2016年河南省中考猜想数学试卷和解析PDF版

合集下载

2020年河南省中考数学试卷解析版

2020年河南省中考数学试卷解析版

2020年河南省中考数学试卷解析版2020年河南省中考数学试卷题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.2的相反数是()A. -2B. -C.D. 22.如图摆放的⼏何体中,主视图与左视图有可能不同的是()A. B. C. D.3.要调查下列问题,适合采⽤全⾯调查(普查)的是()A. 中央电视台《开学第⼀课》的收视率B. 某城市居民6⽉份⼈均⽹上购物的次数C. 即将发射的⽓象卫星的零部件质量D. 某品牌新能源汽车的最⼤续航⾥程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A. 100°B. 110°C. 120°D. 130°5.电⼦⽂件的⼤⼩常⽤B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频⽂件的⼤⼩约为1GB,1GB等于()A. 230BB. 830BC. 8×1010BD. 2×1030B6.若点A(-1,y1),B(2,y2),C(3,y3)在反⽐例函数y=-的图象上,则y1,y2,y3的⼤⼩关系是()A. y1>y2>y3B. y2>y3>y1C. y1>y3>y2D. y3>y2>y17.定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则⽅程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. ⽆实数根D. 只有⼀个实数根8.国家统计局统计数据显⽰,我国快递业务收⼊逐年增加.2017年⾄2019年我国快递业务收⼊由5000亿元增加到7500亿元.设我国2017年⾄2019年快递业务收⼊的年平均增长率为x,则可列⽅程为()A. 500(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正⽅形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (,2)B. (2,2)C. (,2)D. (4,2)10.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆⼼,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的⾯积为()A. 6B. 9C. 6D. 3⼆、填空题(本⼤题共5⼩题,共15.0分)11.写出⼀个⼤于1且⼩于2的⽆理数______.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所⽰,则这个不等式组的解集为______.13.如图所⽰的转盘,被分成⾯积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜⾊.固定指针,⾃由转动转盘两次,每次停⽌后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜⾊,则两次颜⾊相同的概率是______.14.如图,在边长为2的正⽅形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为______.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上⼀动点.若OB=2,则阴影部分周长的最⼩值为______.三、解答题(本⼤题共8⼩题,共75.0分)16.先化简,再求值:(1-)÷,其中a=+1.17.为发展乡村经济,某村根据本地特⾊,创办了⼭药粉加⼯⼚.该⼚需购置⼀台分装机,计划从商家推荐试⽤的甲、⼄两台不同品牌的分装机中选择.试⽤时,设定分装的标准质量为每袋500g,与之相差⼤于10g为不合格.为检验分装效果,⼯⼚对这两台机器分装的成品进⾏了抽样和分析,过程如下:[收集数据]从甲、⼄两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505⼄:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741⼄135731统计量机器平均数中位数⽅差不合格率甲499.7501.542.01b⼄499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=______,b=______;(2)综合上表中的统计量,判断⼯⼚应迭购哪⼀台分装机,并说明理由.18.位于河南省登封市境内的元代观星台,是中国现存最早的天⽂台,也是世界⽂化遗产之⼀.某校数学社团的同学们使⽤卷尺和⾃制的测⾓仪测量观星台的⾼度.如图所⽰,他们在地⾯⼀条⽔平步道MP上架设测⾓仪,先在点M处测得观星台最⾼点A的仰⾓为22°,然后沿MP⽅向前进16m到达点N处,测得点A的仰⾓为45°.测⾓仪的⾼度为1.6m.cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显⽰,观星台的⾼度为12.6m.请计算本次测量结果的误差,并提出⼀条减⼩误差的合理化建议.19.暑期将⾄,某健⾝俱乐部⾯向学⽣推出暑期优惠活动,活动⽅案如下.⽅案⼀:购买⼀张学⽣暑期专享卡,每次健⾝费⽤按六折优惠;⽅案⼆:不购买学⽣暑期专享卡,每次健⾝费⽤按⼋折优惠.设某学⽣暑期健⾝x(次),按照⽅案⼀所需费⽤为y1(元),且y1=k1x+b;按照⽅案⼆所需费⽤为y2(元),且y2=k2x.其函数图象如图所⽰.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健⾝费⽤和k2的值;(3)⼋年级学⽣⼩华计划暑期前往该俱乐部健⾝8次,应选择哪种⽅案所需费⽤更少?说明理由.20.我们学习过利⽤尺规作图平分⼀个任意⾓,⽽“利⽤尺规作图三等分⼀个任意⾓”曾是数学史上⼀⼤难题,之后被数学家证明是不可能完成的.⼈们根据实际需要,发明了⼀种简易操作⼯具--三分⾓器.图1是它的⽰意图,其中AB与半圆O的直径BC在同⼀直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB ⾜够长.使⽤⽅法如图2所⽰,若要把∠MEN三等分,只需适当放置三分⾓器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另⼀边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同⼀直线上,EB⊥AC,垂⾜为点B,______.求证:______.21.如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的⼀个动点,求点Q的纵坐标y Q的取值范围.22.⼩亮在学习中遇到这样⼀个问题:如图,点D是上⼀动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三⾓形时,求线段BD的长度.⼩亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下⾯的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的⼏组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0①“当点D为的中点时,BD=5.0cm”.则上表中a的值是______;②“线段CF的长度⽆需测量即可得到”.请简要说明理由.y CD和y FD,并在平⾯直⾓坐标系xOy中画出了函数y FD的图象,如图所⽰.请在同⼀坐标系中画出函数y CD的图象;(3)继续在同⼀坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三⾓形时,线段BD长度的近似值(结果保留⼀位⼩数).23.将正⽅形ABCD的边AB绕点A逆时针旋转⾄AB′,记旋转⾓为α,连接BB′,过点D作DE垂直于直线BB′,垂⾜为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为______,连接BD,可求出的值为(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成⽴?如果成⽴,请仅就图2的情形进⾏证明;如果不成⽴,请说明理由;②当以点B′,E,C,D为顶点的四边形是平⾏四边形时,请直接写出的值.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利⽤相反数的概念:只有符号不同的两个数叫做互为相反数,进⽽得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】D【解析】解:A、主视图和左视图是长⽅形,⼀定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三⾓形,⼀定相同,故选项不符合题意;C、主视图和左视图都是圆,⼀定相同,故选项不符合题意;D、主视图是长⽅形,左视图是正⽅形,故本选项符合题意;故选:D.分别确定每个⼏何体的主视图和左视图即可作出判断.本题考查了简单⼏何体的三视图,确定三视图是关键.3.【答案】C【解析】解:A、调查中央电视台《开学第⼀课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6⽉份⼈均⽹上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的⽓象卫星的零部件质量,适合采⽤全⾯调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最⼤续航⾥程,适合抽查,故本选项不合题意.故选:C.由普查得到的调查结果⽐较准确,但所费⼈⼒、物⼒和时间较多,⽽抽样调查得到的调查结果⽐较近似.本题考查了抽样调查和全⾯调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选⽤,⼀般来说,对于具有破坏性的调查、⽆法进⾏普查、普查的意义或价值不⼤,应选择抽样调查,对于精确度要求⾼的调查,事关重⼤的调查往往选⽤普查.4.【答案】B【解析】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∴∠2=180°-∠3=180°-70°=110°,故选:B.根据平⾏线的性质即可得到结论.此题考查了平⾏线的性质,解题的关键是:熟记两直线平⾏同位⾓相等,两直线平⾏内错⾓相等,两直线平⾏同旁内⾓互补.5.【答案】A【解析】解:由题意得:210×210×210B=210+10+10=230B,故选:A.列出算式,进⾏计算即可.6.【答案】C【解析】解:∵点A(-1,y1)、B(2,y2)、C(3,y3)在反⽐例函数y=-的图象上,∴y1=-=6,y2=-=-3,y3=-=-2,⼜∵-3<-2<6,∴y1>y3>y2.故选:C.根据反⽐例函数图象上点的坐标特征求出y1、y2、y3的值,⽐较后即可得出结论.本题考查了反⽐例函数图象上点的坐标特征,利⽤反⽐例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.7.【答案】A【解析】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,故选:A.根据新定义运算法则以及即可求出答案.本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.【答案】C【解析】解:设我国2017年⾄2019年快递业务收⼊的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出⽅程即可.此题主要考查了由实际问题抽象出⼀元⼆次⽅程,关键是掌握平均变化率的⽅法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.【答案】B【解析】解:如图,设正⽅形D′C′O′E′是正⽅形OCDE沿x轴向右平移后的正⽅形,∵顶点A,B的坐标分别为(-2,6)和(7,0),∴AC=6,OC=2,OB=7,∴BC=9,∵四边形OCDE是正⽅形,∴DE=OC=OE=2,∴O′E′=O′C′=2,∵E′O′⊥BC,∴∠BO′E′=∠BCA=90°,∴E′O′∥AC,∴△BO′E′∽△BCA,∴=,∴=,∴OC′=7-2-3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.根据已知条件得到AC=6,OC=2,OB=7,求得BC=9,根据正⽅形的性质得到DE=OC=OE=2,求得O′E′=O′C′=2,根据相似三⾓形的性质得到BO′=3,于是得到结论.本题考查了正⽅形的性质,坐标与图形性质,相似三⾓形的判定和性质,正确的识别图形是解题的关键.10.【答案】D【解析】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三⾓形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的⾯积=2×=3,故选:D.连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三⾓形的性质得到∠ACB=∠BAC=30°,根据等边三⾓形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AB=3,于是得到结论.本题考查了含30°⾓的直⾓三⾓形,等腰三⾓形的性质,等边三⾓形的判定和性质,熟练掌握直⾓三⾓形的性质是解题的关键.11.【答案】【解析】解:⼤于1且⼩于2的⽆理数是,答案不唯⼀.由于所求⽆理数⼤于1且⼩于2,两数平⽅得⼤于2⼩于4,所以可选其中的任意⼀个数开平⽅即可.此题主要考查了⽆理数的估算,现实⽣活中经常需要估算,估算应是我们具备的数学能⼒,“夹逼法”是估算的⼀般⽅法,也是常⽤⽅法.12.【答案】x>a【解析】解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.根据关于x的不等式组的解集表⽰在数轴上表⽰⽅法求出x的取值范围即可.本题考查的是在数轴上表⽰不等式组的解集,先根据题意得出不等式组的解集是解答此题的关键.13.【答案】【解析】解:⾃由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜⾊相同的有4种,∴P(两次颜⾊相同)==,故答案为:.⽤树状图或列表法表⽰所有可能出现的结果,进⽽求出相应的概率.考查树状图或列表法求随机事件发⽣的概率,列举出所有可能出现的结果是解决问题的关键.14.【答案】1【解析】解:设DF,CE交于O,∵四边形ABCDA是正⽅形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∵∠DCF=90°,CO⊥DF,∴CF2=OF?DF,∴OF===,∴OH=,OD=,∵OC2=OF?OD,∴OC==,∴HG===1,故答案为:1.设DF,CE交于O,根据正⽅形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三⾓形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据射影定理即可得到结论.本题考查了射影定理,勾股定理,正⽅形的性质,全等三⾓形的判定和性质,正确的识别图形是解题的关键.15.【答案】【解析】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最⼩,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最⼩值为2+=.故答案为:.利⽤轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最⼩,此时的最⼩值为弧CD的长与CD′的长度和,分别进⾏计算即可.本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算⽅法是正确计算的前提,理解轴对称解决路程最短问题是关键.16.【答案】解:==a-1,把a=+1代⼊a-1=+1-1=.【解析】先根据分式混合运算的法则把原式进⾏化简,再把a的值代⼊进⾏计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【答案】501 5%【解析】解:(1)将⼄的成绩从⼩到⼤排列后,处在中间位置的两个数都是501,因此中位数是501,b=1÷20=0.05=5%,故答案为:501,5%;(2)选择甲机器,理由:甲的不合格率较⼩,(1)根据中位数的计算⽅法,求出⼄机器分装实际质量的中位数;⼄机器的不合格的(2)根据合格率进⾏判断.本题考查中位数、众数、平均数的意义和计算⽅法,理解中位数、众数、平均数的意义是正确解答的关键.18.【答案】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直⾓三⾓形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°===0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最⾼点A距离地⾯的⾼度约为12.3m;(2)∵“景点简介”显⽰,观星台的⾼度为12.6m,∴本次测量结果的误差为12.6-12.3=0.3m,减⼩误差的合理化建议为:为了减⼩误差可以通过多次测量取平均值的⽅法.【解析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直⾓三⾓形即可得到结论;(2)建议为:为了减⼩误差可以通过多次测量取平均值的⽅法.本题考查了解直⾓三⾓形的应⽤--仰⾓俯⾓问题,要求学⽣能借助仰⾓构造直⾓三⾓形并解直⾓三⾓形.19.【答案】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表⽰的实际意义是:购买⼀张学⽣暑期专享卡后每次健⾝费⽤为15元,b=30表⽰的实际意义是:购买⼀张学⽣暑期专享卡的费⽤为30元;(2)由题意可得,打折前的每次健⾝费⽤为15÷0.6=25(元),则k2=25×0.8=20;(3)选择⽅案⼀所需费⽤更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健⾝8次时,选择⽅案⼀所需费⽤:y1=15×8+30=150(元),选择⽅案⼆所需费⽤:y2=20×8=160(元),∵150<160,∴选择⽅案⼀所需费⽤更少.【解析】(1)把点(0,30),(10,180)代⼊y1=k1x+b,得到关于k1和b的⼆元⼀次⽅程组,求解即可;⼆每次健⾝费⽤按⼋折优惠,求出k2的值;(3)将x=8分别代⼊y1、y2关于x的函数解析式,⽐较即可.本题考查了⼀次函数的应⽤,解题的关键是理解两种优惠活动⽅案,求出y1、y2关于x 的函数解析式.20.【答案】AB=OB,EN切半圆O于F EB,EO就把∠MEN三等分【解析】解:已知:如图2,点A,B,O,C在同⼀直线上,EB⊥AC,垂⾜为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三⾓形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.本题考查了切线的性质,全等三⾓形的判定和性质,正确的识别图形是解题的关键.21.【答案】解:(1)∵抛物线y=-x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=-c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点G为(1,4);(2)∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为-2或4,点N的横坐标为6,∴点M坐标为(-2,-5)或(4,-5),点N坐标(6,-21),∵点Q为抛物线上点M,N之间(含点M,N)的⼀个动点,∴-21≤y Q≤4.【解析】(1)先求出点B,点A坐标,代⼊解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.本题考查了待定系数法求⼆次函数解析式,⼆次函数的性质,⼆次函数图象上点的坐标特征,熟练运⽤⼆次函数的性质解决问题是本题的关键.22.【答案】5【解析】解:(1)∵点D为的中点,∴=,∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,⼜∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度⽆需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三⾓形.(1)①由=可求BD=CD=a=5cm;②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;(2)由题意可画出函数图象;(3)结合图象可求解.本题是圆的综合题,考查了圆的有关知识,全等三⾓形的判定和性质,动点问题的函数图象探究题,也考查了函数图象的画法,解题关键是数形结合.23.【答案】等腰直⾓三⾓形【解析】解:(1)∵AB绕点A逆时针旋转⾄AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三⾓形,∴∠BB'A=60°,∴∠DAB'=∠BAD-∠BAB'=90°-60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°-60°-75°=45°,∵DE⊥B'E,∴∠B'DE=90°-45°=45°,∴△DEB'是等腰直⾓三⾓形.∵四边形ABCD是正⽅形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直⾓三⾓形,.(2)①两结论仍然成⽴.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°-,∵∠B'AD=α-90°,AD=AB',∴∠AB'D=135°-,∴∠EB'D=∠AB'D-∠AB'B=135°-=45°,∵DE⊥BB',∴△DEB'是等腰直⾓三⾓形,∴,∵四边形ABCD是正⽅形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.若CD为平⾏四边形的对⾓线,点B'在以A为圆⼼,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直⾓三⾓形,∴B'D=B'E,由(2)①可知△BDB'∽△CDE,且BB'=CE.∴=+1=+1=+1=+1=3.若CD为平⾏四边形的⼀边,如图3,点E与点A重合,∴=1.综合以上可得=3或1.(1)由旋转的性质得出AB=AB',∠BAB'=60°,证得△ABB'是等边三⾓形,可得出△DEB'是等腰直⾓三⾓形.证明△BDB'∽△CDE,得出.(2)①得出∠EDB'=∠EB'D=45°,则△DEB'是等腰直⾓三⾓形,得出,证明△B'DB∽△EDC,由相似三⾓形的性质可得出.②分两种情况画出图形,由平⾏四边形的性质可得出答案.本题是四边形综合题,考查了正⽅形的性质,等腰直⾓三⾓形的判定与性质,旋转的性质,等边三⾓形的判定与性质,相似三⾓形的判定与性质等知识,熟练掌握相似三⾓形的判定与性质是解题的关键.。

2023年河南省商丘市中考数学四模试卷(含解析)

