2014届高考数学一轮复习 第九章解析几何9.4直线与圆、圆与圆的位置关系教学案 理 新人教A版
2014届高考一轮复习教学案直线与圆、圆与圆的位置关系
直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y=x+1上的一点向圆x2+y2-6x+8=0引切线,则切线长的最小值为()A.7 B.2 2C.3 D. 2解析:选A由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x2+y2-6x+8=0可化为(x-3)2+y2=1,则圆心(3,0)到直线y=x+1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3. 答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1. 故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2= 2×100-68=8.[答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3. 3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33.答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为 2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |=12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx -2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题设知,圆C 的方程为 (x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4t y =0,当y =0时,x =0或2t ,则A (2t,0); 当x =0时,y =0或4t ,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB |=12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率 k =2t t =2t 2=12,∴t =2或t =-2.∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB=(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.②又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ=(6,-2),所以OA +OB 与PQ共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230.答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p2=1,p =2,所以抛物线C 的方程为y 2=4x .(2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x+2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,② 由①②两式相减即得直线ST 的方程3x -my -2=0, 显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:433.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0.因为圆心O 1(0,-1)到直线AB 的距离为|r 22-12|42= 4-⎝⎛⎭⎫2222=2,解得r22=4或r22=20.故圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。
高考数学一轮复习第九章平面解析几何9.4直线与圆、圆与圆的位置关系文
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系 文1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________. ①相切; ②相交但直线不过圆心;③相交过圆心; ④相离. 答案 ②解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是__________. 答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.(2014·湖南改编)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 答案 9解析 圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆心C 2(3,4),半径r 2=25-m ,从而C 1C 2=32+42=5.由两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.4.(2015·山东改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为____________. 答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34. 5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部,把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0,故t =4k +31+k 2的最大值为4,此时AB 最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________.(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.(2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小. ∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22)思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.答案 内切解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴C 1C 2=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴C 1C 2=r 2-r 1=2,∴圆C 1与C 2内切.(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切. 当半圆和圆相外切时,由OO ′=2=2a +a , 求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a , 求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则MN =________.答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6. 命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN . 解 (1)由题设,可知直线l 的方程为y =kx +1,因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以MN =2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行; ②与直线l 2:x -2y +4=0垂直;③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P ,Q ,则线段PQ 的长为________. 答案 (1)2 2 (2)4解析 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆的方程化为标准方程为(x -3)2+(y -4)2=5,则圆心为(3,4),半径长为 5. 由题意可设切线的方程为y =kx ,则圆心(3,4)到直线y =kx 的距离等于半径长5,即|3k -4|k 2+1=5,解得k =12或k =112,则切线的方程为y =12x 或y =112x .联立切线方程与圆的方程,解得两切点坐标分别为(4,2),⎝ ⎛⎭⎪⎫45,225,此即为P ,Q 的坐标,由两点间的距离公式得PQ =4.7.高考中与圆交汇问题的求解一、与圆有关的最值问题典例 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37, ∴x =-1时有最大值49=7.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5,所以OP max =OC +r =6,即m 的最大值为6. 答案 (1)7 (2)6 二、直线与圆的综合问题典例 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(2)(2014·江西改编)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴AC 2=36+4=40.又r =2,∴AB 2=40-4=36. ∴AB =6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x+y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为OD . 又OD =|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)6 (2)54π温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:40分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是______________.答案 2x +y +5=0或2x +y -5=0解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为________. 答案 4±15解析 易知△ABC 是边长为2的等边三角形. 故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为______________________________________________________________. 答案 2解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为______________. 答案 2x +y -3=0 解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为________. 答案 12,-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________. 答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P2∈[2,3].8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且OC 2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又OM =OP =22,O到l 的距离为4105,所以PM =4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:30分钟)11.已知圆C :(x -a )2+(y -a )2=1 (a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________. 答案52解析 因为△CPQ 的面积等于12sin∠PCQ ,所以当∠PCQ =90°时,△CPQ 的面积最大,此时圆心到直线y =3x 的距离为22,因此22=|3a -a |10,解得a =52. 12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析∵S △AOB =12·OA ·OB ·sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k +1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t , PD =0.5t .在Rt△CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2, 在Rt△CDA 中,CD 2=5-()1.5t 2,所以t =2,从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 15.已知圆O :x 2+y 2=4和点M (1,a ).(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程; (2)若a =2,过点M 的圆的两条弦AC ,BD 互相垂直,求AC +BD 的最大值. 解 (1)由条件知点M 在圆O 上, 所以1+a 2=4,则a =± 3.当a =3时,点M 为(1,3),k OM =3,k 切=-33, 此时切线方程为y -3=-33(x -1). 即x +3y -4=0,当a =-3时,点M 为(1,-3),k OM =-3,k 切=33. 此时切线方程为y +3=33(x -1).即x -3y -4=0. 所以所求的切线方程为x +3y -4=0或x -3y -4=0.(2)设O 到直线AC ,BD 的距离分别为d 1,d 2(d 1,d 2≥0),则d 21+d 22=OM 2=3. 又有AC =24-d 21,BD =24-d 22, 所以AC +BD =24-d 21+24-d 22.则(AC +BD )2=4×(4-d 21+4-d 22+24-d 21·4-d 22) =4×[5+216-d 21+d 22+d 21d 22] =4×(5+24+d 21d 22).因为2d 1d 2≤d 21+d 22=3,所以d 21d 22≤94,当且仅当d 1=d 2=62时取等号,所以4+d 21d 22≤52, 所以(AC +BD )2≤4×(5+2×52)=40.所以AC +BD ≤210, 即AC +BD 的最大值为210.。
高考数学一轮复习第九章平面解析几何第4节直线与圆圆与圆的位置关系市赛课公开课一等奖省名师优质课获奖P
2.由勾股定理得弦长的一半为 4-2= 2,所以,所求弦长
为 2 2.
[答案] 2 2
19/69
考点
题型突破
20/69
考点一 直线与圆的位置关系——自练型
21/69
(1)已知点 M(a,b)在圆 O:x2+y2=1 外,则直
线 ax+by=1 与圆 O 的位置关系是(
)
A.相切
B.相交
C.相离
38/69
[答案] (1)D (2)D
39/69
解决直线与圆的综合问题的策略 (1)处理直线与圆的弦长问题时多用几何法,即弦长的一 半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半 径,从而建立关系解决问题. (3)若点 M(x0,y0)在圆 x2+y2=r2 上,则过 M 点的圆的切 线方程为 x0x+y0y=r2.
10/69
3.在直角坐标系 xOy 中,以 O 为圆心的圆与直线 x- 3
y-4=0 相切,则圆 O 的方程为(
)
A.x2+y2=4
B.x2+y2=3
C.x2+y2=2
D.x2+y2=1
11/69
[解析] 依题意,圆 O 的半径 r 等于原点 O 到直线 x- 3 4
y-4=0 的距离,即 r= 1+3=2,得圆 O 的方程为 x2+y2 =4.
6/69
1.判断下列结论的正误.(正确的打“√”,错误的打
“×”)
(1)“k=1”是“直线 x-y+k=0 与圆 x2+y2=1 相交”
的必要不充分条件.(
)
(2)如果两圆的圆心距小于两圆的半径之和,则两圆相
交.(
)
(3)从两相交圆的方程中消掉二次项后得到的二元一次方
高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新
§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。
高考数学一轮复习第九章直线和圆的方程圆与圆的位置关系课件
要不充分条件,Δ<0 是两圆外离(内含)的必要不充分条件.
5 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
1.思维辨析 (1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × ) (4)过圆 O:x2+y2=r2 上一点 P(x0,y0)的圆的切线方程是 x0x+y0y=r2.( √ )
第一步,先求两圆公共弦所在的直线方程;
第二步,利用圆心到直线的距离、半径和弦长的一半,这三个量构成的直角三角形计算,即可求出两
圆公共弦长.
