二次函数中的存在性问题(含答案解析)
二次函数的存在性问题(面积)及答案
图12-2xCOy ABD 11二次函数的存在性问题(面积问题)1、[08云南双柏]已知:抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标;(2)求此抛物线的表达式;(3)求△ABC 的面积; (4)若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE , 设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(5)在(4)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标, 判断此时△BCE 的形状;若不存在,请说明理由.2、 [09湖南益阳]阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算PABCAB 98SS =三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使PABCAB98S S =若存在,求出P 点的坐标;若不存在,请说明理由.图13、[09吉林长春]如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别 为(0,1)(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线, 垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位).(1)求抛物线对应的函数关系式.(2分) (2)分别求t=1和t=4时,点Q 的坐标.(3分)(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.(5分)4、(07云南昆明)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB 。
二次函数存在性问题
二次函数存在性问题一、存在三角形:1、如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。
(1)求点A 、B 、C 的坐标。
(2)若点M 为抛物线的顶点,连接BC 、CM 、BM ,求△BCM 的面积。
(3)连接AC ,在x 轴上是否存在点P 使△ACP 为等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由。
2、如图,直线AC :1y x =--与抛物线24y ax bx =+-都经过点(1,0)A -、(3,4)B -.(1)求抛物线的解析式;(2) 动点P 在线段AC 上,过点P 作x 轴的垂线与抛物线相交于点E ,求线段PE 长度的最大值; (3) 当线段PE 的长度取得最大值时,在抛物线上是否存在点Q ,使△PCQ 是以PC 为直角边的直角三角形?若存在,请求出Q 点的坐标;若不存在.请说明理由.3、已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA<OB ),直角顶点C 落在y 轴正半轴上(如图11)。
(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式。
(4分) (2)如图12,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E 。
①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标。
(3分) ②又连接CD 、CP (如图13),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没 有,请说明理由。
(3分)图11A B O C 图9 yx P E 图12 图13二、 存在四边形:1、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D . (1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.2、在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值. (3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.3、如图,在平面直角坐标系中CDA Rt AOB Rt ∆≅∆,且)2,0(),0,1(B A -抛物线22-+=ax ax y 经过点C 。
二次函数中的存在性问题
⼆次函数中的存在性问题⼆次函数中的存在性问题存在性问题是指判断满⾜某种条件的事物是否存在的问题,这类问题的知识覆盖⾯较⼴,综合性较强,题意构思⾮常精巧,解题⽅法灵活,对学⽣分析问题和解决问题的能⼒要求较⾼,是近⼏年来各地中考的“热点”。
这类题⽬解法的⼀般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出⽭盾,就做出“不存在”的判断。
以下⼏篇内容为⼏种典型的⼆次函数中出现的存在性问题,希望⼤家在以后的学习中如果遇到此类型时能够轻松解决。
⼀、特殊三⾓形的存在性问题(⼀)⼆次函数中的等腰三⾓形存在性问题如果△ABC是等腰三⾓形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.因此,解等腰三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(⼆)⼆次函数中的直⾓三⾓形存在性问题如果△ABC是直⾓三⾓形,那么存在①∠A为直⾓,②∠B为直⾓,③∠C为直⾓三种情况.因此,解直⾓三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(三)⼆次函数中的等腰直⾓三⾓形存在性问题在解决等腰直⾓三⾓形存在性问题时,往往要⽤到⼏何和代数相结合的⽅法,设出点的坐标后,利⽤等腰直⾓三⾓形的⼏何性质及函数关系式列⽅程求解,最常⽤到的有:①两直⾓边相等,直⾓边与斜边的⽐为1:√2;②斜边中线垂直于斜边,且等于斜边的⼀半。
③直⾓顶点处构造三垂直,得到全等三⾓形,利⽤对应边的等量关系求解。
专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版)
专题22.8 二次函数中的存在性问题【八大题型】【人教版】【题型1 二次函数中直角三角形的存在性问题】 (1)【题型2 二次函数中等腰三角形的存在性问题】 (3)【题型3 二次函数中等腰直角三角形的存在性问题】 (5)【题型4 二次函数中平行四边形的存在性问题】 (7)【题型5 二次函数中矩形的存在性问题】 (9)【题型6 二次函数中菱形的存在性问题】 (11)【题型7 二次函数中正方形的存在性问题】 (13)【题型8 二次函数中角度问题的存在性问题】 (15)【题型1 二次函数中直角三角形的存在性问题】【例1】(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【变式1-1】(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=−√36x2+2√33x+2√3与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【变式1-2】(2022秋•日喀则市月考)如图,二次函数y=﹣x2+4x+5的图象与x轴交于A,B两点,与y 轴交于点C,M为抛物线的顶点.(1)求M点的坐标;(2)求△MBC的面积;(3)坐标轴上是否存在点N,使得以B,C,N为顶点的三角形是直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.【变式1-3】(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠P AB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【题型2 二次函数中等腰三角形的存在性问题】【例2】(2022•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(﹣1,0),点B (4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;个单位,得到新抛物线y1,在y1的对称轴上(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【变式2-1】(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN 与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG 是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.【变式2-2】(2022秋•永嘉县校级期末)如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正x2+3x+k交y 半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=−34轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中,若存在△ADP是等腰三角形,请求出所有满足条件的k的值.【变式2-3】(2022•杭州校级自主招生)如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)求A点坐标并求抛物线的解析式;(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△P AB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【题型3 二次函数中等腰直角三角形的存在性问题】【例3】(2022•顺城区模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C (0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.x2+bx+c的图象与x轴交于点A(﹣2,0),与【变式3-1】(2022•碑林区校级三模)已知抛物线C1:y=14y轴交于点C(0,﹣3),顶点为D.(1)求抛物线C1的表达式和点D的坐标;(2)将抛物线C1沿x轴平移m(m>0)个单位长度,所得新的抛物线记作C2,C2的顶点为D′,与抛物线C1交于点E,在平移过程中,是否存在△DED′是等腰直角三角形?如果存在,请求出满足条件的抛物线C2的表达式,并写出平移过程;如果不存在,请说明理由.【变式3-2】(2022•琼海二模)如图1,抛物线y=ax2+bx+3与x轴交于点A(3,0)、B(﹣1,0),与y 轴交于点C,点P为x轴上方抛物线上的动点,点F为y轴上的动点,连接P A,PF,AF.(1)求该抛物线所对应的函数解析式;(2)如图1,当点F的坐标为(0,﹣4),求出此时△AFP面积的最大值;(3)如图2,是否存在点F,使得△AFP是以AP为腰的等腰直角三角形?若存在,求出所有点F的坐标;若不存在,请说明理由.【变式3-3】(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【题型4 二次函数中平行四边形的存在性问题】【例4】(2022•垦利区二模)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x轴于点F,AB=4,设点D的横坐标为m.(1)求抛物线的解析式;(2)连接AE、CE,当△ACE的面积最大时,点D的坐标是;(3)当m=﹣2时,在平面内是否存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.【变式4-1】(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;【变式4-2】(2022•福山区一模)如图,抛物线y=ax2+bx+c过点A(﹣1,0),点B(3,0),与y轴负半轴交于点C,且OC=3OA,抛物线的顶点为D,对称轴交x轴于点E.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)若点P是抛物线上一点,过点P作PQ⊥x轴交直线BC于点Q,试探究是否存在以点E,D,P,Q为顶点的平行四边形.若存在,求出点P坐标;若不存在,请说明理由.【变式4-3】(2022•青羊区校级模拟)抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的函数表达式;(2)如图1,点P在线段AC上方的抛物线上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线的对称轴l上的一个动点,在抛物线上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【题型5 二次函数中矩形的存在性问题】【例5】(2022•齐齐哈尔三模)综合与实践如图,二次函数y=﹣x2+c的图象交x轴于点A、点B,其中点B的坐标为(2,0),点C的坐标为(0,2),过点A、C的直线交二次函数的图象于点D.(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为6;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N 为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【变式5-1】(2022•博山区一模)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,x﹣4.且点A的坐标为(﹣2,0),直线BC的解析式为y=12(1)求抛物线的解析式.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-2】(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒√2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.【变式5-3】(2022•黔东南州)如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC 于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.【题型6 二次函数中菱形的存在性问题】【例6】(2022•烟台一模)如图,平面直角坐标系中,正方形ABCD的顶点A,B在x轴上,抛物线y=﹣x2+bx+c经过A,C(4,﹣5)两点,且与直线DC交于另一点E.(1)求抛物线的解析式;(2)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为Q,连接EQ,AP.试求EQ+PQ+AP的最小值;(3)N为平面内一点,在抛物线对称轴上是否存在点M,使得以点M,N,E,A为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式6-1】(2022•邵阳县模拟)如图,直线l:y=﹣3x﹣6与x轴、y轴分别相交于点A、C;经过点A、x2+bx+c与x轴的另一个交点为点B,其顶点为点D,对称轴与x轴相交于点E.C的抛物线C:y=12(1)求抛物线C的对称轴.(2)将直线l向右平移得到直线l1.①如图①,直线l1与抛物线C的对称轴DE相交于点P,要使PB+PC的值最小,求直线l1的解析式.②如图②,直线l1与直线BC相交于点F,直线l1上是否存在点M,使得以点A、C、F、M为顶点的四边形是菱形,若存在,求出点M的坐标;若不存在,请说明理由.【变式6-2】(2022•嘉定区二模)在平面直角坐标系xOy(如图)中,已知抛物线y=ax2+bx+3经过点A(3,0)、B(4,1)两点,与y轴的交点为C点.(1)求抛物线的表达式;(2)求四边形OABC的面积;(3)设抛物线y=ax2+bx+3的对称轴是直线l,点D与点B关于直线l对称,在线段BC上是否存在一点E,使四边形ADCE是菱形,如果存在,请求出点E的坐标;如果不存在,请说明理由.【变式6-3】(2022•山西模拟)综合与探究如图,二次函数y=ax2+bx+4的图象与x轴分别交于点A(﹣2,0),B(4,0),点E是x轴正半轴上的一个动点,过点E作直线PE⊥x轴,交抛物线于点P,交直线BC于点F.(1)求二次函数的表达式.EF,求此时点P的坐标.(2)当点E在线段OB上运动时(不与点O,B重合),恰有线段PF=12(3)试探究:若点Q是y轴上一点,在点E运动过程中,是否存在点Q,使得以点C,F,P,Q为顶点的四边形为菱形,若存在,直接写出点Q的坐标;若不存在,请说明理由.【题型7 二次函数中正方形的存在性问题】【例7】(2022•铁锋区二模)综合与探究如图,在平面直角坐标系中,直线y=x+b与x轴交于点A(4,0),与y轴交于点B,过A,B两点的抛物线交x轴于另一点C,且OA=20C,点F是直线AB下方抛物线上的动点,连接F A,FB.(1)求抛物线解析式;(2)当点F与抛物线的顶点重合时,△ABF的面积为;(3)求四边形F AOB面积的最大值及此时点F的坐标.(4)在(3)的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内另一点M,使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式7-1】(2022•陇县二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),)两点,且与y轴交于点C,点B是该抛物线的顶点.B(1,−94(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【变式7-2】(2022秋•南宁期中)如图,抛物线与y轴交于点C(0,3),与x轴于点A(﹣1,0)、B(3,0),点P是抛物线的顶点.(1)求抛物线的解析式;(2)Q是抛物线上第一象限除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标;(3)若M、N为抛物线上两个动点,分别过点M、N作直线BC的垂线段,垂足分别为D、E.是否存在点M、N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【变式7-3】(2022•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【题型8 二次函数中角度问题的存在性问题】【例8】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.,0),B(3,【变式8-1】(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(−127)两点,与y轴交于点C.2(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式8-2】(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.x2+bx+c交x轴于A(﹣3,0),B(4,0)【变式8-3】(2022•罗湖区校级一模)如图,已知抛物线y=−13两点,交y轴于点C,点P是抛物线上一点,连接AC、BC.(1)求抛物线的表达式;(2)连接OP,BP,若S△BOP=2S△AOC,求点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使得∠QBA=75°?若存在,直接写出点Q的坐标;若不存在,请说明理由.。
二次函数的存在性问题(Word版解析+答案)
中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。
二次函数-存在性问题-备战2023年中考数学考点微专题
