轴类零件选材及热处理工艺分析
轴类零件的加工工艺毕业设计
轴类零件的加工工艺毕业设计
随着现代化技术的不断进步,自动化加工已经成为了现代喷气机、汽车、船舶和各种机械设备的关键部分。
其中,轴类零件是机械装备
中必不可少的零件之一,它们扮演着承载力和传递动力的重要角色。
轴类零件的加工工艺包括材料的选取、机器加工工序(如车削、
铣削、磨削等)、热处理和表面处理等几个方面。
首先是材料的选取。
轴类零件要求硬度高、韧性好、耐磨性强、
密度均匀以及尺寸精准。
为了达到这些要求,常用的材料主要有高速钢、合金钢、碳钢等。
其次是机器加工工序。
轴类零件的加工工序一般包括车削、铣削、钻孔、切削和磨削等多个工序。
其中,车削是最常见的一种加工方法。
它可以使轴类零件的直径和长度精确到0.01毫米,同时能够加工出各
种曲面和螺纹。
其次是热处理。
对于硬度要求高的轴类零件来说,热处理是必不
可少的一种工艺。
常用的热处理工艺主要有淬硬和回火两种。
淬硬可
以提高材料的硬度和强度,但会降低材料的韧性;回火可以使材料兼
顾强度和韧性,同时提高其耐磨性。
最后是表面处理。
轴类零件的表面处理可以保护其表面不受侵蚀、提高其抗疲劳性能、提高其耐磨性等。
常用的表面处理方法有电镀、
喷涂、热喷涂等。
总之,轴类零件的加工工艺是一个复杂的系统工程,在实际的生产中需要不断地追求提高效率和质量。
为了在加工轴类零件过程中避免出现一些问题,我们必须在加工前充分了解材料的特性、选择合适的机床设备以及合理控制加工参数等。
轴类零件的材料与热处理
轴类零件的材料与热处理一般轴类零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。
对中等精度而转速较高的轴类零件,一般选用合金钢(如40Cr等),经过调质和表面淬火处理,使其具有较高的综合力学性能。
对在高转速、重载荷等条件下工作的轴类零件,可选用20CrMnTi、20Mn2B、20Cr等低碳合金钢,经渗碳淬火处理后,具有很高的表面硬度,心部则获得较高的强度和韧性。
对高精度和高转速的轴,可选用38CrMoAl 钢,其热处理变形较小,经调质和表面渗氮处理,达到很高的心部强度和表面硬度,从而获得优良的耐磨性和耐疲劳性。
附:钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。
淬火能显著提高·钢的强度和硬度。
如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。
所以,淬火和回火是密不可分的两道热处理工艺。
车床主轴加工工艺过程分析⑴ 主轴毛坯的制造方法锻件,还可获得较高的抗拉、抗弯和抗扭强度。
⑵ 主轴的材料和热处理45钢,普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差,要求较高的主轴则采用合金钢材料为宜。
①毛坯热处理采用正火,消除锻造应力,细化晶粒,并使金属组织均匀。
②预备热处理粗加工之后半精加工之前,安排调质处理,提高其综合力学性能③最终热处理主轴的某些重要表面需经高频淬火。
最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。
加工阶段的划分①粗加工阶段用大的切削用量切除大部分余量,及时发现锻件裂纹等缺陷。
②半精加工阶段为精加工作好准备③精加工阶段把各表面都加工到图样规定的要求。
粗加工、半精加工、精加工阶段的划分大体以热处理为界。
工序顺序的安排毛坯制造——正火——车端面钻中心孔——粗车——调质——半精车表面淬火——粗、精磨外圆——粗、精磨圆锥面——磨锥孔。
典型轴类零件加工工艺分析
阶梯轴加工工艺过程分析图6—34为减速箱传动轴工作图样。
表6—13为该轴加工工艺过程。
生产批量为小批生产。
材料为45热轧圆钢。
零件需调质。
(一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。
根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。
(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。
传动轴大多是回转表面,主要是采用车削和外圆磨削。