(3)两圆位置关系与公切线条数
两圆位置关系
内含 内切 相交 外切 外离
公切线条数
01234
12 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
3 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
撬点·基础点 重难点
4 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
学霸团 ·撬分法 ·高考数学·理
圆与圆的位置关系
设两个圆的半径分别为 R,r,R>r,圆心距为 d,则两圆的位置关系可用下表来表示:
撬题·对点题 必刷题
13 撬点·基础点 重难点
撬法·命题法 解题法
撬题·对点题 必刷题
10 撬点·基础点 重难点
撬法·命题法 解题法
【新高考】高三数学一轮基础复习讲义:第九章 9.4直线与圆、圆与圆的位置关系-(学生版+教师版)
直线与圆、圆与圆的位置关系判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.()(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()无题型一直线与圆的位置关系的判断例1(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切B.相交C.相离D.不确定(2)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能过点A(3,1)的直线l与圆x2+y2=1有公共点,则直线l的斜率的取值范围是() A.[-1,1]B.[0,3]C.[0,1]D.[-3,3]题型二圆与圆的位置关系例2(1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A .内切B .相交C .外切D .相离(2)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切; (2)m 取何值时两圆内切;(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 命题点2 直线与圆相交求参数范围例4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).(1)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A .2 6B .8C .4 6D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( )A .-33 B .- 3 C.33D. 3 1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. (3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 一、与圆有关的最值问题典例1 (1)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 1.圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离2.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( ) A .-43 B .-34C. 3 D .23.若点A ,B 为圆(x -2)2+y 2=25上的两点,点P (3,-1)为弦AB 的中点,则弦AB 所在的直线方程为________.4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为_____.1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=02.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 24.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( ) A .2x +y -3=0 B .2x -y -3=0 C .4x -y -3=0D .4x +y -3=05.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( ) A .相交 B .相切 C .相离 D .不确定6.已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点,若|PQ |=23,则直线l 的方程为( )A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=07.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.8.过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.9.已知点A (1-m,0),B (1+m ,0),若圆C :x 2+y 2-8x -8y +31=0上存在一点P 使得P A →·PB →=0,则正实数m 的最小值为________.10.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.11.已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.12.圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1)若圆O1与圆O2外切,求圆O2的方程;(2)若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.*13已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C的方程;(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.直线与圆、圆与圆的位置关系判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.(×)(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.(×)(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.(×)(4)过圆O:x2+y2=r2上一点P(x0,y0)的圆的切线方程是x0x+y0y=r2.(√)(5)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.(√)无题型一直线与圆的位置关系的判断例1(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是() A.相切B.相交C.相离D.不确定(2)圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为()A.相离B.相切C.相交D.以上都有可能答案(1)B(2)C解析(1)因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d=|a·0+b·0-1|a2+b2=1a2+b2<1.所以直线与圆相交.(2)直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x 2+y 2-2x +4y =0内.直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交, 故选C.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.过点A (3,1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的斜率的取值范围是( )A .[-1,1]B .[0,3]C .[0,1]D .[-3,3]答案 B解析 设直线l 的方程为y -1=k (x -3),则圆心到直线l 的距离d =|3k -1|1+k 2,因为直线l 与圆x 2+y 2=1有公共点,所以d ≤1,即|3k -1|1+k 2≤1,得0≤k ≤ 3. 题型二 圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离(2)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案(1)B(2)(-22,0)∪(0,22)解析(1)∵圆M:x2+(y-a)2=a2(a>0),∴圆心坐标为M(0,a),半径r1为a,圆心M到直线x+y=0的距离d=|a|2,由几何知识得⎝⎛⎭⎫|a|22+(2)2=a2,解得a=2.∴M(0,2),r1=2.又圆N的圆心坐标N(1,1),半径r2=1,∴|MN|=(1-0)2+(1-2)2=2,r1+r2=3,r1-r2=1.∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.(2)圆C的标准方程为(x-a)2+(y-a)2=4,圆心坐标为(a,a),半径为2. 依题意得0<a2+a2<2+2,∴0<|a|<2 2.∴a∈(-22,0)∪(0,22).思维升华判断圆与圆的位置关系时,一般用几何法,其步骤是(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d,求r1+r2,|r1-r2|;(3)比较d,r1+r2,|r1-r2|的大小,写出结论.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切;(2)m取何值时两圆内切;(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6),半径分别为11和61-m . (1)当两圆外切时,(5-1)2+(6-3)2=11+61-m , 解得m =25+1011.(2)当两圆内切时,因为定圆的半径11小于两圆圆心间距离5, 故只有61-m -11=5,解得m =25-1011. (3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,即4x +3y -23=0,所以公共弦长为2(11)2-(|4×1+3×3-23|42+32)2=27.题型三 直线与圆的综合问题 命题点1 求弦长问题例3已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3), BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4.命题点2 直线与圆相交求参数范围例4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若·=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. ·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1.故圆心C 在l 上,所以|MN |=2. 命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25,∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52,∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A .2 6B .8C .4 6D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( )A .-33 B .- 3 C.33D. 3 答案 (1)C (2)A解析 (1)由已知,得=(3,-1),=(-3,-9), 则·=3×(-3)+(-1)×(-9)=0, 所以⊥,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0,得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.(2)依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32,故该直线的斜率是-cos θsin θ=-33,故选A.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.考点分析与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1(1)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为()A.6 B.7 C.8 D.9(2)过点(2,0)引直线l与曲线y=1-x2相交于A、B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于()A.33B.-33C.±33D.- 3解析(1)∵A,B,C在圆x2+y2=1上,且AB⊥BC,∴AC为圆的直径,故+=2=(-4,0),设B(x,y),则x2+y2=1且x∈[-1,1],=(x-2,y),∴++=(x-6,y).故|++|=-12x+37,∴当x=-1时有最大值49=7,故选B.(2)∵S△AOB=12|OA||OB|sin∠AOB=12sin∠AOB≤12.当∠AOB =π2时,△AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan ∠OPH =-33).答案 (1)B (2)B 二、直线与圆的综合问题典例2 (1)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( ) A .2 B .4 2 C .6 D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( ) A.45π B.34π C .(6-25)πD.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.又|OD |=|2×0+0-4|5=45, ∴圆C 的最小半径为25, ∴圆C 面积的最小值为π(25)2=45π.答案 (1)C (2)A1.圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34 C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a 2=1,解得a =-43.3.若点A ,B 为圆(x -2)2+y 2=25上的两点,点P (3,-1)为弦AB 的中点,则弦AB 所在的直线方程为________. 答案 x -y -4=0解析 设圆心为M ,则M (2,0),∴k MP =-1, ∴直线AB 的斜率为1,∴直线AB 方程为y +1=x -3,即x -y -4=0.4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为_____. 答案 52-4解析 圆C 1关于x 轴对称的圆C 1′的圆心为C 1′(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C 1′和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为(3-2)2+(4+3)2-1-3=52-4.1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0答案 A解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x+y +5=0或2x +y -5=0,故选A.2.若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.依题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 2 答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ). 化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1, ∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0答案 A解析 如图所示,由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 6.已知圆C :x 2+(y -3)2=4,过A (-1,0)的直线l 与圆C 相交于P ,Q 两点,若|PQ |=23,则直线l 的方程为( ) A .x =-1或4x +3y -4=0B .x =-1或4x -3y +4=0C .x =1或4x -3y +4=0D .x =1或4x +3y -4=0答案 B解析 当直线l 与x 轴垂直时,易知x =-1,符合题意;当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),由|PQ |=23,得圆心C 到直线l 的距离 d =|-k +3|k 2+1=1,解得k =43, 此时直线l 的方程为y =43(x +1). 故所求直线l 的方程为x =-1或4x -3y +4=0.7.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a的距离d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.8.过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.答案22 解析 ∵(1-2)2+(2)2=3<4,∴点(1,2)在圆(x -2)2+y 2=4的内部.当劣弧所对的圆心角最小时,圆心(2,0)与点(1,2)的连线垂直于直线l . ∵2-01-2=-2,∴所求直线l 的斜率k =22. 9.已知点A (1-m,0),B (1+m ,0),若圆C :x 2+y 2-8x -8y +31=0上存在一点P 使得·=0,则正实数m 的最小值为________.答案 4解析 圆C :(x -4)2+(y -4)2=1,由已知P A ⊥PB ,设AB 的中点为M (1,0), ∴|PM |=12|AB |=m , 又|MC |=5,r =1,∴4≤|PM |≤6,∴正实数m 的最小值为4.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43.11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1), 即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2,∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P的轨迹方程为2x-4y+1=0.12.圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1)若圆O1与圆O2外切,求圆O2的方程;(2)若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.解(1)圆O1的圆心坐标为(0,-1),半径r1=2,圆O2的圆心坐标为(2,1),圆心距为|O1O2|=(2-0)2+(1+1)2=22,由两圆外切知,所求圆的半径为r2=22-2,圆O2的方程为(x-2)2+(y-1)2=12-8 2.(2)由题意知,圆心O1到AB的距离为22-(2)2=2,当圆心O2到AB的距离为22-2=2时,圆O2的半径r2=(2)2+(2)2=2,此时圆O2的方程为(x-2)2+(y-1)2=4.当圆心O2到AB的距离为22+2=32时,圆O2的半径r2′=(32)2+(2)2=25,此时圆O2的方程为(x-2)2+(y-1)2=20.综上知,圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.*13已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解 (1)设圆心C (a,0)(a >-52), 则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0 ⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t=0 ⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4, 所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。
高考数学一轮复习第九章解析几何9.4直线与圆、圆与圆的位置关系课件文北师大版
代数法:两圆方程联立组成方 程组的解的情况 无解
一组实数解 两组不同的实数解 一组实数解
无解
-4-
知识梳理 双基自测 自测点评
123
3.常用结论
(1)当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得
公共弦(公切线)所在的直线方程.
(2)①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. ②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-
几何法 d< r d= r d> r
代数法 Δ> 0 Δ= 0 Δ< 0
-3-
知识梳理 双基自测 自测点评
123
方法位置关 系 外离 外切 相交 内切
内含
几何法:圆心距 d 与 r1,r2 的关系 d>r1+r2 d=r1+r2 |r1-r2|<d<r1+r2 d=|r1-r2|(r1≠r2) 0≤d<|r1-r2|(r1≠r2)
.