考向3.9 二次函数-存在性问题例1、(2021·湖南湘潭·中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点. (1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.解:(1)对于33y x =:当x =0时,3y = 当y =0时,3303x -=,妥得,x =3 ∴A (3,0),B (0,3- 把A (3,0),B (0,3-23y bx c ++得: 33+3+=03b c c ⎧⎪⎨=-⎪⎩解得,233b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为:23233y =-(2)抛物线的对称轴为直线23312323b x a -=-=-=⨯故设P (1,p ),Q (m ,n ) ①当BC 为菱形对角线时,如图,∵B ,C 关于对称没对称,且对称轴与x 轴垂直, ∴∴BC 与对称轴垂直,且BC //x 轴 ∵在菱形BQCP 中,BC ⊥PQ ∴PQ ⊥x 轴 ∵点P 在x =1上, ∴点Q 也在x =1上, 当x =1时,232343113=333y =⨯-⨯--∴Q (1,433-); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,∴BC //PQ ,且BC =PQ ∵BC //x 轴,∴令3y =23233=3y解得,120,2x x == ∴(2,3)C - ∴PQ =BC =2 ∵22(3)12+= ∴PB =BC =2 ∴迠P 在x 轴上, ∴P (1,0) ∴Q (3,0);若点Q 在点P 的左侧,如图,同理可得,Q (-1,0) 综上所述,Q 点坐标为(1,433-)或(3,0)或(-1,0)1、存在性问题的解题思路:假设存在,推理论证,得出结论;2、解決线段存在性问题的方法:将军饮马问题、垂线段问题、三角形三边关系、函数最值等;3、本题考查的知识点有用待定系数法求出二次函数的解析式,菱形的性质和判定,解一元二次方程,主要考查学生综合运用这些性质进行计算和推理的能力.同时注意用分类讨论思想解决问题。
二次函数中角度的存在性问题
二次函数中角度的存在性问题类型一:等角构造法(作垂直,找相似)例1:如图,抛物线y=x2-4x+3与x轴交于点A,B两点,与y轴交C,连接AC.抛物线上是否存在点M,使∠OBM =∠OCA.若存求出点M的坐标;若不存在,请说明理由.分析:1.假设∠OBM=∠OCA,过M作ME垂直x轴,构造∆MEB~∆AOC,利用对应边成比例,可求出M点坐标。
2.利用对称性,求出点M的对称点H,可得∠HBO=∠OBM,延长BH交抛物线于点M’,则点M’就为所求的。
类型二:2倍角构造法(作垂直平分线,构造等腰三角形,则外角就为已知角的两倍)例2.如图,直线y=-3x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过点A,B.抛物线上是否存在点M,使直线AM与y轴所夹锐角是∠ABO的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.分析:1.作AB的垂直平分线CD,交y轴于点D,则构造等腰三角形BDA,所以∠ODA=2∠OBA,延长AD交抛物线于点M,则联立解析式可求点M坐标。
2.利用对称性可求点M的对称点H(或者求D点的对称点),则延长AH交抛物线于M’。
类型三:半角构造法(作角平分线或向外延长作等腰三角形)例3:如图,抛物线交x 轴于A ,C 两交y 轴于点B ,连接AB .抛物线上是否存在点M ,使∠ACM =?若存在,请求出点M 的坐标;若不存在,请说明理由.分析:方法1:作∠OAB 的J 角平分线AE ,求出E 点坐标及AE 解析式。
过点C 作CM ∥AE ,则∠MCA=∠OAE=∠OAB ,则点M 就为所求作的。
然后利用对称性,可求点M ’.4x 31x 31y 2+--=BAO ∠2121方法2:延长OA 至D ,使AD 等于AB ,构造等腰三角形BAD,则∠ADB=∠OAB ,过C 点作CM ∥BD,则点M 就为所求作的。
然后一样利用对称性求出点M ’。
21。
二次函数中的存在性问题
二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.如图,已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.2.抛物线()2134y x=--+与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P 在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.3.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线cbxxy++-=231经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB作MN⊥x轴于点N.是否存在点M,使△与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由.yOyxyyxO O xyyxOO xyxCOyBAxxA ByO C OyBA4. 已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k )在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.5. 抛物线2212-+=x x y 与y 轴交于点C ,与直线y =x 交于A (-2,-2)、B (2,2)两点.如图,线段MN 在直线AB上移动,且M N =M 的横坐标为m ,过点M 作x 轴的垂线与x 轴交于点P ,过点N 作x 轴的垂线与抛物线交于点Q .以P 、M 、Q 、N 为顶点的四边形否为平行四边形?若能,请求出m 的值;若不能,请说明理由.A CyxO B精讲精练参考答案1.解:由题意,设OA =m ,则OB =2m ;当∠BAP =90°时, △BAP ∽△AOB 或△BAP ∽△BOA ; ① 若△BAP ∽△AOB ,如图1,可知△PMA ∽△AOB ,相似比为2:1;则P 1(5m ,2m ), 代入x x y 32+-=,可知2513=m ,)2526,513(1P② 若△BAP ∽△BOA ,如图2,可知△PMA ∽△AOB ,相似比为1:2;则P 2(2m ,2m ),代入x x y 32+-=,可知811=m ,)1611,411(2P当∠ABP =90°时,△ABP ∽△AOB 或△ABP ∽△BOA ; ③ 若△ABP ∽△AOB ,如图3,可知△PMB ∽△BOA ,相似比为2:1;则P 3(4m ,4m ), 代入x x y 32+-=,可知21=m ,)2,2(3P④ 若△ABP ∽△BOA ,如图4,可知△PMB ∽△BOA ,相似比为1:2;则P 4(m ,m 25), 代入x x y 32+-=,可知21=m ,415(,)24P2.解:(1)由抛物线解析式()21134y x =--+可得B 点坐标(1,3要求直线BQ 的函数解析式,只需求得点Q 坐标即可,即求CQ 长度过点D 作DG ⊥x 轴于点G ,过点D 作DF ⊥QP 于点F . 则可证△DCG ≌△DEF .则DG =DF , ∴矩形DGQF 为正方形.则∠DQG =45°,则△BCQ 为等腰直角三角形.∴CQ =BC =3,此时,Q 可得BQ 解析式为y =-x +4.(2)要求P 点坐标,只需求得点Q 坐标,然后根据横坐标相同来求点P 坐标即可. 而题目当中没有说明∠DCE =30°还是∠DCE =60°,所以分两种情况来讨论. ① 当∠DCE =30°时,a )过点D 作DH ⊥x 轴于点H ,过点D 作DK ⊥QP 于点K .则可证△DCH ∽△DEK .则D H D C D KD E==在矩形DHQK 中,DK =HQ,则D H H Q=在Rt △DHQ 中,∠DQC =60°.则在Rt △BCQ中,B C C Q=∴CQ,此时,Q 点坐标为(,0) 则P 点横坐标为代入()21134y x =--+可得纵坐标.∴P (94).b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(194)② 当∠DCE =60°时,a) 过点D 作DM ⊥x 轴于点M ,过点D 作DN ⊥QP 于点N .则可证△DCM ∽△DEN .则1D M D C D ND E==在矩形DMQN 中,DN =MQ,则1D M M Q=.在Rt △DMQ 中,∠DQM =30°. 则在Rt △BCQ中,B C C Q=∴CQBC=Q 点坐标为(1+0) 则P 点横坐标为1+代入()21134y x =--+可得纵坐标.∴P (1+154-).b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(1-154-)综上所述,P 点坐标为(94),(194),(1+154-)或(1-154-).4.解:满足条件坐标为:1(30)-M 2(30)+M 3(10)-+M 4(10)--M思路分析:A 、M 、N 、P 四点中点A 、点P 为顶点,则AP 可为平行四边形边、对角线; (1)如图,当AP 为平行四边形边时,平移AP ;∵点A 、P 纵坐标差为2 ∴点M 、N 纵坐标差为2; ∵点M 的纵坐标为0 ∴点N 的纵坐标为2或-2 ①当点N 的纵坐标为2时解:2232--=x x 得1=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为:1(30)-M 、2(30)+M②当点N 的纵坐标为-2时解:2232--=-x x 得1=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 3(10)-+M 、4(10)--M(2)当AP 为平行四边形边对角线时;设M 5(m ,0)MN 一定过AP 的中点(0,-1) 则N 5(-m ,-2),N 5在抛物线上 ∴2232+-=-m m1=-±m∴1=-+m∴5(10)-+M综上所述:符合条件点P 的坐标为:1(30)-M 2(30)+M 3(10)-+M 4(10)--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可由题知:(,)M m m ,(,0)P m ,(1,1)N m m ++,21(1,(1)+(1)2)2Q m m m +++-故只需表达MP 、NQ 即可.表达分下列四种情况:①如图1,P M m =-,21(1)22Q N m =+-,令PM =QN ,解得:1=2+m -,2=2m --②如图2,P M m =-,21(1)+22Q N m =-+,令PM =QN ,解得:1=m (舍去),1=m -;③如图3,P M m =,21(1)+22Q N m =-+,令PM =QN ,解得:1=2+m -2=2m --;④如图4,P M m =,21(1)22Q N m =+-,令PM =QN ,解得:1=m ,1=m -(舍去);综上,m 的值为1=2m --、2=m -3=2+m -、4=m当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。
二次函数中的存在性问题(含答案及解析)
2018年8月4日初中数学试卷一、综合题(共9题;共135分)1.如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2.(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.3.(2017•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2 √2?若存在求出点Q的坐标;若不存在请说明理由.4.(2017•广元)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.5.(2017•巴中)如图,已知两直线l1, l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,√3)时,恰好有l1⊥l2,经过点A,B,C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.6.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x 轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.7.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.8.(2017•临沂)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)解:设此函数的解析式为y=a(x+h)2+k,∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a= 14,∴此函数的解析式为y= 14(x+2)2﹣4,即y= 14x2+x﹣3;(2)解:∵点C是函数y= 14x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),又当y=0时,有y= 14x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),则S△ABC= 12 |AB|•|OC|= 12×8×3=12;(3)解:假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.设E(x,0),则P(x,14x2+x﹣3),设直线AC的解析式为y=kx+b,∵直线AC过点A(﹣6,0),C(0,﹣3),∴ {−6k+k=0−3=k,解得{k=−12k=−3,∴直线AC的解析式为y=﹣12x﹣3,∴点F的坐标为F(x,﹣12x﹣3),则|PF|=﹣12 x﹣3﹣(14x2+x﹣3)=﹣14x2﹣32x,∴S△APC=S△APF+S△CPF= 12 |PF|•|AE|+ 12|PF|•|OE|= 12 |PF|•|OA|= 12(﹣14x2﹣32x)×6=﹣34x2﹣92x=﹣34(x+3)2+ 274,∴当x=﹣3时,S△APC有最大值274,此时点P的坐标是P(﹣3,﹣154).【考点】二次函数的应用【解析】【分析】(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.2.【答案】(1)解:∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得{k−k+k=016k+4k+k=525k+5k+k=0,解得{k=−1k=4k=5,∴抛物线解析式为y=﹣x2+4x+5(2)解:①设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);②设P(x,﹣x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE= √(k−4)2+(k+1−5)2 = √2 |x﹣4|,CE= √(k−5)2+(k+1)2 = √2k2−8k+26,BC= √(4−5)2+(5−0)2 = √26,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则√2 |x﹣4|= √2k2−8k+26,解得x= 34,此时P点坐标为(34,11916);当BE=BC时,则√2 |x﹣4|= √26,解得x=4+ √13或x=4﹣√13,此时P点坐标为(4+ √13,﹣4 √13﹣8)或(4﹣√13,4 √13﹣8);当CE=BC时,则√2k2−8k+26 = √26,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P 点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(34,11916)或(4+ √13,﹣4 √13﹣8)或(4﹣√13,4 √13﹣8)或(0,5)【考点】二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.3.【答案】(1)解:∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3(2)解:设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣32)2+ 94,∴当m= 32时,PM有最大值94(3)解:如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2 √2时,即QH=HG=2 √2,∴QG= √2×2 √2 =4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5)【考点】二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)可设抛物线解析式为顶点式,由B 点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD 解析式;(2)设出P 点坐标,从而可表示出PM 的长度,利用二次函数的性质可求得其最大值;(3)过Q 作QG∥y 轴,交BD 于点G ,过Q 和QH⊥BD 于H ,可设出Q 点坐标,表示出QG 的长度,由条件可证得△DHG 为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q 点坐标. 4.【答案】(1)解:将A ,B ,C 点的坐标代入解析式,得 {9k −3k +k =04k −2k +k =3k =3 ,解得 {k =−1k =−2k =3,抛物线的解析式为y=﹣x 2﹣2x+3(2)解:配方,得y=﹣(x+1)2+4,顶点D 的坐标为(﹣1,4) 作B 点关于直线x=1的对称点B′,如图1,则B′(4,3),由(1)得D (﹣1,4), 可求出直线DB′的函数关系式为y=﹣ 15 x+ 195 , 当M (1,m )在直线DN′上时,MN+MD 的值最小, 则m=﹣ 15 ×1+ 195 = 185 .(3)解:作PE⊥x 轴交AC 于E 点,如图2,AC 的解析式为y=x+3,设P (m ,﹣m 2﹣2m+3),E (m ,m+3), PE=﹣m 2﹣2m+3﹣(m+3)=﹣m 2﹣3mS △APC = 12 PE •|x A |= 12 (﹣m 2﹣3m )×3=﹣ 32 (m+ 32 )2+ 278 ,当m=﹣32时,△APC的面积的最大值是278(4)解:由(1)、(2)得D(﹣1,4),N(﹣1,2)点E在直线AC上,设E(x,x+3),①当点E在线段AC上时,点F在点E上方,则F(x,﹣x2﹣2x+3),∵EF=DN∴﹣x2﹣2x+3﹣(x+3)=4﹣2=2,解得,x=﹣2或x=﹣1(舍去),则点E的坐标为:(﹣2,1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,﹣x2﹣2x+3),∵EF=DN,∴(x+3)﹣(﹣x2﹣2x+3)=2,解得x= −3+√172或x= −3−√172,即点E的坐标为:(−3+√172,3+√172)或(−3−√172,3−√172)综上可得满足条件的点E为E(﹣2,1)或:(−3+√172,3+√172)或(−3−√172,3−√172)【考点】二次函数的性质,待定系数法求二次函数解析式,二次函数的应用,三角形的面积,轴对称-最短路线问题【解析】【分析】(1)根据待定系数法,可得答案.(2)利用轴对称求最短路径的知识,找到B点关于直线x=1的对称点B′,连接B′D,B′D与直线x=1的交点即是点M的位置,继而求出m的值.(3)根据平行于y轴的直线上两点间的距离最大的纵坐标减去较小的纵坐标,可得PE的长,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案.(4)设出点E的坐标,分情况讨论;①当点E再线段AC上时,点F在点E上方;②当点E再线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质,可得关于x的方程,继而求出点E的坐标.5.【答案】(1)解:设抛物线的函数解析式为y=ax2+bx+c.∵点A(1,0),点B(﹣3,0),点C(0,√3)在抛物线上,∴ {k+k+k=09k−3k+k=0k=√3,解得{k=−√33k=−2√33k=√3,∴抛物线的函数解析式为y=﹣√33 x2﹣2√33x+ √3(2)解:DG=DE.理由如下:设直线l 1的解析式为y=k 1x+b 1 , 将A (1,0),C (0, √3 )代入,解得y=﹣ √3 x+ √3 ; 设直线l 2的解析式为y=k 2x+b 2 , 将B (﹣3,0),C (0, √3 )代入,解得y= √33x+ √3 ; ∵抛物线与x 轴的交点为A (1,0),B (﹣3,0), ∴抛物线的对称轴为直线x=﹣1, 又∵点G 、D 、E 均在对称轴上, ∴G(﹣1,2 √3 ),D (﹣1,4√33 ),E (﹣1, 2√33), ∴DG=2 √3 ﹣ 4√33= 2√33,DE= 4√33﹣ 2√33= 2√33,∴DG=DE;(3)解:若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,分三种情况: ①以G 为圆心,GC 为半径画弧交抛物线于点M 1、C ,点M 1与C 关于抛物线的对称轴对称,则M 1的坐标为(﹣2, √3 ); ②以C 为圆心,GC 为半径画弧交抛物线于点M 2、M 3 , 点M 2与点A 重合,点A 、C 、G 在一条直线上,不能构成三角形,M 3与M 1重合;③作线段GC 的垂直平分线,交抛物线于点M 4、M 5 , 点M 4与点D 重合,点D 的坐标为(﹣1, 4√33),M 5与M 1重合;综上所述,满足条件的点M 只有两个,其坐标分别为(﹣2, √3 ),(﹣1, 4√33).