由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。
其加工方案可参考表3-14。
2.划分加工阶段该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。
各加工阶段大致以热处理为界。
3.选择定位基准轴类零件的定位基面,最常用的是两中心孔。
因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。
而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。
但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。
(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。
为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。
①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;②当轴有圆柱孔时,可采用图6—35a所示的锥堵,取1∶500锥度;当轴孔锥度较小时,取锥堵锥度和工件两端定位孔锥度相同;③当轴通孔的锥度较大时,可采用带锥堵的心轴,简称锥堵心轴,如图6—35b所示。
车床主轴的选材 加工路线 热处理
选择车床主轴材料,设计合理的加工路线,热处理工艺方案摘要:根据车床主轴的工作情况,对材料的选用、其加工路线及相应的热处理工艺进行了分析,并就其操作提出了自己观点。
关键词:车床主轴;加工路线;热处理工艺;材料一、材料的选择主轴是车床上传递动力的零件,传递着动力和各种负荷,它的合理选材直接影响整台车床的精度和使用寿命。
其主要实效形式如下:1、受横向力并传递扭矩,承受交变弯曲应力和扭应力,常常发生疲劳断裂。
2、轴颈和花键等部位发生相对运动,承受较大的摩擦,轴颈表面产生过量的磨损。
3、承受一定的过载和冲击和载荷,产生过量弯曲变形,甚至发生折断或扭断。
所以所选的材料应满足:良好的综合力学性能,即具有较高的强度刚度、足够的韧性、疲劳强度、变形小及对应力集中的敏感性低等性能以防止过载和冲击断裂,还要有良好的切削加工性,高的表面硬度和良好的耐磨性,以防止轴颈摩损。
在设计时要充分考虑:1、主轴的工作特性和技术要求。
主轴的摩檫和磨损情况;主轴的载荷大小和载荷性质。
2、主轴热处理的要求。
主轴的工作状况;主轴精密度和光洁度;主轴弯曲载荷和扭转力矩;主轴转速;主轴有无冲击载荷。
3、主轴热处理加工工艺实行的可能性以及经济性。
轴的常用材料为碳素钢和合金钢。
合金钢比碳素钢具有更高的机械性能和更好的热处理性能。
含不同合金的钢可获得各种特殊性能。
因此,对于载荷大并要求尺寸小,重量轻、耐高温或耐磨性、抗腐蚀性能要求高的轴可采用合金钢。
合金钢对应力集中的敏感性高,因此设计时应从结构上避免或减小应力集中,并降低其表面粗糙度的数值。
由于在常温下合金钢的弹性模量与一般碳素钢差不多,故选合金钢对提高轴的刚度没有实效。
而对形状复杂的轴可采用球墨铸铁。
球墨铸铁具有良好的吸振性和耐磨性,对应力集中的敏感性低,且价格低廉,加工性好。
但球墨铸铁的强度较低。
我们一般主轴承受交变弯曲应力和扭应力,在轻度或中等载荷、转速不太高,精度不很高,冲击、交变载荷不大的情况下,具有普通力学性能就能满足要求,一般采用45钢制造。
轴类零件选材及热处理
本章结束
返回
精品
图8-1 CM6140车床主轴
精品
返回
表8-1 机床主轴工作条件、用材及热处理
返回
精品
图8-2 汽车半轴
精品
返回
图8-3 解放牌汽车变速齿轮简图
精品
返回
表8-2 部分箱体支承类零件用材情况
代表性零件
机床床身、轴承座、 齿轮箱、缸盖、变速
器壳、离合器壳
承力支架、箱体底座 铸钢ZG270-500
刚度、强度、耐冲击
正火
支架、挡板、盖、罩、 钢板Q235、08、20、
壳
16Mn
车辆驾驶室车箱
钢板08
精品
刚度、强度
不热处理
刚度0 ~ 55HRC)。如机床齿轮。 •重载、中高速、大冲击载荷齿轮: 低 碳 ( 合 金 ) 钢 ( 20Cr 、 20MnB 、 20CrMnTi ) 渗 碳