关闭
由题意可知线段 AB 的中点 ������+1 ,2 在直线 x-y+������=0 上,代入得
2
2
m+c=3. 关闭
3解析 答案ຫໍສະໝຸດ -9-知识梳理 双基自测 自测点评
12345
5.在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截
得的弦长为
.
易知圆心坐标为(2,-1),半径 r=2,所以圆心到直线的距离为
A.(√3,2) B.(√3,3)
1+
高考数学一轮复习第九章平面解析几何9.4直线与圆、圆
【步步高】(江苏专用)2017版高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系 理1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________. ①相切; ②相交但直线不过圆心; ③相交过圆心; ④相离.答案 ②解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是__________. 答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+-2≤2,即|a +1|≤2,解得-3≤a ≤1.3.(2014·湖南改编)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 答案 9解析 圆C 1的圆心C 1(0,0),半径r 1=1,圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆心C 2(3,4),半径r 2=25-m ,从而C 1C 2=32+42=5.由两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.4.(2015·山东改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为____________.答案 -43或-34解析 由已知,得点(-2,-3)关于y 轴的对称点为(2,-3),由入射光线与反射光线的对称性,知反射光线一定过点(2,-3).设反射光线所在直线的斜率为k ,则反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.由反射光线与圆相切,则有d =|-3k -2-2k -3|k 2+1=1,解得k =-43或k =-34.5.(教材改编)圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题型一 直线与圆的位置关系例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是______. (2)若过点(1,2)总可以作两条直线与圆x 2+y 2+kx +2y +k 2-15=0相切,则实数k 的取值范围是________.(3)已知方程x 2+x tan θ-1sin θ=0有两个不等实根a 和b ,那么过点A (a ,a 2),B (b ,b 2)的直线与圆x 2+y 2=1的位置关系是________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833(3)相切解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)把圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=16-3k 24,所以16-3k24>0,解得-833<k <833.由题意知点(1,2)应在已知圆的外部, 把点代入圆的方程得1+4+k +4+k 2-15>0, 即(k -2)(k +3)>0, 解得k >2或k <-3,则实数k 的取值范围是⎝ ⎛⎭⎪⎫-833,-3∪⎝⎛⎭⎪⎫2,833.(3)由题意可知过A ,B 两点的直线方程为(a +b )x -y -ab =0,圆心到直线AB 的距离为d =|-ab |a +b 2+1,而a +b =-1tan θ,ab =-1sin θ,因此d =⎪⎪⎪⎪⎪⎪1sin θ⎝ ⎛⎭⎪⎫-1tan θ2+1,化简后得d =1,故直线与圆相切.思维升华 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系. (2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12.(1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长.(1)证明 由⎩⎪⎨⎪⎧y =kx +1,x -2+y +2=12,消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(4k -2)2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1)、B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长AB =1+k 2|x 1-x 2|=28-4k +11k21+k2=2 11-4k +31+k2,令t =4k +31+k 2,则tk 2-4k +(t -3)=0,当t =0时,k =-34,当t ≠0时,因为k ∈R ,所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 的最大值为4,此时AB 最小为27.题型二 圆与圆的位置关系例2 (1)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________.(2)过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程为________________________________________________________________________. (3)如果圆C :x 2+y 2-2ax -2ay +2a 2-4=0与圆O :x 2+y 2=4总相交,那么实数a 的取值范围是______________________.答案 (1)相交 (2)⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45(3)(-22,0)∪(0,22)解析 (1)两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交. (2)由⎩⎪⎨⎪⎧x 2+y 2+4x +y =-1, ①x 2+y 2+2x +2y +1=0, ②①-②得2x -y =0,代入①得x =-15或-1,∴两圆两个交点为⎝ ⎛⎭⎪⎫-15,-25,(-1,-2).过两交点的圆中,以⎝ ⎛⎭⎪⎫-15,-25,(-1,-2)为端点的线段为直径的圆时,面积最小.∴该圆圆心为⎝ ⎛⎭⎪⎫-35,-65,半径为⎝ ⎛⎭⎪⎫-15+12+⎝ ⎛⎭⎪⎫-25+222=255,圆的方程为⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45.(3)C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得:0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22)思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|;(3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.(1)圆C 1:x 2+y 2-2y =0,C 2:x 2+y 2-23x -6=0的位置关系为________.答案 内切解析 ∵圆C 1:x 2+y 2-2y =0的圆心为:C 1(0,1),半径r 1=1, 圆C 2:x 2+y 2-23x -6=0的圆心为:C 2(3,0),半径r 2=3, ∴C 1C 2=32+1=2,又r 1+r 2=4,r 2-r 1=2,∴C 1C 2=r 2-r 1=2,∴圆C 1与C 2内切.(2)设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切. 当半圆和圆相外切时,由OO ′=2=2a +a , 求得a =22-2;当半圆和圆相内切时,由OO ′=2=2a -a , 求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2. 题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则MN =________.答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6. 命题点2 由直线与圆相交求参数问题例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .解 (1)由题设,可知直线l 的方程为y =kx +1, 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=+k 1+k 2,x 1x 2=71+k2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k+k1+k2+8. 由题设可得4k+k1+k2+8=12,解得k =1, 所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以MN =2. 命题点3 直线与圆相切的问题例5 (1)过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+-2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.(2)已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. ①与直线l 1:x +y -4=0平行;②与直线l 2:x -2y +4=0垂直; ③过切点A (4,-1).解 ①设切线方程为x +y +b =0, 则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0; ②设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.(2)已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过A 点作圆的切线有两条,则a 的取值范围是____________.答案 (1)2 2 (2)⎝ ⎛⎭⎪⎫-233,233解析 (1)设P (3,1),圆心C (2,2),则PC =2,由题意知最短的弦过P (3,1)且与PC 垂直,所以最短弦长为222-22=2 2.(2)将圆C 的方程化为标准方程为⎝ ⎛⎭⎪⎫x +a 22+(y +1)2=4-3a 24,其圆心坐标为C ⎝ ⎛⎭⎪⎫-a 2,-1,半径r =4-3a24. 当点A 在圆外时,过点A 可作圆的两条切线, 则AC >r ,即⎝ ⎛⎭⎪⎫1+a 22++2>4-3a24, 即a 2+a +9>0,解得a ∈R .又4-3a 2>0时x 2+y 2+ax +2y +a 2=0才表示圆,故可得a 的取值范围是⎝ ⎛⎭⎪⎫-233,233.7.高考中与圆交汇问题的求解一、与圆有关的最值问题典例 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.(2)(2014·北京)已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.解析 (1)由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,∴x =-1时有最大值49=7.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m . 因为∠APB =90°,连结OP , 易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5,所以OP max =OC +r =6,即m 的最大值为6. 答案 (1)7 (2)6 二、直线与圆的综合问题典例 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(2)(2014·江西改编)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴AC 2=36+4=40.又r =2,∴AB 2=40-4=36. ∴AB =6.(2)∵∠AOB =90°,∴点O 在圆C 上. 设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为OD . 又OD =|2×0+0-4|5=45,∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π.答案 (1)6 (2)54π温馨提醒 (1)与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.