2023年河南省商丘市中考数学四模试卷(含解析)

2023年河南省商丘市中考数学四模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −2的相反数是( )A. 2B. −2C. 12D. −122. 下列表示医疗或救援的标识中既是轴对称图形也是中心对称图形的是( )A. B.C. D.3. 下列各式中运算不正确的是( )A. 2ab+3ab=5abB. 2ab−3ab=−abC. 2ab⋅3ab=6abD. 2ab÷3ab=234.如图,在△ABC中,点D,E分别在AB,AC边上,DE//BC,若AD:DB=3:1,则AE:AC=( )A. 3:1B. 3:4C. 3:5D. 2:35. 已知关于x的一元二次方程x2+bx+1=0有两个不相等的实数根,则在下列选项中,b的值可以是( )A. b=−1B. b=−2C. b=−3D. b=06. 某次数学测试中,该校八年级1200名学生成绩均在70分以上,具体成绩统计如表:分数x70≤x≤7980≤x≤8990≤x≤100人数400600200平均分78.18591.9请根据表格中的信息,计算这1200名学生的平均分为( )A. 92.16B. 85.23C. 84.73D. 83.857. 某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变.在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L 长度为2.0m时,所需动力最接近( )动力臂L(m)动力F(N)0.56001.03021.52002.0a2.5120A. 302NB. 300NC. 150ND. 120N8. 《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y个人,根据题意,列方程组是( )A. {y=2x+9y=3x−2 B. {y=2x+9y=3(x−2) C.{y=2x−9y=3x−2 D.{y=2x−9y=3(x−2)9.如图,等腰三角形ABC 中,AB =AC =6,按以下要求作图:①以点A 为圆心,任意长为半径作弧,分别交AB ,AC 于D ,E 两点;②分别以点D 、E 为圆心,以大于12DE 的长为半径作弧,两弧交于点F ;③作射线AF ,交BC 于点M ;④分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别交于G ,H 两点;⑤作直线GH ,交AB 于点N ,连接MN .则MN 的长为( )A. 2B. 3C. 4D. 610. 如图,点C 为14圆O 上一个动点,连接AC ,BC ,若OA =1,则阴影部分面积的最小值为( )A. π4−12B. π4−34−14C. π4− 22D. π8−14第II 卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 计算: 9−2−1= ______ .12.如图,将一副直角三角板如图放置,使两个三角形的一个顶点重合,两个直角三角形的斜边AE //BC ,则∠CAD 的度数是______ .13. 一个不透明的袋子中装有写着2,3,4,6的四个小球,小球除标号外其余均相同,将小球摇匀后随机摸出一个记下标号后放回,再次摇匀后再随机摸出一个记下标号,则第二次摸出小球的标号数字能够整除第一次摸出小球的标号数字的概率为______ .14. 如图,直线y =−x +3与y 轴交于点A ,与反比例函数y =kx(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则k 的值为______ .15. 如图,点P 为矩形ABCD 对角线AC 上异于A 、C 的一个动点,过点P 作PE ⊥AD 于点E ,点F 为点A 关于PE 的对称点,连接PF 、FC ,若AB =6,BC =8,当△CPF 为直角三角形时,AE 的长为______ .三、解答题(本大题共8小题,共75.0分。

2024年河南省中考数学试题含答案解析

2024年河南省中考数学试题含答案解析

2024年河南省普通高中招生考试试卷数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1. 如图,数轴上点P 表示的数是( )A. 1−B. 0C. 1D. 2 【答案】A【解析】【分析】本题考查了数轴,掌握数轴的定义是解题的关键.根据数轴的定义和特点可知,点P 表示的数为1−,从而求解.【详解】解:根据题意可知点P 表示的数为1−,故选:A .2. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410×B. 105.78410×C. 115.78410×D. 120.578410× 【答案】C【解析】【分析】本题考查了用科学记数法表示绝对值较大的数,一般形式为10n a ×,其中110a ≤<,确定a 和n 的值是解题的关键.用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中110a ≤<,且n 比原来的整数位数少1,据此判断即可.【详解】解:5784亿11578400000000 5.78410=×.故选:C .3. 如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°【答案】B【解析】【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=°,AB CD ∥,∴150BAC ∠=∠=°,故选:B .4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为()A. B.C. D.【答案】A【解析】【分析】本题主要考查简单几何体的三视图,根据主视图的定义求解即可. 从正面看,在后面的部分会被遮挡,看见的为矩形,注意有两条侧棱出现在正面.【详解】解:主视图从前往后看(即从正面看)时,能看得见的棱,则主视图中对应为实线,且图形为矩形,左右两边各有一个小矩形;故选A .5. 下列不等式中,与1x −>组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x −D. 3x >− 【答案】A【解析】【分析】本题考查的是解一元一次不等式组,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.根据此原则对选项一一进行判断即可.【详解】根据题意1x −>,可得1x <−,A 、此不等式组无解,符合题意;B 、此不等式组解集为1x <−,不符合题意;C 、此不等式组解集为<2x −,不符合题意;D 、此不等式组解集为31x −<<−,不符合题意;故选:A6. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A 12 B. 1 C. 43 D. 2【答案】B【解析】【分析】本题考查了相似三角形判定与性质,平行四边形的性质等知识,利用平行四边形的性质、线段中点定义可得出14CE AC =,证明CEF CAB ∽△△,利用相似三角形的性质求解即可. 【详解】解∶∵四边形ABCD 是平行四边形,.的∴12OC AC =, ∵点E 为OC 的中点, ∴1124CE OC AC ==, ∵EF AB ∥,∴CEF CAB ∽△△, ∴EF CE AB AC =,即144EF =, ∴1EF =,故选:B .7. 计算3···a a a a个的结果是( ) A. 5aB. 6aC. 3a a +D. 3a a 【答案】D【解析】【分析】本题考查的是乘方的含义,幂的乘方运算的含义,先计算括号内的运算,再利用幂的乘方运算法则可得答案.【详解】解:()()333···a a a a a a a a == 个,故选D8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( ) A. 19 B. 16 C. 15 D. 13【答案】D【解析】【分析】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图得到所有的等可能的结果数.根据题意,利用树状图法将所有结果都列举出来,然后根据概率公式计算解决即可.【详解】解:把3张卡片分别记为A 、B 、C ,画树状图如下:共有9种等可能的结果,其中两次抽取的卡片正面相同的结果有3种, ∴两次抽取的卡片图案相同的概率为3193=. 故选∶D .9. 如图,O 是边长为ABC 的外接圆,点D 是 BC的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π【答案】C【解析】【分析】过D 作DE BC ⊥于E ,利用圆内接四边形的性质,等边三角形的性质求出120BDC ∠=°,利用弧、弦的关系证明BD CD =,利用三线合一性质求出12BE BC ==,1602BDE BDC ∠=∠=°,在Rt BDE △中,利用正弦定义求出BD ,最后利用扇形面积公式求解即可.【详解】解∶过D 作DE BC ⊥于E ,∵O 是边长为的等边三角形ABC 的外接圆,∴BC =,60A ∠=°,180∠+∠=°BDC A , ∴120BDC ∠=°,∵点D 是 BC的中点, ∴ BDCD =, ∴BD CD =,∴12BE BC ==,1602BDE BDC ∠=∠=°,∴4sin BE BD BDE ==∠, ∴21204163603ππS ⋅==阴影, 故选:C .【点睛】本题考查了圆内接四边形的性质,等边三角形的性质,等腰三角形的性质,扇形面积公式,解直角三角形等知识,灵活应用以上知识是解题的关键.10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A ,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多【答案】C【解析】 【分析】本题考查了函数的图象,准确从图中获取信息,并逐项判定即可.【详解】解∶根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意;根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意;根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意;故选:C .二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项:_______.【答案】m (答案不唯一)【解析】【分析】本题考查的是同类项的含义,根据同类项的定义直接可得答案.【详解】解:2m 的一个同类项为m ,故答案为:m12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.【答案】9【解析】【分析】本题考查了众数的概念,解题的关键是熟知相关概念,出现次数最多的数叫做众数.根据众数的概念求解即可.【详解】解:根据得分情况图可知:9分数的班级数最多,即得分的众数为9.故答案:9.13. 若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为___________. 【答案】12##0.5【解析】【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx c a ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可. 【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=, ∴12c =, 故答案为:12.14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20−,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.【答案】()3,10【解析】【分析】设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,先判断四边形AOGD 是矩形,得出OG AD a ==,DG AO =,90EGF ∠=°,根据折叠的性质得出BF BC a ==,CE FE =,在Rt BOF △中,利用勾股定理构建关于a 的方程,求出a 的值,在Rt EGF 中,利用勾股定理构建关于CE 的方程,求出CE 的值,即可求解.【详解】解∶设正方形ABCD 的边长为a ,CD 与y 轴相交于G ,为则四边形AOGD 是矩形,∴OG AD a ==,DG AO =,90EGF ∠=°, ∵折叠,∴BF BC a ==,CE FE =,∵点A 的坐标为()20−,,点F 的坐标为()06,, ∴2AO =,6FO =,∴2BO AB AO a =−=−,在Rt BOF △中,222BO FO BF +=,∴()22226a a −+=,解得10a =,∴4FG OG OF =−=,8GE CD DG CE CE =−−=−,在Rt EGF 中,222GE FG EF +=,∴()22284CE CE −+=,解得5CE =,∴3GE =,∴点E 的坐标为()3,10,故答案为:()3,10.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.15. 如图,在Rt ABC △中,90ACB ∠=°,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.【答案】 ①. 1+##1+②. 1−##1−+【解析】【分析】根据题意得出点D 在以点C 为圆心,1为半径的圆上,点E 在以AB 为直径的圆上,根据cos AE AB BAE =⋅∠,得出当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,根据当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,分别画出图形,求出结果即可.【详解】解:∵90ACB ∠=°,3CA CB ==, ∴190452BAC ABC ∠=∠=×°=°, ∵线段CD 绕点C 在平面内旋转,1CD =,∴点D 在以点C 为圆心,1为半径的圆上,∵BE AE ⊥, ∴90AEB ∠=°, ∴点E 在以AB 为直径的圆上,在Rt ABE △中,cos AE AB BAE =⋅∠,∵AB 为定值,∴当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小,∴当AE 与C 相切于点D ,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥,∴90ADE CDE ∠=∠=°,∴AD =∵ AC AC=, ∴45CED ABC ==°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =+=+,即AE 的最大值为1+;当AE 与C 相切于点D ,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥,∴90CDE ∠=°,∴AD =∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =°−=°∠∠,∴18045CED CEA =°−=°∠∠,∵90CDE ∠=°,∴CDE 为等腰直角三角形,∴1DE CD ==,∴1AE AD DE =−=−,即AE 的最小值为1−;故答案为:1+;1−.【点睛】本题主要考查了切线的性质,圆周角定理,圆内接四边形的性质,勾股定理,等腰三角形的性质,解直角三角形的相关计算,解题的关键是作出辅助线,熟练掌握相关的性质,找出AE 取最大值和最小值时,点D 的位置.三、解答题(本大题共8个小题,共75分)16. (1(01−; (2)化简:231124a a a + +÷ −− . 【答案】(1)9(2)2a +【解析】【分析】本题考查了实数的运算,分式的运算,解题的关键是:(1)利用二次根式的乘法法则,二次根式的性质,零指数幂的意义化简计算即可;(2)先把括号里的式子通分相加,然后把除数的分母分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约分化简即可.【详解】解:(1)原式1−101=−9=;(2)原式()()3212222a a a a a a −+ =+÷ −−+− ()()22121a a a a a +−+⋅−+ 2a =+.17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表队员平均每场得分平均每场篮板平均每场失误甲26.5 8 2乙26 10 3根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1×−,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.【答案】(1)甲 29(2)甲(3)乙队员表现更好【解析】【分析】本题考查了折线统计图,统计表,中位数,加权平均数等知识,解题的关键是∶(1)根据折线统计图的波动判断得分更稳定的球员,根据中位数的定义求解即可;(2)根据平均每场得分以及得分的稳定性求解即可;(3)分别求出甲、乙的综合得分,然后判断即可.【小问1详解】解∶从比赛得分统计图可得,甲的得分上下波动幅度小于乙的的得分上下波动幅度,∴得分更稳定的队员是甲,乙的得分按照从小到大排序为14,20,28,30,32,32,最中间两个数为28,30,∴中位数为2830292+=, 故答案为∶乙,29;【小问2详解】解∶ 因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好;【小问3详解】解∶甲的综合得分为()26.518 1.52136.5×+×+×−=, 乙的综合得分为()26110 1.53138×+×+×−=, ∵36.538<,∴乙队员表现更好.18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.【答案】(1)6y x= (2)见解析 (3)92【解析】 【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是: (1)利用待定系数法求解即可;(2)分别求出1x =,2x =,6x =对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【小问1详解】 解:反比例函数k y x =的图象经过点()3,2A , ∴23k =, ∴6k =, ∴这个反比例函数的表达式为6y x =; 【小问2详解】解:当1x =时,6y =,当2x =时,3y =,当6x =时,1y =, ∴反比例函数6y x=的图象经过()1,6,()2,3,()6,1, 画图如下:【小问3详解】解:∵()6,4E 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当4y =时,64x=, 解得32x =, ∴平移距离为39622−=. 故答案为:92. 19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥B E D C 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了尺规作图,菱形的判定,直角三角形斜边中线的性质等知识,解题的关键是: (1)根据作一个角等于已知角的方法作图即可;(2)先证明四边形CDBF 是平行四边形,然后利用直角三角形斜边中线的性质得出12CDBD AB ==,最后根据菱形的判定即可得证.【小问1详解】解:如图,;【小问2详解】证明:∵ECM A ∠=∠,∴CM AB ∥,∵∥B E D C ,∴四边形CDBF 是平行四边形,∵在Rt ABC △中,CD 是斜边AB 上的中线,∴12CD BD AB ==, ∴平行四边形CDBF 是菱形.20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30°,在点P 处看塑像顶部点A 的仰角APE ∠为60°,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). 【答案】(1)见解析 (2)塑像AB 的高约为6.9m【解析】【分析】本题考查了圆周角定理,三角形外角的性质,解直角三角形的应用等知识,解题的关键是: (1)连接BM ,根据圆周角定理得出AMB APB ∠=∠,根据三角形外角的性质得出AMB ADB ∠>∠,然后等量代换即可得证;(2)在Rt AHP 中,利用正切的定义求出AH ,在Rt BHP △中,利用正切的定义求出BH ,即可求解.【小问1详解】证明:如图,连接BM .则AMB APB ∠=∠.∵AMB ADB ∠>∠,∴APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=°,6PH =. ∵tan AH APH PH∠=,∴tan 606AH PH ⋅° ∵30APB ∠=°,∴603030BPH APH APB ∠=∠−∠=°−°=°.在Rt BHP △中,tan BHBPH PH∠=,∴tan 306BH PH ⋅°.∴()4 1.73 6.9m ABAH BH =−=−≈×≈. 答:塑像AB 的高约为6.9m .21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A ,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A ,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品?【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,解题的关键是:(1)设选用A 种食品x 包,B 种食品y 包,根据“从这两种食品中摄入4600kJ 热量和70g 蛋白质”列方程组求解即可;(2)设选用A 种食品a 包,则选用B 种食品()7−a 包,根据“每份午餐中的蛋白质含量不低于90g ”列不等式求解即可.小问1详解】解:设选用A 种食品x 包,B 种食品y 包,根据题意,得7009004600,101570.x y x y += +=解方程组,得4,2.x y = =答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7−a 包,根据题意,得()1015790a a +−≥.∴3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+−=−+. ∵2000−<,∴w 随a 的增大而减小.∴当3a =时,w 最小.∴7734a −=−=.答:选用A 种食品3包,B 种食品4包.22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可; (2)把010v t =,20h =代入205h t v t =−+求解即可; (3)由(2),得2520h t t =−+,把15h =代入,求出t 的值,小问1详解】解:205h t v t =−+ 220051020v v t =−−+ , ∴当010v t =时,h 最大, 故答案为:010v ; 【小问2详解】解:根据题意,得 当010v t =时,20h =, ∴20005201010v v v −×+×=, ∴()020m /s v =(负值舍去);【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =−+,当15h =时,215520t t =−+,解方程,得11t =,23t =,∴两次间隔的时间为312s −=, 【∴小明的说法不正确.23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m ,n ,θ的式子表示). (3)拓展应用如图3,在Rt ABC △中,90B ∠=︒,3AB =,4BC =,分别在边BC ,AC 上取点M ,N ,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.【答案】(1)②④ (2)①ACD ACB ∠=∠.理由见解析;②2cos m n θ+(3 【解析】【分析】(1)根据邻等对补四边形的定义判断即可;(2)①延长CB 至点E ,使BE DC =,连接AE ,根据邻等对补四边形定义、补角的性质可得出ABE D ∠=∠,证明()SAS ABE ADC ≌,得出E ACD ∠=∠,AE AC =,根据等边对等角得出E ACB ∠=∠,即可得出结论;②过A 作AF EC ⊥于F ,根据三线合一性质可求出2m n CF +=,由①可得ACD ACB θ∠=∠=,在Rt AFC △中,根据余弦的定义求解即可;(3)分AB BM =,AN AB =,MN AN =,BM MN =四种情况讨论即可.【小问1详解】解:观察图知,图①和图③中不存在对角互补,图2和图4中存在对角互补且邻边相等,故图②和图④中四边形是邻等对补四边形,故答案为:②④;【小问2详解】解:①ACD ACB ∠=∠,理由:延长CB 至点E ,使BE DC =,连接AE ,∵四边形ABCD 是邻等对补四边形,∴180ABC D ∠+∠=°,∵180ABC ABE ∠+∠=°,∴ABE D ∠=∠,∵AB AD =,∴()SAS ABE ADC ≌,∴E ACD ∠=∠,AE AC =,∴E ACB ∠=∠,∴ACD ACB ∠=∠;②过A 作AF EC ⊥于F ,∵AE AC =, ∴()()1112222m n CF CE BC BE BC DC +==+=+=, ∵2BCD θ∠=,∴ACD ACB θ∠=∠=,在Rt AFC △中,cos CF θAC=, ∴cos 2cos CF m n AC θθ+==; 【小问3详解】解:∵90B ∠=︒,3AB =,4BC =,∴5AC ,∵四边形ABMN 是邻等对补四边形,∴180ANM B ∠+∠=°,∴90ANM =°,当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H ,∴22218AM AB BM =+=,在Rt AMN 中222218MN AM AN AN =−=−,在Rt CMN 中()()22222435MN CM CN AN =−=−−−,∴()()22218435AN AN −=−−−,解得 4.2AN =, ∴45CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即45534NH CH ==, ∴1225NH =,1625CH =, ∴8425BH =,∴BN ; 当AN AB =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴BM NM =,故不符合题意,舍去;当AN MN =时,连接AM ,过N 作NH BC ⊥于H ,∵90MNC ABC ∠=∠=°,C C ∠=∠, ∴CMN CAB ∽△△, ∴CN MN BC AB =,即543CN CN −=,解得207CN =, ∵90NHC ABC ∠=∠=°,C C ∠=∠, ∴NHC ABC ∽ , ∴NC NH CH AC AB CB ==,即207534NH CH ==, ∴127NH =,167CH =, ∴127BH =,∴BN ; 当BM MN =时,如图,连接AM ,∵AM AM =,∴Rt Rt ABM ANM ≌,∴AN AB =,故不符合题意,舍去;综上,BN . 【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,解直角三角形,勾股定理等知识,明确题意,理解新定义,添加合适辅助线,构造全等三角形、相似三角形是解题的关键.。