(碳氮共渗)及淬火低温回火,齿面58~63HRC。如 汽车、拖拉机变速齿轮和后桥齿轮。 •精密传动齿轮或硬面内齿轮,要求热处理变形小: 38CrMoAl、35CrMo等。调质及气体氮化。如非重载、 工作平稳的精密齿轮。
图8-3
•负荷特点: 承载、磨损及冲击负荷较大,工作条件比较繁重。
•材料: 20CrMnTi。
•热处理技术条件: 渗碳层深0.8~1.3mm,表层Wc为0.8%~1.05%,齿面 58~62HRC。心部33~45HRC。
•工艺路线: 锻造→正火→粗加工、半精加工→渗碳淬火、低温回 火。
8.3 弹簧类零件材料选择(spring)
④铬矾弹簧钢: 50CrVA等,φ50mm淬透,应力较大的弹簧(工作温 度≤ 300℃)。
(完整word版)轴类零件选材及工艺分析
轴类零件选材及工艺分析在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重要地位的结构件。
轴类零件的主要作用是支承传动零件并传递动和动力,它们在工作时受多种应力的作用,因此从选材角度看,材料应有较高的综合机械性能.局部承受摩擦的部位如车床主轴的花键、曲轴轴颈等处,要求有一定的硬度,以提高其抗磨损能力。
要求以综合机械性能为主的一类结构零件的选材,还需根据其应力状态和负荷种类考虑材料的淬透性和抗疲劳性能。
实践证明,受交变应力的轴类零件、连杆螺栓等结构件,其损环形式不少是由于疲劳裂纹引起的。
下面以车床主轴、汽车半轴、内燃机曲轴、镗杆、大型人字齿轮轴等典型零件为例进行分析。
(一)机床主轴在选选用机床主轴的材料和热处理工艺时,必须考虑以下几点:<1> 受力的大小。
不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的工作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。
<2> 轴承类型。
如在滑动轴承上工作时,轴颈需要有高的耐磨性。
<3> 主轴的形状及其可能引起的热处理缺陷。
结构形状复杂的主轴在热处理时易变形甚至于开裂,因此在选材上应给予重视。
主轴是机床中主要进零件之一,其质量好坏直接影响机床的精度和寿命。
因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。
1、机床主轴的工作条件和性能要求C616-416车床主轴如图1-2所示。
该主轴的工作条件如下:①承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用;②主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有相对摩擦;③花健部分经常有磕或相对滑动。
总之,该主轴是在滚动轴承中动转,承受中等负荷,转速中等,有装配精度要求,且受到一定的冲击力作用。
由此确定热处理技术条件如下:①整体调质后硬度应为HB200~230,金相组织为回火索氏体;②内锥孔和外圆锥面处硬度为HRC45~50,表面3~5㎜内金相组织为回火屈氏体和少量回火马氏体;③花键部分的硬度为HRC48~53,金相组同上。
典型零件的选材及加工工艺路线分析讲解材料
轻量化
减轻材料重量,提高产品机动性,降低能源 消耗和排放。
环保化
发展可再生、可回收、可降解的材料,减少 对环境的污染。
智能化
研究具有自适应、自修复、自感应等功能的 智能材料。
新材料的研究与开发
碳纤维复合材料
具有高强度、轻质、耐高温等优点,广 泛应用于航空航天、汽车等领域。
高分子合成材料
具有优良的化学稳定性、绝缘性、耐 磨性等,在建筑、电子、化工等领域
03
材料的应用与发展趋势
材料的应用领域
01
航空航天
用于制造飞机、火箭等高强度、轻 质材料。
建筑领域
用于制造桥梁、高层建筑等高强度、 高耐久性材料。
03
02
汽车工业
用于制造发动机、变速器等耐磨、 耐高温材料。
电子产品
用于制造集成电路、晶体管等精密、 小型化材料。
04
材料的发展趋势
高性能化
提高材料的强度、硬度、耐高温等性能,以 满足更高要求的工业应用。
可加工性原则
材料应具有良好的可加工性, 以便于零件的制造和加工。
可维修性原则
材料应易于维修和更换,以提 高零件的使用寿命和降低维修 成本。
常用材料介绍
钢铁