(2)直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.[方法与技巧]1.直线与圆的位置关系体现了圆的几何性质和代数方法的结合,“代数法”与“几何法”是从不同的方面和思路来判断的.2.求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.3.圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则⎝ ⎛⎭⎪⎫l 22=r 2-d 2;(2)代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2].[失误与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.A 组 专项基础训练 (时间:40分钟)1.(2015·广东)平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是______________.答案 2x +y +5=0或2x +y -5=0解析 设所求直线方程为2x +y +c =0,依题有|0+0+c |22+12=5,解得c =±5,所以所求直线方程为2x +y +5=0或2x +y -5=0.2.已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A 、B 两点,且△ABC 为等边三角形,则实数a 的值为________. 答案 4±15解析 易知△ABC 是边长为2的等边三角形. 故圆心C (1,a )到直线AB 的距离为 3. 即|a +a -2|a 2+1=3,解得a =4±15. 3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为______________________________________________________________. 答案 2解析 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ). 化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切, ∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2.∴ab 的最大值为2.4.过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为______________. 答案 2x +y -3=0 解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为________. 答案 12,-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4.6.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=________. 答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PA ⊥x 轴,PA =PB = 3.∴△POA 为直角三角形,其中OA =1,AP =3,则OP =2, ∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos 60°=32.7.已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0,则m 的取值范围为________.答案 [2,3]解析 曲线C :x =-4-y 2,是以原点为圆心,2为半径的半圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的点Q 使得AP →+AQ →=0, 说明A 是PQ 的中点,Q 的横坐标x =6,∴m =6+x P2∈[2,3].8.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________. 答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0). 由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43.故k 的最大值是43.9.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. (1)证明 ∵圆C 过原点O ,且OC 2=t 2+4t2.∴圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,∴S △OAB =12OA ·OB =12×|4t |×|2t |=4,即△OAB 的面积为定值. (2)解 ∵OM =ON ,CM =CN , ∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12.∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),OC =5, 此时C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),OC =5, 此时C 到直线y =-2x +4的距离d =95> 5.圆C 与直线y =-2x +4不相交, ∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.10.(2014·课标全国Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积. 解 (1)圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于OP =OM ,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又OM =OP =22,O到l 的距离为4105,所以PM =4105,S △POM =12×4105×4105=165,故△POM 的面积为165.B 组 专项能力提升 (时间:30分钟)11.已知圆C :(x -a )2+(y -a )2=1 (a >0)与直线y =3x 相交于P ,Q 两点,则当△CPQ 的面积最大时,实数a 的值为________. 答案52解析 因为△CPQ 的面积等于12sin∠PCQ ,所以当∠PCQ =90°时,△CPQ 的面积最大,此时圆心到直线y =3x 的距离为22,因此22=|3a -a |10,解得a =52. 12.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于________.答案 -33解析∵S △AOB =12·OA ·OB ·sin∠AOB=12sin∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大. 此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0), 即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33.(也可k =-tan∠OPH =-33). 13.在平面直角坐标系xOy 中,圆C 1:(x +1)2+(y -6)2=25,圆C 2:(x -17)2+(y -30)2=r 2.若圆C 2上存在一点P ,使得过点P 可作一条射线与圆C 1依次交于点A ,B ,满足PA =2AB ,则半径r 的取值范围是________. 答案 [5,55]解析 由题意可知满足PA =2AB 的点P 应在以C 1为圆心,半径为25的圆上及其内部(且在圆C 1的外部),记该圆为C 3,若圆C 2上存在满足条件的点P ,则圆C 2与圆C 3有公共点,所以|r-25|≤+2+-2≤r +25,即|r -25|≤30≤r +25,解得5≤r ≤55.14.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. (1)证明 直线l 恒过定点P (1,1). 由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)解 圆心到直线的距离d =r 2-⎝ ⎛⎭⎪⎫AB 22=32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1, 解得m =±3,所以,l 的倾斜角为π3或2π3.(3)解 方法一 设A (x 1,y 1),B (x 2,y 2). 由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎪⎨⎪⎧y -1=k x -,x 2+y -2=5⇒(k 2+1)x 2-2k 2x +k 2-5=0,所以⎩⎪⎨⎪⎧x 1+x 2=2k2k +1, ②x 1x 2=k 2-5k 2+1, ③由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0. 方法二如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t , PD =0.5t .在Rt△CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2, 在Rt△CDA 中,CD 2=5-()1.5t 2,所以t =2,从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.15.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-32=1.由点到直线的距离公式得d =|1-k -3-1+k2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等, 即|1-k -3-a -b |1+k2=|5+1k -a -b |1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)·k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12或⎩⎪⎨⎪⎧a =-32,b =132.这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132,经检验点P 1和P 2满足题目条件.。
高三数学一轮复习第九章解析几何9-4直线与圆圆与圆的位置关系学案文含解析新人教A版
9.4 直线与圆、圆与圆的位置关系必备知识预案自诊知识梳理1.直线与圆的位置关系设直线l :Ax+By+C=0(A 2+B 2≠0), 圆:(x-a )2+(y-b )2=r 2(r>0),d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.2.圆与圆的位置关系设圆O 1:(x-a 1)2+(y-b 1)2=r 12(r 1>0),圆O 2:(x-a 2)2+(y-b 2)2=r 22(r 2>0).1.当两圆相交时,两圆方程(x 2,y 2项的系数相同)相减便可得公共弦所在直线的方程.2.过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x+y 0y=r 2.3.过圆(x-a )2+(y-b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x-a )+(y 0-b )(y-b )=r 2.4.过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在的直线方程为x 0x+y 0y=r 2.5.直线与圆的位置关系的常用结论(1)直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+(12l)2.(2)当直线与圆相交时,弦长公式|AB|=√1+k 2|x A -x B |=√(1+k 2)〖(x A +x B )2-4x A x B 〗. 6.同心圆系方程为(x-a )2+(y-b )2=r 2(r>0),其中a ,b 是定值,r 是参数.7.过直线Ax+By+C=0(A2+B2≠0)与圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R).8.过圆C1:x2+y2+D1x+E1y+F1=0(D12+E12-4F>0)和圆C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F>0)交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1)(该圆系不含圆C2,解题时,注意检验圆C2是否满足题意,以防漏解).考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(3)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点为A,B,则O,P,A,B四点共圆且直线AB的方程是x0x+y0y=r2.