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷(解析版)

2023年河南省中考数学真题试卷及答案一、选择题1. 下列各数中,最小的数是()A. -lB. 0C. 1D.【答案】A【解析】根据实数的大小比较法则,比较即可解答.解:∵,∴最小的数是-1.故选:A【点拨】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】直接利用已知几何体分别得出三视图进而分析得出答案.解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点拨】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】将一个数表示为的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可得出答案.解:4.59亿.故选:C.【点拨】本题主要考查了用科学记数法表示较大的数,掌握形式为,其中,确定与的值是解题的关键.4. 如图,直线,相交于点O,若,,则的度数为()A. B. C. D.【答案】B【解析】根据对顶角相等可得,再根据角和差关系可得答案.解:∵,∴,∵,∴,故选:B【点拨】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简的结果是()A. 0B. 1C. aD.【答案】B【解析】根据同母的分式加法法则进行计算即可.解:,故选:B.【点拨】本题考查同分母分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A,B,C在上,若,则的度数为()A. B. C. D.【答案】D【解析】直接根据圆周角定理即可得.解:∵,∴由圆周角定理得:,故选:D.【点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x的一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】对于,当,方程有两个不相等的实根,当,方程有两个相等的实根,,方程没有实根,根据原理作答即可.解:∵,∴,所以原方程有两个不相等的实数根,【点拨】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.【答案】B【解析】先画树状图,再根据概率公式计算即可.设三部影片依次为A.B.C ,根据题意,画树状图如下:故相同的概率为.故选B .【点拨】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数的图象如图所示,则一次函数的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为()A. 6B. 3C.D.【答案】A【解析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,,易知,当点在上运动时,可知点到达点时的路程为,可知,过点作,解直角三角形可得,进而可求得等边三角形的边长.解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为,∴,即,∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A.【点拨】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【解析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.解:由题意得:3个年级共需配发得套劳动工具总数:套,故答案为:.【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组的解为______.【答案】【解析】利用加减消元法求解即可.解:由得,,解得,把代入①中得,解得,故原方程组的解是,故答案为:.【点拨】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于的“无絮杨”品种苗约有______棵.【答案】280【解析】利用1000棵乘以样本中不低于的百分比即可求解.解:该基地高度不低于的“无絮杨”品种苗所占百分比为,则不低于的“无絮杨”品种苗约为:棵,故答案为:280.【点拨】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,与相切于点A,交于点B,点C在上,且.若,,则的长为______.【答案】【解析】连接,证明,设,则,再证明,列出比例式计算即可.如图,连接,∵与相切于点A,∴;∵,∴,∴,∴,∵,∴,∴,∵,,∴,设,则,∴,解得,故的长为,故答案为:.【点拨】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【解析】分两种情况:当时和当时,分别进行讨论求解即可.解:当时,∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,∴,即:,∴,当时,∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点拨】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:;(2)化简:.【答案】(1);【解析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.(1)解:原式;(2)解:原式.【点拨】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.(1)由题意可得,,,∴,故答案为:7.5;;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点拨】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,中,点D在边上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边交于点E,连接.求证:.【答案】(1)见解析(2)见解析【解析】(1)利用角平分线的作图步骤作图即可;(2)证明,即可得到结论.(1)解:如图所示,即为所求,(2)证明:∵平分,∴,∵,,∴,∴.【点拨】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.(1)求k的值;(2)求扇形的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)(2)半径为2,圆心角为(3)【解析】(1)将代入中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.(1)解:将代入中,得,解得:;(2)解:过点作的垂线,垂足为,如下图:,,,半径为2;,∴,,由菱形的性质知:,,扇形的圆心角的度数:;(3)解:,,,如下图:由菱形知,,,,.【点拨】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).【答案】树的高度为【解析】由题意可知,,,易知,可得,进而求得,利用即可求解.解:由题意可知,,,则,∴,∵,,则,∴,∵,则,∴,∴,答:树的高度为.【点拨】本题考查解直角三角形的应用,得到是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【解析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近【解析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.(1)解:一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点拨】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.【答案】(1),.(2)①,理由见解析;②(3)或【解析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接,由对称性可得,,进而可得,即可得出结论;②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.(1)(1)∵关于轴对称的图形,与关于轴对称,∴与关于点中心对称,则可以看作是绕点顺时针旋转得到的,旋转角的度数为∵,∴,∵,关于直线对称,∴,即,可以看作是向右平移得到的,平移距离为个单位长度.故答案为:,.(2)①,理由如下,连接,由对称性可得,,∴,②连接分别交于两点,过点作,交于点,由对称性可知:且,∵四边形为平行四边形,∴∴三点共线,∴,∵,∴,∴四边形是矩形,∴,在中,,∵,∴,∴(3)解:设,则,依题意,,当时,如图所示,过点作于点,∴∵,,∴,∴,则,在中,,∴,则,∴在中,,则,,在中,,,∴由(2)②可得,∵∴∴,解得:;如图所示,若,则,∵,则,则,∵,,∵,∴,解得:,综上所述,的长为或.【点拨】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

2015年河南省中考数学试题及答案(解析版)

2015年河南省中考数学试题及答案(解析版)
第 3 页 共 16 页
15,∴y2<y1<y3.
[来源 : 中国% ^@教 *育 ~出 版网 ]
方法二:解:设点 A、B、C 三点到抛物线对称轴的距离分别为 d1、d2、d3,∵y= (x 2) 2 1 ∴对称轴为直线 x=2,∴d1=2,d2=2- 2 ,d3=4∵2- 2 <2<4,且 a=1>0,∴y2<y1<y3. 方法三:解:∵y=
( 2, 1) ( 2, 2) ( 3, 1) ( 3, 2)
[ 来 源 : z ^ z s @ * t e p . c ~ o & m ]
或画树状图如解图:
第一次 第二次 1 2
1 23 12
2 2
2
3
[ 来

: 中
@ 国

^ 育
~ 出

* 网
% ]
3 1 2 23 1 2 2 3 第 13 题 解 图 由 列 表 或 树 状 图 可 得 所 有 等 可 能 的 情 况 有 16 种 , 其 中 两次抽出卡片所标数字不同
[ 中 国 教 育 @ 出 ~ ^ 版 * 网 & ]
的 情 况 有 10 种 , 则 P=
10 5 . 16 8
B E
14. 如图,在扇形 AOB 中,∠AOB=90° ,点 C 为 OA 的中点, CE⊥OA 交 AB 于点 E,以点 O 为圆心,OC 的长为半径 作 CD 交 OB 于点 D,若 OA=2,则阴影部分的面积为
(x 2)
2
1 ,∴对称轴为直线 x=2,∴点 A(4, y1)关于 x=2
的对称点是(0,y1).∵-2<0< 2 且 a=1>0,∴y2<y1<y3.
13. 现有四张分别标有数字 1,2,3,4 的卡片,它们除数字外完

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷(解析版)

2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。

2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)及答案解析

2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。

2024年河南省焦作市中考第一次模拟考试数学模拟试题(含解析)

2024年河南省焦作市中考第一次模拟考试数学模拟试题(含解析)