钢铁是机械制造业中应用最广泛的材料之一,具 有高强度、良好的韧性和耐磨性。
铜及铜合金
铜及铜合金具有良好的导电性、导热性、耐腐蚀 性和加工性能,广泛应用于电气、电子、化工等 领域。
实例二:齿轮类零件的选材与加工工艺
灰铸铁
用于制造一般用途的齿轮,如减速器齿轮等。
球墨铸铁
用于制造高强度、高耐磨性的齿轮,如汽车变速毛坯准备
根据零件材料和尺寸要求,准备毛坯。
粗加工
十字轴的选材热处理工艺分析
十字轴的选材热处理工艺分析专业:机械设计与制造班级:机械设计与制造1班姓名:学号:成绩:万向传动轴一般是由万向节,传动轴和中间支承组成。
主要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。
万向传动轴设计应满足如下基本要求1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地传递动力。
2.保证所连接两轴尽可能等速运转。
3.由于万向节夹角而产生的附加载荷,振动和噪声应在允许范围内。
4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等。
变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传动轴。
在转向驱动桥中,多采用等速万向传动轴。
当后驱动桥为独立的弹性,采用万向传动轴。
十字轴万向节是汽车传动系统中的易损件,其中万向节十字轴轴径表面剥落、表面压痕的失效形式,又是万向节失效的主要形式。
为了解决此问题,万向节的选材、机械加工、热处理以及表面烧伤等方面的质量加强控制以外,万向节在产品设计方面也须改进,如采取轴承外圈内径设计成凸度、滚针设计成凸度、滚针两头设计成锥度等措施,有效地减少了应力集中,使万向节轴承滚动体与内外滚道的接触应力分布趋于合理。
在实际的应用过程中,也确实证明了这些措施的有效性,在一定程度上提高了产品的使用寿命。
但通过大量的失效件分析发现,目前这些改进还不能使轴承的接触应力分布达到最优化,对材料的选择需改进。
十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。
当夹角增加时,万向节中的滚针轴承寿命将下降。
普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及轴向定位件和橡胶封件等组成图1-1 十字轴万向节工程图万向节的运动特性是比较特殊的,由于传动轴的输入轴和输出轴有夹角,所以输出轴的运动每时每刻都在改变,万向节轴承运动不但有相对于传动轴与十字轴一起变速的转动,而且还有相对十字轴进行摆动的运动。
万向节这种复杂的运动会给分析研究带来很多不便。
轴类零件加工工艺分析
1 前言科学技术和社会生产的不断发展,对机械产品的性能、质量、生产率和成本提出了越来越高的要求。
机械加工工艺过程自动化是实现上述要求的重要技术措施之一。
他不仅能够提高品质质量和生产率,降低生产成本,还能改善工人的劳动条件,但是采用这种自动和高效率的设备需要很大的初期投资,以及较长的生产周期,只有在大批量的生产条件下,才会有显著的经济效益。
随着消费向个性化发展,单件小批量多品种产品占到70%--80%,这类产品的零件一般采用通用机床来加工。
而通用机床的自动化程度不高,基本上由人工操作,难于进一步提高生产率和保证质量。
特别是由曲线、曲面组成的复杂零件,只能借助靠模和仿行机床或者借助画线和样板用手工操作的方法来完成,其加工精度和生产率受到极大影响。
为了解决上述问题,满足多品种、小批量,特别是结构复杂精度要求高的零件的自动化生产,迫切需要一种灵活的、通用的,能够适应产品频繁变化的“柔性”自动化机床。
数控机床才得已产生和发展。
数控技术是数字控制(Numerical Control)技术的简称。
它采用数字化信号对被控制设备进行控制,使其产生各种规定的运动和动作。
利用数控技术可以把生产过程用某中语言编写的程序来描述,将程序以数字形式送入计算机或专用的数字计算装置进行处理输出,并控制生产过程中相应的执行程序,从而使生产过程能在无人干预的情况下自动进行,实现生产过程的自动化。
采用数控技术的控制系统称为数控系统(Numerical Control System)。
