木质素磺酸盐与聚羧酸接枝共聚制备减水剂

合集下载

高性能聚羧酸减水剂合成研究

高性能聚羧酸减水剂合成研究

2020年11月Nov.2020化㊀学㊀工㊀业㊀与㊀工㊀程CHEMICAL㊀INDUSTRY㊀AND㊀ENGINEERING第37卷Vol.37㊀第6期No.6收稿日期:2020-03-16基金项目:山东省重点研发计划(2019GGX102021)㊂作者简介:邵致成(1994-),男,硕士研究生,现从事精细化学品方面的研究㊂通信作者:刘仕伟(1978-),E-mail:liushiweiqust@㊂Doi:10.13353/j.issn.1004.9533.20200114高性能聚羧酸减水剂合成研究邵致成,郭柯宇,刘仕伟∗,于世涛(青岛科技大学化工学院,山东青岛266042)摘要:为了节约能源和降低能耗,在模拟绝热的条件下,以异戊烯醇聚氧乙烯醚(TPEG )㊁丙烯酸(AA )㊁甲基丙烯磺酸钠(SMAS )为聚合单体,巯基乙酸(TGA )为链转移剂,在过硫酸铵-抗坏血酸(APS-Vc )氧化还原引发体系作用下,研究了高性能聚羧酸减水剂(PCE )的制备方法㊂考察了AA ㊁SMAS 和TGA 用量对所得PCE 分子结构及其性能的影响㊂结果表明,在n (TPEG )ʒn (AA )ʒn (SMAS )ʒn (TGA )=1.00ʒ4.00ʒ0.20ʒ0.18,反应初始温度15ħ㊁聚合时间4h 的条件下,所得的PCE 重均相对分子质量为42688㊁数均相对分子质量36409㊁相对分子质量分布1.1725,且其固含量㊁水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得PCE ;PCE 在应用中可延缓水泥水化硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂关键词:绝热反应;聚羧酸减水剂;流动性;水泥水化作用中图分类号:O632.52㊀文献标志码:A㊀文章编号:1004-9533(2020)06-0030-08Synthesis of High Performance Polycarboxylate SuperplasticizerShao Zhicheng,Guo Keyu,Liu Shiwei ∗,Yu Shitao(College of Chemical Engineering,Qingdao University of Science and Technology,Shandong Qingdao 266042,China)Abstract :In order to save energy and reduce energy consumption,a high-performance polycarboxylatesuperplasticizer (PCE)was synthesized by the method of the simulated adiabatic conditions,isopentenol polyoxyethylene ether (TPEG),acrylic acid (AA),sodium methacryl sulfonate (SMAS)as the poly-merization monomers,thioglycolic acid (TGA)as chain transfer agent,and ammonium persulfate-ascor-bic acid (APS-Vc)as redox initiation system.The effects of the amount of AA,SMAS and TGA on the properties of the PCE were investigated.The optimal reaction conditions were obtained as following:n (TPEG)ʒn (AA)ʒn (SMAS)ʒn (TGA)=1.00ʒ4.00ʒ0.20ʒ0.18,initial reaction temperature15ħand polymerization time 4h.Under the above