2023-2024学年焦作市九年级第一次模拟测试试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中比大的数是( )A .B .C .D2.如图是焦作市博物馆的四件特色藏品,其中主视图与左视图相同的是( )A .汉“山阳”陶罐B .东汉五层彩绘陶仓楼C .东汉彩绘陶房D .西汉铜提梁卣3.记者1月19日从焦作海关了解到,2023年我市实现进出口总值亿元,进出口规模创历史新高数据“亿”用科学记数法表示为( )A .B .C .D .4.如图,直线相交于点平分,若,则的度数为( )12-0.6181-221.4221.492.21410⨯102.21410⨯922.1410⨯110.221410⨯,AB CD ,O OE BOD ∠113AOE ∠=︒BOC ∠A .B .C .D .5.化简的结果为( )A .B .C .D .6.如图,在中,,以为直径作,分别交于,,连接,若,则的度数为( )A .B .C .D .7.下图为某商家2023年1月至10月“人工智能机器人”的月销售量,下列说法错误的是( )A .这10个月的月销售量的众数为28B .这10个月中7月份的月销售量最高C .前5个月的月销售量的方差大于后5个月的月销售量的方差D .4月至7月的月销售量逐月增加8.二次函数的图象如图所示,则关于的一元二次方程的根的情况是( )46︒56︒67︒77︒2111m m m -⋅+1m m +11m m -+1m m -1m m+ABC AB AC =AC O ,AB BC D E ,DE CD 70B ∠=︒CDE ∠10︒20︒30︒40︒2y ax bx c =++x 20x ax b +-=A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根9.如图,已知矩形的顶点,若矩形绕点逆时针旋转,每次旋转,则第75次结束时,矩形对角线交点的坐标为( )A .B .C .D .10.如图1,点从等腰直角三角形的顶点出发,沿直线运动到三角形内部一点,再从该点沿直线运动到的中点.设点运动的路程为的面积为,图2是点运动时随变化的关系图象,则的长为( )A .1B .2CD .二、填空题(每小题3分,共15分)11.代数式可表示的实际意义是 .12.方程组的解为 .13.焦作市两部优秀作品人选河南省2023年度重点文艺创作项目名单,某校七、八、九年级分别从如图所示文艺项目中随机选择一部组织本年级学生欣赏,则这三个年级选择的文艺项目相同的概率为 .OABC ()()0,0,B 4,4O O 45︒D ()2,2(0,()-()2,2-P ABC A AC D P ,x PBC △y P y x BC 3n 25238x y x y +=⎧⎨+=⎩14.如图,在中,以为直径作交于点,过点作的切线交于点.则的长为 .15.如图,在矩形中,,点为的中点,取的中点,连接,当为直角三角形时,的值为 .三、解答题(本大题共8个小题,共75分)16.(1;(2)化简:.17.某学校为了解学生“消防安全知识”的掌握情况,从七、八年级各随机抽取名同学进行测试,并对成绩(百分制)进行整理,描述和分析,下面给出部分信息:a .七年级成绩的频数分布直方图如下:b .七年级成绩在这一组的是:80 80.5 82 82 82 82 83.5 84ABC 4120AB AC BAC ==∠=︒,AB O BC D D O AC E DE ABCD 1,AB BC a ==E CD AE F ,BE BF BEF △a 1132-+-()2(2)4x y x x y +-+508090x ≤<84 85 86 86.5 87 88 89 89c .七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级85.3八年级87.285根据以上信息,回答下列问题:(1)在这次测试中,七年级测试成绩的中位数是______分,七年级成绩的众数不可能在_______组;(2)甲同学侧试成绩为分,在他所在的年级,他的成绩超过了一半以上被调查的同学,请判断甲同学是哪个年级的学生,并说明理由;(3)七年级共有名学生,若成绩在分以下(不含分)的同学需要参加消防安全知识培训,请你估计七年级有多少名同学需要参加消防安全知识培训.18.如图,是等边三角形,是边上一点,连接.(1)请用无刻度的直尺和圆规在的上方作等边(保留作图痕迹,不写作法);(2)连接,求证:.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数的图象经过正方形的顶点,以点为圆心,的长为半径作扇形交于点;以为对角线作正方形,再以点为圆心,的长为半径作扇形.m m 835008080ABC D AB CD CD CDE AE BD AE =ABCD k y x=()2,2A C CB ,BCD BDAC F CF CEFG C CE ECG(1)求反比例函数的解析式;(2)求的长;(3)直接写出图中阴影部分面积之和.20.南水北调第一楼位于山阳故城乐南,是一座具有汉代风格,可以望山、观水、展陈的文化地标.某小组利用无人机测量第一楼高度,如图是测量第一楼高度的示意图,无人机在距地面136.65米的P 处测得第一楼顶部A 的俯角为,测得第一楼底部B 的俯角为.求南水北调第一楼的高度(结果精确到).21.为庆祝中华人民共和国成立75周年,某平台店计划购进A ,B 两种纪念币,进价和售价如下表所示:品名A B 进价(元/枚)4560售价(元/枚)6690(1)第一次购进A 种纪念币80枚,B 种纪念币40枚,求全部售完后获利多少元?(2)第二次计划购进两种纪念币共150枚,且A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,应如何设计进货方案才能获得最大利润,最大利润为多少?22.根据以下素材,探索完成任务设计小区大门灯笼的悬挂方案EG 11.3︒45︒AB 0.1m,sin11.30.196,cos11.30.980,tan11.30.200︒≈︒≈︒≈素材一图1是某小区的正门,图2是正门的示意图,小航查阅相关资料获得以下信息:①正门是由一个矩形和一个抛物线形拱组成的轴对称图形,②矩形的宽为,高为,抛物线形拱的高为.素材二为迎接龙年春节,拟在图1正门抛物线形拱上悬挂直径为的灯笼,如图3为了美观,要求悬挂灯笼的数量为双数,且平均分布,间隔在之间.问题解决任务1确定拋物线形拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式任务2探究悬挂数量给出符合所有悬挂条件的灯笼数量.任务3拟定设计方案根据你建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标23.在综合实践课上,老师设计下面问题,请你解答.10m 12m 2m 1m 0.8-1.5m(1)观察发现如图1,在平面直角坐标系中,过点作轴的对称点,再分别作点关于直线和轴的对称点,则点可以看作是点绕点顺时针旋转得到的,旋转角的度数为___________;点可以看作是点关于点___________的对称点.(2)探究迁移如图2,正方形中,为直线下方一点,作点关于直线的对称点,再分别作关于直线和直线的对称点和,连接,,请仅就图2的情况解决以下问题:①请判断的度数,并说明理由;②若,求两点间的距离.(3)拓展应用在(2)的条件下,若,请直接写出的长.()1,3A -y 1A 1A y x =x 23,A A 2A A O 3A A ABCD P AD P CD 1P 1P BD AD 2P 3P PD 2PD 2PDP ∠PD m =23,PP 30PD PDC =∠=︒12PP参考答案与解析1.D 【分析】本题考查实数比较大小,解题关键在于对二次根式进行正确的估算.【解答】A 、,不符合题意,选项错误;B 、,不符合题意,选项错误;C 、,不符合题意,选项错误;D,符合题意,选项正确.故选:D .2.A【分析】本题考查了三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.根据从正面看到的图形是主视图,从左边看到的图形是左视图,可得答案.【解答】解:根据主视图和左视图的定义,结合A 选项各个面的形状都一样,因此主视图与左视图相同.故选:A .3.B【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【解答】解:∵亿,故选:B4.A【分析】本题考查几何图形中角度的计算,与角平分线有关的计算,利用邻补角和角平分线的定义进行求解即可.【解答】解:平分,21-<0.6181<11-<1.4141≈>10n a ⨯110a n ≤<,1>1<221.41022140000000 2.21410==⨯113AOE ∠=︒ ,18011367BOE ∴∠=︒-︒=︒,OE BOD ∠67,BOE DOE ∴∠=∠=︒故选:A5.C【分析】本题主要考查了分式的乘除法,利用分式的乘法法则解答即可.【解答】解:原式.故选:C .6.B【分析】本题主要考查了圆周角定理,等腰三角形的性质,圆心角、弧、弦的关系等知识点,正确作出辅助线是解题的关键.【解答】解:连接,,,,,,,故选:B7.C【分析】本题考查了折线图,众数、方差等知识,解题的关键知道方差是描述波动程度的量,方差越大,波动越大.【解答】解:A .这10个月的月销售量的众数为28出现了两次,出现次数最多,故众数为28,选项说法正确,不符合题意;18026746BOC ∴∠=︒-⨯︒=︒1(1)(1)1m m m m +-=⋅+1m m-=OE AB AC = 70ACB B ∴∠=∠=︒OE OC = 70CEO ACE ∴∠=∠=︒180707040COE ∴∠=︒-︒-︒=︒1202CDE COE ∴∠=∠=︒B .这10个月中7月份的月销售量为40,为最高,选项说法正确,不符合题意;C .前5个月的月销售量的波动程度小于后5个月的波动程度,故方差小于后5个月的方差,选项说法错误,符合题意;D .4月至7月的折线图是上升的,故月销售量逐月增加,选项说法正确,不符合题意;故选:C .8.A【分析】本题考查抛物线与轴的交点、根据判别式判断一元二次方程根的情况以及二次函数图象与各项系数符号,由函数图象可知,根据可以得到关于的一元二次方程的根的情况.【解答】函数图象开口向上.对称轴在轴左侧故一元二次方程有两个不相等的实数根故选:A .9.C【分析】本题考查了矩形的性质,点的坐标特点,旋转的性质,根据求出,进而求出,每次旋转,8次一个循环,,第75次结束时,矩形的对角线交点D 与第3次的点D 的坐标相同,第3次点D 落在x 轴的负半轴上,由此可得结论.【解答】解:∵四边形是矩形,,∴∴∵每次旋转,8次一个循环,,∴点D 在x 轴的负半轴上,∴点D 的坐标为.x 0,0a b >>24b ac =- x 20x ax b +-= 0a ∴> y 02b a∴-<0a >0b ∴>()224140a b a b ∴=-⨯⨯-=+> 0x ax b +-=()B 4,4OB OD 45︒75893÷=L L ABCO ()B 4,4OB ==OD =45︒75893÷=L L ()-故选:C .10.B【分析】本题考查了动点问题的函数图象.由图象知,时,的面积为,当点在()上运动时,的面积不变,为,当点位于点时,此时为等腰直角三角形,据此,利用的面积,求解即可.【解答】解:由图象知,当点在点,即时,的面积为,当点运动到点,此时时,的面积为,而在运动到的过程中,的面积不变,为,如图,当点在()上运动时,的面积不变,为,∴当点位于点时,此时为等腰直角三角形,,∵,∴,∴,∴,∴,∴,∵的面积,即,∴,∴,故选:B .11.一支笔3元,支笔的钱数(答案不唯一)【分析】本题考查了代数式表示的实际意义,结合实际生活即可求解.【解答】解:可表示一支笔3元,支笔的钱数,0x =PBC 2y a =P DE DE BC ∥PBC y a =P E AED △EBC 12BC EF a ⨯=P A 0x =PBC 2y a =P D 2x a =PBC y a =x a =2x a =PBC y a =P DE DE BC ∥PBC y a =P E AED △AE ED x a ===DE BC ∥1AE AD EF CD==AF EF a ==AD ==2AC AD ==4BC a ==EBC 12BC EF a ⨯=142a a a ⨯⨯=12a =1422BC =⨯=n 3n n故答案为:一支笔3元,支笔的钱数(答案不唯一)12.【分析】本题考查了二元一次方程组的求解,掌握消元法是解题关键.【解答】解:由①得:③,将③代入②得:,解得:,将代入①得:∴原方程组的解为:,故答案为:13.【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到这三个年级选择的文艺项目相同的结果数,最后依据概率计算公式求解即可.【解答】解:设用A 、B 表示两部文艺项目,画树状图如下:由树状图可知,一共有8种等可能性的结果数,其中这三个年级选择的文艺项目相同的结果数有2种,n 12x y =⎧⎨=⎩25238x y x y +=⎧⎨+=⎩①②52x y =-()25238y y -+=2y =2y =5221x =-⨯=12x y =⎧⎨=⎩12x y =⎧⎨=⎩14∴这三个年级选择的文艺项目相同的概率为,故答案为:.14【分析】本题考查了切线的性质,圆周角定理,解直角三角形,等腰三角形的性质等,作出辅助线,构造直角三角形,是求解的关键.连接,,根据等腰三角形可求出,可证 ,求出,为等边三角形,根据切线的性质,可证,再证,在直角三角形中,解直角三角形即可求解.【解答】解:如图,连接,∵,,∴,∵为直径,∴,在中,,,∴,∵∴是等边三角形,∴,∵是切线,∴,∴,∴,又∵,,∴,∴2184=14OD AD 30B ∠=︒AD BD ⊥2AD =OAD △30ADE ∠=︒DE AE ⊥ADE ,OD OA AB AC =120BAC ∠=︒30B C ∠=∠=︒AB AD BD ⊥Rt ABD 30B ∠=︒4AB =2AD =2OA OD AD ===OAD 60ADO ∠=︒DE OD DE ⊥90ODA ADE ∠+∠=︒30ADE ∠=︒AB AC =AD BD ⊥1260DAE BAC ∠=∠=︒90AED ∠=︒在中,,,∴,15.【分析】本题考查了矩形的性质,全等三角形的判定与性质,等边三角形的性质,掌握分类讨论是解题的关键.先证明,当时,;当时,为正三角形,运用勾股定理求解即可.【解答】解:,,,,,,分情况解答:①时,则,,;②时,,,为正三角形,,,则③,不存在,故答案为:Rt ADE 30ADE ∠=︒2AB =1AE =DE ==12() ≌ADE BCE SAS 90BEF ∠=︒1122BC CE CD ===90BFE ∠=︒BEF △AD BC = DE CE =D C ∠=∠(SAS)ADE BCE ∴△≌△AE BE ∴=AED BEC ∠=∠90BEF ∠=︒45AED BEC ∠=∠=︒1122BC CE CD ∴===12α∴=90BFE ∠=︒1122EF AE BE ∴==60BEF ∴∠=︒BEA ∴ 1BE AB ∴==12CE ∴=BC ==α∴90FBE ∠=︒12α=16.(1);(2)【分析】本题考查了实数的混合运算,整式的化简,完全平方公式,解题的关键是熟练掌握实数的运算法则,(1)根据实数的运算法则即可解答;(2)先去括号再合并即可,【解答】解:(1)原式;(2)原式17.(1),(2)七年级,见解析(3)210人【分析】本题考查频数分布直方图,中位数、众数及用样本估计总体,理解中位数、众数的定义,掌握中位数的计算方法是正确解答的关键.(1)根据中位数、众数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出甲同学是七年级的同学;(3)先求出从抽取的50名学生中参加消防安全知识竞赛得人数,再结合统计图给出的数据,即可得出答案.【解答】(1)解:∵从七年级随机抽取名同学进行测试,∴中位数是第,名学生的成绩的平均数,∵,,三组的数据为、、,∴第,名学生的成绩在这一组,由这一组的成绩可知:第,名学生的成绩为、,∴,∵这一组中,82出现4次,次数最多,∴七年级成绩的众数不能小于4,由七年级成绩的频数分布直方图可知:成绩在一组的人数为,232y 111232=-+23=2224444x xy y x xy=++--2y =825060x ≤<5025265060x ≤<6070x ≤<7080x ≤<251425268090x ≤<8090x ≤<252682828282822m +==8090x ≤<5060x ≤<24<∴七年级成绩的众数不可能在组.故答案为:,(2)甲同学是七年级的同学,理由如下:∵,八年级成绩的中位数为,,∴甲同学是七年级的同学.(3)∵七年级成绩在分以下的有(人),∴七年级需要参加消防安全知识培训的人数为(人),答:七年级名同学需要参加消防安全知识培训.18.(1)见解析(2)见解析【分析】本题主要考查作等边三角形,等边三角形的性质以及全等三角形的判定与性质:(1)分别以点C ,D 为圆心,为半径画弧,两弧在的上方相交于点E ,连接,则等边三角形即为所求作;(2)根据证明,可得【解答】(1)解:如图,即为所求作;(2)证明:是等边三角形,即,19.(1)(3)5060x ≤<825060x ≤<82m =85828385<<80251421++=2150021050⨯=210CD CD ,CE DE CDE SAS BCD ACE ≌BD AE=CDE ,ABC CDE △△,,60CA CB CE CD ACB ECD ∴==∠=∠=︒ACB ACD ECD ACD ∴∠-∠=∠-∠BCD ACE∠=∠即BCD ACE ∴ ≌BD AE∴=4y x=246π-【分析】(1)将代入,可求,进而可得反比例函数的解析式;(2)由题意知,,计算求解即可;(3)根据,计算求解即可.【解答】(1)解:将代入得,,解得,,∴反比例函数的解析式为;(2)解:由题意知,∴,∴;(3)解:由题意知,,∴图中阴影部分面积之和为.【点拨】本题考查了反比例函数解析式,反比例函数与几何综合,弧长,扇形面积等知识.熟练掌握反比例函数解析式,反比例函数与几何综合,弧长,扇形面积是解题的关键.20.南水北调第一楼的高度约为109.3米【分析】本题考查了解直角三角形的应用,过P 作交的延长线于点D ,则米,根据等腰直角三角形的性质可得,在中,利用锐角三角形函数求解即可.【解答】解:过P 作交的延长线于点D ,则米,在中,,∴,在中,,∴,.()2,2A k y x=4k =CE OC OA ==== EG ABCD CEFG BGD ECG S S S S S =-+-阴影正方形正方形扇形扇形()2,2A k y x =22k =4k =4y x=CE OC OA ==== EG == EG ABCD CEFG BGD ECGS S S S S =-+-阴影正方形正方形扇形扇形(2229044360π⋅=-+246π=-246π-AB PD BA ⊥BA 136.65BD PC ====136.65PD BD Rt PAD PD BA ⊥BA 136.65BD PC ==Rt PBD 45BPD ∠=︒==136.65PD BD Rt PAD 11.3APD ∠=︒tan11.3136.650.20027.33AD PD =⋅≈⨯=︒136.6527.33109.32109.3AB BD AD ∴=-=-=≈答:南水北调第一楼的高度约为109.3米.21.(1)2880元(2)按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元【分析】本题考查了一元一次不等式的应用、一次函数的应用,解题的关键是:(1)根据题意分别计算两种纪念币的利润,即可求解;(2)设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元,根据题意分别列出关于y 与x 的一次函数,关于x 的一元一次不等式,从而求得,再根据一次函数的性质求解即可.【解答】(1)解:由题意得,(元),答:全部售完后获利2880元;(2)解:设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元.由题意得:,∵A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,,∴,∵,,∴y 随x 的增大而减小,当时,(元),∴B 种纪念币的数量为(枚),答:按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元.AB (150)x -100x ≤()()6645809060402880-⨯+-⨯=(150)x -()()()6645906015094500y x x x =-+--=-+()2150x x ∴≤-100x ≤=94500y x -+90k =-<100x =910045003600y =-⨯+=最小15010050-=22.任务1:见解析,;任务2:4个;任务3:最左边一盏灯笼悬挂点的横坐标为【分析】本题考查了二次函数的应用,一元一次不等式组的应用;任务1:以中点为原点,以所在直线为轴建立平面直角坐标系,可得抛物线的顶点,且过点,然后利用待定系数法求解即可;任务2:设悬挂个灯笼,先根据“间隔在之间”列不等式求解,再根据“悬挂灯笼的数量为双数”得出答案;任务3:先求出间隔的距离,然后计算即可.【解答】解:任务1:以中点为原点,以所在直线为轴,建立如图所示的平面直角坐标系,∵矩形的宽为,高为,抛物线形拱的高为,∴抛物线的顶点,且过点,设抛物线的解析式为:,把点代入得:,解得:,所以抛物线的解析式为:;任务2:设悬挂个灯笼,依题意得:,解得:,因为灯笼的个数为双数,所以符合悬挂条件的灯笼数量为4个;221425y x =-+3310-BC O BC x ()0,14P ()5,12D x 0.8-1.5m BC O BC x 10m 12m 2m ()0,14P ()5,12D 214y ax =+()5,12D 122514a =+225a =-221425y x =-+x ()()0.8110 1.51x x x +≤-≤+213559x ≤≤任务3:由题意得间隔为,所以最左边一盏灯笼悬挂点的横坐标为.23.(1)(2)①90°,见解析;【分析】本题主要考查勾股定理以及逆定理,一次函数图象,轴对称的性质,中心对称的性质(1)根据轴对称和中心对称的性质以及勾股定理以及逆定理求解即可;(2)①连接,可得,进而即可求解;②先推出,再根据勾股定理求解即可;(3)分当点P 在正方形外部时,当点P 在正方形内部时,结合勾股定理求解即可【解答】(1)解:连接,∵,∴,∴,∴点可以看作是点绕点顺时针旋转得到的,旋转角的度数为,∵共线,∴点可以看作是点关于点的对称点,故答案为:;()61045m 5-÷=613355210-++=-90,O︒1112323PD P D P D P P 、、、112PDC PDC PDB P DB ∠=∠∠=∠,3290P DP ∠=︒322OA OA OA AA ,,,22OA OA AA =====22222OA OA AA =+290AOA ∠=︒2A A O 90︒3O A A O ===3A O A 、、3A A O 90O ︒,(2)①解:连接由对称性可得:,∴;②由(1)可知:共线,∴∵,∴;(3)解:①当点P 在正方形外部时,连接,过点作,则,,∴,∴∴;②当点P 在正方形内部时,连接,过点作,则,,12323PD P D P D P P 、、、112PDC PDCPDB P DB ∠=∠∠=∠,()2112224590PDP PDC PDB BDC ∠=∠+∠=∠=⨯︒=︒3P D P 、、321809090P DP ∠=︒-︒=︒32DP DP DP m ===23P P ==12PP 1P12PH DP ⊥()122453030PDP ∠=⨯︒-︒=︒12DP DP DP ===1HP HD ==2HP =121PP ==-12PP 1P12PH DP ⊥()1223045150PDP ∠=⨯︒+︒=︒12DP DP DP ==∴,∴,∴∴,综上所述:130PDH ∠=︒1HP HD ==2HP =121PP ==121PP =1。

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)2

人教版数学七年级第七章平面直角坐标系单元测试精选(含答案)2

【答案】A
31.在平面直角坐标系中,点 P(—3,0)在(

A.x 轴的正半轴 B.x 轴的负半轴 C.y 轴的正半轴 D.y 轴的负半轴
【来源】人教版数学七年级下册第七章平面直角坐标系单元测试
【答案】B
评卷人 得分
二、填空题
32.若点 A(x,2)在第二象限,则 x 的取值范围是____. 【来源】2016 年初中毕业升学考试(广西百色卷)数学(带解析) 【答案】x<0 33.若点 M(a+5,a-3)在 y 轴上,则点 M 的坐标为________. 【来源】2011-2012 学年黑龙江兰西县北安中学七年级下学期期中考试数学卷 【答案】(0,-8) 34.点 P(3,-4)到 x 轴的距离是_____________. 【来源】安徽省涡阳县石弓中心校 2018-2019 学年度第一学期八年级第一次月考数学试 题(沪科版) 【答案】4 35.点 P(3,-4)到原点的距离是___________。 【来源】甘肃省天水市第一中学 2017-2018 学年八年级上学期期末模拟考试数学试题 【答案】5
D. (1, 2)
【来源】2011 年初中毕业升学考试(湖南怀化卷)数学
【答案】C
21.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形
与原图形的关系是
A.关于 x 轴对称 B.关于 y 轴对称 C.关于原点对称 D.两图形重合
【来源】2012 届四川省沐川县初三二调考试数学卷(带解析)
A.m=0,n 为一切数 B.m=0,n<0
C.m 为一切数,n=0 D.m<0,n=0
【来源】2017-2018 学年浙教版八年级数学上册习题:单元测试
【答案】D

2015-2016年河南省濮阳市油田教育中心七年级(下)期末数学试卷(五四学制)(解析版)

2015-2016年河南省濮阳市油田教育中心七年级(下)期末数学试卷(五四学制)(解析版)