根据被控对象的不同,存在多种数控系统,其中产生最早应用最广泛的是机械加工行业中的各种机床数控系统。
所谓机床数控系统就是以加工机床为控制对象的数字控制系统。
安装有数控系统的机床称为数控机床。
它是数控系统与机床本体的结合体。
数控车床是数控系统与车床本体的结合体;数控铣床是数控系统与铣床本体的结合体。
除此之外还有数控线切割机床和数控加工中心等。
数控机床是具有高附加值的技术密集型产品,是集机械、计算机、微电子、现代控制及精密测量等多种现代技术为一体的高度机电一体化设备。
轴类零件加工工艺的过程
轴类零件加工工艺的过程轴类零件加工工艺是将原材料加工成符合要求的轴类零件的一系列工艺过程。
下面将详细介绍轴类零件加工工艺的过程。
1. 选材。
首先需要选择合适的材料作为轴类零件的原材料。
常见的轴类零件材料有碳钢、合金钢、不锈钢等。
选材时需要考虑轴类零件的用途、工作环境、负载等因素,选出具有良好机械性能和耐磨性的材料。
2. 切削加工。
切削加工是轴类零件加工中最基本的工艺过程。
它包括车削、铣削、钻削等操作。
首先将原材料锯片切割成合适长度,然后使用车床、镗床、铣床等机床进行精确的切削加工。
在切削加工中,需要注意工件和刀具的刚性和稳定性,以确保加工出的轴类零件尺寸精度和表面质量达到要求。
3. 热处理。
部分轴类零件需要进行热处理,以改善其机械性能和耐磨性。
常见的热处理方法有淬火、回火、表面渗碳等。
在热处理过程中,需要控制加热温度、保温时间和冷却速度等参数,以使轴类零件获得理想的组织结构和性能。
4. 加工表面。
轴类零件的加工表面对其工作性能和装配质量具有重要影响。
加工表面的方法有磨削、抛光、镜面处理等。
磨削是最常用的加工表面方法,可以使用砂轮、研磨片等工具对轴类零件进行精密磨削,以获得高精度的尺寸和表面质量。
5. 组装。
在零件加工完成后,需要进行零件的组装。
轴类零件的组装通常需要与其他零件配合使用,如轴套、轴承、齿轮等。
在组装过程中,需要注意零件的配合间隙和装配顺序,以确保零件的配合精度和工作可靠性。
6. 检测。
最后,对加工完成的轴类零件进行检测。
常见的检测方法有尺寸测量、硬度测量、外观检查等。
通过检测,可以判断轴类零件是否达到要求,并进行必要的修正和改进。
综上所述,轴类零件加工工艺的过程包括选材、切削加工、热处理、加工表面、组装和检测等环节。
每个环节都需要严格控制,以确保加工出的轴类零件具有良好的机械性能、尺寸精度和表面质量,能够满足工程需求。
毕业设计(论文)-轴类零件的加工及工艺分析
毕业设计(论文)轴类零件的加工及工艺分析姓名:班级: 08数控技师2班学号:衡阳技师学院2011年 10月 10 日数控加工是机械制造中的先进的加工技术是一种高效率,高精度与高柔性特点的自动加工方法,数控加工技术可有效解决复杂、精密、小批多变零件的加工问题,充分适应了现代化生产的需要,制造自动化是先进制造技术的重要组成部分,其核心技术是数控技术,数控技术是综合计算机、自动技术、自动检测及精密机械等高新技术的产物,它的出现及所带来的巨大利益,已引起了世界各国技术与工业界的普遍重视,目前,国内数控机床使用越来越普及,如何提高数控加工技术水平已成为当务之急,随着数控加工的日益普及,越来越多的数控机床用户感到,数控加工工艺掌握的水平是制约手工编程与CAD/CAM 集成化自动编程质量的关键因素。
数控加工工艺是数控编程与操作的基础,合理的工艺是保证数控加工质量发挥数控机床的前提条件,从数控加工的实用角度出发,以数控加工的实际生产为基础,以掌握数控加工工艺为目标,在介绍数控加工切削基础,数控机床刀具的选用,数控加工的定位与装夹以及数控加工工艺基础等基本知识的基础上,分析了数控车削的加工工艺。
前言 (Ⅰ)摘要 (Ⅲ)第一章设计概要 (1)第二章实体设计 (1)第一节零件图 (1)第二节零件实体的构造 (2)第三章工艺分析 (2)第一节零件工艺分析 (3)第二节刀具的选择 (4)第三节确立工件的定位与夹具方案 (5)第四节确定走刀顺序和路线 (6)第五节切削用量的选择 (7)第六节数控加工工艺文件的填写 (7)第七节保证加工精度的方法 (9)第四章数控加工程序 (10)结论 (22)致谢 (23)参考文献 (24)摘要:本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。