reaction conditions,the weight average molecular weight,number average molecular weight and molecular weight distribution of the obtained PCE were42688,36409,and 1.1725,respectively.And the properties of its solid content,cement slurry fluidi-ty,slump and water reduction were better than those of PCE obtained by the traditional thermostatic poly-merization.In addition,PCE could delay the hydration and hardening process of cement,promote the close arrangement of ettringite,and improve the mechanical strength of the cement such as compressive and flexural resistance.Keywords :adiabatic reaction;polycarboxylate superplasticizer;fluidity;cement hydration process第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究㊀㊀减水剂是一种使用量大㊁使用范围广的混凝土添加剂,其发展经历了木质素磺酸盐㊁萘磺酸甲醛缩合物/三聚氰胺甲醛缩合物㊁聚羧酸梳型共聚物等3代主要产品[1]㊂第1代减水剂木质素磺酸盐具有产量高㊁价格低和来源广泛等优点[2],但制备过程中因存有缩合反应而导致产品表面活性低㊁减水性能差,影响了其应用㊂第2代水溶性树脂类减水剂包括萘系减水剂㊁三聚氰胺磺酸盐甲醛系减水剂等,其具有良好的耐高温特性和拌和性能,但存在生产成本高㊁减水率低和相容性差等缺点,限制了其应用[3]㊂第3代减水剂聚羧酸减水剂(PCE)具有低掺量㊁高减水率和低坍落度损失等优点[4],广泛应用于建筑㊁陶瓷[5]㊁SiO2悬浮液[6]㊁催化模板化硅化和合成有机金属骨架[7]等领域㊂近年来,PCE 合成及应用技术的日渐成熟,极大地推动了自密实混凝土㊁超高强混凝土等特种混凝土的技术进步和发展[8]㊂PCE在混凝土中以较低掺量的条件下即可显著降低搅拌用水量,提高混凝土流动性和早期强度,且在生产过程中基本不污染环境,被认为是一种高效绿色减水剂[9]㊂PCE的合成研究起步于20世纪90年代,但目前的研究主要集中在聚合物分子构象㊁作用机理以及水泥适应性等;而有关其适应工业生产的合成方法研究少有文献报道㊂目前, PCE多采用水浴恒温聚合方式制备,聚合温度多为50~80ħ[10],由于聚合初期高反应物浓度使得聚合热急剧释放,需冷却控制反应物料的温度,而反应后期,低反应物浓度导致反应速率降低,需加热保温反应物料温度,导致生成过程控温程序繁杂㊁反应器需配置换热构件㊁生产周期长㊁能耗大和成本高等缺陷㊂绝热反应是反应系统与外界没有热量交换的反应,由此其反应器有结构简单㊁造价便宜㊁反应体积得到充分利用等优点㊂同时,反应过程中因无需使用冷却或加热媒介控制反应温度,能够达到节约能源和降低能耗的目的㊂目前,绝热反应在硝化[11]㊁磺化和烯烃聚合[12]等反应中均获得成功应用㊂因此,本研究以聚醚型大单体异戊烯醇聚氧乙烯醚(TP EG)㊁丙烯酸(AA)和甲基丙烯磺酸钠(SMAS)为原料,在模拟绝热的条件下研究制备高性能减水剂P CE,研究了绝热反应条件㊁AA用量㊁SMAS用量㊁TGA用量对P CE减水性能的影响,并且研究了P CE对水泥水化过程的影响㊂结果表明,所得产品P CE的水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得P