【考点】待定系数法求一次函数解析式,二次函数的性质,待定系数法求二次函数解析式,二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)设抛物线的函数解析式为y=ax 2+bx+c .分别将A (1,0),B (﹣3,0),C (0, √3 )三点坐标代入得到一个三元一次方程组,解之即可得到抛物线解析式.(2)DG=DE .分别求出过A (1,0),C (0, 3 )两点的直线l 1的解析式为y=﹣ √3 x+ √3 ;过B (﹣3,0),C (0, 3 )两点的直线l 2的解析式为y= √33x+ √3 ;由二次函数的性质和已知条件求出DG 和DE 的长度即可. (3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,分三种情况:①以G 为圆心,GC 为半径画弧交抛物线于点M 1(﹣2, √3 );②以C 为圆心,GC 为半径画弧交抛物线于点M 2、M 3 , ;③作线段GC 的垂直平分线,交抛物线于点M 4、M 5.6.【答案】(1)解:依题意得: {−k2k =−1k +k +k =0k =3,解之得: {k =−1k =−2k =3∴抛物线解析式为y=-x 2-2x+3∵对称轴为x=-1,且抛物线经过A (1,0), ∴把B (-3,0)、C (0,3)分别代入直线y=mx+n , 得 {−3k +k =0k =3, 解之得: {k =1k =3,∴直线y=mx+n 的解析式为y=x+3(2)解:设直线BC 与对称轴x=-1的交点为M ,则此时MA+MC 的值最小.把x=-1代入直线y=x+3得,y=2,∴M(-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(-1,2)(3)解:如图:设P (-1,t ),又∵B(-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2 ,PC 2=(-1)2+(t-3)2=t 2-6t+10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2-6t+10解之得:t=-2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2-6t+10=4+t 2解之得:t=4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2-6t+10=18解之得:t 1= 3+√172 ,t 2= 3−√172; 综上所述P 的坐标为(-1,-2)或(-1,4)或(-1, 3+√172 ) 或(-1, 3−√172). 【考点】二次函数的应用,二次函数的实际应用-动态几何问题【解析】【分析】先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;设直线BC 与对称轴x=-1的交点为M ,则此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2 , PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.7.【答案】(1)解:设抛物线解析式为y=a (x+1)(x ﹣3),把C (0,3)代入得a •1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x ﹣3),即y=﹣x 2+2x+3(2)解:设直线BC 的解析式为y=kx+m ,把B (3,0),C (0,3)代入得 {3k +k =0k =3 ,解得 {k =−1k =3,所以直线BC的解析式为y=﹣x+3,作PM∥y轴交BC于M,如图1,设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∴S△PCB= 12•3•PM=﹣32x2+ 92=﹣32(x﹣32)2+ 278,当x= 32时,△BCP的面积最大,此时P点坐标为(32,154)(3)解:如图2,抛物线的对称轴为直线x=1,当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3),把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2,∴Q(4,﹣5);当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a),把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8,∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a),把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0,∴Q(2,3),综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).【考点】二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)设交点式y=a (x+1)(x ﹣3),然后把C 点坐标代入求出a 的值即可得到抛物线的解析式;(2)先利用待定系数法求出直线BC 的解析式为y=﹣x+3,作PM∥y 轴交BC 于M ,如图1,设P (x ,﹣x 2+2x+3),(0<x <3),则M (x ,﹣x+3),利用三角形面积公式得到∴S △PCB = 12 •3•PM=﹣ 32 x 2+ 92 ,然后根据二次函数的性质求解;(3)如图2,分类讨论:当四边形BCDQ 为平行四边形,设D (1,a ),利用点平移的坐标规律得到Q (4,a ﹣3),然后把Q (4,a ﹣3)代入y=﹣x 2+2x+3中求出a 即可得到Q 点坐标;当四边形BCQD 为平行四边形或四边形BQCD 为平行四边形时,利用同样方法可求出对应Q 点坐标.8.【答案】(1)解:由y=ax 2+bx ﹣3得C (0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A (2,﹣3),B (﹣1,0)代入y=ax 2+bx ﹣3得 {4k +2k −3=−3k −k −3=0 , ∴ {k =1k =−2, ∴抛物线的解析式为y=x 2﹣2x ﹣3(2)解:设连接AC ,作BF⊥AC 交AC 的延长线于F ,∵A(2,﹣3),C (0,﹣3),∴AF∥x 轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D (0,m ),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D 1(0,1),D 2(0,﹣1)(3)解:设M (a ,a 2﹣2a ﹣3),N (1,n ),①以AB 为边,则AB∥MN,AB=MN ,如图2,过M 作ME⊥对称轴y 于E ,AF⊥x 轴于F ,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m|即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.。
(完整版)二次函数中的存在性问题(等腰三角形的存在性问题)
二次函数中的存在性问题(等腰三角形)[07福建龙岩]如图,抛物线254y ax ax =-+经过ABC △已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =. (1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点, 是否存在PAB △是等腰三角形.若存在,求出所有符合条 件的点P 坐标;不存在,请说明理由. 解:(1)抛物线的对称轴5522a x a -=-= (2)(30)A -, (54)B , (04)C ,把点A 坐标代入254y ax ax =-+中,解得16a =-215466y x x ∴=-++(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,2BM = ① 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= 在1Rt ANP △中,1PN ==== 152P ⎛∴ ⎝⎭ ② AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ==== 252P ⎛∴ ⎝⎭③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△.312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = 3(2.51)P ∴-,[07广西河池]如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D . 点M 从O 点出发,以每秒1的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S , 求S 与x 的函数关系式,并指出自变量x 的取值范围.(3)在线段BC 上是否存在点Q ,使得△DBQ 成为以BQ 等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.(1)把x =0代入224233y x x =-++得点C 的坐标为C (0,2) 把y =0代入224233y x x =-++得点B 的坐标为B (3,0)(2)连结OP ,设点P 的坐标为P (x ,y )OBPC S 四边形=OPC S △+OPB S △ =112322x y ⨯⨯+⨯⨯= 3223x ⎛+- ⎝∵ 点M 运动到B 点上停止,∴03x ≤≤∴23324S x ⎛⎫=--+ ⎪⎝⎭(03x ≤≤)(3)存在. BC=13 ① 若BQ = DQ∵ BQ = DQ ,BD = 2 ∴ BM = 1 ∴OM = 3-1 = 2 ∴2tan 3QM OC OBC BM OB ∠=== ∴QM =23 所以Q的坐标为Q (2,23) . ② 若BQ =BD =2 ∵ △BQM ∽△BCO ,∴BQ BC =QM CO =BMBO∴=2QM∴ QM∵BQ BC =BM OB ∴ 3BM∴ BM ∴ OM = 3 ··················································· 11分 所以Q 的坐标为Q (313-,13) ··················································· 12分[07年云南省]已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ), 请求出△CBE 的面积S 的值;(3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并 写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由. 解:(1)∵抛物线经过点(1,0)A 、(5,0)B ∴(1)(5)y a x x =--. 又∵抛物线经过点(0,5)C ∴55a =,1a =.∴抛物线的解析式为2(1)(5)65y x x x x =--=-+.(2)∵E 点在抛物线上, ∴m = 42–4×6+5 = -3.∵直线y = kx +b 过点C (0, 5)、E (4, –3), ∴5,4 3.b k b =⎧⎨+=-⎩解得k = -2,b = 5.设直线y =-2x +5与x 轴的交点为D ,当y =0时,-2x +5=0,解得x =52.∴D 点的坐标为(52,0). ∴S =S △BDC + S △BDE =1515(5)5+(5)32222⨯-⨯⨯-⨯=10.(3)∵抛物线的顶点0(3,4)P -既在抛物线的对称轴上又在抛物线上,∴点0(3,4)P -为所求满足条件的点.(4)除0P 点外,在抛物线上还存在其它的点P 使得△ABP 为等腰三角形.理由如下:∵220024254AP BP ==+=>,∴分别以A 、B 为圆心半径长为4画圆,分别与抛物线 交于点B 、1P 、2P 、3P 、A 、4P 、5P 、6P , 除去B 、A 两个点外,其余6个点为满足条件的点. (说明:只说出P 点个数但未简要说明理由的不给分)xyC B AE–1 1 O[07山东威海]如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式. (3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.解:(1)有多种答案,符合条件即可.例如21y x =+,2y x x =+,2(1)2y x =-+或223y x x =-+,2(1)y x =+,2(1y x =-.(2)设抛物线2l 的函数表达式为2y x bx c =++,点(12)A ,,(31)B ,在抛物线2l 上,12931b c b c ++=⎧∴⎨++=⎩,解得9211.2b c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线2l 的函数表达式为291122y x x =-+. (3)229119722416y x x x ⎛⎫=-+=-+ ⎪⎝⎭,C ∴点的坐标为97416⎛⎫⎪⎝⎭,.过A B C ,,三点分别作x 轴的垂线,垂足分别为D E F ,,, 则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =. ABC ADEB ADFC CFEB S S S S ∴=--△梯形梯形梯形117517315(21)22122164216416⎛⎫⎛⎫=+⨯-+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭.x图①x图②x图③x延长BA 交y 轴于点G ,设直线AB 的函数表达式为y mx n =+, 点(12)A ,,(31)B ,在直线AB 上,213.m n m n =+⎧∴⎨=+⎩,解得125.2m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的函数表达式为1522y x =-+.G ∴点的坐标为502⎛⎫ ⎪⎝⎭,. 设K 点坐标为(0)h ,,分两种情况: 若K 点位于G 点的上方,则52KG h =-.连结AK BK ,. 151553122222ABK BKG AKG S S S h h h ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭△△△. 1516ABK ABC S S ==△△,515216h ∴-=,解得5516h =.K ∴点的坐标为55016⎛⎫ ⎪⎝⎭,.若K 点位于G 点的下方,则52KG h =-.同理可得,2516h =.K ∴点的坐标为25016⎛⎫⎪⎝⎭,. (4)作图痕迹如图③所示. 由图③可知,点P 共有3个可能的位置.注:作出线段AB 的中垂线得1分,画出另外两段弧得1分.x[07山东泰安]如图,在OAB △中,90B ∠=,30BOA ∠=,4OA =,将OAB △绕点O 按逆时针方向旋转至OA B ''△,C 点的坐标为(0,4). (1)求A '点的坐标; (2)求过C ,A ',A 三点的抛物线2y ax bx c =++的解析式;(3)在(2)中的抛物线上是否存在点P ,使以O A P ,,为顶点的三角形 是等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由 解:(1)过点A '作A D '垂直于x 轴,垂足为D ,则四边形OB A D ''为矩形 在A DO '△中,A D OA ''=sin 4sin 6023A OD '∠=⨯=2OD A B AB''=== ∴点A '的坐标为(2 (2)(04)C ,在抛物线上,4c ∴= 24y ax bx∴=++(40)A ,,(2A ',在抛物线24y ax bx =++上 16440424a b a b ++=⎧⎪∴⎨++=⎪⎩,3a b ⎧=⎪⎨⎪=⎩ ∴所求解析式为23)42y x x =++. (3)①若以点O 为直角顶点,由于4OC OA ==,点C 在抛物线上,则点(04)C ,为满足条件的点. ②若以点A 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(44),或(44)-,,经计算知;此两点不在抛物线上.③若以点P 为直角顶点,则使PAO △为等腰直角三角形的点P 的坐标应为(22),或(22)-,,经计算知;此两点也不在抛物线上.综上述在抛物线上只有一点(04)P ,使OAP △为等腰直角三角形[08广东梅州]如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB , AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于 AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L . (3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)解: (1) DC ∥AB ,AD =DC =CB , ∴ ∠CDB =∠CBD =∠DBA , ∠DAB =∠CBA , ∴∠DAB =2∠DBA ,∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2, R t ∆AOD ,OA =1,OD =3,.∴A (-1,0),D (0, 3),C (2, 3).(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A (-1,0),B (3,0), 故可设所求为 y =a (x +1)( x -3) 将点D (0,3)的坐标代入上式得, a =33-. 所求抛物线的解析式为 y =).3)(1(33-+-x x ···································· 7分 其对称轴L 为直线x =1. ········································································· 8分 (3) ∆PDB 为等腰三角形,有以下三种情况:①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,P 1D =P 1B ,∆P 1DB 为等腰三角形; ·········································································· 9分 ②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,DB =DP 2,DB =DP 3, ∆P 2DB , ∆P 3DB 为等腰三角形;③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. ··················· 10分 由于以上各点互不重合,所以在直线L 上,使∆PDB 为等腰三角形的点P 有5个.[08福建南平]如图,平面直角坐标系中有一矩形纸片OABC ,O 为原点,点A C ,分别在x 轴,y 轴上,点B 坐标为(2)m ,(其中0m >),在BC 边上选取适当的点E 和点F ,将OCE △沿OE 翻折,得到OGE △;再将ABF △沿AF 翻折,恰好使点B 与点G 重合,得到AGF △,且90OGA ∠=.(1)求m 的值;(2)求过点O G A ,,的抛物线的解析式和对称轴; (3)在抛物线的对称轴...上是否存在点P ,使得OPG △是 等腰三角形?若不存在,请说明理由;若存在,直接答出.... 所有满足条件的点P 的坐标(不要求写出求解过程). (1)(2)B m ,,由题意可知2AG AB ==2OG OC ==OA m =90OGA ∠=,222OG AG OA ∴+= 222m ∴+=.又0m >,2m ∴=(2)过G 作直线GH x ⊥轴于H ,则1OH =,1HG =,故(11)G ,.