第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及刀柄和零件的轮廓特点确定需要把刀具分别分为外圆粗车刀、外圆精车刀、外切槽刀、外螺纹刀、内镗孔刀、内切槽刀和内螺纹刀。
轴类零件的选材及热处理工艺
为: ( 1 ) 传递扭矩 , 受交变扭转 载荷 , 往往 还受 交变弯 曲应力 ; ( 2 ) 轴颈承受较大 的摩擦 ; ( 3 ) 大多承受一定 的过载或 冲击载荷 。
2 轴 的 失 效 形 式
H1 5 5 B外圆磨床砂 轮架 主轴 , 材料为 3 8 C r Mo A 1 。调质要求 硬度 2 5 0 — 2 8 0 HB 。渗氮层表面硬度 ≥9 0 0 H V,渗氮层深 度 0 . 4 —
如, C 6 2 0 、 C W6 1 1 0 0等 的 主轴 用 材 , 一般选用碳 素钢 ( 如4 5钢 ) ;
例如 Y 7 1 6 3齿轮磨 床主轴 选用 渗碳 钢 : 2 0 C r Mn T i 。正 火 :
9 5 0 — 9 7 0 ℃, 空 冷 。 渗碳 、 淬火 : 9 1 0 — 9 4 0 %渗 碳 , 3 2 0 — 3 4 0 %油 淬 , 1 6 0 — 2 0 0 ℃ 回火 。表 面 硬 度 : >5 I 9 HR C。
须进行 4 0 0 %保 温 6 h的消 除 脆 性 处 理 。 5 . 2 渗 碳 钢 所 生 产 的轴
一
求: ( 1 ) 高的疲 劳强度 , 防止疲劳断裂 ; ( 2 ) 良好 的综合 力学性能 ,
为减少应力集中效应和缺 1 : 3 敏感性 . 以防止 冲击或 过载断裂 , 需
要 轴的强度和塑性 、 韧性 有 良好配合 ; ( 3 ) 良好 的耐 磨性 , 以防止
而 同时承受轴 向和弯扭交变 载荷 , 精度要求较 高 , 又承受一 定冲
击 的 较 重 要 的轴 . 例如 , C 6 1 3 2车 床 主 轴 、 M7 4 7 5 B磨 床 砂 轮 主 轴
M1 3 5 0万能外 圆磨床头 架主轴 , 材料 为 2 0 C r , 要 求渗碳 深
轴类零件加工工艺设计
轴类零件加工工艺设计轴类零件是机械制造行业中常见的零件类型之一,广泛应用于液压机械、风机、飞机、汽车、重型设备等领域。
轴类零件通常具有高强度、低摩擦、高转速、高精度等特点,因此加工工艺设计对于保证产品质量、提高生产效率具有重要意义。
一、工艺路线设计轴类零件的加工路线设计是加工工艺设计的第一步。
一般的加工路线包括:原材料选择、加工方法选择、制造精度要求、热处理要求、表面处理要求、质量检验要求等。
在考虑这些因素的基础上设计出最优的加工路线,能够提高产品加工效率和质量稳定性。
同时,加工路线的合理设计也可以节省成本,提高企业的经济效益。
二、切削加工工艺设计切削加工是轴类零件加工中常用的方法之一,常见的加工方式包括铣削、车削、镗削、齿轮加工等。
在加工轴类零件时,需要考虑到零件材料的切削性能、切削工艺参数的选择、切削刀具的选择、切削冷却液的选择等。
在切削加工工艺设计中,应该尽可能减小切削阻力、减小加工表面粗糙度、提高加工精度和表面质量。
三、热处理工艺设计轴类零件通常具有高强度、高精度等特点,因此热处理工艺设计也是加工工艺设计的关键环节之一。
常见的热处理方法包括淬火、回火、正火、调质等。
在设计热处理工艺时,需要考虑零件的材料、零件的用途、零件的精度等因素。
正确的热处理工艺设计能够保证轴类零件的高强度和精度稳定性。
四、表面处理工艺设计表面处理工艺设计是为了提高轴类零件表面的质量稳定性,一般包括磨削、腐蚀、电镀、喷涂、喷砂等。
在表面处理工艺设计中,需要考虑到零件材料、表面处理后的表面粗糙度、表面处理后的尺寸变化、表面层的耐腐蚀性等因素。
正确的表面处理工艺能够为轴类零件提供更好的耐腐蚀和耐磨性。
五、质量检验工艺设计由于轴类零件常常用于高精度和高转速的场合,因此对质量的要求非常高。
对于轴类零件加工环节的质量检验需要做到全过程的,包括材料的质量控制、加工中的尺寸控制、工艺检验及表面质量检验等。
质量检验工艺设计需要制定有效的检验程序,做到从加工开始就保证零件的质量的可追溯性。
轴类零件的常见热处理工艺
轴类零件的常见热处理工艺轴类零件的热处理工艺,哎呀,听起来挺高大上的,其实就是给那些零件做个“美容”和“保养”。
