流指的是电力系统中各个节点电压以及功率的稳态分部。

通过潮流计算与研究可以分析和评价电网的安全、经济和质量,为电网的规划与稳定运行服务。

潮流的数值分析解法经历了很长一段时间的发展。

1956年,有人提出了基于Y矩阵的Gauss 迭代法,其原理和编程都很简单,但是算法的首先性较差。

紧接着1960年又在此基础上提出了基于Z矩阵的Gauss迭代法,收敛性得到了一定改善,但是占用内存大大增加,限制了解题的规模。

之后几年,具有二阶收敛性的Newton-Raphson法受到了广泛关注,但是计算量较大。

60年代中后期,Tinney在N-R法的基础上引入了稀疏技术,计算量大大降低,成为了潮流计算的基本算法。

1974年,Stott在大量实践的基础上,提出了基于PQ解耦性的PQ分解法,大大加快了计算速度,并且可以应用于在线系统,成为潮流计算主要的算法。

下面就选择其中一些算法进行介绍。

3.2节点导纳矩阵、节点阻抗矩阵与功率方程潮流计算的分析方法仍然符合基尔霍夫定律,但是此时的已知量和待求量均为复电压和复功率,即电压和功率都是复数。

电压常用幅值V和角度δ来表示;而功率的实部表示有功功率P,虚部则为无功功率Q。

潮流的数学模型为非线性方程组,针对不同的电网情况,要建立不同的数学模型,确定算法,再用计算机求它的数值解。

潮流计算中,电力网络由且仅由元件和联结两类构成,把元件抽象成支路,把联结抽象成节点,即可画出等效的电力拓扑网络。

根据电网运行的实际情况,可以将节点分为三类,即负荷节点、联络节点和发电机节点。

负荷节点代表负荷侧,属于PQ节点,因为它的有功功率P和无功功率Q由负荷需求决定,一般作为已知量,而它的复电压是待求量。

联络节点指的是线路上的一些节点,由于线路上的某一点是没有功率产生或消耗的,所以它也属于PQ节点,有功功率和无功功率都为0。

发电机节点代表发电侧,属于PV节点,它的有功功率和电压幅值给定,无功功率和电压的角度待求。

节点导纳矩阵如下,其中Yii表示节点i的自导纳,即i所连接的所有支路导纳之和,Yij表示节点i,j之间的互导纳,在数值上体现为ij支路导纳的相反数(负值)。

所以对于电力拓扑网络来说,有Y n U n=I n易知,矩阵Y是一个n×n阶的对称复数方阵,由于两个互相不连接的节点之间没有导纳,所以Y 是一个系数矩阵,有很多零元。

而且,在支路阻抗性质相同时,Y是一个对角占优的矩阵。

同理,节点阻抗矩阵定义如下,其中Zii表示节点i的自阻抗,Zij表示ij间的互阻抗。

对于电力拓扑网络来说,有U n=Z n I n易知,Zn与Yn互为逆矩阵。

矩阵Z也是n×n阶的对称复数方阵。

节点导纳矩阵与节点阻抗矩阵都只对节点的复电压进行了分析,而节点的复功率仍然需要方程,即功率方程。

功率方程如下:即用复功率和复电压来代替复电流进行计算。

最后将复数换成实数表示,即可得到潮流方程,接下来就需要解潮流方程,即求潮流方程的数值解。

3.3潮流方程的数值解3.3.1Gauss迭代法Gauss迭代法即数值分析中的Gauss-Seidel迭代法,其迭代式如下:该方法的原理由于在课上讲过,在此不再赘述。

在潮流计算中,有基于Y矩阵的迭代法与基于Z矩阵的迭代法。

由于Y矩阵稀疏,所以所占资源少,但是不易于收敛;Z矩阵收敛性好,但是存储量大,所以两种方法都不是很好。

3.3.2N-R法N-R法即Newton-Raphson迭代法,指的是在迭代前解一个修正方程其矩阵形式为:再将解出来的解对X0进行修正,得:如此迭代,达到收敛判据之后,即可得到最终的解。

N-R法的特点是其将方程组转化为多次线性方程组的迭代求解,具有二阶收敛性。

使用N-R 法进行潮流计算的步骤如下:(1)设电压初值U0(2)求误差△P0,△Q0,△U20(3)置迭代次数r=0(4)求J雅可比矩阵(5)解修正方程(6)修正电压(7)求△P r+1,△Q r+1,△U2 r+1(8)检验收敛,如不收敛,返回4迭代。

如收敛,检查潮流约束即可。

3.3.3PQ分解法PQ分解法是对N-R法在极坐标下的解法的一种简化,将其降阶,并常数化。

对于高压输电网来说,线路两端的电压幅值差△U,主要是有输送Q所产生的,Q由U高的节点向U低的节点流,所以U-Q强耦合,U-P弱耦合;同理,线路两端电压的相角差δ,主要是有输送P产生的,即P从δ超前的节点流向滞后的节点,δ-P强耦合,δ-Q弱耦合。

从电路的角度来看,由于电阻R<<电抗X,所以电压的幅值对Q有主要影响,而对P几乎没有影响;而电压的角度δ对P有主要影响,而对Q几乎没有没有影响,故将其解耦,得到再根据Qi<<Ui2Bii,可进一步简化得:即为最终的修正方程。

PQ分解法的修正方程是两套常系数线性方程,其常系数矩阵B’和B’’稀疏对称,而且阶数也比N-R法由不少的下降。

PQ分解法是基于PQ解耦的一种算法,它的特点是存储量小,计算量小,可以用于在线分析,缺点则是由于简化,所得结果精确性相比于之前的方法略有下降。

参考文献[1].马超,李春兰,岳勇,石砦. 基于PQ分解法的含分布式电源的配电网潮流计算研究[J]. 沈阳农业大学学报,2013,03:327-332.[2].杨建华. PQ分解法潮流计算收敛性的影响因素[J]. 电力情报,1999,03:17-20.[3].何仰赞.电力系统分析[C]:华中科技大学出版社,2001年.[4].董晓明. 连续潮流理论及其拓展应用的研究[D].山东大学,2013.[5].耿光超. 电力系统稳定约束最优潮流:模型、算法与并行化[D].浙江大学,2014.。

相关文档
最新文档