()(5)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.()2.(2020山东泰安三模,4)已知抛物线C:x2=4y的准线恰好与圆M:(x-3)2+(y-4)2=r2(r>0)相切,则r=()A.3B.4C.5D.63.直线l:x+ay=2被圆x2+y2=4所截得的弦长为2√3,则直线l的斜率为()A.√3B.-√3C.√33D.±√334.(2020全国2,理5,文8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为()A.√55B.2√55C.3√55D.4√555.(2020天津,12)已知直线x-√3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为.关键能力学案突破考点直线与圆的位置关系及其应用〖例1〗(1)(2020全国1,理11)已知☉M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P作☉M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为()A.2x-y-1=0B.2x+y-1=0C.2x-y+1=0D.2x+y+1=0(2)(2020全国3,理10)若直线l 与曲线y=√x 和圆x 2+y 2=15都相切,则l 的方程为( ) A.y=2x+1B.y=2x+12 C.y=12x+1D.y=12x+12(3)(2020浙江,15)已知直线y=kx+b (k>0)与圆x 2+y 2=1和圆(x-4)2+y 2=1均相切,则b= .,求参数的取值范围的常用方法有哪些?解题心得1.判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数或圆心到直线的距离的表达较烦琐,则用代数法.2.已知直线与圆的位置关系求参数的取值范围时,可根据数形结合思想利用直线与圆的位置关系的判断条件建立不等式(组)解决.对点训练1(1)已知直线l 过点P (-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围为( )A.(-2√2,2√2)B.(-√24,√24) C.(-√2,√2)D.(-18,18)(2)(2020山东菏泽一模,15)已知直线Ax+By+C=0(其中A 2+B 2=C 2,C ≠0)与圆x 2+y 2=6交于点M ,N ,O 是坐标原点,则|MN|= ,OM⃗⃗⃗⃗⃗⃗ ·MN ⃗⃗⃗⃗⃗⃗⃗ = .考点圆的切线与弦长问题〖例2〗已知点M (3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4. (1)求过点M 的圆的切线方程;(2)若直线ax-y+4=0与圆相切,求a 的值;ax-y+4=0与圆相交于A ,B 两点,且弦AB 的长为2√3,求a 的值.?解题心得1.求过某点的圆的切线问题,应首先确定点与圆的位置关系,然后求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.2.求直线被圆所截得的弦长,通常考虑由弦心距、弦长的一半、半径所构成的直角三角形,利用勾股定理来解决问题.对点训练2(1)(2020全国1,文6)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4(2)已知P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2-2y=0的两条切线,A,B 为切点,若弦AB的长的最小值为√2,则k的值为.考点圆与圆的位置关系及其应用〖例3〗(1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2√2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2020山东日照一模,4)已知圆C:x2+y2=1,直线l:ax-y+4=0.若直线l上存在点M,以M为圆心且半径为1的圆与圆C有公共点,则a的取值范围是()A.(-∞,-3〗∪〖3,+∞)B.〖-3,3〗C.(-∞,-√3〗∪〖√3,+∞)D.〖-√3,√3〗(3)若圆C:x2+y2=5-m与圆E:(x-3)2+(y-4)2=16有三条公切线,则m的值为()B.√3C.4D.6,圆心距与两圆半径的关系如何?解题心得1.判断两圆的位置关系,通常用几何法,从圆心距d与两圆半径的和、差的关系入手.如果用代数法,那么从方程组解的个数来判断,但有时不能得到准确结论.2.两圆位置关系中的含参问题有时需要将问题进行转化,要注重数形结合思想的应用.对点训练3(1)设P,Q分别为圆O1:x2+(y-6)2=2和圆O2:x2+y2-4x=0上的动点,则P,Q两点间的距离的最大值是()A.2√10+2+√2B.√10+2+√2C.2√10+1+√2D.√10+1+√2(2)(2020江苏镇江三模,10)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+1)2=1外切,则ab 的最大值为.(3)已知圆C与圆D:x2+y2+10x+10y=0相切于原点,且过点A(0,-6),则圆C的标准方程为.考点直线与圆的综合问题〖例4〗已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.(3)是否存在实数k,使得直线l:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.?解题心得1.利用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决.2.直线与圆和平面几何联系十分紧密,可充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长放到一起综合考虑.对点训练4(2020浙江杭州第二中学高三期中)已知圆心在x轴上的圆C与直线l:x+2√2y-10=0相切于点E(m,2√2),圆P:x2+(a+2)x+y2-ay+a+1=0.(1)求圆C的标准方程.(2)已知a>1,圆P与x轴相交于两点M,N(点M在点N的右侧).过点M任作一条倾斜角不为0的直线与圆C相交于A,B两点.问:是否存在实数a,使得∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.1.直线与圆、圆与圆的位置关系问题,考虑到圆的几何性质,一般用几何法解决.2.直线与圆、圆与圆的交点问题,要联立直线与圆的方程,或联立圆与圆的方程来解决.3.圆的切线问题:(1)过圆上一点的切线方程的求法是先求切点与圆心连线的斜率,再根据垂直关系求得切线斜率,最后通过直线方程的点斜式求得切线方程;(2)过圆外一点的切线方程的求法,一般是先设出所求切线方程的点斜式,再利用圆心到切线的距离等于半径列出等式求出所含的参数即可.若只求出一条切线方程,则斜率不存在的直线也是切线.4.圆的弦长问题首选几何法,即利用圆的半径、弦心距、弦长的一半满足勾股定理;弦长问题若涉及直线与圆的交点、直线的斜率,则选用代数法.1.过圆外一定点作圆的切线,有两条,若在某种条件下只求出一个结果,则斜率不存在的直线也是切线.2.本节问题的解决多注意数形结合,圆与其他知识的交汇问题多注意问题的转化.3.若圆与圆相交,则可以利用两个圆的方程作差的方法求得公共弦所在直线的方程.9.4直线与圆、圆与圆的位置关系必备知识·预案自诊知识梳理1.<>==><2.d>r1+r2无解d=r1+r2|r1-r2|<d<r1+r2一组实数解无解考点自诊1.(1)√(2)×(3)×(4)√(5)√2.C抛物线C:x2=4y的准线方程为y=-1,则r=|4+1|=5.3.D由题意可得圆心(0,0)到直线l:x+ay=2的距离d=√1+a2,则d2+3=22,可得d=1,即d=√1+a2=1,所以a=±√3,可得直线l的方程为x+√3y-2=0,或x-√3y-2=0,故斜率为±√33.故选D.4.B由题意可知,圆心在第一象限.设圆心为(a,a)(a>0),则(2-a)2+(1-a)2=a2,解得a=1或a=5.当a=1时,圆心为(1,1),此时圆心到直线2x-y-3=0的距离为d1=√5=2√55;当a=5时,圆心为(5,5),此时圆心到直线2x-y-3=0的距离为d2=√5=2√55.综上,圆心到直线2x-y-3=0的距离为2√55.故选B. 5.5如图.∵|AB|=6,∴|AD|=3.圆x2+y2=r2的圆心为(0,0).圆心到直线的距离|CD|=√1+3=4,∴|AC|=5,即r=5.关键能力·学案突破例1(1)D (2)D (3)√33 -2√33(1)由已知得☉M :(x-1)2+(y-1)2=4.因为S 四边形PAMB =12|PM|·|AB|=2S △PAM =|PA|·|AM|=2|PA|=2√|PM |2-4,所以|PM|·|AB|最小,即|PM|最小,此时PM 与直线l 垂直,PM 所在直线的方程为y=12x+12,直线PM 与直线l 的交点为P (-1,0).|PM|=√(1+1)2+(1-0)2=√5,在Rt △APM 中,|AP|=√|PM |2-|AM |2=1.又|AP|=|BP|=1,以P (-1,0)为圆心,|AP|=1为半径作圆,则AB 为☉M 与☉P 的公共弦,☉P 的方程为(x+1)2+y 2=1,即x 2+2x+y 2=0.两圆方程相减,得4x+2y+2=0,即直线AB 的方程为2x+y+1=0.(2)由y=√x 得y'=2√x ,设直线l 与曲线y=√x 的切点为(x 0,√x 0),则直线l 的方程为y-√x 0=2√x (x-x 0), 即2√x x-y+12√x 0=0,由直线l 与圆x 2+y 2=15相切,得圆心(0,0)到直线l 的距离等于圆的半径r=√55,即|12√x |√14x 0+1=√55,解得x 0=1(负值舍去),所以直线l 的方程为y=12x+12.(3)由对称性可知直线l 必过点(2,0),即2k+b=0,① 并且√1+k2=√1+k 2=1,②由①②解得k=√33,b=-2√33. 对点训练1(1)B (2)2√5 -10 (1)直线l 为kx-y+2k=0,又直线l 与圆x 2+y 2=2x 有两个交点,故√k 2+1<1,所以-√24<k<√24.故选B.(2)由已知A 2+B 2=C 2,C ≠0,得圆心到直线Ax+By+C=0的距离d=√A 2+B 2=1,则|MN|=2√6-d 2=2√5.设OM ⃗⃗⃗⃗⃗⃗ 与MN ⃗⃗⃗⃗⃗⃗⃗ 的夹角为θ,则cos(π-θ)=12|MN ||OM |=√306, 所以cos θ=-√306,所以OM ⃗⃗⃗⃗⃗⃗ ·MN ⃗⃗⃗⃗⃗⃗⃗ =√6×2√5×(-√306)=-10. 例2解(1)由题意知圆心的坐标为(1,2),半径r=2.当直线的斜率不存在时,直线方程为x=3.由圆心(1,2)到直线x=3的距离d=3-1=2=r 知,此时直线与圆相切.当直线的斜率存在时,设直线方程为y-1=k (x-3),即kx-y+1-3k=0.由题意知√k 2+1=2,解得k=34.所以直线方程为y-1=34(x-3),即3x-4y-5=0.故过点M 的圆的切线方程为x=3或3x-4y-5=0. (2)由题意得√a 2+1=2,解得a=0或a=43.(3)因为圆心(1,2)到直线ax-y+4=0的距离为√a 2+1,所以(√a 2+1)2+(2√32)2=4,解得a=-34. 对点训练2(1)B (2)√462(1)圆的方程可化为(x-3)2+y 2=9.因为√(1-3)2+(2-0)2=2√2<3, 所以点(1,2)在圆内.如图所示,设圆心O 1(3,0),A (1,2),当弦BC 与O 1A 垂直时弦最短,因为|O 1A|=2√2,|O 1B|=3, 所以|AB|=√|O 1B |2-|O 1A |2=√9-8=1, 所以|BC|=2|AB|=2.(2)圆C :x 2+y 2-2y=0的圆心为C (0,1),半径r=1,如图所示,根据圆的性质知AB ⊥PC ,∵|AB|=2|PB|sin ∠BPC=2|PB|×|CB ||PC |=2×|PB ||PC |,∴|AB|2=4×|PB |2|PC |2=4|PC |2-1|PC |2=41-1|PC |2,当|PC|取得最小值时,|AB|取得最小值√2,即有2=41-1|PC |2,解得|PC|=√2,此时圆心C 到直线的距离就是|PC|的最小值,即5√1+k 2=√2,解得k=√462(负值舍去).例3(1)B (2)C (3)C (1)由题意得圆M 的标准方程为x 2+(y-a )2=a 2(a>0),圆心(0,a )到直线x+y=0的距离d=√2a2,所以2√a 2-a 22=2√2,解得a=2.故圆M 与圆N 的圆心距|MN|=√2. 因为2-1<√2<2+1,所以两圆相交.(2)由题意知,圆C :x 2+y 2=1的圆心(0,0)到直线l :ax-y+4=0的距离d ≤2,d=√a 2+1≤2,解得a ≤-√3或a ≥√3,所以a 的取值范围是(-∞,-√3〗∪〖√3,+∞).故选C .(3)由题意可知两圆外切,圆C 的圆心坐标为(0,0),半径为√5-m ,圆E 的圆心坐标为(3,4),半径为4,则√32+42=√5-m +4,解得m=4.故选C.