就像我们人类,偶尔也要去做个护肤、去个美容院,是吧?这些轴类零件,比如说电机轴、齿轮轴、连杆什么的,平时承担着巨大的负荷,要是没点“保养”,早晚得出问题。
想想,如果你的汽车轴坏了,简直是个大麻烦,所以热处理就显得尤为重要。
热处理其实就像个调味料,能让这些零件的性能变得更好,硬度更高,耐磨性更强,基本上就是把它们“升华”了。
有些工艺嘛,听起来就让人觉得高深莫测。
比如说淬火,简单来说就是把零件加热到高温,然后迅速冷却,仿佛是给它们上了一道“保护罩”。
这过程就像泡茶,热水一泡,再迅速放入冷水,茶叶的香气才能更浓郁。
淬火过后的零件硬得像钢铁一样,真的是有了“金刚不坏之身”。
不过光淬火可不够,有些零件在淬火后还需要“回火”。
回火就像是给那些脾气暴躁的零件降温,缓和一下它们的“情绪”。
淬火后,零件虽然硬,但往往也会脆。
回火就能让它们变得韧性十足,既硬又不怕摔。
想想吧,就像一个小孩子,不能光给他糖吃,还得教育他,才能长成一个既聪明又懂事的大人。
然后还有一种热处理叫正火。
这个就像给零件来个深度的按摩。
它的步骤相对简单,就是把零件加热到临界温度,保持一段时间后自然冷却。
这样一来,零件的组织就会更加均匀,性能更稳定,简直就像经过了全面的体检,确保没什么大毛病。
常常应用在一些想要提升强度和韧性的零件上。
再来聊聊退火。
这过程就有点像慢炖菜,耐心是关键。
通过缓慢加热后再慢慢冷却,零件里的应力能被释放,硬度也降低了,这样的零件适合后续加工。
我们常常会说“千锤百炼”,经过这样一番退火的零件,真是得到了“升华”。
这就像一位大师,经过长时间的磨练,才成就了自己的技艺。
哎,光说这些工艺也太枯燥了,热处理过程中的温度和时间都是门大学问。
每种材料、每种零件都有它自己的“脾气”,需要量身定制的处理方式。
你要是用不对,真的是“自掘坟墓”。
轴类零件热处理工艺问题探析
轴类零件热处理工艺问题探析摘要随着科学技术的不断发展,机械设备的大型化是发展的方向之一,尤其是在工程机械中,大截面的轴类零件得到广泛的应用。
文章分析了两种典型轴类零件的热处理工艺,其一为大截面轴类零件,针对其两种不同的热处理方式进行了工艺比较,阐述了其各自不同的优点和缺点。
同时,还对汽车前轴热处理工艺进行了较为简单的论述,以期对轴类零件的热处理工艺起到一定的参考作用。
关键词轴类零件;热处理;45钢根据金属材料学基本原理,金属材料的组织结构直接决定了其力学性能,同时在热处理之后能否被淬透,得到马氏体组织,是决定材料力学性能的关键因素之一。
而衡量钢材料经热处理之后获得马氏体组织能力的一个关键指标是钢的淬透性,同时钢的淬透性还直接决定了淬火之后所获得淬硬层的厚度。
同时轴类零件的尺寸和材料性质等对热处理工艺的影响也很大,下面将从这两个角度,分别列举大截面45号钢轴类零件和汽车前轴零件的热处理工艺过程,来对轴类零件热处理工艺问题进行分析。
1大截面45号钢轴类零件热处理试验分析钢热处理力学后的力学性能除了受到其淬透性的影响外,还受到其他相关因素的影响,包括尺寸和零件的结构等因素,其中尺寸是一个比较重要的因素。
对于45号钢而言,其在水中的淬透临界直径为14~22 mm。
这就使得在进行大直径、大截面45号钢零件进行淬火时,其淬硬层的深度一直是热处理工艺中最为关心的问题之一,它直接关系到热处理之后工件的相关性能是否能达到设计的要求。
因此,对大截面的45号钢轴类零件的热处理工艺路线及关键的工艺步骤进行分析具有现实的意义。
1.1试验方法实验中所采用的零件材料为在生产现场进行调质处理的45号钢,其主要的化学成分为:C 0.43%-0.51%、Si 0.18%-0.38%、Mn 0.49%-0.79%,S 0.04%-0.056%、P 0.040%。
零件的直径为这样六种:40 mm、60 mm、80 mm、100 mm、120 mm和150 mm,同时其长度均大于直径的2.5倍,棒材在剥去外表层1 mm厚的表皮之后留待备用。
轴类零件的热处理
轴类零件的热处理一.内燃机曲轴由于内燃机曲轴承受周期性变化的气体压力,曲柄连杆机械的惯性力,扭转和弯曲应力以及冲击力,在高速内燃机中还存在扭转振动,也会造成很大应力。
这会影响曲轴的使用寿命。
故对内燃机曲轴材料和加工工艺的选择,是有一定的要求(高强度,有一定的冲击韧性和轴颈处高的耐磨性等)。