CE,且其在应用中可延缓水泥水化硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂1㊀实验部分1.1㊀试剂与仪器异戊烯醇聚氧乙烯醚(TPEG):相对分子质量2400,工业品,山东卓星化工有限公司;丙烯酸(AA):AR,天津市北联精细化学品开发有限公司; SMAS:工业品,上海笛柏化学品技术有限公司;过硫酸铵(APS):AR,上海麦克林生化科技有限公司;抗坏血酸(Vc)㊁巯基乙酸(TGA)等均为市售分析纯;水泥:市售SH42.5号普通硅酸盐水泥㊂绝热反应器,实验室自制,该反应器是1个有真空保温夹套的玻璃反应器(即内壁和外壁之间的夹套层为真空),反应器内可放置磁力搅拌转子㊁开口配有可插温度计和冷凝管的玻璃塞㊂Tensor27傅里叶变换红外光谱仪,德国Bruker公司;凝胶渗透色谱仪,美国Waters公司;Rigaku Miniflex600X射线衍射仪,日本理学公司;JEOL-JSM-5200扫描电子显微镜,日本电子株式会社;NJ-160水泥净浆搅拌机,天津锡仪建材仪器厂;Zetasizer Nano ZS ZEN3600电位分析仪,英国Malvern Instruments 公司㊂1.2㊀实验操作将定量TPEG㊁APS和去离子水加入250mL绝热反应器中,搅拌待固体溶解后,同时分别用计量泵在20min内泵入混合液A(组成为:AA㊁SMAS和去离子水)和混合液B(组成为:TGA㊁Vc和去离子水),加料完毕后,控制反应初始温度为15ħ,搅拌反应4h;反应结束后将反应物倾倒至烧杯中冷却至室温,用质量分数为30%NaOH水溶液调节至pH 值为6~8,即得目标产物PCE㊂并按照标准GB/T 8077-2012的方法测定其水泥净浆流动性㊁固含量,制备PCE反应过程如式(1)所示㊂13化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月(1)㊀㊀采用水泥净浆流动度为主要指标评价所得PCE样品的减水性能,其测定方法为:固定水灰比为m(水)ʒm(水泥)=0.29,称取水泥300g,自来水87g㊂测试时,所制备的PCE(固含量约40%)㊁水泥㊁自来水倒入搅拌锅内,将净浆流动机调为自动模式,先慢速搅拌120s,停15s,再快速搅拌120s,之后把搅拌好的净浆倒入平放在玻璃板上的截锥圆模中,用刮刀刮平,将截锥圆模按垂直方向提起,流淌30s后,用直尺量取互相垂直的2个方向的最大直径,取平均值作为水泥净浆流动度㊂此外,采用凝胶渗透色谱测定样品的相对分子质量及其分布:色谱柱由UltrahydragelTM120㊁Ultra-hydragelTM250㊁UltrahydragelTM500串联组成;柱温度40ħ,洗脱液0.1mol/L Na2SO4溶液的流速0.6 mL/min;用不同相对分子质量的分散性聚乙二醇校正标准曲线[13]㊂将各水化水泥试样到龄期后去除表皮,敲成0.2~0.3mm直径的小块,用玛瑙研钵将试样研磨至10μm以下,充分干燥后进行性能测试;XRD表征:使用Cu_Kα辐射在Rigaku Miniflex600(日本)衍射仪上测试样品,记录衍射角2θ为10ʎ~80ʎ㊂SEM表征:在场发射电子枪300kV下的JEOL-JSM-5200上进行测试,将一滴乙醇悬浮液沉积在硅晶片上制备SEM观察的样品㊂2㊀结果与讨论2.1㊀反应物起始温度和反应时间对反应过程温度及产物性能的影响在n(TPEG)ʒn(AA)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)=1.00ʒ4.00ʒ0.30ʒ0.18ʒ0.12ʒ0.01的反应条件下,考察了反应物起始温度对反应过程物料温度及产物性能的影响,结果见图1和表1㊂由图1可见,3个不同的起始温度(考虑季节的不同,设定了3个不同的起始温度),其聚合反应过程物料温度的变化较为相似,即反应初期,温度急图1㊀绝热体系中的温度变化Fig.1㊀Change of temperature in adiabatic systems㊀剧攀升,随后反应物料的温度趋平随后降低㊂这是因为该聚合反应为自由基反应机理,反应初期反应物浓度高,反应速度快,聚合热释放较为集中剧烈,导致反应物料温度攀升幅度较大;随着反应进行,反应物浓度降低,聚合反应速度降低,产生的聚合热,并且由于物料温度高于室温也可能引起热量的损耗,因此温度开始缓慢下降㊂表1给出了反应时间对产品的水泥净浆流动度影响的实验结果㊂表1㊀起始温度和反应时间对PCE减水性能的影响Table1㊀Effects