对点训练3 (1)A (2)2 (3)(x+3)2+(y+3)2=18 (1)圆O 1的圆心为O 1(0,6),半径r 1=√2,将圆O 2的方程化为标准方程为(x-2)2+y 2=4,故圆心O 2(2,0),半径r 2=2.则|O 1O 2|=√22+62=√4+36=2√10>r 1+r 2=2+√2,所以两圆相离,则|PQ|max =2√10+2+√2.故选A .(2)由题意,得|C 1C 2|=√(a +b )2+(-2+1)2=2+1,所以(a+b )2=8,即a 2+b 2+2ab=8,4ab ≤8,当且仅当a=b 时,等号成立,故ab 的最大值为2.(3)由已知得圆心D 的坐标为(-5,-5),因为圆C 与圆D 相切于原点O ,则圆心C 在直线OD :y=x 上.又圆C 过点A ,则圆心C 在线段OA 的中垂线y=-3上,则圆心C 的坐标为(-3,-3),半径r=|OC|=3√2,故圆C 的标准方程为(x+3)2+(y+3)2=18.例4解(1)因为圆C 1的方程x 2+y 2-6x+5=0可化为(x-3)2+y 2=4,所以圆心坐标为(3,0).(2)设点A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由题意可知直线l 的斜率必存在,设直线l 的方程为y=tx.将上述方程代入圆C 1的方程, 化简得(1+t 2)x 2-6x+5=0.由题意可得x 1+x 2=61+t 2,Δ=36-20(1+t 2)>0,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t 2.因为x 02+y 02=9(1+t 2)2+9t 2(1+t 2)2=9(1+t 2)(1+t 2)2=91+t 2=3x 0,所以(x 0-32)2+y 02=94.由Δ>0解得t 2<45.又t 2≥0,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为(x -32)2+y 2=94(53<x ≤3).(3)存在实数k 满足条件.由(2)知,曲线C 是在区间(53,3]上的一段圆弧.如图,D53,2√53,E53,-2√53,F (3,0),直线l 过定点G (4,0).联立直线l 的方程与曲线C 的方程,消去y 整理得(1+k 2)x 2-(3+8k 2)x+16k 2=0.由Δ=0,解得k=±34,此时直线l 与曲线C 相切,由根与系数的关系易得切点的横坐标为x=125∈(53,3],又k DG =-2√57,k EG =2√57,由图可知要使直线l 与曲线C 只有一个交点,则k ∈-2√57,2√57∪{-34,34}.故k 的取值范围为-2√57,2√57∪{-34,34}.对点训练4解(1)设圆心C (c ,0),∵点E (m ,2√2)在直线l :x+2√2y-10=0上,∴m+2√2×2√2-10=0,解得m=2. ∴点E (2,2√2).由题意得|c -10|3=√(c -2)2+8,解得c=1.∴圆心C (1,0),半径r=3.故圆C 的标准方程为(x-1)2+y 2=9.(2)在圆P 的方程中,令y=0,可得x 2+(a+2)x+a+1=0, 解得x 1=-1-a ,x 2=-1.∵a>1,点M 在点N 的右侧, ∴点N (-1-a ,0),M (-1,0).设点A (x 1,y 1),B (x 2,y 2),过点M ,倾斜角不为0且不垂直于x 轴的直线的方程为y=k (x+1)(k ≠0),代入圆C 的方程,消去y ,得(1+k 2)x 2+2(k 2-1)x+k 2-8=0,∴x 1+x 2=2(1-k 2)1+k 2,x 1x 2=k 2-81+k 2.设直线AN ,BN 的斜率分别为k 1,k 2,则k 1=y 1x 1+1+a,k 2=y 2x 2+1+a,∴k 1+k 2=k (x 1+1)x1+1+a+k (x 2+1)x 2+1+a=k x 1+1x 1+1+a+x 2+1x 2+1+a=k·(x 1+1)(x 2+1+a )+(x 2+1)(x 1+1+a )(x 1+1+a )(x 2+1+a )=k·2x 1x 2+(2+a )(x 1+x 2)+2+2a(x 1+1+a )(x 2+1+a ).令t=2x 1x 2+(2+a )(x 1+x 2)+2+2a=2k 2-161+k 2+2(2+a )(1-k 2)1+k 2+2+2a=4a -101+k 2.由∠ANM=∠BNM ,知k 1+k 2=0,则t=0,即4a -101+k 2=0,解得a=52.当直线垂直于x 轴时,显然满足∠ANM=∠BNM.故存在实数a=52满足题意.。
2014届高考数学一轮复习精品课件:9.4-直线与圆、圆与圆的位置关系11
主页
课堂互动讲练
互动探究
例1条件不变,试求在交点处 两条半径互相垂直时m的值.
解:如图,由于交 点处两条半径互相垂 直,
∴弦与过弦两端的 半径组成等腰直角三角 形,
当 a= 3时,A(1, 3),切线方程为 x+ 3y-4=0; 当 a=- 3时,A(1,- 3),切线方程为 x- 3y-4=0, ∴a= 3时,切线方程为 x+ 3y-4=0,
变式训练 1 已知直线 l:y=kx+1,圆 C:(x-1)2+(y+1)2=12. (1)试证明:不论 k 为何实数,直线 l 和圆 C 总有两个交点; (2)求直线 l 被圆 C 截得的最短弦长.
方法一 (1)证明 由y(x=-k1x)+2+1,(y+1)2=12, 消去 y 得(k2+1)x2-(2-4k)x-7=0, 因为 Δ=(2-4k)2+28(k2+1)>0, 所以不论 k 为何实数,直线 l 和圆 C 总有两个交点.
主页
课堂互动讲练
(1)几何法:设圆的半径为 r,弦心距为 d,弦 长为 L,则(L2)2=r2-d2.
(2)代数法:设直线与圆相交于 A(x1,y1),B(x2, y=kx+b
y2)两点,联立方程组(x-x0)2+(y-y0)2=r2 消 y 后得关于 x 的一元二次方程,从而求得 x1+x2, x1x2,则弦长为|AB|= (1+k2)[(x1+x2)2-4x1x2](k 为直线斜率).
无公共点.
主页
课堂互动讲练
(2)如图,由平面几何垂径 定理知
r2-d2=12, 即 5-m52=1. 得 m=±2 5, ∴当 m=±2 5时,直线被 圆截得的弦长为 2.
高考数学一轮复习 第九章 平面解析几何 第46课 直线与圆、圆与圆的位置关系教师用书
第46课直线与圆、圆与圆的位置关系[最新考纲]1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:d<r⇔相交;d=r⇔相切;d>r⇔相离.(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.2.圆与圆的位置关系设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.( )(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( )(3)如果两圆的圆心距小于两半径之和,则两圆相交.( )(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程.( )[解析] 依据直线与圆、圆与圆的位置关系,只有(4)正确.[答案] (1)× (2)× (3)× (4)√2.(教材改编)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 相交 [两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.]3.(2017·南京模拟)若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________.[0,10] [因为(x +1)2+(y -2)2=1,所以由题意得|-3+4×2-m |5≤1⇒|m -5|≤5⇒0≤m ≤10.]4.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为__________.2555[圆心为(2,-1),半径r =2. 圆心到直线的距离d =|2+--3|1+4=355,所以弦长为2r 2-d 2=222-⎝⎛⎭⎪⎫3552=2555.] 5.(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若AB =23,则圆C 的面积为________.4π [圆C :x 2+y 2-2ay -2=0化为标准方程是C :x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2.AB =23,点C 到直线y =x +2a 即x -y +2a =0的距离d =|0-a +2a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2,解得a 2=2,所以r=2,所以圆C 的面积为π×22=4π.]________. (2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.(1)相交 (2)6 [(1)法一:∵圆心(0,1)到直线l 的距离d =|m |m 2+1<1< 5.故直线l 与圆相交.法二:直线l :mx -y +1-m =0过定点(1,1),∵点(1,1)在圆C :x 2+(y -1)2=5的内部,∴直线l 与圆C 相交.(2)由圆C 的标准方程为(x -2)2+(y -1)2=4. ∴圆心为C (2,1),半径r =2,由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).于是AB 2=AC 2-r 2=40-4=36,则AB =6.][规律方法] 1.(1)利用圆心到直线的距离可判断直线与圆的位置关系,也可利用直线的方程与圆的方程联立后得到的一元二次方程的判别式来判断直线与圆的位置关系;(2)注意灵活运用圆的几何性质,联系圆的几何特征,数形结合,简化运算.如“切线与过切点的半径垂直”等.2.与弦长有关的问题常用几何法,即利用弦心距、半径和弦长的一半构成直角三角形进行求解.[变式训练1] (1)(2017·山西忻州模拟)过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为________. 【导学号:62172250】(2)(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则CD =__________.(1)2x +y -7=0 (2)4 [(1)依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点. ∴圆心(1,0)与切点(3,1)连线的斜率为12.因此切线的斜率k =-2.故圆的切线方程为y -1=-2(x -3),即2x +y -7=0. (2)由圆x 2+y 2=12知圆心O (0,0),半径r =2 3.∴圆心(0,0)到直线x -3y +6=0的 距离d =61+3=3,AB =212-32=2 3.过C 作CE ⊥BD 于E . 如图所示,则CE =AB =2 3. ∵直线l 的方程为x -3y +6=0, ∴k AB =33,则∠BPD =30°,从而∠BDP =60°.∴CD =CEsin 60°=AB sin 60°=2332=4.]x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________.(2)(2017·南京三模)在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为________.(1)相交 (2)3 [(1)法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0得两交点为(0,0),(-a ,a ).∵圆M 截直线所得线段长度为22, ∴a 2+-a2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2. 又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴MN =-2+-2= 2.∵r 1-r 2=1,r 1+r 2=3,1<MN <3,∴两圆相交. 法二:∵x 2+y 2-2ay =0(a >0)⇔x 2+(y -a )2=a 2(a >0), ∴M (0,a ),r 1=a .∵圆M 截直线x +y =0所得线段的长度为22,∴圆心M 到直线x +y =0的距离d =a2=a 2-2,解得a =2.以下同法一.(2)由题意得圆N 与圆M 内切或内含,即MN ≤ON -1⇒ON ≥2,又ON ≥OM -1,所以OM ≥3.a 2+a -2≥3⇒a ≥3或a ≤0(舍).因此a 的最小值为3.][规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系. 2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到.3.若两圆相交,则两圆心的连线垂直平分公共弦.[变式训练2] 若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是__________.4 [由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,∴O 1A ⊥OA .