2015-2016学年河南省濮阳市油田教育中心七年级(下)期末数学试卷(五四学制)一、选择题(每题3分,共24分):【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(3分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1B.2C.3D.42.(3分)“三角形的外角大于任何一个和它不相邻的一个内角”这一事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是3.(3分)若m>﹣1,则下列各式中错误的是()A.6m>﹣6B.﹣5m<﹣5C.m+1>0D.1﹣m<24.(3分)等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°5.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.6.(3分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.7.(3分)如图,在△ABC中,BD是∠ABC的角平分线,ED∥BC,且∠C=76°,∠A=60°,则∠BDE的度数为()A.20°B.22°C.44°D.82°8.(3分)如图是人字型屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点,如果焊接工身边只有检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接点是()A.AB和BC焊接点B B.AB和AC焊接点AC.AB和AD焊接点A D.AD和BC焊接点D二、填空题(每题3分,共21分):9.(3分)将“有一个角为60°的等腰三角形是等边三角形”改写成“如果…那么…”形式:.10.(3分)某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.11.(3分)函数y1=2x﹣5和y2=x﹣2的图象如图所示,观察函数图象,当x时,y1<y2(填:“<”或“>”).12.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于度.13.(3分)如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠F AC=.14.(3分)如图,在△ABC中,BP、AP是∠ABC、∠BAC的角平分线,交点为P,PD⊥BC于D,PE⊥AC于E,PD=4.则PE=.15.(3分)对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算.已知:2※1=7,(﹣3)※3=3,则(﹣6)※3=.三、解答下列各题(本题满分75分):16.(12分)解方程组:(1)(2).17.(8分)解不等式组:,并把它的解集表示在数轴上.18.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.19.(9分)将一副等腰直角三角板拼成如图(1)所示的图形(说明:三角板有一锐角为45°),连结AD、BE.(1)BE与AD的数量关系是(B、C、D在一条直线上);(2)图(2)是三角板绕C点旋转了个角度,此时BE与AD的数量关系是否有所改变?请说明理由.20.(9分)一个不透明的布袋里装有5个球,其中2个红球,3个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求摸出红球的概率;(3)现再将n个白球放入布袋中,搅匀后,若摸出1个球是白球的概率为,求n的值.21.(9分)已知:如图,在△ABC中,∠C=90°,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AC、AB于点E、D(保留作图痕迹,不写作法).(2)猜想AC与CE之间的数量关系,并证明你的猜想.22.(9分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.23.(11分)长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?2015-2016学年河南省濮阳市油田教育中心七年级(下)期末数学试卷(五四学制)参考答案与试题解析一、选择题(每题3分,共24分):【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(3分)方程2x﹣3y=5,x+=6,3x﹣y+2z=0,2x+4y,5x﹣y>0中是二元一次方程的有()个.A.1B.2C.3D.4【考点】91:二元一次方程的定义.【解答】解:2x﹣3y=5符合二元一次方程的定义;x+=6不是整式方程,不符合二元一次方程的定义;3x﹣y+2z=0含有3个未知数,不符合二元一次方程的定义;2x+4y,5x﹣y>0都不是方程.由上可知是二元一次方程的有1个.故选:A.2.(3分)“三角形的外角大于任何一个和它不相邻的一个内角”这一事件是()A.随机事件B.必然事件C.不可能事件D.以上都不是【考点】X1:随机事件.【解答】解:三角形的外角大于任何一个和它不相邻的一个内角是必然事件,故选:B.3.(3分)若m>﹣1,则下列各式中错误的是()A.6m>﹣6B.﹣5m<﹣5C.m+1>0D.1﹣m<2【考点】C2:不等式的性质.【解答】解:根据不等式的基本性质可知,A、6m>﹣6,正确;B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m<5,故B错误;C、m+1>0,正确;D、1﹣m<2,正确.故选:B.4.(3分)等腰三角形一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°【考点】K7:三角形内角和定理;KH:等腰三角形的性质.【解答】解:分两种情况:当50°角为等腰三角形的顶角时,此时等腰三角形的顶角50°;当50°角为等腰三角形的底角时,此时等腰三角形的顶角为:180°﹣50°×2=80°,综上,等腰三角形的顶角为50°或80°.故选:D.5.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【解答】解:由2(1﹣x)<4,得2﹣2x<4.解得x>﹣1,故选:A.6.(3分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【解答】解:根据组数×每组7人=总人数﹣3人,得方程7y=x﹣3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为.故选:C.7.(3分)如图,在△ABC中,BD是∠ABC的角平分线,ED∥BC,且∠C=76°,∠A=60°,则∠BDE的度数为()A.20°B.22°C.44°D.82°【考点】JA:平行线的性质;K7:三角形内角和定理.【解答】解:在△ABC中,∵∠A=60°,∠C=76°,∴∠ABC=180°﹣∠A﹣∠C=44°,∵BD是∠ABC的角平分线,∴∠CBD=∠ABC=22°,∵DE∥BC,∴∠EDB=∠DBC=22°,故选:B.8.(3分)如图是人字型屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点,如果焊接工身边只有检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接点是()A.AB和BC焊接点B B.AB和AC焊接点AC.AB和AD焊接点A D.AD和BC焊接点D【考点】KH:等腰三角形的性质.【解答】解:根据等腰三角形的三线合一,知:AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D,故选D.二、填空题(每题3分,共21分):9.(3分)将“有一个角为60°的等腰三角形是等边三角形”改写成“如果…那么…”形式:如果等腰三角形有一个角为60°,那么这个三角形是等边三角形.【考点】O1:命题与定理.【解答】解:将“有一个角为60°的等腰三角形是等边三角形”改写成“如果…那么…”形式:如果等腰三角形有一个角为60°,那么这个三角形是等边三角形;故答案为如果等腰三角形有一个角为60°,那么这个三角形是等边三角形.10.(3分)某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.【考点】X5:几何概率.【解答】解:∵整个正方形被分成了9个小正方形,黑色正方形有5个,∴落在黑色区域即获得笔记本的概率为,故答案为:.11.(3分)函数y1=2x﹣5和y2=x﹣2的图象如图所示,观察函数图象,当x<3时,y1<y2(填:“<”或“>”).【考点】FD:一次函数与一元一次不等式.【解答】解:由图象知:当x<3时,y1<y2.故答案是:<3.12.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于35度.【考点】JA:平行线的性质.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故答案是:35.13.(3分)如图,在△ABC中,AB=AC,∠BAC=130°,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则∠F AC=105°.【考点】KG:线段垂直平分线的性质;KH:等腰三角形的性质.【解答】解:∵AB=AC,∠BAC=130°,∴∠B=(180°﹣130°)÷2=25°,∵EF垂直平分AB,∴BF=AF,∴∠BAF=∠B=25°,∴∠F AC=∠BAC﹣∠BAF=130°﹣25°=105°.故答案为:105°.14.(3分)如图,在△ABC中,BP、AP是∠ABC、∠BAC的角平分线,交点为P,PD⊥BC于D,PE⊥AC于E,PD=4.则PE=4.【考点】KF:角平分线的性质.【解答】解:如图,作PF⊥AB于F,∵BP、AP是∠ABC、∠BAC的角平分线,PD⊥BC于D,PE⊥AC于E,PD=4∴PE=PF=PD=4,故答案为4.15.(3分)对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算.已知:2※1=7,(﹣3)※3=3,则(﹣6)※3=﹣7.【考点】1G:有理数的混合运算;98:解二元一次方程组.【解答】解:根据题中的新定义得:,解得:,则原式=﹣6×+3×﹣18=﹣2+13﹣18=﹣7,故答案为:﹣7三、解答下列各题(本题满分75分):16.(12分)解方程组:(1)(2).【考点】98:解二元一次方程组.【解答】解:(1),由②得,y=3x+1③,③代入①得,x+2(3x+1)=9,解得x=1,把x=1代入③得,y=3+1=4,所以,方程组的解是;(2)方组可化为,①+②得,4x=12,解得x=3,把x=3代入①得,3+4y=14,解得y=,所以,原方程组的解是.17.(8分)解不等式组:,并把它的解集表示在数轴上.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:∵由不等式①得:x<3,由不等式②:x≥﹣2,∴不等式组的解集为:﹣2≤x<3,把解集表示在数轴上为:.18.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.【考点】KD:全等三角形的判定与性质.【解答】证明:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS).∴AC=ED.19.(9分)将一副等腰直角三角板拼成如图(1)所示的图形(说明:三角板有一锐角为45°),连结AD、BE.(1)BE与AD的数量关系是AD=BE(B、C、D在一条直线上);(2)图(2)是三角板绕C点旋转了个角度,此时BE与AD的数量关系是否有所改变?请说明理由.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【解答】解:(1)相等,理由:在△ADC与△BCE中,,∴△ACD≌△BCE,∴BE=AD;故答案为:AD=BE;(2)没有改变,理由是:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD,∴BE=AD.20.(9分)一个不透明的布袋里装有5个球,其中2个红球,3个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求摸出红球的概率;(3)现再将n个白球放入布袋中,搅匀后,若摸出1个球是白球的概率为,求n的值.【考点】X4:概率公式.【解答】解:(1)∵布袋里装有5个球,其中有3个白球,∴P(摸出1个球是白球)=;(2)∵共有5个球,其中有2个红球,∴P(摸出红球)=;(3)∵布袋里装有5个球,其中有3个白球,再将n个白球放入布袋中,∴=,解得n=2.21.(9分)已知:如图,在△ABC中,∠C=90°,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AC、AB于点E、D(保留作图痕迹,不写作法).(2)猜想AC与CE之间的数量关系,并证明你的猜想.【考点】KG:线段垂直平分线的性质;N2:作图—基本作图.【解答】解:(1)如图,DE为所作;(2)AC=3CE.理由如下:连接BE,如图,∵ED垂直平分AB,∴EA=EB,∴∠A=∠ABE=30°,∵∠ABC=60°,∴∠CBE=30°,∴BE=2CE,∴AE=2CE,∴AC=3CE.22.(9分)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】KM:等边三角形的判定与性质;KQ:勾股定理.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.23.(11分)长沙市某公园的门票价格如下表所示:某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人?【考点】9A:二元一次方程组的应用.【解答】解:设甲班有x人,乙班有y人.由题意得:解得:.答:甲班55人,乙班48人.。

2010年河南省中考数学试卷及答案

2010年河南省中考数学试卷及答案

2010年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用蓝、黑色钢笔或圆珠笔直接答在试卷上.2.答题前将密封线以内的项目填写清楚.参考公式:二次函数()图象的顶点坐标为. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是【 】(A )(B )(C )(D ) 【答案】A【评析】作为整张试卷的第一题,直接考查“相反数”,不偏不难,有利于学生稳定情绪,增强信心,进入考试的正常状态,发挥水平.【课标】借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).2.我省2009年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】 (A )元 (B )元 (C )元(D )元 【答案】B【评析】该知识点自05年实行课改以来,除09年以外,每年都要考查,这里结合我省经济发展实际,旨在使学生的解题过程成为一个知识信息生成的过程,具有教育性和现实意义.该知识点需要注意单位和小数的科学计数法表示.【课标】了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示). 3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为:1。

71,1。

85,1。

85,1.96,2。

10,2。

31.则这组数据的众数和极差分别是【 】 (A )1。

85和0。

21 (B )2。

11和0。

46 (C )1.85和0.60(D )2.31和0。

60 【答案】C【评析】通过体育测试这样一个每位学生都熟知的学生生活的情景进行设置,极具公平性.直接考查众数、极差等统计知识,具有一定的概括性,体现了统计来源于生活、应用于生活的思想.【课标】探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度.4.如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ;③.其中正确的有【 】(A )3个 (B )2个 (C )1个 (D )0个 【答案】A【评析】涉及三角形中位线的图形是一个重要的基本图形,其蕴涵的数学知识点较多,综合性较强,但难度又不大,因此常被命题人眷顾,此题涵盖了中位线性质、三角形相似、比例线段等知识,是一道非常好的题目. 5.方程的根是【 】(A )(B ) (C )(D ) 【答案】D【评析】本题是最基本的一元二次方程的求解,旨在考查解一元二次方程的基本方法和基本解题过程.6.如图,将△ABC 绕点C (0, 1)旋转180°得到△A ’B'C ,设点A'的坐标为,则点A 的坐标为【 】(A )(B ) (C )(D ) 【答案】D(第4题)ABCDE(第6题)【评析】此题将图形与坐标、旋转有机结合起来,将图形的旋转变化(动态)与准确定位(静态)有机结合起来,考查学生在图形变换过程中的观察、探究、判断能力以及数形结合思想方法的运用能力,体现了重要的思想方法重点考查的思路.认真阅读领会题意后,抓住运动的本质特点,可将本题简化为线段A ’C 绕着端点C 逆旋转180°后,求点A 的坐标;或者已知线段一个端点和中点坐标,求另一端点的坐标;或者将图形(坐标系)整体向上(向下)平移一个单位.这道题作为选择题的把关题,其难度提升在于坐标点的符号化,以此来甄别初中生符号感的水平.但解决这类含有字母的选择题时,使用特殊值法非常奏效.即将对应点的坐标特殊化,进行验证.此方法只能作为最后考试技巧交给学生,平时教学中还应当进行正面解答,以深刻领会考试的意图,检验考查目标的达成情况. 二、填空题(每小题3分,共27分) 7.计算=__________________.【答案】5【评析】本题考查绝对值、平方、加减运算等基本概念和技能,属于基本送分题. 8.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是___________. 【答案】【评析】本题考查数感、数学估算能力、数形结合思想.9.写出一个y 随x 增大而增大的一次函数的解析式:__________________. 【答案】答案不唯一,如y =x 等.【评析】此题涉及到函数知识的考查,同时又是结论开放性试题,给学生足够的自由选择的空间,使得不同程度的学生都可以在这道题上得以发挥.该题出现学生书写含有字母系数或常数项的现象,只要给出字母的控制条件,使得解析式符合题目要求就应该给分. 10.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________. 【答案】75°(第8题)(第10【评析】该题入口宽,解法灵活,涉及的基本图形可归结为四边形内角和问题.如图,在演变过程中,∠A+∠B+∠C+∠D=360°保持不变.若引入有向角(方向的该变量,逆时针为正,顺时针为负),则可将问题推广到任意星型角的求和问题,即沿着星型角的边运动,方向的该变量的代数和等于自转的角度. 三角板是学生最为熟悉的工具,用一副三角板(角的特征和边的关系),或者相同的三角板进行组合图形,或者作图形变换,可以演变出非常丰富精彩的数学问题,基于它的低起点、高落点、可操作等特点,三角板问题已为中考数学的热点问题,我省近几年的中考数学试题中就频繁出现.平时多引导学生摆弄三角板,通过拼、凑、叠、平移和旋转等变换,多猜想、多探讨、多思考、多研究,使学生在一个充满探索的运动过程中理解数学,提出新问题,解决新问题,从中感受数学创造的乐趣,增进学好数学的信心,形成应用意识、创新意识. 11.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是上异于点C 、A 的一点,若∠ABO =32°,则∠ADC 的度数是______________. 【答案】29°【评析】本题考查直线与圆相切的性质、直角三角形锐角互余、圆周角与圆心角的关系等知识点,常规题型,难度适中,若“点D 是上异于点C 、A 的一点"改为“点D 是圆周上异于点C 、A 的一点",会出现两种情况.多解问题多考查学生思维的缜密性,学生漏解的根本原因多是对问题考虑不周,这需要引导学生加深对数学知识本质的理解,增加多解问题的知识积累.12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________. 【答案】【评析】概率与统计在人们生活中的重要作用决定了它成为《数学课程标准》中不可缺少的(第11题) AB CDOABC DA BC DA BC D 2 D 1AB1CDB 2组成部分.本题从以下两方面体现了课标的要求:一是按照概率这个数学分支发展起源的特点,本题背景“抽取扑克牌”具有明显的游戏色彩,符合概率的定义;二是解答本题需要用到列表或画树状图的基本方法.背景为考生所熟悉,问题设置难易适中.本题易错点是确定是否重复抽取.13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为________. 【答案】7【评析】“视图”是以在“视”的基础上的“对应”为特征,建立起三维的几何体与二维的平面图形之间的对应关系;本题给出三视图中的主、左两视图,逆向考查其直观图的特征,适当地加大了对学生空间观念的考查力度,解题时需要在大脑中模拟主视、左视二种可视活动,同时也考察了学生的观察能力、归纳概括能力和逆向思维能力,题目立足课本,背景公平自然,也促进我们的数学课堂要关注具体的数学活动过程,给学生积累思维的基础.14.如图矩形ABCD 中,AB =1,AD =,以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为______________________. 【答案】【评析】解答本题需要连结AE,判定扇形角的度数.该题将圆与矩形结合在一起,涉及到矩形、扇形、45°角直角三角形的性质及其面积计算,考察了学生的观察、分析、转化能力和对立统一、数形结合等思想方法的运用.此题出错的因素有两点,一是不会添加辅助线;二是结论合成化简(没必要)出错.15.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________. 【答案】2≤AD <3【评析】虽然本题题干只涉及到30°角的直角三角形和相等线段,问题呈现简单明了,但却蕴涵丰富,体现了在知识的交汇点、以能力立意的命题理念,考查学(第15题)ADCBE(第14题)生在几何图形的运动变化中,探索发现确定特殊位置的能力,渗透了动与静既对立又统一的辩证思想,使学生活跃思维、升华认知.解决本题的关键是确定2≤AD.下面是该题的不同解法:⑴直线与圆的位置关系:,;⑵垂线段最短:,;⑶三角函数:,;⑷分式函数:,,(用换元法、判别式法可解);⑸垂线段最短:□ADEG,,;⑹平行线间距离最短:,.⑺平方非负数:,,,.⑻正弦定理:△BDE中,,.该题的解题思路还有探究的空间.三、解答题(本大题共8个大题,满分75分)先化简,再求值,其中.【答案】选一:(A-B)÷C……1分……5分……7分当x=3时,原式……8分选二:A-B÷C……1分……3分……4分……7分当x=3时,原式……8分【评析】代数中的化简求值是数学课程标准所规定的一项基本内容,它涉及到对运算的理解以及运算技能的掌握两个方面.本题以两种形式呈现问题让学生选择,给学生一定的自由度,学生可根据自己的解题特点进行筛选,体现了对学生的人文关怀,同时也不失对平方差公式、分式的四则运算、分式的基本形式等核心知识的考查. 17.(9分)如图,四边形ABCD 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和B ’C 相交于点O ,连接BB'.(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB'O ≌△CDO .【答案】⑴△ABB ’,△AOC ,△BB'C ……3分⑵ 在□ABCD 中,AB =DC ,∠ABC =∠D . 由轴对称知AB'=AB ,∠ABC =∠AB ’C . ∴AB ’=CD ,∠AB ’O =∠D .……7分 在△AB ’O 和△CDO 中,∵∠AB'O =∠D ,∠AOB ’=∠COD ,AB ’=CD , ∴△AB ’O ≌△CDO .……9分【评析】本题容易在教材中找到原形,属于基本题型,通过对等腰三角形、平行四边形、全等三角形、轴对称图形等相关知识的运用,考查学生严密的逻辑思维能力和严谨的数学表达能力.此题给我们启示是,在教学过程中,不要误解《课程标准》对教学的要求,将教学极端化,而是更加重视对双基的教学,重视引导学生加强对数学本质问题的理解,在改变学生学习方式的同时,对基础的常规题目仍然作为教学的重点. 18.(9分)“校园手机"现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?【答案】⑴家长人数为80÷20%=400 ……3分(正确补全图①)……5分⑵ 表示家长“赞成”的圆心角的度数为×360°=36°……7分 ⑶学生恰好持“无所谓"态度的概率是=0。