of starting temperature and reactiontime on water reducing property of PCE物料起始温度/ħ净浆流动度/mm1h2h3h4h102262402462511523023924825020233240247250㊀㊀由表1可见,在不同的3种起始物料温度下制备的PCE净浆流动度较为相近(反应时间为3~4h时,净浆流动度在245~251mm),该指标能够满足实际的需要,表明采用绝热反应可实现PCE的稳定生产㊂因此,在随后的实验中,将重点考察反应物料初始温度为15ħ㊁反应时间为4h的条件下考察23第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究其他影响较大的因素对合成PCE性能的影响㊂此外,将反应初始温度15ħ㊁反应时间4h下制得的PCE用于混凝土性能测试,并与相同反应条件下于恒温30ħ制备的PCE在主要指标上进行了对比,结果如表2所示㊂表2㊀不同反应方式制备的PCE性能比较Table2㊀Performance comparison of PCE prepared bydifferent reaction methods指标绝热制备PCE恒温30ħ制备PCEPCE质量指标相对分子质量426884172725000~80000 PDI 1.1725 1.9304<2.0固含量/%38.8036.82(30~40)水泥净浆流动度/mm251251>240坍落度/mm210205>200减水率/%37.236.5>35㊀㊀注:m(水泥)ʒm(河砂)ʒm(石)ʒm(水)=360ʒ815ʒ966ʒ250,PCE折固掺量0.4%㊂㊀㊀从表2可见,绝热制备的PCE水泥净浆流动度为251mm,坍落度为210mm,减水率为37.2%㊂上述指标满足市售商品的质量指标要求㊂对比恒温30ħ制备样品的性能可见,绝热制备的PCE在主要性能指标数比肩水浴制备的PCE性能,部分指标优于水浴制备的PCE㊂此外,由于绝热聚合技术还具有节约能耗㊁操作简易等优点,所以本实验选用绝热法制备PCE㊂2.2㊀丙烯酸用量对PCE减水性能的影响AA中有强极性的羧基基团,羧基基团是PCE 中发挥分散作用和减水作用的重要功能性基团之一,同时还有保坍和缓凝作用[14]㊂因此,在n(TPEG)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)= 1.0ʒ0.3ʒ0.18ʒ0.12ʒ0.01㊁初始物料温度15ħ㊁反应时间4h的条件下,考察了AA用量对PCE减水性能的影响,结果见图2㊂由图2可见,AA用量对所得产物PCE的减水性能影响显著㊂当n(AA)ʒn(TPEG)=4.0ʒ1.0时,相同的PCE掺量下,样品的水泥净浆流动度均为最高,并且在掺量为0.4%时,净浆流动性超过了251mm,随后再增加AA用量,对提高水泥净浆流动性的意义不大,这是因为过多的AA用量,稀释了反应体系中引发剂的浓度,导致聚合速度降低,在规定的反应时间内,并未从实质上提高PCE分子结构中羧酸基团的数量㊂并且AA是高聚合反应活性的单体之一,AA的使用主要是为了在PCE结构中图2㊀n(AA)ʒn(TPEG)对PCE性能的影响Fig.2㊀Effect of n(AA)ʒn(TPEG)onPCE performance㊀引入更多的羧酸基团,羧酸基团的增多可促进PCE分子更容易锚固在水泥颗粒表面,使长侧链更好地发挥空间位阻作用,从而水泥净浆流动度增加,实现减水的目的㊂因此,n(AA)ʒn(TPEG)以4.0ʒ1.0为宜㊂此外,PCE的相对分子质量对水泥浆体的流动性有着显著影响,而改变羧基引入量可以改变减水剂PCE的相对分子质量,进而影响其减水性能[15]㊂研究表明,PCE的相对分子质量为25000~80000时,其减水剂性能最优㊂如果PCE相对分子质量超过80000,则聚合时PCE会产生凝胶或凝聚现象,所得聚合液黏稠,使用时会增大水泥浆体的黏度,导致阴离子基团被屏蔽,难以发挥静电斥力作用;而PCE相对分子质量低于25000,PCE分子结构中的侧链数量不足,不能发挥其空间位阻作用,影响其使用性能㊂表3给出了AA用量对产物PCE相对分子质量及其分布影响的实验结果㊂表3㊀不同丙烯酸配比PCE相对分子质量及其相对分子质量分布Table3㊀Molecular