又∵OA =5,O 1A =25, ∴OO 1=5.又A ,B 关于OO 1对称,∴AB 为Rt △OAO 1斜边上高的2倍. 又∵12·OA ·O 1A =12OO 1·AC ,得AC =2.∴AB =4.]已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程.图461[解] 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1. 因此,圆N 的标准方程为(x -6)2+(y -1)2=1.(2)因为直线l ∥OA , 所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25, 而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22, 所以25=m +25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.[规律方法] 1.(1)设出圆N 的圆心N (6,y 0),由条件圆M 与圆N 外切,求得圆心与半径,从而确定圆的标准方程.(2)依据平行直线,设出直线l 的方程,根据点到直线的距离公式及勾股定理求解.2.求弦长常用的方法:①弦长公式;②半弦长、半径、弦心距构成直角三角形,利用勾股定理求解(几何法).[变式训练3] 在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且MN =23,求直线MN 的方程. 【导学号:62172251】[解] (1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m . ∵圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, ∴圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r , ∴圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0.∵MN =23,半径r =2,∴圆心(-2,1)到直线MN 的距离为22-32=1.则|-4-1+c |5=1,∴c =5± 5. ∴直线MN 的方程为2x -y +5±5=0.[思想与方法]1.直线与圆的位置关系体现了圆的几何性质和代数方程的结合,解题时要抓住圆的几何性质,重视数形结合思想方法的应用.2.计算直线被圆截得的弦长的常用方法:(1)几何方法:运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法:弦长公式AB=1+k2|x A-x B|=+k2x A+x B2-4x A x B].[易错与防范]1.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为“-1”列方程来简化运算.2.过圆上一点作圆的切线有且只有一条;过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.课时分层训练(四十六)A组基础达标(建议用时:30分钟)一、填空题1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是________.相交[由题意知点在圆外,则a2+b2>1,圆心到直线的距离d=1a2+b2<1,故直线与圆相交.]2.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=________.【导学号:62172252】9 [圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而C 1C 2=32+42=5.两圆外切得C 1C 2=r 1+r 2,即1+25-m =5,解得m =9.]3.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是________.-4 [由x 2+y 2+2x -2y +a =0, 得(x +1)2+(y -1)2=2-a ,所以圆心坐标为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离为|-1+1+2|2=2,所以22+(2)2=2-a ,解得a =-4.]4.过点P (4,2)作圆x 2+y 2=4的两条切线,切点分别为A ,B ,O 为坐标原点,则△OAB 外接圆的方程是________.(x -2)2+(y -1)2=5 [由题意知,O ,A ,B ,P 四点共圆,所以所求圆的圆心为线段OP 的中点(2,1).又圆的半径r =12OP =5,所以所求圆的方程为(x -2)2+(y -1)2=5.]5.已知圆C :(x -1)2+y 2=25,则过点P (2,-1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是________. 【导学号:62172253】1023 [易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且PC =2,∴最短弦的长为2r 2-PC 2=225-2=223.故所求四边形的面积S =12×10×223=1023].6.已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________________.x +y -3=0 [∵圆C 1的圆心C 1(3,0),圆C 2的圆心C 2(0,3),∴直线C 1C 2的方程为x +y-3=0,AB 的中垂线即直线C 1C 2,故其方程为x +y -3=0.]7.若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.2 [如图,过点O 作OD ⊥AB 于点D ,则OD =532+-2=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°, ∴OB =2OD =2,即r =2.]8.(2017·南通模拟)过点(1,-2)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为________. 【导学号:62172254】y =-12[圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以-2+-2-2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.]9.(2017·南京模拟)直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=__________.2 [依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点,则∠AOB =90°.如图,此时a =1,b =-1,满足题意,所以a 2+b 2=2.]10.(2017·徐州联考)已知圆C :(x +2)2+y 2=4,直线l :kx -y -2k =0(k ∈R ),若直线l 与圆C 恒有公共点,则实数k 的最小值是__________.-33[圆心C (-2,0),半径r =2. 又圆C 与直线l 恒有公共点.所以圆心C (-2,0)到直线l 的距离d ≤r . 因此|-2k -2k |k 2+1≤2,解得-33≤k ≤33.所以实数k 的最小值为-33.] 二、解答题11.(2017·徐州模拟)在平面直角坐标系xOy 中,已知圆M 经过点A (1,0),B (3,0),C (0,1).(1)求圆M 的方程;(2)若直线l :mx -2y -(2m +1)=0与圆M 交于点P ,Q ,且MP →·MQ →=0,求实数m 的值. [解] (1)法一:设圆M 的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧D +F +1=0,3D +F +9=0,E +F +1=0,解得⎩⎪⎨⎪⎧D =-4,E =-4,F =3.所以圆M 的方程x 2+y 2-4x -4y +3=0.法二:线段AC 的垂直平分线的方程为y =x ,线段AB 的垂直平分线的方程为x =2,由⎩⎪⎨⎪⎧y =x ,x =2,解得M (2,2).所以圆M 的半径r =AM =5,所以圆M 的方程为(x -2)2+(y -2)2=5. (2)因为MP →·MQ →=0,所以∠PMQ =π2.又由(1)得MP =MQ =r =5, 所以点M 到直线l 的距离d =102. 由点到直线的距离公式可知,|2m -4-2m -1|m 2+4=102,解得m =± 6.12.已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5). (1)求过点A 的圆的切线方程;(2)O 点是坐标原点,连结OA ,OC ,求△AOC 的面积S . [解] (1)由圆C :x 2+y 2-4x -6y +12=0,得(x -2)2+(y -3)2=1,圆心C (2,3).当斜率存在时,设过点A 的圆的切线方程为y -5=k (x -3),即kx -y +5-3k =0.由d =|2k -3+5-3k |k 2+1=1,得k =34.又斜率不存在时直线x =3也与圆相切, 故所求切线方程为x =3或3x -4y +11=0. (2)直线OA 的方程为y =53x ,即5x -3y =0,又点C 到OA 的距离d =|5×2-3×3|52+-2=134.又OA =32+52=34.所以S =12OAd =12.B 组 能力提升 (建议用时:15分钟)1.(2017·南通调研一)在平面直角坐标系xOy 中,点A (1,0),B (4,0).若直线x -y +m =0上存在点P ,使得PA =12PB ,则实数m 的取值范围是________.[-22,22] [法一:设满足条件PB =2PA 的P 点坐标为(x ,y ),则(x -4)2+y 2=4(x -1)2+4y 2,化简得x 2+y 2=4.要使直线x -y +m =0有交点,则|m |2≤2.即-22≤m ≤2 2.法二:设直线x -y +m =0有一点(x ,x +m )满足PB =2PA ,则 (x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0(*)方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-22≤m ≤2 2.]2.(2017·泰州模拟)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.9 [圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以-2a -2+-b2=2-1,得4a 2+b 2=1,所以1a 2+1b2=⎝ ⎛⎭⎪⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b 2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.]3.如图462,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .图462(1)求圆A 的方程;(2)当MN =219时, 求直线l 的方程. [解] (1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2). 即kx -y +2k =0. 连结AQ ,则AQ ⊥MN∵MN =219,∴AQ =20-19=1, 则由AQ =|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0.4.(2013·江苏高考)如图463,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.图463(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[解] (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO , 所以x 2+y -2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1,即1≤a 2+a -2≤3.整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
因为圆 C1 和 C2 的半径相等, 及直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相 等,所以圆 C1 的圆心到直线 l1 的距离和圆 C2 的圆心到直线 l2 的距离相等,即 5+1(4-a)-b k |1-k(-3-a)-b| = ,(8 分) 2 1 1+k 1+ 2
1.直线与圆的位置关系 (1)直线与圆的位置关系有三种:____、____、____. 判断直线与圆的位置关系常见的有两种方法: ①代数法:把直线方程与圆的方程联立方程组,消去 x 或 y 整理成一元二次方程后,计 >0⇔ 2 算判别式 Δ =b -4ac=0⇔ <0⇔ , , .