2019年河南省中考数学试卷和答案解析

2019年河南省中考数学试卷和答案解析

2019年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)(2019•河南)﹣的绝对值是()A.﹣B.C.2 D.﹣22.(3分)(2019•河南)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 3.(3分)(2019•河南)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.(3分)(2019•河南)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.(3分)(2019•河南)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.(3分)(2019•河南)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.(3分)(2019•河南)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.(3分)(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n 的值为()A.﹣2 B.﹣4 C.2 D.49.(3分)(2019•河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.10.(3分)(2019•河南)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。

2024年陕西省中考数学试题(解析版)

2024年陕西省中考数学试题(解析版)

2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 3−倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.的【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3. 如图,AB DC ∥,BC DE ∥,145B ∠=°,则D ∠的度数为( )A. 25°B. 35°C. 45°D. 55°【答案】B【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=°,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C∠+∠=°∴, 145B ∠=°,18035C B ∴∠=°−∠=°,∥ BC DE ,35D C ∴∠=∠=°.故选B .4. 不等式()216x −≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥【答案】D【解析】【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:()216x −≥,去括号得:226x −≥,移项合并得:28x ≥,解得:4x ≥,故选:D .5. 如图,在ABC 中,90BAC ∠=°,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.【详解】解:由图得ABD △,ABC ,ADC △,ADE 为直角三角形,共有4个直角三角形.故选:C .6. 一个正比例函数图象经过点()2,A m 和点(),6B n −,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =−C. 13y x =D. 13y x =− 【答案】A【解析】【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出,A B 的坐标,进而利用待定系数法求出函数表达式即可.【详解】解:∵点A 与点B 关于原点对称,∴6,2m n ==−,∴()2,6A ,()2,6B −−, 设正比例函数的解析式为:()0y kx k =≠,把()2,6A 代入,得:3k =, ∴3y x =;故选A .7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )的A. 2B. 3C. 52D. 83【答案】B【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明ADH FGH ∽△△,利用相似三角形的性质列式计算即可求解.【详解】解:∵正方形ABCD ,6AB =,∴6AB AD CD ===,∵正方形CEFG ,2CE =,∴2CE GF CG ===,∴4DG CD CG =−=,由题意得AD GF ∥,∴ADH FGH ∽△△, ∴AD DH GF GH=,即624DH DH =−, 解得3DH =,故选:B .8. 已知一个二次函数2y ax bx c ++的自变量x 与函数y 的几组对应值如下表, x …4− 2− 0 3 5 …y … 24− 8− 0 3− 15− …则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象对称轴是直线1x =【答案】D【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可. 的【详解】解:由题意得4280933a b c c a b c −+=− = ++=− ,解得102a c b =− = =,∴二次函数的解析式为()22211y x x x =−+=−−+,∵10a =−<,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线1x =,故选项D 符合题意;当01x <<时,y 的值随x 的值增大而增大,当1x >时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为()1,1且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D . 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab −=_______________.【答案】a (a ﹣b ).【解析】【详解】解:2a ab −=a (a ﹣b ). 故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)【答案】0【解析】【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.【详解】解:由题意,填写如下:()()10102020++−=++−=,,满足题意;故答案为:0.11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.【答案】90°##90度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=°,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是 BC所对的圆周角,BOC ∠是 BC 所对的圆心角, 2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=° ,2180A OBC OCB ∴∠+∠+∠=°,OB OC = ,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=°,22180A OBC ∴∠+∠=°,90A OBC ∴∠+∠=°.故答案为:90°.12. 已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y +________0. 【答案】<##小于【解析】【分析】本题主要考查了反比例函数的性质,先求出152y =,25y m =−,再根据01m <<,得出25y <−,最后求出120y y +<即可.【详解】解:∵点()12,A y −和点()2,B m y 均在反比例函数5y x =−的图象上, ∴152y =,25y m=−, ∵01m <<,∴25y <−,∴120y y +<.故答案为:<.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.【答案】60【解析】【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点C 作C M A B ⊥,CN BF ⊥,根据等边对等角结合平行线的性质,推出ABC CBF ∠=∠,进而得到CM CN =,得到CBF ACE S S = ,进而得到四边形EBFC 的面积等于ABC S ,设AM x =,勾股定理求出CM 的长,再利用面积公式求出ABC 的面积即可.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BF AC ∥,∴ACB CBF ∠=∠,∴ABC CBF ∠=∠,∴BC 平分ABF ∠,过点C 作C M A B ⊥,CN BF ⊥,则:CM CN =, ∵11,22ACE CBF S AE CM S BF CN =⋅=⋅ ,且BF AE =, ∴CBF ACE S S = ,∴四边形EBFC 面积CBF CBE ACE CBE CBA S S S S S =+=+= ,∵13AC =,∴13AB =,设AM x =,则:13BM x =−,由勾股定理,得:22222CM AC AM BC BM =−=−,∴()2222131013x x −=−−, 解:11913x =,∴12013CM =, ∴1602CBA S AC CM ⋅ , ∴四边形EBFC 的面积为60.故答案为:60.三、解答题(共13小题,计81分。

专题03 观察规律归纳型—2023年中考数学必考特色题型讲练(河南专用)(原卷版)

专题03 观察规律归纳型—2023年中考数学必考特色题型讲练(河南专用)(原卷版)

专题03观察规律归纳型选题介绍本题型在河南省近十年的中招试卷中考了3次,分别为2022年第9题,2019年第10题,2016年第8题。

该题一般为选择题型,分值3分。

本题计算量大,难度系数中等,得分率较低。

本题属于代数范畴,考察知识分为两类,一、数字或字母规律,探索型问题;二、几何图形中规律探索型问题。

通过观察、归纳、类比等活动获得数学猜想,并能对所做出的猜想进行验证,能进行一些简单的严密的逻辑论证,并有条理的表达自己的证明。

根据已有的图像与文字提供的信息,按照以下思维过程解体:①从特殊情况入手,探索发现规律,②综合归纳猜想,得出结论,③验证结论。

真题展现2022年河南中招填空题第9题9.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P,将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(3,-1)B.(-1,-3)C.(−3,-1)D.(1,3)2019年河南中招填空题第10题10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)2018年河南中招填空题第8题8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)模拟演练1.如图,在平面直角坐标系中,边长为1的正方形111OA B C 的两边在坐标轴上,以它的对角线1OB 为边作正方形122OB B C ,再以正方形122OB B C 的对角线2OB 为边作正方形233OB B C ,以此类推⋯、则正方形201920202020OB B C 的顶点2020B 的坐标是()A .1010(2,0)B .(0,10102)C .1010(0,2)-D .1010(2-,0)2.如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒23π个单位长度,则2019秒时,点P 的坐标是()A .(2017,0)B .3)C .(2018,0)D .(2019,3)-3.如图,在平面直角坐标系中,()()2,0,1,0A B -,以点A 为圆心,OA 长为半径作圆,交x 轴正半轴于点C ,点D 为A 上一动点,连接BD ,以BD 为边,在直线BD 的上方作正方形BDEF ,若点D 从点O 出发,按顺时针方向以每秒2π个单位长度的速度在A 上运动,则第2022秒结束时,点F 的坐标为()A.()1,3B.(C.3,32⎛⎫ ⎪⎝⎭D.32⎛ ⎝4.如图所示,在OBC 中,顶点()0,0O ,()2,2B -,()2,2C .将OBC 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A 的坐标为()A.(6,2)B.(﹣2,6)C.(6,﹣2)D.(6,﹣2)5.如图,小圆O 的半径为1,111A B C ∆,222A B C ∆,333A B C ∆,…,n n n A B C ∆依次为同心圆O 的内接正三角形和外切正三角形,由弦11A C 和弧11A C 围成的弓形面积记为1S ,由弦22A C 和弧22A C 围成的弓形面积记为2S ,…,以此下去,由弦n n A C 和弧n n A C 围成的弓形面积记为n S ,其中2020S 的面积为__________.6.如图所示,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ……按照此规律继续下去,则2021S 的值为()A .201712⎛⎫ ⎪⎝⎭B .201812⎛⎫ ⎪⎝⎭C .201912⎛⎫ ⎪⎝⎭D .202012⎛⎫ ⎪⎝⎭7.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,2),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A ……按此规律继续作下去,得到等边三角形202020202021O A A ,则点2021A 的纵坐标为()A .201812⎛⎫ ⎪⎝⎭B .201912⎛⎫ ⎪⎝⎭C .202012⎛⎫ ⎪⎝⎭D .202112⎛⎫ ⎪⎝⎭8.在平面直角坐标系中,已知点1A ,将点()11,1A 向上平移1个单位,再向右平移2个单位,得到点2A ;将点2A 向上平移2个单位,再向右平移4个单位,得到点3A ;将点3A 向上平移4个单位,再向右平移8个单位,得到点4A ⋅⋅⋅⋅⋅⋅,按照这个规律,则点2022A 的横坐标是()A .20222B .202221-C .20212D .202121-9.如下图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是()A .(2019,1)B .(2019,0)C .(2019,2)D .(2019,0)10.如图,在平面直角坐标系中,动点A 从点()100A ,出发,由1A 跳动至点()202A ,,依次跳动至点()321A -,,点()420A ,,点()522A ,…根据这个规律,则点2022A 的坐标是()A .(1348,-1)B .(1348,2)C .(674,-1)D .(674,2)。

2024年河南省平顶山中考数学一模模拟试题(解析版)

2024年河南省平顶山中考数学一模模拟试题(解析版)

2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。

2023年河南省开封市中考数学模拟试卷(含解析)

2023年河南省开封市中考数学模拟试卷(含解析)

2023年河南省开封市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 2023的倒数是( )A. 2023B. −2023C. −12023D. 120232.如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A.B.C.D.3. 若2+a在实数范围内有意义,则a的取值范围是( )A. a>−2B. a<−2C. a≥−2D. a≤−24. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 0.272×107B. 2.72×106C. 2.72×105D. 272×1045. 某学校将国家非物质文化遗产——“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图所示,若将左图抽象成右图的数学问题:在平面内,AB//CD,DC的延长线交AE于点F;若∠BAE=75°,∠AEC=35°,则∠DCE的度数为( )A. 120°B. 115°C. 110°D. 75°6.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是初三某班班长统计的全班50名学生一学期课外图书的阅读量(单位:本),则这50名学生图书阅读数量的中位数、众数和平均数分别为( )A. 18,12,12B. 12,12,12C. 15,12,14.8D. 15,10,14.57. 如图,某数学兴趣小组测量一棵树CD的高度,在点A处测得树顶C的仰角为45°,在点B处测得树顶C的仰角为60°,且A,B,D三点在同一直线上,若AB=16m,则这棵树CD的高度是( )A. 8(3−3)mB. 8(3+3)mC. 6(3−3)mD. 6(3+3)m8.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,以下结论错误的是( )A. AD是∠BAC的平分线B. ∠ADC=60°C. 点D在线段AB的垂直平分线上D. S△A B D:S△A B C=1:29. 如图,在平面直角坐标系xOy 中,点A ,B 都在反比例函数y =kx(x <0)的图象上,且△OAB 是等边三角形,若AB =6,则k 的值为( )A. −8B. −9C. −6 3D. −1210. 如图,点E 在矩形ABCD 的AB 边上,将△ADE 沿DE 翻折,点A 恰好落在BC 边上的点F 处,若CD =3BF ,BE =4,则AD 的长为( )A. 9B. 12C. 15D. 16第II 卷(非选择题)二、填空题(本大题共5小题,共15.0分)11. 因式分解:x 2+2x +1= .12. 已知关于x 的一元二次方程x 2+kx−6=0的一个根是2,则另一个根是______.13. 不等式组{1−x <013x −1≤0的解集是______.14. 若关于x 的一元二次方程x 2−4x +m =0没有实数根,则m 的取值范围是______.15. 甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,则图中m 的值为______ .三、解答题(本大题共8小题,共64.0分。