又由(1)知(20)A ,, 设过O G A ,,三点的抛物线解析式为2y ax bx c =++ 抛物线过原点,0c ∴=.又抛物线过G A ,两点,1420a b a b +=⎧∴⎨+=⎩解得12a b =-⎧⎨=⎩∴所求抛物线为22y x x =-+ ∴它的对称轴为1x =.(3)答:存在,满足条件的点P 有(10),,(11)-,,(112),,(112)+,.[08湖南株洲]如图(1),在平面直角坐标系中,点A 的坐标为(1,-2),点B 的坐标为(3,-1),二次函数2y x =-的图象为1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A 、B 两点,记抛物线为2l ,如图(2),求抛物线2l 的函数解析式及顶点C 的坐标.(3)设P 为y 轴上一点,且ABC ABP S S ∆∆=,求点P 的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线2l 上是否存在点Q ,使QAB ∆为等腰三角形. 若存在,请判断点Q 共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.(1)222345y x x y x x =-+-=-+-或等 (满足条件即可) ……1分(2)设2l 的解析式为2y x bx c =-++,联立方程组21193b c b c-=-++⎧⎨-=-++⎩, 解得:911,22b c ==-,则2l 的解析式为291122y x x =-+-, ……3分点C 的坐标为(97,416-) ……4分(3)如答图23-1,过点A 、B 、C 三点分别作x 轴的垂线,垂足分别为D 、E 、F ,则2AD =,716CF =,1BE =,2DE =,54DF =,34FE =.得:1516ABC ABED BCFE CFD S S S S ∆=--=梯形梯形梯形A . ……5分延长BA 交y 轴于点G ,直线AB 的解析式为1522y x =-,则点G 的坐标为(0,52-),设点P 的坐y ox 图(1)yo x 图(2) l 1l 2标为(0,h )①当点P 位于点G 的下方时,52PG h =--,连结AP 、BP ,则52ABP BPG APG S S S h ∆∆∆=-=--,又1516ABC ABP S S ∆∆==,得5516h =-,点P 的坐标为(0,5516-). …… 6分②当点P 位于点G 的上方时,52PG h =+,同理2516h =-,点P 的坐标为(0,2516-).综上所述所求点P 的坐标为(0,5516-)或(0,2516-) …… 7分(4) 作图痕迹如答图23-2所示.由图可知,满足条件的点有1Q 、2Q 、3Q 、4Q ,共4个可能的位置. …… 10分答图23-2EF 答图23-1[08浙江温州]如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在, 请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x-∴=, 即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 10C ∴∠===,45QM QP ∴=,1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=.②当PQ RQ =时,312655x -+=,6x ∴=. ③当PR QR =时,则R 为PQ 中垂线上的点,于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BA C CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.A BCD ER P H QA BCD ER P H QM2 1 HA B CDE RPHQ二次函数中的存在性问题(直角三角形)[08辽宁十二市]如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.x。
二次函数中的存在性问题(最新整理)
二次函数中的存在性问题1. 如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.4:解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3x,解得:x M=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).2.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),将点A(﹣2,0),B(﹣3,3),O(0,0),代入可得:,解得:.故函数解析式为:y=x2+2x.(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(﹣2,0)知:DE=AO=2,若D在对称轴直线x=﹣1左侧,则D横坐标为﹣3,代入抛物线解析式得D1(﹣3,3),若D在对称轴直线x=﹣1右侧,则D横坐标为1,代入抛物线解析式得D2(1,3).综上可得点D的坐标为:(﹣3,3)或(1,3).(3)存在.如图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:BO2=18,CO2=2,BC2=20,∵BO2+CO2=BC2,∴△BOC是直角三角形,假设存在点P,使以P,M,A为顶点的三角形与△BOC相似,设P(x,y),由题意知x>0,y>0,且y=x2+2x,①若△AMP∽△BOC,则=,即x+2=3(x2+2x),得:x1=13,x2=﹣2(舍去).当x=13时,y=59,即P(13,59),②若△PMA∽△BOC,则=,即:x2+2x=3(x+2),得:x1=3,x2=﹣2(舍去)当x=3时,y=15,即P(3,15).故符合条件的点P有两个,分别是P(13,59)或(3,15).3. 如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP是平行四边形时,试求动点P的坐标.8、解答:解:(1)∵y=2x+2,∴当x=0时,y=2,∴B(0,2).当y=0时,x=﹣1,∴A(﹣1,0).∵抛物线y=﹣x2+bx+c过点B(0,2),D(3,﹣4),∴解得:,∴y=﹣x2+x+2;设直线BD的解析式为y=kx+b,由题意,得,解得:,∴直线BD的解析式为:y=﹣2x+2;(2)存在.如图1,设M(a,﹣a2+a+2).∵MN垂直于x轴,∴MN=﹣a2+a+2,ON=a.∵y=﹣2x+2,∴y=0时,x=1,∴C(1,0),∴OC=1.∵B(0,2),∴OB=2.当△BOC∽△MON时,∴,∴,解得:a1=1,a2=﹣2M(1,2)或(﹣2,﹣4);如图2,当△BOC∽△ONM时,,∴,∴a=或,∴M(,)或(,).∵M在第一象限,(,);∴符合条件的点M的坐标为(1,2),(3)设P(b,﹣b2+b+2),H(b,﹣2b+2).如图3,∵四边形BOHP是平行四边形,∴BO=PH=2.∵PH=﹣b2+b+2+2b﹣2=﹣b2+3b.∴2=﹣b2+3b∴b1=1,b2=2.当b=1时,P(1,2),当b=2时,P(2,0)∴P点的坐标为(1,2)或(2,0).4.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;分类讨论.分析:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形(2)和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.解答:解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),5.如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.10、解答:解:(1)如图1,∵A(﹣3,0),C(0,4),∴OA=3,OC=4.∵∠AOC=90°,∴AC=5.∵BC∥AO,AB平分∠CAO,∴∠CBA=∠BAO=∠CAB.∴BC=AC.∴BC=5.∵BC∥AO,BC=5,OC=4,∴点B的坐标为(5,4).∵A(﹣3.0)∴解得:∴抛物线的解析式为y=﹣x2+x+4.(2)如图2,设直线AB的解析式为y=mx+n,∵A(﹣3.0)、B(5,4)在直线AB上,∴解得:∴直线AB的解析式为y=x+.设点P的横坐标为t(﹣3≤t≤5),则点Q的横坐标也为t.∴y P=t+,y Q=﹣t2+t+4.∴PQ=y Q﹣y P=﹣t2+t+4﹣(t+)=﹣t2+t+4﹣t﹣=﹣t2++=﹣(t2﹣2t﹣15)=﹣[(t﹣1)2﹣16]=﹣(t﹣1)2+.∵﹣<0,﹣3≤1≤5,∴当t=1时,PQ取到最大值,最大值为.∴线段PQ的最大值为.(3)①当∠BAM=90°时,如图3所示.抛物线的对称轴为x=﹣=﹣=.∴x H=x G=x M=.∴y G=×+=.∴GH=.∵∠GHA=∠GAM=90°,∴∠MAH=90°﹣∠GAH=∠AGM.∵∠AHG=∠MHA=90°,∠MAH=∠AGM,∴△AHG∽△MHA.∴.∴=.解得:MH=11.∴点M的坐标为(,﹣11).②当∠ABM=90°时,如图4所示.∵∠BDG=90°,BD=5﹣=,DG=4﹣=,∴BG===.同理:AG=.∵∠AGH=∠MGB,∠AHG=∠MBG=90°,∴△AGH∽△MGB.∴=.∴=.解得:MG=.∴MH=MG+GH=+=9.∴点M的坐标为(,9).综上所述:符合要求的点M的坐标为(,9)和(,﹣11).6.(2009•崇左)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.21教育网(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y 轴的距离,即B的坐标;21(2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式;(3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案.解答:解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)练习:1. 如图,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),经过B 点的直线交抛物线于点D (-2,-3).(1)求抛物线的解析式和直线BD 解析式;(2)过x 轴上点E (a ,0)(E 点在B 点的右侧)作直线EF ∥BD ,交抛物线于点F ,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.2.已知抛物线经过A (2,0). 设顶点为点P ,与x 轴的另一交点为点B . 36232++=bx x y (1)求b 的值,求出点P 、点B 的坐标;(2)如图,在直线 y=x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,3求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.4. 如图,已知抛物线y =x2+bx +3与x 轴交于点B (3,0),与y 轴交于点A ,P 是抛物线上的一个动点,点P 的横坐标为m (m >3),过点P 作y 轴的平行线PM ,交直线AB 于点M .(1)求抛物线的解析式;(2)若以AB 为直径的⊙N 与直线PM 相切,求此时点M 的坐标;(3)在点P 的运动过程中,△APM 能否为等腰三角形?若能,求出点M 的坐标;若不能,请说明理由.3. 已知:如图一次函数y =x +1的图象与x 轴交于点A ,与y 轴交于点B ;21二次函数y =x 2+bx +c 的图象与一次函数y =x +1的图象交于B 、C 两点,2121与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形? 若存在,求出所有的点P,若不存在,请说明理由.4. 如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标.。
专题训练(三) 二次函数中的存在性问题
专题训练(三)二次函数中的存在性问题▶类型一构造特殊三角形1.如图1,抛物线y=-x2+2x+3与y轴交于点C,点D 的坐标为(0,1),P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.图12.如图2,直线y=-√3x+n交x轴于点A,交y轴于点C(0,3√3),抛物线y=23x2+bx+c经过点A,交y轴于点B(0,-2).P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连结PB,设点P的横坐标为m.(1)求抛物线的表达式;(2)当△BDP为等腰直角三角形时,求线段PD的长.图2▶类型二构造特殊四边形3.如图3,抛物线y=-x2+2x+3与y轴交于点C,A为x轴上方的抛物线上任意一点,过点A作x轴的垂线交x轴于点B,设点A的横坐标为m,当四边形ABOC为平行四边形时,m的值为.图34.如图4,在平面直角坐标系中,抛物线y=ax2-43x+2(a≠0)过点B(1,0).(1)求抛物线的函数表达式;(2)求抛物线与y轴的交点C的坐标及与x轴的另一交点A的坐标;(3)以AC为边在第二象限画正方形ACPQ,求P,Q 两点的坐标.图45.如图5,在平面直角坐标系中,已知抛物线L:y=ax2+bx+3(a≠0)与x轴交于A(-3,0)和B(1,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的函数表达式和顶点D的坐标;(2)将抛物线L沿B,D所在的直线平移,平移后点B 的对应点为点B',点C的对应点为点C',点D的对应点为点D',当四边形BB'C'C是菱形时,求此时平移后的抛物线的表达式.图5▶类型三构造相等的角或特殊度数的角6.[2020·绍兴柯桥区期末]如图3-ZT-6,直线y=-x+3与x轴、y轴分别交于B,C两点,抛物线y=-x2+bx+c 经过B,C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的函数表达式.(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的点E的坐标.(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.图6专题训练(三)教师详解详析1.(1+√2,2)或(1-√2,2)[解析] ∵△PCD 是以CD 为底的等腰三角形, ∴点P 在线段CD 的垂直平分线上.如图,作CD 的垂直平分线l 交抛物线于点P 1,P 2,交y 轴于点E ,则E 为线段CD 的中点.∵抛物线y=-x 2+2x+3与y 轴交于点C , ∴C (0,3).而D (0,1), ∴点E 的坐标为(0,2), ∴点P 的纵坐标为2.在y=-x 2+2x+3中,令y=2,可得-x 2+2x+3=2,解得x=1±√2,∴点P 的坐标为(1+√2,2)或(1-√2,2).2.解:(1)∵直线y=-√3x+n 交y 轴于点C (0,3√3), ∴n=3√3,∴y=-√3x+3√3. 令y=0,得x=3, ∴A (3,0).∵抛物线y=23x 2+bx+c 经过点A ,交y 轴于点B (0,-2).∴c=-2,6+3b-2=0, ∴b=-43,∴抛物线的表达式为y=23x 2-43x-2.(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴Pm ,23m 2-43m-2. ∵PD ⊥x 轴,BD ⊥PD , ∴点D 的坐标为(m ,-2), ∴BD=|m|,PD=23m 2-43m-2+2.当△BDP 为等腰直角三角形时,PD=BD , ∴|m|=23m 2-43m , m 2=23m 2-43m 2,解得m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12.3.2 [解析] 当x=0时,y=3, ∴点C 的坐标为(0,3),则OC=3.∵点A 的横坐标为m ,且点A 在抛物线上, ∴点A 的坐标为(m ,-m 2+2m+3).当四边形ABOC 是平行四边形时,AB=3,当AB=3时,-m 2+2m+3=3,解得m 1=0(舍去),m 2=2,∴m=2. 4.解:(1)将B (1,0)代入y=ax 2-43x+2,得a-43+2=0,∴a=-23,∴抛物线的函数表达式为y=-23x 2-43x+2.(2)当y=0时,-23x 2-43x+2=0,解得x 1=1,x 2=-3. 当x=0时,y=2,∴抛物线与y 轴的交点C 的坐标为(0,2),与x 轴的另一交点A 的坐标为(-3,0).(3)如图,过点P ,Q 分别作PH ⊥y 轴,QG ⊥x 轴,垂足分别为H ,G.∵四边形ACPQ 是正方形,∴易证△AOC ≌△QGA ≌△CHP , ∴AO=QG=CH=3,OC=GA=HP=2, ∴P (-2,5),Q (-5,3).5.解:(1)把A (-3,0)和B (1,0)代入抛物线L :y=ax 2+bx+3,得{9a -3b +3=0,a +b +3=0,解得{a =-1,b =-2,即抛物线L :y=-x 2-2x+3,化为顶点式为y=-(x+1)2+4,故顶点D 的坐标为(-1,4). (2)∵B (1,0),D (-1,4),由待定系数法可得直线BD 的表达式为y=-2x+2. 设平移后点B 的对应点B'的坐标为(x ,-2x+2), 则BB'2=(x-1)2+(-2x+2-0)2=5(x-1)2.∵抛物线L :y=-x 2-2x+3,∴点C 的坐标为(0,3),∴BC 2=12+32=10, ∴5(x-1)2=10,解得x 1=√2+1,x 2=-√2+1.∴点B'的坐标为(√2+1,-2√2)或(-√2+1,2√2).当点B'的坐标为(√2+1,-2√2),即点B 向右平移√2个单位,再向下平移2√2个单位,可得点B',∴抛物线L :y=-x 2-2x+3=-(x+1)2+4向右平移√2个单位,再向下平移2√2个单位,可得y=-(x+1-√2)2+4-2√2.当点B'的坐标为(-√2+1,2√2),即点B 向左平移√2个单位,再向上平移2√2个单位,可得点B',∴抛物线L :y=-x 2-2x+3=-(x+1)2+4向左平移√2个单位,再向上平移2√2个单位,可得y=-(x+1+√2)2+4+2√2.综上所述,当四边形BB'C'C 是菱形时,此时平移后的抛物线的表达式为y=-(x+1-√2)2+4-2√2或y=-(x+1+√2)2+4+2√2.6.解:(1)直线y=-x+3与x 轴、y 轴分别交于B ,C 两点,则点B ,C 的坐标分别为(3,0),(0,3). 将点B ,C 的坐标代入y=-x 2+bx+c ,得 {-9+3b +c =0,c =3,解得{b =2,c =3,故抛物线的函数表达式为y=-x 2+2x+3.(2)如图①,作点C 关于x 轴的对称点C',连结C'D 交x 轴于点E ,此时EC+ED 的值最小,则△EDC 的周长最小.抛物线的顶点D 的坐标为(1,4),点C'(0,-3).用待定系数法可求得直线C'D 的表达式为y=7x-3. 当y=0时,x=37,故点E 的坐标为37,0.(3)存在.①当点P 在x 轴上方时,如图②, ∵OB=OC=3,∠BOC=90°, ∴∠OCB=45°=∠APB. 令y=0,则-x 2+2x+3=0, 解得x 1=-1,x 2=3, ∴A (-1,0),∴AB=4.过点B 作BH ⊥AP 于点H ,设PH=BH=a , 则PB=P A=√2a.由勾股定理得AB 2=AH 2+BH 2, 即16=(√2a-a )2+a 2, 解得a 2=8+4√2,则PB 2=2a 2=16+8√2. ②当点P 在x 轴下方时, 同理可得PB 2=16+8√2.综上可得,PB 2的值为16+8√2.。
中考 压轴专题02 二次函数的存在性问题 - 解析
压轴专题02:二次函数与存在性问题方法点拨:二次函数与动点存在性问题,平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2) 距离为|P 1P 2|=221221)()(y y x x -+- 中点坐标:2,22121y y y x x x +=+=对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2l 1⊥l 2⇔k 1·k 2=-1,特殊情况:当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 把点用坐标表示出来,根据以上公式结合几何性质,代数化处理,构造方程解之即可。