特别是材料的热处理.1低速内燃机,采用正火状态的碳钢、球墨铸铁2.中速内燃机,采用调质碳钢或合金钢,如45、40Cr、45Mn2、50Mn2等及球墨铸铁.3。
高速内燃机,采用高强度合金钢,如35CrMo、42CrMo、18Cr2Ni4WA等4。
110型柴油机曲轴: QT60-2正火,中频淬火,σb≥650N/mm^2,αk>15N。
m/mm^2,(试样20×20×110mm),轴体HB240-300,轴颈HRC≥55,珠光体数量:试棒≥75%,曲轴≥70%.二。
蜗杆的热处理1。
:负荷不大,断面较小的蜗杆材料45 调质,HB220—2502.有精度要求(螺纹磨出)而速度<2m/s.材料45 淬火,回火,HRC45—503。
滑动速度较高,负荷较轻的中小尺寸蜗杆材料15 渗碳,淬火,低温回火,HRC56-624.:滑动速度>2m/s(最大7-8m/s);精度要求很高,表面粗糙度为0.4的蜗杆,如立车中的主要蜗杆材料20Cr,20Mn2B 900—950℃渗碳,800—820℃油淬,180-200℃低温回火,HRC56-625.:要求高耐磨性、高精度及尺寸大的蜗杆材料: 18CrMnTi、20SiMn VB 处理同上 ,HRC56-626。
:要求足够耐磨性和硬度的蜗杆材料: 40Cr、42SiMn、45MnB 油淬,回火,HRC5-507。
:中载、要求高精度并与青铜蜗轮配合使用(热处理后再加工丝扣)之蜗杆:材料35CrMo 调质, HB255—303(850-870℃油淬,600-650回火):8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴类零件选材及热处理工艺分析
1 轴类零件的作用
轴类零件的主要作用是支承传动零件、传递运动和动力。
2 工作条件
(1)承受较大的交变弯曲应力、扭转应力。
(2)轴颈和花键部位承受较大的摩擦。
(3)一定的冲击载荷。
3 失效形式
常见的时效形式有疲劳断裂、过量的弯曲变形和扭转变形、过量磨损。
4 力学性能要求
(1)良好的综合力学性能。
(2)轴颈等部位应具有高的硬度和良好的耐磨性。
(3)高的疲劳强度
5 轴类零件常用材料及热处理
(1)中碳钢和中碳合金钢。
考虑到轴类零件的综合力学性能要求,主要选用经过轧制或锻造的35、40、45、50、40Cr、40CrNi、40MnB钢等,一般应进行正火或调质;若轴颈处耐磨性要求高,可对轴颈处进行表面淬火。
具体的钢种应根据载荷的类型、零件的尺寸和淬透性的大小决定。
承受弯曲载荷和扭转载荷的轴类,应力的分布是由表面向中心递减的,对淬透性要求不高;承受拉、压载荷的轴类,应力沿轴的截面均匀分布,应选用淬透性较高的钢。
(2)对承受冲击载荷较大,对强韧性要求高时或要求进一步提高轴颈的耐磨性时,可选用20Cr、20CrMnTi等合金渗碳钢并进行渗碳、淬火、低温回火处理。
(3)对于受力小、不重要的轴可选用Q235~Q275等普通质量碳钢。
(4)球墨铸铁和高强度灰铸铁可用来制作形状复杂、难以锻造成形的轴类零件,如曲轴等。
6 轴类零件选材举例
(1)机床主轴。
下图是C6132卧式车床主轴,工作时主要承受交变弯曲应力、扭转应力作用和一定的冲击载荷,运转较平稳。
要求具有良好的综合力学性能,锥孔、外圆锥面、花键表面要求耐磨。
现选用45钢制造,其工艺路线如下:
下料→锻造→正火→粗加工→调质→半精加工(花键除外)→局部淬火(内外圆锥面)+低温回火→粗磨→铣花键→花键感应淬火+低温回火→精磨。
整体调质硬度可达到220~250HBS;内外圆锥面采用盐浴局部淬火和低温回火,硬度为45~50HRC;花键部分采用高频感应淬火和低温回火,硬度为48~53HRC。
(2)内燃机曲轴。
右图是175A型农用柴油机曲轴简图,由于该柴油机的功率(4.4KW)不大,故曲轴承受的弯曲应力、扭转应力和冲击载荷不大。
但曲轴在滑动轴承中工作,轴颈部位要求具有较高的硬度和耐磨性。
具体要求是:σb≥750MPa,整体硬度为240~260HB S,轴颈处表面硬度≥625HV,δ≥2%,Ak≥12J。
现选用Q700-2,铸造成形,其工艺路线如下:
铸造→高温正火→高温回火→机械加工→轴颈处气体渗氮。
高温正火是为了获得均匀细小的珠光体基体,提高强度、硬度和耐磨性。
高温回火是消除正火造成的应力。
轴颈处渗氮是为了提高轴颈处的表面硬度和耐磨性。