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

洛阳市2024 年中招模拟考试(一)数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5 毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的绝对值是()A. 3B.C.D.【答案】A解析:解:,的绝对值是3,故选:A.2. 天地正清明,最美四月天.2024年清明假期,河南省文化和旅游市场热度延续、高潮迭起.三天假期,河南省接待国内游客1906.9万人次,旅游总收入112.5亿元.与2023年同期相比,接待人次增长9.9%,旅游总收入增长20.6%.数据“112.5亿”用科学记数法表示为()A. B. C. D.【答案】D解析:解:数据亿用科学记数法可表示为:,故选:D.3. 我国古代数学家刘徽利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A. B. C. D.【答案】A解析:解:由几何体可得,从左边看到的平面图形为,故选:.4. 下列运算正确的是()A. B. C. D.【答案】C解析:解:A.,运算错误,不符合题意;B.,运算错误,不符合题意;C.运算正确,符合题意;D.运算错误,不符合题意.故选:C.5. 如图,已知,于点F,平分,若,则的度数是()A. B. C. D.【答案】D解析:设与相交于点G,∵,∴,∵,∴,∵,∴,∵平分,∴,∴.故选:D.6. 关于x的方程有两个不相等的实数根,m的值可以是()A. B. 1 C. D. 2【答案】A解析:解:∵关于的方程有两个不相等的实数根,,解得:.故的值可以为,故选:A.7. 如图,四边形内接于,连接.若,则的度数为()A. B. C. D.【答案】D解析:∵四边形内接于,∴,∵,∴,∵与所对的弧都是,∴.故选:D.8. 某校计划组织研学活动,现有四个地点可供选择:龙门石窟、洛邑古城、龙门海洋馆、洛阳博物馆.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择洛邑古城的有360人,那么选择龙门石窟的有()A. 120人B. 240人C. 360人D. 480人【答案】B解析:解:学生总数为:(人),选择龙门石窟的人数为:(人),故选:B.9. 如图,在平面直角坐标系中,的顶点O为坐标原点,,C是斜边的中点,且交x轴于点D.将沿x轴向右平移得到,当的中点E恰好落在y 轴上时,点的坐标为()A. B. C. D. (7,0)【答案】A详解】解:∵,∴,∴,∴;∵C是斜边的中点,∴,∵,∴在中,,由平移的性质可得,,∴,∵点E为的中点,∴,在中,,∴,∴,故选:A.10. 如图1,点E在正方形的边上,且点P沿从点B运动到点D,设B,P 两点间的距离为x,,图2是点P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为则最高点N的纵坐标a的值为()A. 6B.C.D.【答案】C解析:连接,∵四边形是正方形,是其对角线,∴,又,∴,∴,,连接交于点,(三角形两边之和大于第三边).当点P运动到时,,解得,.连接,则.在图1中,当P运动到D点时,对应图2中最高点N,此时y取最大值a,,故选:C.二、填空题(每小题3分,共15分)11. 若一次函数(b是常数)的图象经过第二、三、四象限,则b的值可以是_____ (写出一个即可).【答案】(答案不唯一)解析:解:∵一次函数(b是常数)的图象经过第二、三、四象限,∴.故答案为:(答案不唯一).12. 不等式组的解集为__________.【答案】解析:解:,由①得,,由②得,,故不等式组的解集为.故答案为:.13. 人类的性别由一对染色体决定,称为性染色体.女性的性染色体是一对同型的染色体、用表示,男性的性染色体是一对异型的染色体,用表示,每个人的成对染色体只有一个能遗传给后代,且可能性相等.则一对夫妇的第一个孩子是女孩的概率是_______.【答案】##解析:解:一对夫妇的第一个孩子有女孩和男孩两种情况,所以一对夫妇的第一个孩子是女孩的概率是,故答案为:.14. 如图,在中,,,以点A 为圆心,边的长为半径作交边于点 E ,以边 为直径作半圆交边于点 D ,则图中阴影部分的面积为_______.【答案】解析:∵,∴,∴,∴.故答案为:.15. 在中,将边绕点A旋转,点C的对应点是点D,连接.当是等腰直角三角形时,的长为_________.【答案】或解析:解:当,且点在上方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,.当,且点在下方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,综上所述:的长为或.故答案为:或.三、解答题(本大题共8个小题,共75分)16. (1)计算:;(2)化简:【答案】(1);(2)解析:解:(1);(2).17. 某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为310元,370元,580元.洛洛打算从该公司租一辆汽车外出旅游一天,往返行程为,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型平均里程()中位数()众数()号A199195C227225225(1)洛洛已经对A,C型号汽车数据统计如表,请继续求出B型号汽车行驶里程的平均数、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的租车建议.【答案】(1)平均数是;中位数为;众数为(2)选择型号汽车(1)解:型号汽车行驶里程的平均数是:,把这20个数据按从小到大的顺序排列,第10,11个数据均为,所以中位数为;出现了六次,次数最多,所以众数为;(2)选择型号汽车,理由如下:型号汽车的平均里程、中位数和众数均低于,且只有的车辆能达到行程要求,故不建议选择;型号汽车的平均里程、中位数和众数都超过,其中型号汽车有符合行程要求,很大程度上可以避免行程中充电耽误时间,且型号汽车比型号汽车更经济实惠,故建议选择型号汽车.18. 如图,四边形的顶点B,C在x轴上,顶点D在y轴上,,顶点A的坐标为,顶点B的横坐标.双曲线经过点A.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出的平分线(要求:不写作法,保留作图痕迹);(3)上问中所作的角平分线与x轴交于点E,若点C的坐标为,求证:四边形是菱形.【答案】(1)反比例函数的解析式为(2)见详解(3)见详解(1)解:将点代入双曲线,得,,解得:,∴反比例函数的解析式为;(2)(3),,,,,,,,,是的平分线,,,,,,,∴四边形是平行四边形,,∴平行四边形是菱形.19. 随着端午节的临近,A,B两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:A超市B超市优惠方案所有商品按七五折出售购物金额每满100元返40元(1)当购物金额为90元时,选择超市(填“A”或“B”)更省钱;当购物金额为120元时,选择超市(填“A”或“B”)更省钱;(2)当购物金额为元时,请分别写出它们的实付金额y(元)与购物金额x(元)之间的函数表达式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于A超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为(注:优惠率=购物金额-实付金额).若在B超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.【答案】(1)(2)当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱(3)在超市购物、购物金额越大,享受的优惠率不一定越大(1)解:当购物金额为90元时,在超市购物实付金额(元),在超市购物实付金额90元,∵,∴当购物金额为90元时,选择超市更省钱;当购物金额为120元时,在超市购物实付金额(元),在超市购物实付金额(元),,∴当购物金额为120元时,选择超市更省钱.故答案为:.(2)当时,在超市购物实付金额;当时,在超市购物实付金额;当时,在超市购物实付金额;∴在超市购物实付金额,当时,;当时:;当时:若,解得;若,解得;若,解得.综上,当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱.(3)在超市购物、购物金额越大,享受的优惠率不一定越大.举例说明如下:当在超市购物金额为100元时,返40元,实付金额为(元),优惠率为;当在超市购物金额为160元时,返40元,实付金额为(元),优惠率为,∴在超市购物、购物金额越大,享受的优惠率不一定越大.20. 风是一种可再生能.利用风能进行发电既可以提供持续的电力供应,又可以减少温室气体排放,抑制全球气候变暖,还可以增加能供应的多样性,降低对传统能的依赖.某市若干台风机矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶,,两两所成的角为,当其中一片风叶与塔干叠合时,在与塔底O水平距离为米的E处,测得塔顶部A的仰角.,风叶的视角,求风叶的长度(结果精确到.参考数据:)【答案】风叶的长度约为解析:如图,自点B作,垂足为点F,过点A作,垂足为点G.∵,∴四边形是矩形,∴.由已知,∴,在中,.∵,∴,又,则,∴,则.在中,,,∴,∴,在中,,∴,则,∴.答:风叶的长度约为.21. “急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离0234竖直高度0根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系记该运动员第一次训练落入沙坑点的水平距离为,第二次训练落入沙坑点的水平距离为,请比较,的大小.【答案】(1)(2)(1)解:由题意得,抛物线的顶点坐标为:.∴该运动员竖直高度的最大值为米.设函数关系式为:.∵经过点,∴,解得:.∴函数解析式为:.(2)取.第一次训练时,.解得:(不合题意,舍去),.∴.第二次训练时,.解得:(不合题意,舍去),.,,.22. 如图1,⊙O与直线l相离,过圆心O作直线l的垂线,垂足为P,且交于两点(M在之间).我们把点N称为关于直线l的“远望点”,把的值称为关于直线l的“远望数”.(1)如图2,在平面直角坐标系中,点E的坐标为,过点E画垂直于x轴的直线a,则半径为1的关于直线a的“远望点”的坐标是________,关于直线a的“远望数”为________;(2)如图3,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C坐标为,以点C为圆心、长为半径作.若与直线相离,点O是关于直线的“远望点”,且关于直线的“远望数”是求直线的函数表达式.【答案】(1)(2)直线的函数表达式为(1)根据“远望点”定义,可得半径为1的关于直线a的“远望点”的坐标是,∴关于直线a的“远望数”为,故答案为:(2)设直线的解析式为连接并延长,交于H,交直线于点G,过C作轴于点D,设∵点C坐标为,∵O是关于直线的“远望点”,且关于直线的“远望数”是,即∵点C坐标为,轴于点D,∴即同理得即,∴,解得,∴直线的函数表达式为23. 综合与实践课上,老师让同学们用“木工尺”探究三等分任意角的方法.如图1为“木工尺”示意图,它是由两条宽度相同且互相垂直的直尺组成的,其中.下面是同学们的探究过程,请仔细阅读,并完成相应的任务,【操作实践】如图2,小明画的平行线,使得与的距离等于尺宽,在上取点E,使等于尺宽,调整“木工尺”的位置,使得经过点O,点D落在上,点E落在上,则三等分小明过点D作,垂足为点F,由题意得:,∴().∵,∴垂直平分,∴,∴平分(),∴.∴.∴三等分.任务:(1)请在括号内填写推理的依据.【类比迁移】爱动脑筋的小华受到上述方法的启发,想到了通过折叠矩形纸片三等分一个已知角的方法,他的前两个操作步骤如下(如图3):步骤1:在矩形纸片上折出任意角,将矩形对折,折痕记为,再将矩形对折,折痕记为,展开矩形;步骤2:将矩形沿着折叠,使得点B的对应点落在上,点M的对应点落在上.任务:(2)连接,试证明是的一条三等分线.【拓展应用】(3)在上述小华折叠的条件下,若,且三点共线,请直接写出的长.【答案】【1】到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质【2】见解析【3】解析:(1)根据到角的两边距离相等的点在这个角的角平分线上;根据垂直平分线的性质.故答案为:到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质(2)连接,过点B作于点J,过点作于点K,根据折叠的性质,得,,,∴,,∴,∵,∴,,∴,∴,∵,∴,∴平分,∴,∴,故是的一条三等分线.(3)过点作于点T,根据(2)证明,得到,∵,且三点共线,∴,∴,,∵,∴,∴,∴,,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年河南省中考猜想数学试卷一、选择题(共18小题,每小题3分,满分54分)1.(3分)若点P(1,b)到x轴的距离为2,则b等于()A.2 B.﹣2 C.2或﹣2 D.±2.(3分)函数y=2x的图象与函数y=﹣x+1的图象的交点坐标是()A.(0,1) B.(1,0) C.(﹣,)D.(,)3.(3分)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k 的值是()A.2 B.﹣2 C.4 D.﹣44.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.5.(3分)如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4 B.x≤4 C.x≥m D.x≤16.(3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A 开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,S与t的大致图象是()A. B.C.D.7.(3分)下列图形,线段、等边三角形、矩形、圆、正五边形中,既是轴对称图形,又是中心对称图形的个数是()A.2 B.3 C.4 D.58.(3分)如图,AB∥CD,若∠B=70°,则∠E+∠F等于()A.20°B.70°C.100° D.110°9.(3分)如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A.B.C.D.10.(3分)如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm11.(3分)如图所示的是一个长方形纸片ABCD沿其上一条线EF折叠后的图形,已知∠BEF=105°,则∠B′EA等于()A.15°B.30°C.45°D.60°12.(3分)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC 与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°13.(3分)如图,将一个一边有刻度的直尺放在一个量角器上,使其一边经过量角器的圆心O另一边与量角器交于C、D两点,且C、D两点在直尺上的刻度分别为2、10在量角器上的刻度分别为50、170,则直尺的宽为()A.2 B.C.2 D.14.(3分)如图,在菱形ABCD中,点E、F分别是边AB、AD的中点,连接CE、CF交对角线BD于点M、N,连接EF,则BN:EF等于()A.1:1 B.1:2 C.2:3 D.3:215.(3分)如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.B.C.D.16.(3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()A.B.2 C.3 D.17.(3分)一列火车A从甲站到乙站,同时另一列火车B从乙站到甲站,如图分别表示它们离甲站的距离与时间的关系,给出以下结论:①火车B的速度大于火车A的速度;②行驶1.4小时后,两车相遇;③两车相距110千米时,它们行驶了1个小时;④A车行驶3小时,两车相距300千米,其中正确的结论有()A.1个 B.2个 C.3个 D.4个18.(3分)如图,正方形ABCD的边与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH、FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE②HO BG;③GH2=GM•GE;④△GBE∽△GMF,其中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题19.(3分)计算:﹣|﹣2|﹣sin60°=.20.(3分)根据如图所示的程序计算函数值,若输入的x的值为,则输出的y 的值为.21.(3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.22.(3分)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为米.(用含有a、b的式子表示).23.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.24.(3分)如图,平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2015,2)的是点.三、解答题25.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.26.解不等式组,并写出该不等式组的整数解.27.火力发电站的燃烧塔的轴截面是如图所示的图形,ABCD是一个矩形,DE、CF分别是两个反比例函数图象的一部分,已知AB=87m,BC=20m,上口宽EF=16m,求整个燃烧塔的高度.28.某城市对居民用水实行阶梯收费,每户每月用水量如果未超过20吨.按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月的用水量为x吨,应收水费为y元(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户居民5月份水费平均为每吨2.2元,问该户居民5月份用水多少吨?29.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.30.如图,一次函数y=kx+b的图象与反比例函数y=d的图象都经过点A(﹣2,6)和点B(4,n).(1)求着两个函数的解析式(2)求直线AB关于y轴的对称直线l的函数解析式(3)直线l与反比例函数y=的图象是否交点?如果有交点,求出交点的坐标,如果没有交点,可将直线l向上平移多少个单位后,正好与反比例函数的图象有一个交点?31.已知点a(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求两个坐标间y与x之间的函数关系式.(2)在(1)的条件下,Y是否有最大值?若有,请求出最大值;若没有,请说明理由.(3)如图2,若点B的坐标为(﹣1,1).在x轴上另取点E,则当点E在x轴上的什么位置时,△ABE的周长最小?求出此时点E的坐标.32.如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.33.如图,在矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是;②∠CAO=度;③当点Q与点A重合时,点P的坐标为(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN 为等腰三角形?若存在,请直接写出点P的横坐标m的值;若不存在,请说明理由.34.如图,将Rt△ABC的直角顶点C放在坐标原点,另两个直角边分别与两坐标轴的正半轴重合,已知AC=2,AB=4,将Rt△ABC按如图所示的方式依次绕顶点旋转,经过三次旋转分别经历图①②③种情形,把这三次的旋转叫做一次变换.(1)线段AB在从原图到图①的过程中扫过的图形的面积是,在一次变换过程中顶点B经过的路程是.(2)经过n次变换后,点B移动到B3n的位置,求点B3n的坐标.35.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.36.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.37.如图,△ABC是等腰直角三角形,∠C=90°,CD⊥AB于点D,射线DE与射线DF互相垂直.(1)如图1,DE⊥AC于点E,DF⊥BC于点F,求证:四边形CEDF是正方形.(2)如图2,求证:四边形CEDF的面积S CEDF=S△ABC.?如果成立,请给予证明;如果不成(3)如图3,△GDF的面积是否等于S△ABC立,请说明理由.38.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC 于点D.(1)求证:AC=CD;(2)若AC=2,AO=,求OD的长度.39.如图,⊙O是△ABC的外接圆,AB=AC,连接CO并延长交⊙O的切线AP于点P.(1)求证:∠APC=∠BCP.(2)若BC=4,sin∠APC=,求PA的长.40.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如图的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)若该校共有学生600人,估计持“无所谓”态度的学生人数是.2016年河南省中考猜想数学试卷参考答案与试题解析一、选择题(共18小题,每小题3分,满分54分)1.(3分)若点P(1,b)到x轴的距离为2,则b等于()A.2 B.﹣2 C.2或﹣2 D.±【解答】解:∵点P(1,b)到x轴的距离为2,∴|b|=2,∴b=2或﹣2.故选C.2.(3分)函数y=2x的图象与函数y=﹣x+1的图象的交点坐标是()A.(0,1) B.(1,0) C.(﹣,)D.