【考点1】二次函数与相似三角形问题【例1】如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①; (2)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =,∴CH 2tan 2ACB ∠=, 则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±3,23)Q -或(3,3; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠,则直线OQ 的表达式为:3 y x =-…③,联立①③并解得:1132x -±=,故点1133313Q -+-⎝⎭或1133313--+⎝⎭; 综上,点3,23)Q -或(3,3或113113-+-⎝⎭或1133313--+⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似等,其中(2),要注意分类求解,避免遗漏.【变式1-1】如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和点C (0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE 为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).(1)求抛物线的解析式.(2)若△AOC与△FEB相似,求a的值.(3)当PH=2时,求点P的坐标.【详解】(1)点C(0,4),则c=4,二次函数表达式为:y=﹣x2+bx+4,将点A的坐标代入上式得:0=﹣1﹣b+4,解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4;(2)tan∠ACO=AOCO=14,△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FEB=14或4,∵四边形OEFG为正方形,则FE=OE=a,EB=4﹣a,则144aa=-或44aa=-,解得:a=165或45;(3)令y=﹣x2+3x+4=0,解得:x=4或﹣1,故点B(4,0);分别延长CF、HP交于点N,∵∠PFN+∠BFN=90°,∠FPN+∠PFN=90°,∴∠FPN=∠NFB,∵GN∥x轴,∴∠FPN=∠NFB=∠FBE,∵∠PNF=∠BEF=90°,FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4﹣a,∴点P(2a,4),点H(2a,﹣4a2+6a+4),∵PH=2,即:﹣4a2+6a+4﹣4=|2|,解得:a=1或12317+317-舍去),故:点P的坐标为(2,4)或(1,4)或3+17,4).【考点2】二次函数与直角三角形问题【例2】如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标; (3)点5(,0)02N n n ⎛⎫<< ⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个? 【分析】(1)利用一次函数求出A 和B 的坐标,结合点C 坐标,求出二次函数表达式;(2)当点P 在x 轴上方时,点P 与点C 重合,当点P 在x 轴下方时,AP 与y 轴交于点Q ,求出AQ 表达式,联立二次函数,可得交点坐标,即为点P ; (3)①过点C 作CD ⊥x 轴于点D ,证明△MNO ∽△NCD ,可得MO NOND CD=,整理可得结果; ②作以MC 为直径的圆E ,根据圆E 与线段OD 的交点个数来判断M 的位置,即可得到m 的取值范围. 【详解】解:(1)∵直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,令x=0,则y=2,令y=0,则x=4,∴A (4,0),B (0,2),∵抛物线223y x bx c =-++经过B (0,2),53,24C ⎛⎫⎪⎝⎭,∴2322554342c b c =⎧⎪⎨=-⨯++⎪⎩,解得:762b c ⎧=⎪⎨⎪=⎩,∴抛物线的表达式为:227236y x x =-++; (2)当点P 在x 轴上方时,点P 与点C 重合,满足PAO BAO ∠=∠, ∵53,24C ⎛⎫⎪⎝⎭,∴53,24P ⎛⎫ ⎪⎝⎭, 当点P 在x 轴下方时,如图,AP 与y 轴交于点Q , ∵PAO BAO ∠=∠,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,204q p q -=⎧⎨=+⎩,解得:122p q ⎧=⎪⎨⎪=-⎩,∴直线AQ 的表达式为:122y x =-,联立得:212227236y x y x x ⎧=-⎪⎪⎨⎪=-++⎪⎩,解得:x=3或-2,∴点P 的坐标为(3,12-)或(-2,-3), 综上,当PAO BAO ∠=∠时,点P 的坐标为:53,24⎛⎫⎪⎝⎭或(3,12-)或(-2,-3);(3)①如图,∠MNC=90°,过点C 作CD ⊥x 轴于点D ,∴∠MNO+∠CND=90°, ∵∠OMN+∠MNO=90°,∴∠CND=∠OMN,又∠MON=∠CDN=90°,∴△MNO ∽△NCD ,∴MO NO ND CD =,即5324m nn =-,整理得:241033m n n =-+;②如图,∵∠MNC=90°,以MC为直径画圆E,∵5 (,0)02N n n⎛⎫<<⎪⎝⎭,∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),∵点M在y轴正半轴,当圆E与线段OD相切时,有NE=12MC,即NE2=14MC2,∵M(0,m),53,24C⎛⎫⎪⎝⎭,∴E(54,382m+),∴2382m⎛⎫+⎪⎝⎭=22153424m⎡⎤⎛⎫⎛⎫+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得:m=2512,当点M与点O重合时,如图,此时圆E与线段OD(不含O和D)有一个交点,∴当0<m<2512时,圆E与线段OD有两个交点,故m的取值范围是:0<m<25 12.【点睛】本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.【变式2-1】如图,抛物线24y ax bx=+-经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分CAO∠;(3)抛物线的对称轴上是否存在点M,使得ABM∆是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.【分析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b 的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=12,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【详解】解:(1)将A(-3,0),B(5,-4)两点的坐标分别代入,得9340,25544a ba b--=⎧⎨+-=-⎩,解得1,65,6ab⎧=⎪⎪⎨⎪=-⎪⎩故抛物线的表达式为y =215466y x x =--. (2)证明:∵AO=3,OC=4,∴AC=2234+=5.取D (2,0),则AD=AC=5.由两点间的距离公式可知BD=22(52)(40)-+--=5. ∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC . 在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC , ∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ; (3)存在.如图所示:抛物线的对称轴交x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112. ∵A (-3,0),B (5,-4),∴tan ∠EAB=12. ∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11). 同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9). ∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键【考点3】二次函数与等腰三角形问题【例3】如图1,抛物线y =﹣x 2+bx +c 过点A (﹣1,0),点B (3,0)与y 轴交于点C .在x 轴上有一动点E (m ,0)(0<m <3),过点E 作直线l ⊥x 轴,交抛物线于点M . (1)求抛物线的解析式及C 点坐标;(2)当m =1时,D 是直线l 上的点且在第一象限内,若△ACD 是以∠DCA 为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设△AEM 的面积为S 1,△MON 的面积为S 2,若S 1=2S 2,求m 的值.【分析】(1)用待定系数法即可求解;(2)若△ACD 是以∠DCA 为底角的等腰三角形,则可以分CD =AD 或AC =AD 两种情况,分别求解即可; (3)S 1=12AE ×y M ,2S 2=ON •x M ,即可求解. 【详解】解:(1)将点A 、B 的坐标代入抛物线表达式得-1-b+c=0-9+3b+c=0⎧⎨⎩,解得b=2c=3⎧⎨⎩,故抛物线的表达式为y =﹣x 2+2x +3,当x =0时,y =3,故点C (0,3); (2)当m =1时,点E (1,0),设点D 的坐标为(1,a ), 由点A 、C 、D 的坐标得,AC ()()220+1+3-0=10,同理可得:ADCD①当CD=AD,解得a=1;②当AC=AD时,同理可得a=(舍去负值);故点D的坐标为(1,1)或(1);(3)∵E(m,0),则设点M(m,﹣m2+2m+3),设直线BM的表达式为y=sx+t,则2-m+2m+3=sm+t0=3s+t⎧⎨⎩,解得:1s=-m+13t=m+1⎧⎪⎪⎨⎪⎪⎩,故直线BM的表达式为y=﹣1m+1x+3m+1,当x=0时,y=3m+1,故点N(0,3m+1),则ON=3m+1;S1=12⨯AE×y M=12×(m+1)×(﹣m2+2m+3),2S2=ON•x M=3m+1×m=S1=12×(m+1)×(﹣m2+2m+3),解得m=﹣舍去负值),经检验m2是方程的根,故m2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.【变式3-1】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【详解】解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC10,设点E(0,m),则AE21m+CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE1021m+∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE10=|m+3|,∴m=﹣310,∴E(0,﹣10)或(0,﹣310),③当AE=CE21m+|m+3|,∴m=﹣43,∴E(0,﹣43),即满足条件的点E的坐标为(0,3)、(0,﹣10)、(0,﹣310)、(0,﹣43 );(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+22或t=1﹣22,∴Q(1+22,4)或(1﹣22,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+22)﹣2=﹣1+22或(1﹣22)﹣2=﹣1﹣22,即P(﹣1+22,0)、Q(1+22,4)或P(﹣1﹣22,0)、Q(1﹣22,4).【考点4】二次函数与平行四边形问题【例4】如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B30),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为433,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为y 3,求出F 点的坐标,由平行四边形的性质得出﹣3a+1=163a ﹣8a+1﹣(﹣13),求出a 的值,则可得出答案; (2)设P (n ,﹣n 23n+1),作PP'⊥x 轴交AC 于点P',则P'(n 3),得出PP'=﹣n 2733,由二次函数的性质可得出答案; (3)联立直线AC 和抛物线解析式求出C 73343),设Q 3,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可. 【详解】解:(1)设抛物线的解析式为y =ax 2+bx+c (a≠0),∵A (0,1),B 30),设直线AB 的解析式为y =kx+m ,∴3k m 0m 1+==⎪⎩,解得31k m ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为y 3, ∵点F 43,∴F 343+1=﹣13,∴F 点的坐标为433,﹣13), 又∵点A 在抛物线上,∴c =1,对称轴为:x =﹣32ba=,∴b =﹣3a ,∴解析式化为:y =ax 2﹣23ax+1,∵四边形DBFE 为平行四边形.∴BD =EF ,∴﹣3a+1=163a ﹣8a+1﹣(﹣13),解得a =﹣1, ∴抛物线的解析式为y =﹣x 2+23x+1;(2)设P (n ,﹣n 2+23n+1),作PP'⊥x 轴交AC 于点P',则P'(n 3),∴PP'=﹣n 2733,S △ABP =12OB•PP'2372+n 2374936324n ⎝, ∴当n 736△ABP 49324,此时P 7364712). (3)∵231331y x y x x ⎧=+⎪⎨⎪=-++⎩,∴x =0或x 733C 73343),设Q 3m ), ①当AQ 为对角线时,∴R (473,33m +), ∵R 在抛物线y =2(3)x -+4上,∴m+73=﹣24333⎛ ⎝+4,解得m =﹣443, ∴Q 443,3⎫-⎪⎭,R 4373,33⎛⎫- ⎪⎝⎭;②当AR 为对角线时,∴R 1073,33m -), ∵R 在抛物线y =2(3)x -+4上,∴m ﹣27103333=-+4,解得m =﹣10,∴Q 310),R 10373,33-).综上所述,Q 443,3⎛⎫- ⎪⎝⎭,R 4373,33⎛⎫-- ⎪⎝⎭;或Q (3,﹣10),R (10373,33-). 【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.【变式4-1】如图,二次函数2y x bx c =++的图象交x 轴于点()30A -,,()10B ,,交y 轴于点C .点(),0P m 是x 轴上的一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 【分析】(1)把(3,0),(1,0)A B -代入2y x bx c =++中求出b ,c 的值即可; (2)①由点(),0P m 得()2(,3),,23M m m N m m m --+-,从而得()2(3)23MN m m m =---+-,整理,化为顶点式即可得到结论;②分MN=MC 和2MC MN =两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把(3,0),(1,0)A B -代入2y x bx c =++中,得093,01.b c x c =-+⎧⎨=++⎩ 解得2,3.b c =⎧⎨=-⎩∴223y x x =+-.(2)设直线AC 的表达式为y kx b =+,把(3,0),(0,3)A C --代入y kx b =+.得,03,3.k b b =-+⎧⎨-=⎩解这个方程组,得1,3.k b =-⎧⎨=-⎩∴3y x =--.∵点(),0P m 是x 轴上的一动点,且PM x ⊥轴.∴()2(,3),,23M m m N m m m --+-.∴()2(3)23MN m m m =---+-23m m =--23924m ⎛⎫=-++ ⎪⎝⎭.∵10a =-<,∴此函数有最大值. 又∵点P 在线段OA 上运动,且3302-<-<∴当32m =-时,MN 有最大值94. ②∵点(),0P m 是x 轴上的一动点,且PM x ⊥轴.∴()2(,3),,23M m m N m m m --+-.∴()2(3)23MN m m m =---+-23m m =--(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN=MC ,如图,∵C (0,-3)∴222(0)(33)2m m m -+--+=∴223=2m m m --整理得,432670m m m ++= ∵20m ≠,∴2670m m ++=,解得,132m =-,232m =-32m =-+CQ=MN=322, ∴OQ=-3-(322)=321-∴Q(0,321-);当m=32--时,CQ=MN=-322-,∴OQ=-3-(-322-)=321-∴Q(0,321-); (ii)若2MC MN =,如图,则有223=22m m m --整理得,432650m m m ++= ∵20m ≠,∴2650m m ++=,解得,11m =-,25m =- 当m=-1时,MN=CQ=2,∴Q (0,-1), 当m=-5时,MN=-10<0(不符合实际,舍去)综上所述,点Q 的坐标为123(0,321),(0,1),(0,321)Q Q Q --- 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.。
二次函数存在性问题(菱形、平行四边形、矩形)
今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。
中考数学二次函数存在性问题及参考答案
中考数学二次函数存在性问题及参照答案一、二次函数中相像三角形的存在性问题1. 如图,把抛物线y x2向左平移1个单位,再向下平移 4 个单位,获得抛物线y ( x h) 2k .所得抛物线与x 轴交于A,B两点(点A在点B的左侧),与y轴交于点C,极点为D.(1)写出h、k的值;(2)判断△ ACD的形状,并说明原因;(3)在线段 AC上能否存在点 M,使△ AOM∽△ ABC若存在,求出点 M的坐标;若不存在,说明原因 .2.如图,已知抛物线经过 A(﹣ 2,0),B(﹣ 3,3)及原点 O,极点为C.( 1)求抛物线的分析式;( 2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、 O、 D、 E 为极点的四边形是平行四边形,求点 D 的坐标;( 3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,能否存在点 P,使得以 P、M、A 为极点的三角形△ BOC相像若存在,求出点P 的坐标;若不存在,请说明原因.二、二次函数中面积的存在性问题3. 如图,抛物线y ax2bx a > 0 与双曲线 ykx订交于点 A,B.已知点 B 的坐标为(- 2,- 2),点A 在第一象限内,且tan ∠ AOX= 4.过点 A 作直线 AC∥ x 轴,交抛物线于另一点C.(1)求双曲线和抛物线的分析式;(2)计算△ ABC的面积;(3)在抛物线上能否存在点 D,使△ ABD的面积等于△ ABC的面积.若存在,请你写出点 D的坐标;若不存在,请你说明原因.yA DO xB C4.如图,抛物线 y=ax2+c(a> 0)经过梯形 ABCD的四个极点,梯形的底 AD在 x 轴上,此中 A(- 2,0 ), B(- 1, -3).( 1)求抛物线的分析式;(3 分)()点 M为 y 轴上随意一点,当点 M到 A、B两点的距离之和为最小时,求此时点M的坐标;(2分)2( 3)在第( 2)问的结论下,抛物线上的点P 使=4建立,求点P的坐标.( 4 分)S△PAD S△ABM(4)在抛物线的 BD段上能否存在点 Q使三角形 BDQ的面积最大,如有,求出点 Q的坐标,若没有,请说明原因。
专题22.9 二次函数中的存在性问题-重难点题型(举一反三)(人教版)(解析版)