②几何法:利用圆心到直线的距离 d 和圆的半径 r 的大小关系: d<r⇔____, d=r⇔____, d>r⇔____. (2)圆的切线方程: 2 2 2 2 2 2 若圆的方程为 x +y =r ,点 P(x0,y0)在圆上,则过 P 点且与圆 x +y =r 相切的切线 方程为____________. 2 2 2 注:点 P 必须在圆 x +y =r 上. 2 2 2 经过圆(x-a) +(y-b) =r 上点 P(x0,y0)的切线方程为______________. (3)直线与圆相交: 2 2 2 直线与圆相交时, 若 l 为弦长, d 为弦心距, r 为半径, 则有 r =______, 即 l=2 r -d , 求弦长或已知弦长求其他量的值,一般用此公式. 2.圆与圆的位置关系 (1)圆与圆的位置关系可分为五种:_____、 _____、_____、_____、_____. (2)判断圆与圆的位置关系常用方法: ①几何法:设两圆圆心分别为 O1,O2,半径为 r1,r2(r1≠r2),则|O1O2|>r1+r2⇔____; |O1O2|=r1+r2⇔____;|r1-r2|<|O1O2|<r1+r2⇔____;|O1O2|=|r1-r2|⇔____;|O1O2|< |r1-r2|⇔____. ②代数法: 2 2 x +y +D1x+E1y+F1=0, 方程组 2 2 x +y +D2x+E2y+F2=0, 有两组不同的实数解⇔两圆____; 有两组相同的实数解⇔两圆____; 无实数解⇔两圆相离或内含. 3.在空间直角坐标系中,O 叫做坐标原点,x,y,z 轴统称为坐标轴,由坐标轴确定的 平面叫做坐标平面. 这儿所 说的空间直角坐标系是空间右手直角坐标系: 即伸开右手, 使拇 指指向______轴的正方向,食指指向______轴的正方向,中指指向______轴的正方向.也可 这样建立坐标系:令 z 轴的正方向竖直向上,先确定 x 轴的正方向,再将其按逆时针方向旋 转 90°就是 y 轴的正方向. 4.空间点的坐标 设点 P(x,y,z)为空间坐标系中的一点,则(1)关于原点的对称点是______;(2)关于 x
(11 分)
1 5 3 13 这样点 P 只可能是点 P1 ,- ,或点 P2- , . 2 2 2 2 经检验点 P1 和 P2 满足题目条件.(12 分) 答题指导:解决直线与圆的位置关系问题时,要注意以下几点: (1)根据题设条件,合理选择利用代数方法还是利用几何方法判断其位置关系; (2)凡是涉及参数的问题,一定要注意参数的变化对位置关系的影响,以便确定是否分 类讨论.
2 2
一、直线与圆的位置关系 2 2 2 2 【例 1-1】点 M(a,b)是圆 x +y =r 内异于圆心的一点,则直线 ax+by=r 与圆的交 点个数为( ). A.0 B.1 C.2 D.需要讨论确定 2 2 【例 1-2】已知点 P(0,5)及圆 C:x +y +4x-12y+24=0.若直线 l 过点 P 且被圆 C 截得的弦长为 4 3,求直线 l 的方程. 方法提炼 1.直线与圆的位置关系有两种判定方法:代数法与几何法.由于几何法一般比代数法 计算量小,简便快捷,所以更容易被人接受.同时,由于它们的几 何性质非常明显,所以 利用数形结合,并充分考虑有关性质会使问题处理起来更加方便. 2.直线与圆相交求弦长有两种方法: (1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别 2 式 Δ > 0 的前提下,利用根与系数的关系求弦长.弦长公式 l = 1+k ·|x1 - x2| = Δ 2 2 2 (1+k )[(x1+x2) -4x1x2]= 1+k · .其中 a 为一元二次 方程中的二次项系数. |a| (2)几何方法:若 弦心距为 d,圆的半径长为 r,则弦长 l=2 r -d . 代数法计算量较大,我们一般选用几何法. 请做演练巩固提升 3 二、圆与圆的位置关系 【例 2-1】设两圆 C1,C2 都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2| =( ). A.4 B.4 2 C.8 D.8 2 2 2 【例 2-2】已知圆 C 的圆心在直线 x-y-4=0 上,并且通过两圆 C1:x +y -4x-3= 2 2 0 和 C2:x +y -4y-3=0 的交点, (1)求圆 C 的方程; (2)求两圆 C1 和 C2 相交弦所在直线的方程.
2
2
2
2
4
参考答案 基础梳理自测 知识梳理 1.(1)相切 相交 相离 ①相交 相切 相离 ②相交 相切 相离 (2)x0x+y0y=r
2
(x0-a)(x-a)+(y0-b)(y-b)=r
2
(3)d + 2
2
l2
2.(1)相离 外切 相交 内切 内含 ①相离 外切 相交 内切 内含 ②相交 相切 3.x y z 4.(-x,-y,-z) (x,-y,-z) (-x,y,-z) (-x,-y,z) (x,y,-z) (-x,y,z) (x,-y,z) 2 2 2 5. (x1-x2) +(y1-y2) +(z1-z2) 基础自测 |-1-0+1| 1.B 解析:∵圆心(-1,0)到直线 x-y+1=0 的距离 d= =0, 2 ∴直线过圆心. 3 2. D 解析: 设切线方程为 y- 3=k(x -1), 由 d=r, 可求得 k= .故方程为 x- 3 3 y+2=0. 2 2 2 2 3.B 解析:两圆方程可化为 x +(y-1) =1,x +y =4.两圆圆心分别为 O1(0,1), O2(0,0),半径分别为 r1=1,r2=2. ∵|O1O2|=1=r2-r1, ∴两圆内切. 4.2 14 解析:由题意知圆心为(-2,2),r=4, 则圆心到直线的距离 d= 2. 又∵r=4,∴|AB|=2 14. 2 2 2 5.1 或 9 解析:由空间两点间的距离公式,得 (x-5) +(2-4) +(3-7) =6, 2 即(x-5) =16,解得 x=1 或 x=9. 24 6.3x-4y+6=0 解析:设两圆的交点为 A(x1,y1),B(x2,y2), 5 2 2 2 2 则 A,B 两点满足方程 x +y +2x-6y+1=0 与 x +y -4x+2y-11=0,将两个方程相 减得 3x-4y+6=0,即为两圆公共弦所在直线的方程. 易知圆 C1 的圆心 C1(-1,3), 半径 r=3, 用点到直线的距离公式可以求得点 C1 到直线的 |-1×3-4×3+6| 9 距离为:d= = . 2 2 5 3 +4 所以利用勾股定理得到|AB|=2 r -d =
2 2
2
方法提炼 1.判断两圆的位置关系,通常是用几何法,从圆心距 d 与两圆半径长的和、差的关系 入手. 如果用代数法, 从交点个数也就是方程组解的个数来判断, 但有时不能得到准确结论. 2.若所求圆过两圆的交点,则可将圆的方程设为过两圆交点的圆系方程 C1+ λ C2= 0(λ ≠-1). 3.利用两圆方程相减即可得到相交弦所在直线的方程. 请做演练巩固提升 1 三、空间直角坐标系 【例 3】在空间直角坐标系中,已知点 A(1,0,2),B(1,-3,1),点 M 在 y 轴上,且点 M 到点 A 与点 B 的距离相等,则点 M 的坐标是__________. 方法提炼 距离是几何中的基本度量单位, 由平面上两点之间的距离公式可类比得到空间两点之间 的距离公式.利用该公式可解决以下问题:(1)求给定两点间的距离;(2)利用距离公式求参 数值或最值;(3)判断几何图形的形状. 请做演练巩固提升 4 易遗漏对“x=4”的讨论而致误 2 2 【典例】(12 分)在平面直角坐标系 xOy 中,已知圆 C1:(x+3) +(y-1) =4 和圆 C2: 2 2 (x-4) +(y-5) =4.
整理得|1+3k+ak-b|=|5k+4-a-bk|, 从而 1+3k+ak-b=5k+4-a-bk,或 1+3k+ak-b=-5k-4+a+bk, 即(a+b-2)k=b-a+3,或(a-b+8)k=a+b-5,
3
因为 k 的取值有无穷多个,(10 分) a+b-2=0, a-b+8=0, 所以 或 b-a+3=0, a+b-5=0, 5 a=2, 解得 1 b=-2, 3 a=-2, 或 13 b= 2 .
1
轴的对称点是______; (3)关于 y 轴的对称点是______; (4)关于 z 轴的对称点是______; (5) 关于 xOy 坐标平面的对称点是______;(6)关于 yOz 坐标平面的对称点是______;(7)关于 xOz 坐标平面的对称点是______. 5.空间两点间的距离 设 A(x1,y1,z1),B(x2,y2,z2),则|AB|=__________. 1.直线 x-y+1=0 与圆(x+1) +y =1 的位置关系是( ). A.相切 B.直线过圆心 C.直线不过圆心,但与圆相交 D.相离 2 2 2.圆 x +y -4x=0 在点 P(1, 3)处的切线方程为( ). A.x+ 3y-2=0 B.x+ 3y-4=0 C.x- 3y+4=0 D.x- 3y+2=0 2 2 2 2 3.两圆 x +y -2y=0 与 x +y -4=0 的位置关系是( ). A.相交 B.内切 C.外切 D.内含 2 2 4.直线 x-y+2=0 被圆 x +y +4x-4y-8=0 截得的弦长等于__________. 5.已知 A(x,2,3),B(5,4,7),且|AB|=6,则 x 的值为__________. 2 2 2 2 6.已知圆 C1:x +y +2x-6y+1=0,圆 C2:x +y -4x+2y-11=0,则两圆的公共 弦所在的直线方程为__________,公共弦长为__________.