(,)【解答】解:由解得,∴数y=2x的图象与函数y=﹣x+1的图象的交点坐标是(,),故选D.3.(3分)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k 的值是()A.2 B.﹣2 C.4 D.﹣4【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.4.(3分)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()A.B.C.D.【解答】解:当a>0时,y=ax+1过一、二、三象限,y=在一、三象限;当a<0时,y=ax+1过一、二、四象限,y=在二、四象限;故选A.5.(3分)如图,直线L1:y=x+3与直线L2:y=ax+b相交于点A(m,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4 B.x≤4 C.x≥m D.x≤1【解答】解:∵y=x+3经过点A(m,4),∴m+3=4,解得:m=1,∴A(1,4),∴关于x的不等式x+3≤ax+b的解集是x≤1,故选:D.6.(3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,S与t的大致图象是()A. B.C.D.【解答】解:设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC﹣vt)=﹣hvt+h (AB+BC),是关于t的一次函数关系式;故选C.7.(3分)下列图形,线段、等边三角形、矩形、圆、正五边形中,既是轴对称图形,又是中心对称图形的个数是()A.2 B.3 C.4 D.5【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;矩形是轴对称图形,也是中心对称图形;圆是轴对称图形,也是中心对称图形;正五边形是轴对称图形,不是中心对称图形;故既是轴对称图形,又是中心对称图形的个数是3.故选B.8.(3分)如图,AB∥CD,若∠B=70°,则∠E+∠F等于()A.20°B.70°C.100° D.110°【解答】解:∵AB∥CD,∠B=70°,∴∠BDE=∠B=70°,∴∠E+∠F=70°.故选B.9.(3分)如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A.B.C.D.【解答】解:俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A故选A.10.(3分)如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=7cm,那么BC的长为()A.3cm B.3.5cm C.4cm D.4.5cm【解答】解:由点D是AC的中点,得AD=CD.由CB=CD,得CD=BC.由线段的和差,得AD+CD+BC=AB.又AB=7cm,得BC+BC+BC=7.解得BC=3cm,故选:A.11.(3分)如图所示的是一个长方形纸片ABCD沿其上一条线EF折叠后的图形,已知∠BEF=105°,则∠B′EA等于()A.15°B.30°C.45°D.60°【解答】解:∵四边形ABCD是矩形,∴∠C=∠B=90°,∵∠BEF=105°,∴∠CFE=75°,由折叠的性质得到∠FEB′=∠BEF=105°,∵AD∥CD,∴∠AEF=∠CFE=75°,∴∠B′EA=30°,故选B.12.(3分)如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC 与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°【解答】解:如图,连接OC.∵OA=OC,∴∠OAC=∠OCA=35°,∴∠POC=∠OAC+∠OCA=70°,∵PC是⊙O切线,∴PC⊥OC,∴∠PCO=90°,∴∠P=90°﹣∠POC=20°,故选B.13.(3分)如图,将一个一边有刻度的直尺放在一个量角器上,使其一边经过量角器的圆心O另一边与量角器交于C、D两点,且C、D两点在直尺上的刻度分别为2、10在量角器上的刻度分别为50、170,则直尺的宽为()A.2 B.C.2 D.【解答】解:过点O作OM⊥DC于点M,连接OD.∴DM=CD=(10﹣2)=4.∵在Rt△ODM中,∠DOM=(170°﹣50°)=60°,∴OM====.故选D.14.(3分)如图,在菱形ABCD中,点E、F分别是边AB、AD的中点,连接CE、CF交对角线BD于点M、N,连接EF,则BN:EF等于()A.1:1 B.1:2 C.2:3 D.3:2【解答】解:∵四边形ABCD是菱形,∴AB=AD=BC=CD,AD∥BC,AB∥CD,∵点E、F分别是边AB、AD的中点,∴DC=2BE,BC=2DF,∵AD∥BC,AB∥CD,∴△DFN∽△BCN,△BEM∽△DCM,∴==,==,∴BM=MN,DN=MN,∴BM=MN=DN,∴BN=2BM,∵点E、F分别是边AB、AD的中点,∴BD=2EF=6BM,∴EF=3BM,∴BN:EF=2BM:3BM=2:3,故选C.15.(3分)如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.B.C.D.【解答】解:根据等角的余角相等,得∠BAE=∠CEF=∠DFG.又∠B=∠C=∠D=90°,AE=EF=4,FG=2,∴△ABE≌△ECF,△ECF∽△FDG.∴AB=CE,BE=CF,DF:CE=FG:EF=1:2.∴=,∴DF=FC=BE,设BE=x,则AB=2x,根据勾股定理,得x2+4x2=16,x=.则矩形ABCD 的周长为2(2x +3x )=10x=8. 故选B .16.(3分)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )A .B .2C .3D .【解答】解:如图,设BF 、CE 相交于点M ,∵菱形ABCD 和菱形ECGF 的边长分别为2和3,∴△BCM ∽△BGF , ∴=, 即=,解得CM=1.2,∴DM=2﹣1.2=0.8,∵∠A=120°,∴∠ABC=180°﹣120°=60°,∴菱形ABCD 边CD 上的高为2sin60°=2×=, 菱形ECGF 边CE 上的高为3sin60°=3×=, ∴阴影部分面积=S △BDM +S △DFM =×0.8×+×0.8×=.故选A .17.(3分)一列火车A 从甲站到乙站,同时另一列火车B 从乙站到甲站,如图分别表示它们离甲站的距离与时间的关系,给出以下结论:①火车B 的速度大于火车A 的速度;②行驶1.4小时后,两车相遇;③两车相距110千米时,它们行驶了1个小时;④A 车行驶3小时,两车相距300千米,其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:①因为,所以火车B 的速度大于火车A 的速度正确; 火车A 解析式为:y=100x ,火车B 的解析式为:y=﹣140x +350,100x=﹣140x +350,解得:x=1.46,故②行驶1.4小时后,两车相遇错误;﹣140x +350=100x +110,解得:x=1,故③两车相距110千米时,它们行驶了1个小时正确;100x ﹣300=0,解得:x=3,故④A 车行驶3小时,两车相距300千米正确; 故选C18.(3分)如图,正方形ABCD 的边与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接OH 、FH ,EG 与FH 交于点M ,对于下面四个结论:①GH ⊥BE ②HOBG ;③GH 2=GM•GE ;④△GBE ∽△GMF ,其中正确的有( )A.1个 B.2个 C.3个 D.4个【解答】解:①∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线∴HO∥BG,HO=BG,故②正确;③当∠FME=90°时,根据射影定理可得GH2=GM•GE,但由题意得:∠FOE=90°,因此③错误;④连接CF,如图所示:由(1)得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF.故④正确,故选:C.二、填空题19.(3分)计算:﹣|﹣2|﹣sin60°=﹣.【解答】解::﹣|﹣2|﹣sin60°=2﹣2﹣=﹣故答案为:﹣.20.(3分)根据如图所示的程序计算函数值,若输入的x的值为,则输出的y的值为.【解答】解:∵2≤≤4,∴当x=时,y=.故答案是:.21.(3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为2km.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.故答案为2km.22.(3分)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为a+b米.(用含有a、b的式子表示).【解答】解:由于AB=a(米),仰角α=60°,则BC=AB•tan60°+b=a+b(米).此时国旗离地面的距离为(a+b)米.23.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S=S四边形DMCN=.四边形DGCH则阴影部分的面积是:﹣.故答案为﹣.24.(3分)如图,平面直角坐标系中有一个正六边形ABCDEF,其中C.D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A,B,C,D,E,F中,会过点(2015,2)的是点D.【解答】解:如图所示:当滚动到A′D⊥x轴时,E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,∵六边形ABCDEF是正六边形,∴∠A′F′G=30°,∴A′G=A′F′=,同理可得HD=,∴A′D=2,∵D(2,0)∴A′(2,2),OD=2,∵正六边形滚动6个单位长度时正好滚动一周,∴从点(2,2)开始到点(2015,2)正好滚动2013个单位长度,∵=335…3,∴恰好滚动335周多3个,∴会过点(2015,2)的是点D.故答案为:D.三、解答题25.先化简(﹣)÷,然后从不等式﹣5≤x<6的解中,选取一个你认为符合题意的x的值代入求值.【解答】解:原式=•=x+5,∵要使分式有意义,∴x﹣5≠0,x≠0,x2﹣25≠0,∵﹣5≤x<6,∴取x=5.6,∴原式=5.6+5=10.6.26.解不等式组,并写出该不等式组的整数解.【解答】解:,由①得:x<;由②得x≥﹣1;∴不等式组的解集为﹣1≤x<,则原不等式组的整数解为﹣1,0,1,2.27.火力发电站的燃烧塔的轴截面是如图所示的图形,ABCD是一个矩形,DE、CF分别是两个反比例函数图象的一部分,已知AB=87m,BC=20m,上口宽EF=16m,求整个燃烧塔的高度.【解答】解:AB=87m,BC=20m,则C的坐标是(,20).设反比例函数的解析式是y=,把C的坐标代入得k=×20=870,则反比例函数解析式是y=,当x==8时,y==(m).答:整个燃烧塔的高是m.28.某城市对居民用水实行阶梯收费,每户每月用水量如果未超过20吨.按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分仍按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月的用水量为x吨,应收水费为y元(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户居民5月份水费平均为每吨2.2元,问该户居民5月份用水多少吨?【解答】解:(1)当0≤x≤20时,y=1.9x;当x>20时,y=1.9×20+2.8(x﹣20)=2.8x﹣18;(2)∵2.2>1.9,∴可以确定该户居民5月份的用水量超过20吨,设该户居民5月份用水x吨,根据题意,得:2.8x﹣18=2.2x,解得:x=30,答:该户居民5月份用水30吨.29.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.【解答】解:(1)设每个笔记本x元,每支钢笔y元.(1分)(2分)解得答:每个笔记本14元,每支钢笔15元.(5分)(2)(3)当14x<12x+30时,x<15;当14x=12x+30时,x=15;当14x>12x+30时,x>15.(8分)综上,当买超过10件但少于15件商品时,买笔记本省钱;当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱.(10分)30.如图,一次函数y=kx+b的图象与反比例函数y=d的图象都经过点A(﹣2,6)和点B(4,n).(1)求着两个函数的解析式(2)求直线AB关于y轴的对称直线l的函数解析式(3)直线l与反比例函数y=的图象是否交点?如果有交点,求出交点的坐标,如果没有交点,可将直线l向上平移多少个单位后,正好与反比例函数的图象有一个交点?【解答】解:(1)将点A(﹣2,6)代入y=得m=﹣12,∴反比例函数的解析式为y=,将B(4,n)代入y=﹣得n=﹣3,∴B(4,﹣3),将A,B代入y=kx+b得,∴,∴一次函数的解析式为y=﹣x+3;(2)如图,设直线AB交x轴于N,交y轴于M,则M(0,3),N(2,0)∴点N关于y轴的对称点N′(﹣2,0),直线l过M,N′两点,设直线l的解析式为y=k1x+b1,∴,∴,∴直线l的解析式为y=x+3;(3)令x﹣3=﹣,化简得x2+2x+8=0,∴△=22﹣32<0,∴方程无解,∴直线l与反比例函数y=的图象无交点,设将直线l向上平移m个单位后,正好与反比例函数的图象有一个交点,则x+3+m=﹣有唯一解,∴方程3x2+2(3+m)x+24=0有两个不为零的相等根,∴△1=4(3+m)2﹣3×4×24=0,解得:m=﹣3±6,∵m>0,∴m=﹣3+6,∴将直线l向上平移(﹣3+6)个单位,正好与反比例函数的图象有一个交点.31.已知点a(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图1,若点C(x,0)且﹣1<x<3,BC⊥AC,求两个坐标间y与x之间的函数关系式.(2)在(1)的条件下,Y是否有最大值?若有,请求出最大值;若没有,请说明理由.(3)如图2,若点B的坐标为(﹣1,1).在x轴上另取点E,则当点E在x轴上的什么位置时,△ABE的周长最小?求出此时点E的坐标.【解答】解:(1)过点A作AE⊥x轴于点E.在△BCD与△CAE中,∵∠BCD=∠CAE=90°﹣∠ACE,∠BDC=∠CEA=90°,∴△BCD∽△CAE,∴BD:CE=CD:AE,∵A(3,4),B(﹣1,y),C(x,0)且﹣1<x<3,∴y:(3﹣x)=(x+1):4,∴y=﹣x2+x+(﹣1<x<3).(2)在(1)的条件下,y有最大值.理由如下:y=﹣x2+x+=﹣(x﹣1)2+1(﹣1<x<3).所以对称轴为x=1,=1.当x=1时,y最大值(3)△ABE的周长=AB+BE+EA,线段AB始终保持不变.故当BE+EA最小时,△ABE的周长最小,如图2,过点A作x轴的对称点A′.当点B、E与点A′共线时,BE+AE=BE+A′E=A′B 最小.由对称的性质可得到:A′(3,﹣4).设直线BA′的解析式为y=kx+b(k≠0).则,解得,所以,直线BA′的解析式为y=﹣x﹣.当y=0时,x=﹣,故点E的坐标为(﹣,0).32.如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.【解答】解:(1)A(﹣1,﹣4)、B(﹣4,﹣1)平移后的直线为A′B′;(2)C点的坐标为C1(﹣2,﹣2)或C2(2,2).33.如图,在矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是(6,2);②∠CAO=30度;③当点Q与点A重合时,点P的坐标为(3,3)(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN 为等腰三角形?若存在,请直接写出点P的横坐标m的值;若不存在,请说明理由.【解答】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②∵tan∠CAO===,∴∠CAO=30°;③如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE==3,∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②30,③(3,3);(2)情况①:如图2,MN=AN=3,则∠AMN=∠MAN=30°,∴∠MNO=60°,∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合,∴点P与D重合,∴此时m=0,情况②,如图3,AM=AN,作MJ⊥x轴、PI⊥x轴;MJ=MQ•sin60°=AQ•sin60°=(OA﹣IQ﹣OI)•sin60°=(3﹣m)=AM=AN=,可得(3﹣m)=,解得:m=3﹣,情况③AM=NM,此时M的横坐标是4.5,如图4,过点P作PK⊥OA于K,过点M作MG⊥OA于G,∴MG=,∴QK===3,GQ==,∴KG=3﹣0.5=2.5,AG=AN=1.5,∴OK=2,∴m=2.34.如图,将Rt△ABC的直角顶点C放在坐标原点,另两个直角边分别与两坐标轴的正半轴重合,已知AC=2,AB=4,将Rt△ABC按如图所示的方式依次绕顶点旋转,经过三次旋转分别经历图①②③种情形,把这三次的旋转叫做一次变换.(1)线段AB在从原图到图①的过程中扫过的图形的面积是π,在一次变换过程中顶点B经过的路程是π.(2)经过n次变换后,点B移动到B3n的位置,求点B3n的坐标.【解答】解:(1)线段AB在从原图到图①的过程中扫过的图形是一个半径为4,圆心角为120°的扇形,∴其面积为×π×16=π,在一次变换过程中顶点B经过两段弧,第一段是圆心角为120°,半径为4的圆弧,第二段是圆心角为90°,半径为2的圆弧,∴点B经过的路程是+=π.故答案为:π,π;(2)∵经过一次变换点B向右平移(2+4+)个单位长度,即(6+2)个单位长度,∴经过n次变换后,B3n(6n+2n,2).35.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.【解答】证明:(1)∵MD⊥AB于点D,ME⊥AC,∠A=90°,∴∠MDP=∠MEA=∠A=90°,∴四边形ADME是矩形,∴AD=EM,AE=DM,∠DME=90°,∵PM⊥QM,∴∠PMQ=90°,∴∠DMP=∠EMQ,∴△MPD∽△MQE;(2)∵△MPD∽△MQE,∴,∵AD=EM,AE=DM,∴,∴AD•PD=AE•EQ;(3)如图,以M点为中心,△MCQ顺时针旋转180°至△MBN,∴△MCQ≌△MBN,∴BN=QC,MN=MQ,∠MBN=∠C,连接PN,PQ,∵PM⊥QM,∴PM垂直平分NQ,∴PN=PQ,∵△ABC是直角三角形,BC是斜边,∴∠ABC+∠C=90°,∴∠ABC+∠MBN=90°,即△PBN是直角三角形,根据勾股定理可得,PN2=PB2+BN2,∴PQ2=PB2+QC2,∵PQ2=PM2+QM2,∴PB2+QC2=PM2+QM2.36.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.【解答】应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若PA=PC,连接PA,同理可得PA≠PC,③若PA=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设PA=x,则x2+32=(4﹣x)2,∴x=,即PA=,②若PA=PC,则PA=2,③若PA=PB,由图知,在Rt△PAB中,不可能.故PA=2或.37.如图,△ABC是等腰直角三角形,∠C=90°,CD⊥AB于点D,射线DE与射线DF互相垂直.(1)如图1,DE⊥AC于点E,DF⊥BC于点F,求证:四边形CEDF是正方形.(2)如图2,求证:四边形CEDF的面积S CEDF=S△ABC.?如果成立,请给予证明;如果不成(3)如图3,△GDF的面积是否等于S△ABC立,请说明理由.【解答】证明:(1)∵∠C=90°,DE⊥AC于点E,DF⊥BC于点F,∴四边形CEDF是矩形,∵△ABC是等腰直角三角形,CD⊥AB,∴∠ECD=∠FCD=45°,∴CF=DF,∴四边形CEDF是正方形;(2)∵△ABC是等腰直角三角形,CD⊥AB于点D,∴CD=DB,∠ECD=∠FBD=45°,∵∠CDE=90°﹣∠CDF=∠BDF,在△CDE与△BDF中,,∴△CDE≌△BDF,=S△CDB=S△ABC;∴S正方形CEDF,(3)△GDF的面积不等于S△ABC理由:同(2)可得△CDE≌△BDF,=S△GDB+S△BDF=S△GDB+S△CDE>S△BDG+S△CDG=S△BCD=S△ABC,∴S△GDF∴△GDF的面积不等于S.△ABC38.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=2,AO=,求OD的长度.【解答】(1)证明:∵AC是⊙切线,∴OA⊥AC,∴∠OAC=90°,∴∠OAB+∠CAB=90°.∵OC⊥OB,∴∠COB=90°,∴∠ODB+∠B=90°.∵OA=OB∴∠OAB=∠B,∴∠CAB=∠ODB.∵∠ODB=∠ADC,∴∠CAB=∠ADC∴AC=CD;(2)解:在Rt△OAC中,OC==3,∴OD=OC﹣CD,=OC﹣AC,=3﹣2,=1.39.如图,⊙O是△ABC的外接圆,AB=AC,连接CO并延长交⊙O的切线AP于点P.(1)求证:∠APC=∠BCP.(2)若BC=4,sin∠APC=,求PA的长.【解答】解:(1)证明:连接AO 并延长叫BC于点D,交于点E.如下图所示:∵AP切⊙O于点A,∴EA⊥PA.∵AB=AC,∴,∴EA⊥BC,∴BC∥AP,∴∠APC=∠BCP(2)∵AE⊥BC,∴CD=BC=2,∵sin∠APC==,∴设OA=3k,OP=5k,则OC=OA=3k∵BC∥AP,∴△APO∽△CDO,∴,∴,∴PA=40.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统。

相关文档
最新文档