专题22.9 二次函数中的存在性问题-重难点题型【人教版】【题型1 二次函数中直角三角形存在性问题】【例1】(2021•罗湖区校级模拟)如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为(﹣1,0),点B的坐标为(3,0);(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.【解题思路】(1)根据抛物线解析式令y=0求出A,B的坐标即可;(2)先求得点C的坐标,再用待定系数法求得直线BC的解析式;由PE=2ED可得PD=3ED,设P(m,﹣m2+2m+3),则E(m,﹣m+3),用含m的式子表示出PD和DE,根据PD=3ED得出关于m的方程,解得m的值,则可得PE的长,然后按照三角形的面积公式计算即可;(3)分两种情况:①点C为直角顶点;②点B为直角顶点.过点C作直线P1C⊥BC,交抛物线于点P1,连接P 1B ,交x 轴于点D ;过点B 作直线BP 2⊥BC ,交抛物线于点P 2,交y 轴于点E ,连接P 2C ,分别求得直线P 1C 和直线BP 2的解析式,将它们分别与抛物线的解析式联立,分别解方程组,即可求得点P 的坐标.【解答过程】解:(1)令抛物线y =0,则﹣x 2+2x +3=0, 解得:x 1=﹣1,x 2=3, ∴A (﹣1,0),B (3,0); 故答案为:(﹣1,0),(3,0); (2)在y =﹣x 2+2x +3中, 当x =0时,y =3, ∴C (0,3).设直线BC 的解析式为y =kx +b , 将B (3,0),C (0,3)代入,得: {b =33k +b =0, 解得{k =−1b =3,∴直线BC 的解析式为y =﹣x +3, 若PE =2ED ,则PD =3ED , 设P (m ,﹣m 2+2m +3), ∵PD ⊥x 轴于点D , ∴E (m ,﹣m +3),∴﹣m 2+2m +3=3(﹣m +3), ∴m 2﹣5m +6=0,解得m 1=2,m 2=3(舍), ∴m =2,此时P (2,3),E (2,1), ∴PE =2,∴S △PBC =12PE •OB =12×2×3=3. ∴△PBC 的面积为3;(3)∵△PBC 是以BC 为直角边的直角三角形,∴有两种情况:①点C 为直角顶点,如图,过点C 作直线P 1C ⊥BC ,交抛物线于点P 1,连接P 1B ,交x 轴于点D ,∵B (3,0),C (0,3), ∴OB =OC =3,∴∠BCO =∠OBC =45°. ∵P 1C ⊥BC , ∴∠DCB =90°, ∴∠DCO =45°, 又∵∠DOC =90°, ∴∠ODC =45°=∠DCO , ∴OD =OC =3, ∴D (﹣3,0),∴直线P 1C 的解析式为y =x +3, 联立{y =−x 2+2x +3y =x +3,解得{x =1y =4或{x =0y =3(舍);∴P 1(1,4); ②点B 为直角顶点,如图,过点B 作直线BP 2⊥BC ,交抛物线于点P 2,交y 轴于点E ,连接P 2C ,∵P 1C ⊥BC ,BP 2⊥BC , ∴P 1C ∥BP 2,∴设直线BP 2的解析式为y =x +b , 将B (3,0)代入,得0=3+b , ∴b =﹣3,∴直线BP 2的解析式为y =x ﹣3, 联立{y =−x 2+2x +3y =x −3,解得{x =−2y =−5或{x =3y =0(舍),∴P 2(﹣2,﹣5).综上,点P 的坐标为(1,4)或(﹣2,﹣5).【变式1-1】(2021春•望城区校级月考)如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C (0,3),连接AC ,点P 为第二象限抛物线上的动点.(1)求a 、b 、c 的值;(2)连接P A 、PC 、AC ,求△P AC 面积的最大值;(3)在抛物线的对称轴上是否存在一点Q ,使得△QAC 为直角三角形,若存在,请求出所有符合条件的点Q 的坐标;若不存在,请说明理由.【解题思路】(1)根据抛物线与x 轴的交点坐标,设成抛物线解析式,再将点C 坐标代入求解,即可得出结论;(2)先求出直线AC 的解析式,设出点P 坐标,表示出点Q 坐标,再用三角形的面积公式,得出函数关系式,即可得出结论;(3)运用配方法求出抛物线对称轴,设点Q (﹣1,n ),根据A (﹣3,0),C (0,3),可运用勾股定理分别求出:AC 2,CQ 2,AQ 2,由于△QAC 为直角三角形,可以分三种情况:∠CAQ =90°或∠ACQ =90°或∠AQC =90°,对每种情况运用勾股定理列方程求解即可.【解答过程】解:(1)∵抛物线y =ax 2+bx +c 经过A (﹣3,0),B (1,0),C (0,3)三点 ∴{9a −3b +c =0a +b +c =0c =3, 解得:{a =−1b =−2c =3∴a =﹣1,b =﹣2,c =3; (2)如图1,过点P 作PE ∥y 轴,交AC 于E , ∵A (﹣3,0),C (0,3), ∴直线AC 的解析式为y =x +3,由(1)知,抛物线的解析式为y =﹣x 2﹣2x +3, 设点P (m ,﹣m 2﹣2m +3),则E (m ,m +3),∴S △ACP =12PE •(x C ﹣x A )=12×[﹣m 2﹣2m +3﹣(m +3)]×(0+3)=−32(m 2﹣3m )=−32(m +32)2+278, ∴当m =−32时,S △P AC 最大=278; (3)存在,点Q 的坐标为:(﹣1,﹣2)或(﹣1,4)或(﹣1,3+√172)或(﹣1,3−√172).如图2,∵A (﹣3,0),C (0,3), ∴OA =OC =3,∴AC 2=OA 2+OC 2=32+32=18, ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线对称轴为x =﹣1, 设点Q (﹣1,n ),则AQ 2=[﹣1﹣(﹣3)]2+n 2=n 2+4,CQ 2=[0﹣(﹣1)]2+(n ﹣3)2=n 2﹣6n +10, ∵△QAC 为直角三角形,∴∠CAQ =90°或∠ACQ =90°或∠AQC =90°,①当∠CAQ =90°时,根据勾股定理,得:AQ 2+AC 2=CQ 2, ∴n 2+4+18=n 2﹣6n +10,解得:n =﹣2, ∴Q 1(﹣1,﹣2);②当∠ACQ =90°时,根据勾股定理,得:CQ 2+AC 2=AQ 2, ∴n 2﹣6n +10+18=n 2+4, 解得:n =4, ∴Q 2(﹣1,4);③当∠AQC =90°时,根据勾股定理,得:CQ 2+AQ 2=AC 2, ∴n 2﹣6n +10+n 2+4=18, 解得:n 1=3+√172,n 2=3−√172, ∴Q 3(﹣1,3+√172),Q 4(﹣1,3−√172);综上所述,点Q 的坐标为:(﹣1,﹣2)或(﹣1,4)或(﹣1,3+√172)或(﹣1,3−√172).【变式1-2】(2021•长沙模拟)如图,抛物线y =﹣x 2+bx +c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点.点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D ,若OD =m . (1)求二次函数解析式;(2)设△PCD 的面积为S ,试判断S 有最大值或最小值?若有,求出其最值,若没有,请说明理由; (3)在MB 上是否存在点P ,使△PCD 为直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.【解题思路】(1)将B (3,0)、C (0,3)代入y =﹣x 2+bx +c ,列方程组求出b 、c 的值即可; (2)先求BM 所在直线的解析式,用含m 的代数式表示点P 的坐标及△PCD 的面积,求出S 关于m 的函数关系式,用函数的性质判断并求出S 的最值;(3)存在符合条件的点P ,分三种情况根据点P 的位置或勾股定理列方程求出m 的值及点P 的坐标. 【解答过程】解:(1)把B (3,0)、C (0,3)代入y =﹣x 2+bx +c , 得{−9+3b +c =0c =3,解得{b =2c =3, ∴二次函数的解析式为y =﹣x 2+2x +3. (2)S 有最大值.如图1,设直线BM 的解析式为y =kx +a , ∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴该抛物的顶点坐标为M (1,4),把M (1,4)、B (3,0)代入y =kx +a ,得{k +a =43k +a =0,解得{k =−2a =6,∴y =﹣2x +6, ∵D (m ,0), ∴P (m ,﹣2m +6); 由S △PCD =12PD •OD ,得S =12m (﹣2m +6)=﹣m 2+3m ;∵当点P 与点B 重合时,不存在以P 、C 、D 为顶点的三角形,∴1≤m <3, ∴S 不存在最小值;∵S =﹣m 2+3m =﹣(m −32)2+94, ∴当m =32时,S 最大=94, ∴S 的最大值为94.(3)存在.若∠DPC =90°,如图2,则PC ∥x 轴, ∴P (m ,3),且在直线y =﹣2x +6上, ∴﹣2m +6=3, 解得m =32, ∴P (32,3);若∠PCD =90°,如图3,则PC 2+CD 2=PD 2, ∴m 2+(﹣2m +6﹣3)2+m 2+32=(﹣2m +6)2, 整理得m 2+6m ﹣9=0,解得m 1=(3√2−3,m 2=−3√2−3(不符合题意,舍去); ∴P (3√2−3,12−6√2); 若∠PDC =90°,则CD 2+PD 2=PC 2, ∴m 2+32+(﹣2m +6)2=m 2+(﹣2m +6﹣3)2,整理得12m =36,解得m =3,此时不存在以P ,C ,D 为顶点的三角形, ∴m =3舍去.综上所述,点P 的坐标为(32,3)或(3√2−3,12−6√2).【变式1-3】(2021•长沙模拟)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,当△ABP 的面积为6时,求出点P 的坐标;(4)若点M 在直线BH 上运动,点N 在x 轴上运动,是否存在以点C 、M 、N 为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M 的坐标,若不存在,请说明理由. 【解题思路】(1)利用待定系数法解决问题即可;(2)求出抛物线的对称轴,再根据对称性求出点C 的坐标即可解决问题;(3)设点P (m ,﹣m 2+4m ),根据S △ABP =S △ABH +S 梯形AHDP ﹣S △PBD ,建立方程求解即可; (4)分别以点C 、M 、N 为直角顶点分三类进行讨论,利用全等三角形和勾股定理ON 的长即可. 【解答过程】解:(1)∵抛物线y =ax 2+bx 过A (4,0),B (1,3)两点, ∴{16a +4b =0a +b =3, 解得:{a =−1b =4,∴抛物线的解析式为y =﹣x 2+4x . (2)如图1,∵y =﹣x 2+4x =﹣(x ﹣2)2+4, ∴对称轴为直线x =2,∵B ,C 关于对称轴对称,B (1,3), ∴C (3,3), ∴BC =2,∴S△ABC=12×2×3=3.(3)如图1,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S梯形AHDP﹣S△PBD,∴6=12×3×3+12×(3+m﹣1)×(m2﹣4m)−12×(m﹣1)×(3+m2﹣4m),解得:m1=0,m2=5,∵点P是抛物线上一动点,且位于第四象限,∴m>0,∴m=5,﹣m2+4m=﹣52+4×5=﹣5,∴P(5,﹣5);(4)点M在直线BH上,点N在x轴上,△CMN为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,∵∠CBM=∠MHN=90°,∴∠CMB+∠NMH=∠NMH+∠MNH=90°,∴∠CMB=∠MNH,∴△CBM≌△MHN(AAS),∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2);②以点M为直角顶点且M在x轴下方时,如图3,过点C作CD∥y轴,过点N作NE∥y轴,过点M作DE∥x轴交CD于点D,交NE于E,∵∠CMN=∠CDM=∠MEN=90°,CM=MN,∴∠CMD+∠NME=∠NME+∠MNE=90°,∴∠CMD=∠MNE,∴△NEM≌△MDC(AAS),∴NE=MD=BC=2,EM=CD=5,∵∠ENH=∠NEM=∠NHM=90°,∴四边形EMHN是矩形,∴HM=NE=2,∴M(1,﹣2);③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,过点M作ME∥x轴,过点N作EN∥y轴交CB的延长线于D,同理可得:△NEM≌△CDN(AAS),∴ME=DN=3,NE=CD=HM=5,∴M(1,﹣5);④以点N为直角顶点且N在y轴右侧时,如图5,过点M作ME∥x轴,过点N作NE∥y轴交BC延长线于D,同理可得:△NEM≌△CDN(AAS),∴ME=DN=NH=3,NE=CD=3﹣2=1,∴HM=NE=1,∴M(1,﹣1);⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述,当△CMN为等腰直角三角形时,M点坐标为(1,2)或(1,﹣2)或(1,﹣5)或(1,﹣1).【题型2 二次函数中等腰三角形存在性问题】【例2】(2020秋•曾都区期末)如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P 是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.【解题思路】(1)根据待定系数法即可求出抛物线的解析式;(2)作辅助线构造一线三垂直模型,在证明三角形全等即可求出点D的坐标,把点D的坐标带入解析式即可判断点D是否在抛物线上;(3)先写出点P,M,B的坐标,由(2)得出∠BMP=45°,分∠BMP是顶角和底角两种情况讨论即可.【解答过程】解:(1)把点A(﹣3,﹣4),B(0,﹣1)带入解析式y=ax2+4x+c,得{−4=9a −12+c −1=c, 解得{a =1c =−1, ∴y =x 2+4x ﹣1;(2)如图,作AC ⊥y 轴于点C ,作DH ⊥y 轴于点H ,∵∠CAB +∠ABC =90°,∠HBD +∠ABC =90°,∴∠CAB =∠HBD ,在△ABC 和△DBH 中,{∠DHB =∠BCA ∠CAB =∠HBD DB =BA,∴△ABC ≌△DBH (AAS ),∴HB =AC =3,DH =BC =3,∴OH =2,∴D (﹣3,2),把D (﹣3,2)代入y =x 2+4x ﹣1中,得(﹣3)2+4×(﹣3)﹣1=﹣4≠2,∴点D 不在抛物线上;(3)存在点P ,∵D (﹣3,2),B (0,﹣1),∴直线BD 的解析式为y =﹣x ﹣1,设P (m ,m 2+4m ﹣1),则M (m ,﹣m ﹣1),由(2)知:∠BMP =45°,当△PBM 是等腰三角形,且45°为底角时,有∠MBP=90°或∠MPB=90°,若∠MBP=90°,则P与A重合,即m=﹣3,若∠MPB=90°,则PB∥x轴,即P的纵坐标为﹣1,∴m2+4m﹣1=﹣1,解得m=0(舍)或m=﹣4,∴m=﹣4,若45°为顶角,即MP=MB,∵MP=﹣m﹣1﹣m2﹣4m+1=﹣m2﹣5m,MB=−√m2+m2=−√2m,∴﹣m2﹣5m=−√2m,解得m=﹣5−√2(舍)或m=﹣5+√2,∴m的值为﹣3,﹣4,﹣5+√2.【变式2-1】(2020秋•云南期末)如图,直线y=−12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.【解题思路】(1)令直线y=−12x+2的x=0,y=0,求出对应的y和x的值,得到点C、B的坐标;(2)用待定系数法设二次函数解析式,代入点A、B、C的坐标求出解析式;(3)利用“两圆一中垂”找到对应的等腰三角形,结合勾股定理和等腰三角形的性质求点P的坐标.【解答过程】解:(1)对直线y=−12x+2,当x=0时,y=2,y=0时,x=4,∴B(4,0),C(0,2).(2)设二次函数为y =a (x ﹣m )(x ﹣n )(a ≠0),∵二次函数图象经过B (4,0),A (﹣1,0),∴y =a (x ﹣4)(x +1),把点C (0,2)代入y =a (x ﹣4)(x +1)得:a (0﹣4)(0+1)=2,解得:a =−12,∴y =−12(x ﹣4)(x +1)=−12x 2+32x +2.(3)∵二次函数图象经过B (4,0),A (﹣1,0),∴对称轴为x =4−12=32, ∴D (32,0),∵C (0,2),∴CD =√22+(32)2=52,①如图1,当CD =PD 时,PD =52,∴P 1(32,52),P 2(32,−52), ②如图2,当CD =CP 3时,过点C 作CH ⊥DP 3于点H ,∵CD =CP 3,CH ⊥DP 3,∴DH =P 3H ,∵C (0,2),∴DH =2,∴P 3H =2,∴P 3D =4,∴P 3(32,4), 综上所述:存在P 1(32,52),P 2(32,−52),P 3(32,4),使△PCD 是以CD 为腰的等腰三角形.【变式2-2】(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【解题思路】(1)用待定系数法即可求解;(2)设点P的坐标为(x,﹣x+4),则点Q的坐标为(x,x2﹣5x+4),则PQ=(﹣x+4)﹣(x2﹣5x+4)=﹣x 2+4x ,进而求解;(3)当∠DQE =2∠ODQ ,则∠HQA =∠HQE ,则直线AQ 和直线QE 关于直线QH 对称,进而求出点E 的坐标为(5,4),再分BE =BF 、BE =EF 、BF =EF 三种情况,分别求解即可.【解答过程】解:(1)由题意得:{a +b +4=0−b 2a =52,解得{a =1b =−5, 故抛物线的表达式为y =x 2﹣5x +4①;(2)对于y =x 2﹣5x +4,令y =x 2﹣5x +4=0,解得x =1或4,令x =0,则y =4,故点B 的坐标为(4,0),点C (0,4),设直线BC 的表达式为y =kx +t ,则{t =44k +t =0,解得{k =−1t =4, 故直线BC 的表达式为y =﹣x +4,设点P 的坐标为(x ,﹣x +4),则点Q 的坐标为(x ,x 2﹣5x +4),则PQ =(﹣x +4)﹣(x 2﹣5x +4)=﹣x 2+4x ,∵﹣1<0,故PQ 有最大值,当x =2时,PQ 的最大值为4=CO ,此时点Q 的坐标为(2,﹣2);∵PQ =CO ,PQ ∥OC ,故四边形OCPQ 为平行四边形;(3)∵D 是OC 的中点,则点D (0,2),由点D 、Q 的坐标,同理可得,直线DQ 的表达式为y =﹣2x ﹣2,过点Q 作QH ⊥x 轴于点H ,则QH ∥CO ,故∠AQH =∠ODA ,而∠DQE =2∠ODQ .∴∠HQA =∠HQE ,则直线AQ 和直线QE 关于直线QH 对称,故设直线QE 的表达式为y =2x +r ,将点Q 的坐标代入上式并解得r =﹣6,故直线QE 的表达式为y =2x ﹣6②,联立①②并解得{x =5y =4(不合题意的值已舍去), 故点E 的坐标为(5,4),设点F 的坐标为(0,m ),由点B 、E 的坐标得:BE 2=(5﹣4)2+(4﹣0)2=17,同理可得,当BE =BF 时,即16+m 2=17,解得m =±1;当BE =EF 时,即25+(m ﹣4)2=17,方程无解;当BF =EF 时,即16+m 2=25+(m ﹣4)2,解得m =258;故点F 的坐标为(0,1)或(0,﹣1)或(0,258). 【变式2-3】(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y =﹣3x ﹣3与x 轴交于点A ,与y 轴交于点C .抛物线y =x 2+bx +c 经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)设该抛物线的顶点为点H ,则S △BCH = 3 ;(3)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及点M 的坐标;(4)在(3)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.【解题思路】(1)由直线y =﹣3x ﹣3与x 轴交于点A ,与y 轴交于点C ,得A (﹣1,0)、C (0,﹣3),将A (﹣1,0)、C (0,﹣3)代入y =x 2+bx +c ,列方程组求b 、c 的值及点B 的坐标;(2)设抛物线的对称轴交BC 于点F ,求直线BC 的解析式及抛物线的顶点坐标,再求出点F 的坐标,推导出S △BCH =12FH •OB ,可求出△BCH 的面积;(3)设点E 的横坐标为x ,用含x 的代数式表示点E 、点M 的坐标及线段ME 的长,再根据二次函数的性质求出线段ME 的最大值及点M 的坐标;(4)在x 轴上存在点P ,使以点M 、B 、P 为顶点的三角形是等腰三角形.由(3)得D (32,0),M (32,−32),由勾股定理求出OM =BM =3√22,由等腰三角形PBM 的腰长为32或3√22求出OP 的长即可得到点P 的坐标.【解答过程】解:(1)∵直线y =﹣3x ﹣3与x 轴、y 轴分别交于点A 、C , ∴A (﹣1,0),C (0,﹣3),∵抛物线y =x 2+bx +c 经过点A (﹣1,0),C (0,﹣3), ∴{1−b +c =0c =−3, 解得{b =−2c =−3,∴抛物线的解析式为y =x 2﹣2x ﹣3.当y =0时,由x 2﹣2x ﹣3=0,得x 1=﹣1,x 2=3, ∴B (3,0).(2)设抛物线的对称轴交BC 于点F ,交x 轴于点G . 设直线BC 的解析式为y =kx ﹣3,则3k ﹣3=0,解得k =1, ∴y =x ﹣3;∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴抛物线的顶点H (1,﹣4), 当x =1时,y =1﹣3=﹣2, ∴F (1,﹣2),∴FH =﹣2﹣(﹣4)=2,∴S △BCH =12FH •OG +12FH •BG =12FH •OB =12×2×3=3. 故答案为:3.(3)设E (x ,x 2﹣2x ﹣3)(0<x <3),则M (x ,x ﹣3), ∴ME =x ﹣3﹣(x 2﹣2x ﹣3)=﹣x 2+3x =﹣(x −32)2+94, ∴当x =32时,ME 最大=94,此时M (32,−32).(4)存在.如图3,由(2)得,当ME 最大时,则D (32,0),M (32,−32),∴DO =DB =DM =32; ∵∠BDM =90°,∴OM =BM =√(32)2+(32)2=3√22. 点P 1、P 2、P 3、P 4在x 轴上,当点P 1与原点O 重合时,则P 1M =BM =3√22,P 1(0,0); 当BP 2=BM =3√22时,则OP 2=3−3√22=6−3√22, ∴P 2(6−3√22,0);当点P 3与点D 重合时,则P 3M =P 3B =32,P 3(32,0);当BP 4=BM =3√22时,则OP 4=3+3√22=6+3√22, ∴P 4(6+3√22,0).综上所述,P 1(0,0),P 2(6−3√22,0),P 3(32,0),P 4(6+3√22,0).【题型3 二次函数中平行四边形存在性问题】【例3】(2020秋•元阳县期末)如图,直线y=−12x+c与x轴交于点A(﹣3,0),与y轴交于点C,抛物线y =12x 2+bx +c 经过点A ,C ,与x 轴的另一个交点为B (1,0),连接BC . (1)求抛物线的函数解析式.(2)M 为x 轴的下方的抛物线上一动点,求△ABM 的面积的最大值.(3)P 为抛物线上一动点,Q 为x 轴上一动点,当以B ,C ,Q ,P 为顶点的四边形为平行四边形时,求点P 的坐标.【解题思路】(1)将A (﹣3,0),B (1,0)代入抛物线y =12x 2+bx +c ,即可求解析式; (2)由题意可知,当点M 为抛物线的顶点,即可求面积;(3)分两种情况:①当以BC 为边时,PQ =BC ,则点B 到点C 的竖直距离=点P 到点Q 的竖直距离,即|12x 2+x −32|=32,当点P 在x 轴上方时,12x 2+x −32=32,求得P (−√7−1,32)或P (√7−1,32),当点P 在x 轴下方时,12x 2+x −32=−32,求得P (−2,−32);②当以BC 为对角线时,点P 与点Q 不能同时在抛物线上和x 轴上,故此种情况不成立.【解答过程】解:(1)将A (﹣3,0),B (1,0)代入抛物线y =12x 2+bx +c ,∴{12+b +c =0,12×(−3)2−3b +c =0, 解得{b =1c =−32,∴抛物线的函数解析式为y =12x 2+x −32;(2)∵M 是x 轴的下方的抛物线上一动点,且△ABM 的面积最大, ∴点M 为抛物线的顶点, ∴M (﹣1,﹣2),∴△ABM 的面积的最大值=12×(3+1)×2=4; (3)分两种情况:①当以BC 为边时, 由平行四边形的性质可知,PQ =BC ,∴点B 到点C 的竖直距离=点P 到点Q 的竖直距离,即|12x 2+x −32|=32, 当点P 在x 轴上方时,12x 2+x −32=32,解得x 1=−√7−1,x 2=√7−1, ∴P (−√7−1,32)或P (√7−1,32), 当点P 在x 轴下方时,12x 2+x −32=−32,解得x 1=﹣2,x 2=0(舍去), ∴P (−2,−32);②当以BC 为对角线时,点P 与点Q 不能同时在抛物线上和x 轴上,故此种情况不成立, 综上可知,点P 的坐标为(−√7−1,32)或((√7−1,32)或(−2,−32).【变式3-1】(2020秋•泰山区期末)如图,抛物线y =12x 2+bx +c 经过点A (﹣4,0),点M 为抛物线的顶点,点B 在y 轴上,且OA =OB ,直线AB 与抛物线在第一象限交于点C (2,6),如图. (1)求直线AB 和抛物线的表达式;(2)在y 轴上找一点Q ,使得△AMQ 的周长最小,在备用图中画出图形并求出点Q 的坐标; (3)在坐标平面内是否存在点N ,使以点A 、O 、C 、N 为顶点且AC 为一边的四边形是平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【解题思路】(1)抛物线y =12x 2+bx +c 经过A (﹣4,0),C (2,6),代入即可得抛物线表达式为y =12x 2+2x ,由OA =OB ,得B (0,4),用待定系数法即可得直线AB 表达式为y =x +4;(2)作A 关于y 轴的对称点A ',连接A 'M 交y 轴于Q ,连接AM ,此时△AQM 的周长最小,由A '(4,0),M ((﹣2,﹣2),可得直线A 'M 表达式为y =13x −43,从而可得Q (0,−43);(3)分两种情况:①以AC 、AO 为边,此时A (﹣4,0)平移到C (2,6)时,O (0,0)即平移到N ,即得N (6,6);②以AC 、AN 为边,同理可得N (﹣6,﹣6).【解答过程】解:(1)抛物线y =12x 2+bx +c 经过A (﹣4,0),C (2,6),∴{12×16−4b +c =012×4+2b +c =6,解得{b =2c =0, ∴抛物线表达式为y =12x 2+2x , ∵A (﹣4,0),OA =OB , ∴B (0,4),设直线AB 表达式为y =mx +n , ∴{0=−4m +n 4=n ,解得{m =1n =4, ∴直线AB 表达式为y =x +4;(2)作A 关于y 轴的对称点A ',连接A 'M 交y 轴于Q ,如图:连接AM ,此时△AQM 的周长最小, ∵A (﹣4,0),A 、A '关于y 轴对称, ∴A '(4,0),∵y =12x 2+2x =12(x +2)2﹣2, ∴M ((﹣2,﹣2),设直线A 'M 表达式为y =sx +t , 则{4s +t =0−2s +t =−2,解得{s =13t =−43, ∴直线A 'M 表达式为y =13x −43, 令x =0得y =−43, ∴Q (0,−43); (3)存在,理由如下: ①以AC 、AO 为边,如图:∵四边形AONC 是平行四边形,∴A (﹣4,0)平移到C (2,6)时,O (0,0)即平移到N , ∴N (6,6);②以AC 、AN 为边,如图:∵四边形ANOC 是平行四边形,∴C (2,6)平移到O (0,0)时,A (﹣4,0)即平移到N ,∴N(﹣6,﹣6);综上述所:以点A、O、C、N为顶点且AC为一边的四边形是平行四边形,则N的坐标为(6,6)或(﹣6,﹣6).【变式3-2】(2021春•雨花区期末)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的解析式;(2)若点P从点B出发,沿着射线BC运动,速度每秒√2个单位长度,过点P作直线PM∥y轴,交抛物线于点M.设运动时间为t秒.①在运动过程中,当t为何值时,使(MA+MC)(MA﹣MC)的值最大?并求出此时点P的坐标.②若点N同时从点B出发,向x轴正方向运动,速度每秒v个单位长度,问:是否存在t使点B,C,M,N构成平行四边形?若存在,求出t,v的值;若不存在,说明理由.【解题思路】(1)先根据对称轴求出点B的坐标,再根据待定系数法即可求出抛物线的解析式;(2)①根据题意表示出BA和BC的值,再利用平方差公式表示出(MA+MC)(MA﹣MC)的值,求出最值即可;②根据对角线的情况分三种情况讨论即可.【解答过程】解:(1)∵抛物线的对称轴为x=﹣1,∴B(﹣3,0),设抛物线的解析式为y=a(x+3)(x﹣1),代入C(0,3),得3=a×3×(﹣1),解得a=﹣1,∴y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)①∵B(﹣3,0),C(0,3),∴直线BC 的解析式为y =x +3,设P (m ,m +3),则点M 为(m ,﹣m 2﹣2m +3), ∴(MA +MC )(MA ﹣MC )=MA 2﹣MC 2=(1﹣m )2﹣(﹣m 2﹣2m +3)2﹣(﹣m )2﹣(﹣m 2﹣2m +3﹣3)2 =﹣6m 2﹣14m +10 =−6(m +76)2+1096,当m =−76时,(MA +MC )(MA ﹣MC )最大, 此时PB =116√2, 所以此时t =√2=116, ∴当t =116时,使(MA +MC )(MA ﹣MC )的值最大,此时点P 的坐标为(−76,116);②存在t 的值,由题意得B (﹣3,0),C (0,3),M (t ﹣3,﹣t 2+4t ),N (v ﹣3,0), 若BC 为对角线,则: {−3+0=t −3+v −30+3=−t 2+4t +0, 解得:{t =1v =2或{t =3v =0(舍),∴t =1,v =2, 若BM 为对角线,则: {−3+t −3=0+v −30−t 2+4t =3+0, 解得:{t =1v =−2(舍)或者{t =3v =0(舍),∴此种情况无满足的t ,v , 若BN 为对角线,则: {−3+v −3=0+t −30+0=3−t 2+4t, 解得:{t =2−√7v =5−√7(舍)或者{t =2+√7v =5+√7,∴t =2+√7,v =5+√7,综上,t =1,v =2,或者t =2+√7,v =5+√7.【变式3-3】(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣6与x 轴交于A ,C (﹣6,0)两点(点A 在点C 右侧),交y 轴于点B ,连接BC ,且AC =4.(1)求抛物线的解析式.(2)若P 是BC 上方抛物线上不同于点A 的一动点,连接P A ,PB ,PC ,求当S △PBC −12S △P AC 有最大值时点P 的坐标,并求出此时的最大值.(3)如图2,将原抛物线向右平移,使得点A 刚好落在原点O ,M 是平移后的抛物线上一动点,Q 是直线BC 上一动点.当A ,M ,B ,Q 组成的四边形是平行四边形时,请直接写出此时点Q 的坐标. 【解题思路】(1)由点C 的坐标,即AC =4,可求出点A 的坐标,把点A 和点C 的坐标代入抛物线中,即可求得抛物线的解析式;(2)过点P 作x 轴的垂线,交x 轴于点D ,交BC 于点E ,设出点P 的坐标,分别表达点D 和点E 的坐标,进而表达S △PBC −12S △P AC ,根据二次函数的性质求得最大值及点P 的坐标;(3)先求出平移后的抛物线的解析式,再分别讨论AB 为边,AB 为对角线两种情况讨论;根据平行四边形的性质可求出点Q 的坐标. 【解答过程】解:(1)∵C (﹣6,0), ∴OC =6, ∵AC =4,∴OA =2,即A (﹣2,0),∵点A (﹣2,0),C (﹣6,0)在抛物线y =ax 2+bx ﹣6上,∴{4a −2b −6=036a −6b −6=0,解得,{a =−12b =−4, ∴抛物线的解析式为:y =−12x 2﹣4x ﹣6;(2)过点P 作x 轴的垂线,交x 轴于点D ,交BC 于点E ,如图,由(1)中抛物线的解析式可得B (0,﹣6), ∴直线BC 的解析式为:y =﹣x ﹣6,设点P 的横坐标为m ,则P (m ,−12m 2﹣4m ﹣6)(﹣6<m <0,且m ≠0), ∴D (m ,0),E (m ,﹣m ﹣6),∴PE =−12m 2﹣4m ﹣6﹣(﹣m ﹣6)=−12m 2﹣3m , |PD |=|−12m 2﹣4m ﹣6|, ∴S △PBC −12S △P AC=12•PE •(x B ﹣x C )−12×12|PD |•AC=12•(−12m 2﹣3m )×6−12×12|−12m 2﹣4m ﹣6|×4 =−32m 2﹣9m ﹣|−12m 2﹣4m ﹣6|, 当﹣6<m <﹣2时,−12m 2﹣4m ﹣6>0S △PBC −12S △P AC =−32m 2﹣9m ﹣(−12m 2﹣4m ﹣6)=﹣m 2﹣5m +6=﹣(m +52)2+494,当m =−52时,S △PBC −12S △P AC 的最大值为494,P (−52,78);当﹣2<m <0时,S △PBC −12S △P AC =−32m 2﹣9m ﹣(12m 2+4m +6)=﹣2m 2﹣13m ﹣6=﹣2(m +134)2+1218<968,∵968<494,综上,当P (−52,78)时,S △PBC −12S △P AC 的最大值为494;(3)将原抛物线向右平移,使得点A 刚好落在原点O ,则平移后的抛物线为:y =−12x 2﹣2x , ①当AB 为边时,分两种情况:a .当四边形ABQM 是平行四边形时,由平行四边形的性质可知,AB ∥MQ ,AM ∥BQ ,如图,过点A 作AM ∥BC ,与平移后的抛物线交于点M , ∵直线BC 的解析式为:y =﹣x ﹣6, 则直线AM 的解析式为:y =﹣x ﹣2,联立{y =−x −2y =−12x 2−2x ,解得,{x =−1−√5y =−1+√5,或{x =−1+√5y =−1−√5, ∴M 1(﹣1−√5,﹣1+√5),M 2(﹣1+√5,﹣1−√5), ∴Q 1(1−√5,﹣7+√5),Q 2(1+√5,﹣7−√5); b .当四边形ABMQ 是平行四边形时,如图,设点M5的横坐标为t,则M5(t,−12t2﹣2t),由平移的性质可得,Q5(t﹣2,−12t2﹣2t+6),∵点Q5在直线BC上,∴−12t2﹣2t+6=﹣(t﹣2)﹣6,解得t=﹣1+√21或t=﹣1−√21.∴Q5(﹣3−√21,﹣3+√21),Q6(﹣3+√21,﹣3−√21);②当AB为对角线时,由平行四边形的性质可知,AM∥BQ,如图,∵A(﹣2,0),B(0,﹣6),∴AB的中点为(﹣1,﹣3),由①可知,M3(﹣1+√5,﹣1−√5),M4(﹣1−√5,﹣1+√5);∴Q3(﹣1−√5,﹣5+√5),Q4(﹣1+√5,﹣5−√5);∴符合题意的点Q的坐标为:(1+√5,﹣7−√5),(1−√5,﹣7+√5),(﹣3−√21,﹣3+√21),(﹣3+√21,﹣3−√21),(﹣1−√5,﹣5+√5),(﹣1+√5,﹣5−√5).【题型4 二次函数中菱形存在性问题】【例4】(2020秋•巴南区期末)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A (1,0)和点B (﹣3,0),与y 轴交于点C . (1)求b ,c 的值;(2)如图1,点P 为直线BC 上方抛物线上的一个动点,设点P 的横坐标m .当m 为何值时,△PBC 的面积最大?并求出这个面积的最大值.(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点D ,点M 为直线BC 上的一点,点N 是平面坐标系内一点,是否存在点M ,N ,使以点B ,D ,M ,N 为顶点的四边形为菱形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解题思路】(1)将点A (1,0)和点B (﹣3,0)代入y =﹣x 2+bx +c ,即可求解析式;(2)求出直线BC 的解析式y =x +3,过P 点作PQ ⊥x 轴交BC 于Q ,由已知可得P (m ,﹣m 2﹣2m +3),则Q (m ,m +3),则S △PBC =−32(m +32)2+278,当m =−32时,S △PBC 有最大值278,此时P (−32,154);(3)平移后抛物线解析式为y =﹣x 2﹣6x ﹣5,联立﹣x 2﹣2x +3=﹣x 2﹣6x ﹣5,求出D (﹣2,3),则BD =√10,设M (t ,t +3),分三种情况:当四边形BDMN 为菱形时,由DB =DM ,得10=(t +2)2+t 2,求出M (1,4);当四边形BDNM 为菱形时,由BD =BM ,得10=(t +3)2+(t +3)2,求出M (√5−3,√5)或M (−√5−3,−√5);当四边形BMDN 为菱形时,设BD 的中点为G ,则G (−52,32),由勾股定理得BM 2=BG 2+GM 2,即2(t +3)2=(√102)2+(t +52)2+(t +32)2,求出M (−74,54).【解答过程】解:(1)将点A (1,0)和点B (﹣3,0)代入y =﹣x 2+bx +c , 得{−1+b +c =0−9−3b +c =0, 解得{b =−2c =3,∴y =﹣x 2﹣2x +3; (2)令x =0,则y =3, ∴C (0,3),设直线BC 的解析式为y =kx +b , 则有{b =3−3k +b =0,解得{k =1b =3,∴y =x +3,过P 点作PQ ⊥x 轴交BC 于Q ,由已知可得P (m ,﹣m 2﹣2m +3),则Q (m ,m +3),∴S △PBC =12×3×(﹣m 2﹣2m +3﹣m ﹣3)=32(﹣m 2﹣3m )=−32(m +32)2+278, ∴当m =−32时,S △PBC 有最大值278,此时P (−32,154);(3)∵y =﹣x 2﹣2x +3=﹣(x +1)2+4,将抛物线向左平移2个单位长度,则y =﹣(x +3)2+4=﹣x 2﹣6x ﹣5, 联立﹣x 2﹣2x +3=﹣x 2﹣6x ﹣5, ∴x =﹣2, ∴D (﹣2,3), ∵B (﹣3,0), ∴BD =√10, ∵M 点在直线BC 上, 设M (t ,t +3),当四边形BDMN 为菱形时,如图1, ∴DB =DM , ∴10=(t +2)2+t 2, ∴t =1或t =﹣3(舍), ∴M (1,4);当四边形BDNM 为菱形时,如图2,∴BD =BM ,∴10=(t +3)2+(t +3)2, ∴t =√5−3或t =−√5−3,∴M (√5−3,√5)或M (−√5−3,−√5); 当四边形BMDN 为菱形时,如图3,设BD 的中点为G ,则G (−52,32),∵GM ⊥BD , ∴BM 2=BG 2+GM 2, ∴2(t +3)2=(√102)2+(t +52)2+(t +32)2, ∴t =−74, ∴M (−74,54);综上所述:M 点的坐标为(1,4)或(√5−3,√5)或(−√5−3,−√5)或(−74,54).【变式4-1】(2021•湘潭)如图,一次函数y=√33x−√3图象与坐标轴交于点A、B,二次函数y=√33x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.【解题思路】(1)由y =√33x −√3可求出A (3,0),B (0,−√3),代入二次函数y =√33x 2+bx +c 即得二次函数解析式为y =√33x 2−2√33x −√3; (2)由二次函数y =√33x 2−2√33x −√3可得其对称轴为直线x =2√332×√33=1,设P (1,m ),Q (n ,√33n 2−2√33n −√3),而C 与B 关于直线x =1对称,可得C (2,−√3), ①当BC 、PQ 为对角线时,{0+22=1+n2−√3−√32=m+√33n 2−2√33n−√32,可得{m =−2√33n =1,此时四边形BQCP 是平行四边形,根据P (1,−2√33),B (0,−√3),C (2,−√3)可得PB =PC ,即得此时Q (1,−4√33);②BP 、CQ 为对角线时,同理可得Q (﹣1,0);③以BQ 、CP 为对角线,同理可得Q (3,0). 【解答过程】解:(1)在y =√33x −√3中,令x =0得y =−√3,令y =0得x =3,∴A (3,0),B (0,−√3),∵二次函数y =√33x 2+bx +c 图象过A 、B 两点, ∴{0=3√3+3b +c−√3=c ,解得{b =−2√33c =−√3, ∴二次函数解析式为y =√33x 2−2√33x −√3; (2)存在,理由如下:由二次函数y =√33x 2−2√33x −√3可得其对称轴为直线x =2√332×√33=1,设P (1,m ),Q (n ,√33n 2−2√33n −√3),而B (0,−√3),∵C 与B 关于直线x =1对称, ∴C (2,−√3),①当BC 、PQ 为对角线时,如图:此时BC 的中点即是PQ 的中点,即{0+22=1+n2−√3−√32=m+√33n 2−2√33n−√32, 解得{m =−2√33n =1,∴当P (1,−2√33),Q (1,−4√33)时,四边形BQCP 是平行四边形, 由P (1,−2√33),B (0,−√3),C (2,−√3)可得PB 2=43=PC 2, ∴PB =PC ,∴四边形BQCP 是菱形, ∴此时Q (1,−4√33); ②BP 、CQ 为对角线时,如图:同理BP 、CQ 中点重合,可得{0+12=2+n2−√3+m 2=−√3+√33n 2−2√33n−√32, 解得{m =0n =−1,∴当P (1,0),Q (﹣1,0)时,四边形BCPQ 是平行四边形, 由P (1,0),B (0,−√3),C (2,−√3)可得BC 2=4=PC 2, ∴四边形BCPQ 是菱形, ∴此时Q (﹣1,0);③以BQ 、CP 为对角线,如图:BQ 、CP 中点重合,可得{0+n 2=2+12−√3+√33n 2−2√33n−√32=−√3+m2, 解得{m =0n =3,∴P (1,0),Q (3,0)时,四边形BCQP 是平行四边形, 由P (1,0),B (0,−√3),C (2,−√3)可得BC 2=4=PC 2, ∴四边形BCQP 是菱形, ∴此时Q (3,0);综上所述,Q 的坐标为:(1,−4√33)或(﹣1,0)或(3,0). 【变式4-2】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E(0,−3 2),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3,∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102, ∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC ,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3,令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF=12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m )=−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154), 即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.【变式4-3】(2020秋•南岸区期末)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于点A(4,0)和B(﹣1,0),交y轴于点C.(1)求二次函数y=x2+bx+c的表达式;(2)将点C向右平移n个单位得到点D,点D在该二次函数图象上.点P是直线BD下方该二次函数图象上一点,求△PBD面积的最大值以及此时点P的坐标;(3)在(2)中,当△PBD面积取得最大值时,点E是过点P且垂直于x轴直线上的一点.在该直角坐标平面内,是否存在点Q,使得以点P,D,E,Q四点为顶点的四边形是菱形?若存在,直接写出满足条件的点Q的坐标;若不存在,请说明理由.【解题思路】(1)用待定系数法即可求解;(2)由s =12PF (x D ﹣x B )=12×PF ×(3+1),即可求解; (3)①当PE 为对角线时,如图2,则PE ⊥DQ ,且D 、Q 关于直线PE 对称,即可求解;②当DE 为对角线时,证明△DNP ≌△EMQ (AAS ),进而求解;③当PD 为对角线时,由DG 2+EG 2=DG 2,即可求解.【解答过程】解:(1)根据题意得:{16+4b +c =01−b +c =0, 解得:{b =−3c =−4, ∴这个二次函数的表达式为y =x 2﹣3x ﹣4;(2)∵y =x 2﹣3x ﹣4与y 轴交点为(0,﹣4),∵将点C 向右平移后得到点D ,则点D 的纵坐标为﹣4.令y =﹣4,即x 2﹣3x ﹣4=﹣4,得x 1=0,x 2=3.∴D (3,﹣4).设直线BD 的表达式为y =mx +n ,则{0=−m +n −4=3m +n ,解得{m =−1n =−1, ∴经过B (﹣1,0),D (3,﹣4)的直线为y =﹣x ﹣1.∵P 是函数y =x 2﹣3x ﹣4图象上一点,则设P (t ,t 2﹣3t ﹣4).如图1,过点P 作PF ⊥x 轴,交BD 于点F ,则F (t ,﹣t ﹣1).设△PBD的面积为s,则s=12PF(x D﹣x B)=12×PF×(3+1)=2PF=2[(﹣t﹣1)﹣(t2﹣3t﹣4)]=﹣2(t﹣1)2+8,∴t=1时,△PBD的面积最大,最大为8.此时,点P(1,﹣6);(3)存在以点P,D,E,Q四点为顶点的四边形是菱形,分三种情况:①当PE为对角线时,如图2,∵PE⊥x轴,CD//x轴,∴PE⊥DQ,且D、Q关于直线PE对称,因为D(3,﹣4),P(1,﹣6),∴Q(﹣1,﹣4);②当DE为对角线时,设Q(3,k),如图3、图4,则DQ//PE,DQ=PE,作DN⊥PE于E,EM⊥DQ于M,∵∠P=∠Q,DP=EQ,.∴△DNP≌△EMQ(AAS),∴QM=PN=﹣4﹣(﹣6)=2,∵EM=3﹣1=2,QE=DQ=k+4,∴(k+4)2=22+22,解得k=﹣4±2√2,∴点Q的坐标有(3,﹣4+2√2),(3,﹣4﹣2√2);③当PD为对角线时,如图5,设点Q坐标为(3,a),。
中考数学 二次函数存在性问题 及参考答案
中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。
所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。
1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。
1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。
已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。
过点A作直线AC∥x轴,交抛物线于另一点C。
1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。
若存在,请写出点D的坐标;若不存在,请说明理由。
4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。
1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年8月4日初中数学试卷一、综合题(共9题;共135分)1.如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2.(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.3.(2017•赤峰)如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2 ?若存在求出点Q的坐标;若不存在请说明理由.4.(2017•广元)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.5.(2017•巴中)如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A,B,C的抛物线的对称轴与l1、l2、x 轴分别交于点G、E、F,D为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG与DE的数量关系?并说明理由;(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.6.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.7.如图,抛物线y=ax2+bx+c(a≠0)与x轴相交于A(﹣1,0),B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)连接BC,点P为抛物线上第一象限内一动点,当△BCP面积最大时,求点P的坐标;(3)设点D是抛物线的对称轴上的一点,在抛物线上是否存在点Q,使以点B,C,D,Q为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,说明理由.8.(2017•临沂)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)解:设此函数的解析式为y=a(x+h)2+k,∵函数图象顶点为M(﹣2,﹣4),∴y=a(x+2)2﹣4,又∵函数图象经过点A(﹣6,0),∴0=a(﹣6+2)2﹣4解得a= ,∴此函数的解析式为y= (x+2)2﹣4,即y= x2+x﹣3;(2)解:∵点C是函数y= x2+x﹣3的图象与y轴的交点,∴点C的坐标是(0,﹣3),又当y=0时,有y= x2+x﹣3=0,解得x1=﹣6,x2=2,∴点B的坐标是(2,0),则S△ABC= |AB|•|OC|= ×8×3=12;(3)解:假设存在这样的点,过点P作PE⊥x轴于点E,交AC于点F.设E(x,0),则P(x,x2+x﹣3),设直线AC的解析式为y=kx+b,∵直线AC过点A(﹣6,0),C(0,﹣3),∴,解得,∴直线AC的解析式为y=﹣x﹣3,∴点F的坐标为F(x,﹣x﹣3),则|PF|=﹣x﹣3﹣(x2+x﹣3)=﹣x2﹣x,∴S△APC=S△APF+S△CPF= |PF|•|AE|+ |PF|•|OE|= |PF|•|OA|= (﹣x2﹣x)×6=﹣x2﹣x=﹣(x+3)2+ ,∴当x=﹣3时,S△APC有最大值,此时点P的坐标是P(﹣3,﹣).【考点】二次函数的应用【解析】【分析】(1)根据顶点坐标公式即可求得a、b、c的值,即可解题;(2)易求得点B、C的坐标,即可求得OC的长,即可求得△ABC的面积,即可解题;(3)作PE⊥x轴于点E,交AC于点F,可将△APC的面积转化为△AFP和△CFP的面积之和,而这两个三角形有共同的底PF,这一个底上的高的和又恰好是A、C两点间的距离,因此若设设E(x,0),则可用x来表示△APC的面积,得到关于x的一个二次函数,求得该二次函数最大值,即可解题.2.【答案】(1)解:∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5(2)解:①设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);②设P(x,﹣x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE= = |x﹣4|,CE= = ,BC= = ,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x﹣4|= ,解得x= ,此时P点坐标为(,);当BE=BC时,则|x﹣4|= ,解得x=4+ 或x=4﹣,此时P点坐标为(4+ ,﹣4 ﹣8)或(4﹣,4 ﹣8);当CE=BC时,则= ,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+ ,﹣4 ﹣8)或(4﹣,4 ﹣8)或(0,5)【解析】【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.3.【答案】(1)解:∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3(2)解:设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+ ,∴当m= 时,PM有最大值(3)解:如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2 时,即QH=HG=2 ,∴QG= ×2 =4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5)【解析】【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.4.【答案】(1)解:将A,B,C点的坐标代入解析式,得,解得,抛物线的解析式为y=﹣x2﹣2x+3(2)解:配方,得y=﹣(x+1)2+4,顶点D的坐标为(﹣1,4)作B点关于直线x=1的对称点B′,如图1,则B′(4,3),由(1)得D(﹣1,4),可求出直线DB′的函数关系式为y=﹣x+ ,当M(1,m)在直线DN′上时,MN+MD的值最小,则m=﹣×1+ = .(3)解:作PE⊥x轴交AC于E点,如图2,AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),E(m,m+3),PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3mS△APC= PE•|x A|= (﹣m2﹣3m)×3=﹣(m+ )2+ ,当m=﹣时,△APC的面积的最大值是(4)解:由(1)、(2)得D(﹣1,4),N(﹣1,2)点E在直线AC上,设E(x,x+3),①当点E在线段AC上时,点F在点E上方,则F(x,﹣x2﹣2x+3),∵EF=DN∴﹣x2﹣2x+3﹣(x+3)=4﹣2=2,解得,x=﹣2或x=﹣1(舍去),则点E的坐标为:(﹣2,1).②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,﹣x2﹣2x+3),∵EF=DN,∴(x+3)﹣(﹣x2﹣2x+3)=2,解得x= 或x= ,即点E的坐标为:(,)或(,)综上可得满足条件的点E为E(﹣2,1)或:(,)或(,)【考点】二次函数的性质,待定系数法求二次函数解析式,二次函数的应用,三角形的面积,轴对称-最短路线问题【解析】【分析】(1)根据待定系数法,可得答案.(2)利用轴对称求最短路径的知识,找到B点关于直线x=1的对称点B′,连接B′D,B′D与直线x=1的交点即是点M的位置,继而求出m的值.(3)根据平行于y轴的直线上两点间的距离最大的纵坐标减去较小的纵坐标,可得PE的长,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案.(4)设出点E的坐标,分情况讨论;①当点E再线段AC上时,点F在点E上方;②当点E再线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质,可得关于x的方程,继而求出点E的坐标.5.【答案】(1)解:设抛物线的函数解析式为y=ax2+bx+c.∵点A(1,0),点B(﹣3,0),点C(0,)在抛物线上,∴,解得,∴抛物线的函数解析式为y=﹣x2﹣x+(2)解:DG=DE.理由如下:设直线l1的解析式为y=k1x+b1,将A(1,0),C(0,)代入,解得y=﹣x+ ;设直线l2的解析式为y=k2x+b2,将B(﹣3,0),C(0,)代入,解得y= x+ ;∵抛物线与x轴的交点为A(1,0),B(﹣3,0),∴抛物线的对称轴为直线x=﹣1,又∵点G、D、E均在对称轴上,∴G(﹣1,2 ),D(﹣1,),E(﹣1,),∴DG=2 ﹣= ,DE= ﹣= ,∴DG=DE;(3)解:若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,分三种情况:①以G为圆心,GC为半径画弧交抛物线于点M1、C,点M1与C关于抛物线的对称轴对称,则M1的坐标为(﹣2,);②以C为圆心,GC为半径画弧交抛物线于点M2、M3,点M2与点A重合,点A、C、G在一条直线上,不能构成三角形,M3与M1重合;③作线段GC的垂直平分线,交抛物线于点M4、M5,点M4与点D重合,点D的坐标为(﹣1,),M5与M1重合;综上所述,满足条件的点M只有两个,其坐标分别为(﹣2,),(﹣1,).【考点】待定系数法求一次函数解析式,二次函数的性质,待定系数法求二次函数解析式,二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)设抛物线的函数解析式为y=ax2+bx+c.分别将A(1,0),B(﹣3,0),C(0,)三点坐标代入得到一个三元一次方程组,解之即可得到抛物线解析式.(2)DG=DE.分别求出过A(1,0),C(0, 3 )两点的直线l1的解析式为y=﹣x+ ;过B(﹣3,0),C(0,3 )两点的直线l2的解析式为y= x+ ;由二次函数的性质和已知条件求出DG和DE的长度即可. (3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,分三种情况:①以G为圆心,GC为半径画弧交抛物线于点M1(﹣2,);②以C为圆心,GC为半径画弧交抛物线于点M2、M3,;③作线段GC的垂直平分线,交抛物线于点M4、M5.6.【答案】(1)解:依题意得:,解之得:∴抛物线解析式为y=-x2-2x+3∵对称轴为x=-1,且抛物线经过A(1,0),∴把B(-3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3(2)解:设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得,y=2,∴M(-1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(-1,2)(3)解:如图:设P(-1,t),又∵B(-3,0),C(0,3),∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得:t=-2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得:t1= ,t2= ;综上所述P的坐标为(-1,-2)或(-1,4)或(-1,)或(-1,).【考点】二次函数的应用,二次函数的实际应用-动态几何问题【解析】【分析】先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M 坐标;设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.7.【答案】(1)解:设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3(2)解:设直线BC的解析式为y=kx+m,把B(3,0),C(0,3)代入得,解得,所以直线BC的解析式为y=﹣x+3,作PM∥y轴交BC于M,如图1,设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),∴PM=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∴S△PCB= •3•PM=﹣x2+ =﹣(x﹣)2+ ,当x= 时,△BCP的面积最大,此时P点坐标为(,)(3)解:如图2,抛物线的对称轴为直线x=1,当四边形BCDQ为平行四边形,设D(1,a),则Q(4,a﹣3),把Q(4,a﹣3)代入y=﹣x2+2x+3得a﹣3=﹣16+8+3,解得a=﹣2,∴Q(4,﹣5);当四边形BCQD为平行四边形时,设D(1,a),则Q(﹣2,3+a),把Q(﹣2,3+a)代入y=﹣x2+2x+3得3+a=﹣4﹣4+3,解得a=﹣8,∴Q(﹣2,﹣5);当四边形BQCD为平行四边形时,设D(1,a),则Q(2,3﹣a),把Q(2,3﹣a)代入y=﹣x2+2x+3得3﹣a=﹣4+4+3,解得a=0,∴Q(2,3),综上所述,满足条件的Q点坐标为(4,﹣5)或(﹣2,﹣5)或(2,3).【考点】二次函数的应用,与二次函数有关的动态几何问题【解析】【分析】(1)设交点式y=a(x+1)(x﹣3),然后把C点坐标代入求出a的值即可得到抛物线的解析式;(2)先利用待定系数法求出直线BC的解析式为y=﹣x+3,作PM∥y轴交BC于M,如图1,设P(x,﹣x2+2x+3),(0<x<3),则M(x,﹣x+3),利用三角形面积公式得到∴S△PCB= •3•PM=﹣x2+ ,然后根据二次函数的性质求解;(3)如图2,分类讨论:当四边形BCDQ为平行四边形,设D(1,a),利用点平移的坐标规律得到Q (4,a﹣3),然后把Q(4,a﹣3)代入y=﹣x2+2x+3中求出a即可得到Q点坐标;当四边形BCQD为平行四边形或四边形BQCD为平行四边形时,利用同样方法可求出对应Q点坐标.8.【答案】(1)解:由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3(2)解:设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1)(3)解:设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).【考点】二次函数的图象,二次函数的性质,二次函数的应用【解析】【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m|即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N 在x轴上,M与C重合,于是得到结论.。