weight and molecular weightdistribution of polycarboxylate superplasticizers withdifferent acrylic acid ratio样品编号n(AA)ʒn(TPEG)M w M n PDIPCE-A 3.0ʒ1.0553******* 1.3210PCE-B 3.5ʒ1.04656740316 1.1550PCE-C 4.0ʒ1.04268836409 1.1725PCE-D 4.5ʒ1.03422027720 1.2345PCE-E 5.0ʒ1.027******** 1.0679㊀㊀注:n(TPEG)ʒn(SMAS)ʒn(TGA)ʒn(APS)ʒn(Vc)=1.0ʒ0.3ʒ0.18ʒ0.12ʒ0.01㊁初始物料温度15ħ㊁反应时间4h㊂33化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月㊀㊀由表3可见,随着n (AA)ʒn (TPEG)的增加,PCE 重均相对分子质量M w 和数均相对分子质量M n 分别从55369和41915降到27614和25856㊂这是因为AA 有较高的反应活性,相比于大单体TPEG,AA 更容易与链引发产生的单体自由基反应形成新的自由基,从而将羧基接枝到主链上;增加AA 的添加量会导致TPEG 大单体难以接枝在主链上,而TPEG 所提供的侧链对PCE 的相对分子质量贡献较大,所以聚羧酸减水剂的相对分子质量随着AA 添加量的增大而减小㊂聚合物的分散性指数PDI 均接近于1,说明合成产物的相对分子质量分布较为集中㊂图3给出了PCE 的FT-IR表征㊂图3㊀PCE 的FT-IR 谱图Fig.3㊀FT-IR spectra of PCE由图3可见,1104cm-1处的特征峰为C O C的伸缩振动峰,这表明PCE 中存在醚基;1286cm-1处的特征峰为S O 的伸缩振动峰,表明反应物SMAS 的官能团 SO 2-3引入到了PCE 结构中;1730cm-1处的特征峰为C O 的伸缩振动峰,表明AA 的羧基引入到了PCE 结构中㊂2.3㊀甲基丙烯磺酸钠的用量对PCE 减水性能的影响SMAS 的使用可在PCE 的结构中引入磺酸根,磺酸根的引入可调节PCE 主链上的支链密度,增加减水剂与水泥颗粒吸附层的厚度㊁增强空间位阻,同时磺酸基还有很好的静电斥力作用,两者的协同作用可显著提高水泥浆的分散性和流动性[16]㊂由此,在n (AA)ʒn (TPEG)=4.0ʒ1.0并且其他条件不变前提下,考察了SMAS 用量对PCE 减水性能的影响,结果见图4㊂由图4可见,n (SMAS)ʒn (TPEG)对产品PCE 的减水性能影响较大,随着n (SMAS)ʒn (TPEG)值图4㊀n (SMAS )ʒn (TPEG )对PCE 性能的影响Fig.4㊀Effect of n (SMAS )ʒn (TPEG )onPCE performance㊀的增大,相同PCE 的掺入量下,PCE 的减水性能先增后降,当n (SMAS)ʒn (TPEG)=0.3ʒ1.0时,PCE 的掺量仅为0.4%时,其减水性能较好,水泥净浆流动度大于250mm,实现了低掺入量高减水性㊂随后再增加SMAS 的用量,减水性能未见明显提高,这是因为SMAS 用量的进一步增加,虽然可提高PCE 分子结构中的磺酸根的数量,但致使起较强吸附性能的羧基在PCE 结构中的相对数量减少㊂因此,n (SMAS)ʒn (TPEG)=0.3ʒ1.0为宜㊂2.4㊀巯基乙酸用量对PCE 减水性能的影响对醚类单体参加的自由基聚合,巯基乙酸TGA 是性能优良的相对分子质量调节剂,还具有优化相对分子质量分布的特性[17]㊂由此,在n (AA )ʒn (TPEG)=4.0ʒ1.0和n (SMAS)ʒn (TPEG)=0.3ʒ1.0,其他条件不变前提下,考察了TGA 用量对PCE 减水性能的影响,结果见图5㊂图5㊀n (TGA )ʒn (TPEG )对PCE 性能的影响Fig.5㊀Effect of n (SMAS )ʒn (TPEG )on PCE performance㊀由图5可见,随着TGA 用量增加,水泥净浆流动度呈现先上升后下降的变化规律,当n (TGA)ʒ43第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究n(TPEG)=0.18ʒ1.0,PCE仅掺入0.4%时,水泥净浆流动度就大于250mm,达到了低掺量高减水性能的目标㊂因此,n(TGA)ʒn(TPEG)=0.18ʒ1.0为宜㊂2.5㊀PCE对水泥水化过程的影响水泥的水化作用是其主要成分硅酸三钙(C3S)㊁硅酸二钙(C2S)㊁铝酸三钙(C3A)㊁铁铝酸四钙(C4AF)与水发生复杂的水化反应,最终生成钙矾石Aft(3CaO㊃Al2O3㊃3CaSO4㊃32H2O)[18],具体反应式如式(2)~(5)所示:2(3CaO㊃SiO2)+6H2O=3CaO㊃SiO2㊃3H2O+3Ca(OH)2(2)2(2CaO㊃SiO2)+4H2O=3CaO㊃SiO2㊃3H2O+Ca(OH)2(3) 3CaO㊃Al2O3+6H2O=3CaO㊃Al2O3㊃6H2O(4)4CaO㊃Al2O3㊃Fe2O3+7H2O=3CaO㊃Al2O3㊃6H2O+CaO㊃Fe2O3㊃H2O(5)㊀㊀为了更好地研究PCE对水泥水化过程的影响,采用XRD表征了水化后3和28d的水泥样品,结果如图6所示㊂由图6可见,在硬化3d后所得样品,含PCE的㊀㊀图6㊀水泥水化样品的XRD谱图Fig.6㊀XRD patterns of cement hydration samples㊀样品在29.40ʎ处衍射峰较高㊁34.36ʎ处衍射峰较低,可判断样品中C2S和C3S的含量依然很高,而生成的Aft较少,而空白的水泥样品C2S和C3S的衍射峰较低,Aft的衍射峰较高,表明PCE的使用在早期延缓了水泥水化反应㊂水化28d后所得样品峰强度基本一致,表明PCE对水泥后期水化过程影响较少㊂图7给出了水泥水化一定时间后所得样品的SEM图㊂图7㊀水泥水化样品的SEM图:a)3d的w(PCE)=0.3%样品,b)28d的w(PCE)=0.3%样品,c)3d的水泥样品,d)28d的水泥样品Fig.7㊀SEM image of cement hydration sample:a)3days,w(PCE)=0.3%;b)28days,w(PCE)=0.3%;c)3days,cement;d)28days,cement53化㊀学㊀工㊀业㊀与㊀工㊀程2020年11月㊀㊀由图7可见,水泥水化后硬化3d 时,使用PCE 所得样品多为紧密的层状晶体[图7a)],而未使用PCE 的样品多为松散棒状晶体Aft[图7c)],上述结果表明PCE 对水泥水化前期的延缓作用,有利于水泥硬化的紧密排列㊂硬化28d 时,使用PCE 所得多为紧密的层状晶体或棒状晶体[图7b )],未使用PCE 的水泥样品对位较松散的棒状晶体[图7d)],表明添加PCE 的水泥浆体硬化后期有更加紧密的结构,而这种作用可提高水泥的机械强度㊂图8给出了硬化后水泥样品的抗压性能和抗折性能测试结果㊂图8㊀水泥水化样品的抗压和抗折性能测试:a )抗压;b )抗折Fig.8㊀Compressive and flexural resistance test of cementhydration samples :a )compressive resistance ;b )flexural resistance由图8可见,与不加PCE 的水泥相比,掺加了PCE 的水泥样品具有更强抗压强度和抗折强度㊂这是因为PCE 的添加使水泥浆体更容易分散,对水泥硬化具有延缓作用,促进硬化过程中钙钒石的紧密排列,从而形成致密的结构和更小的空隙,从而拥有更好的机械性能㊂3㊀结论采用模拟绝热法合成了聚羧酸减水剂PCE,在n (TPEG )ʒn (AA )ʒn (SMAS )ʒn (TGA )=1.00ʒ4.00ʒ0.20ʒ0.18㊁物料起始温度15ħ㊁聚合时间4h的条件下,所得PCE 的重均相对分子质量为42688㊁数均相对分子质量36409㊁相对分子质量分布1.1725,且其固含量㊁水泥净浆流动度㊁坍落度和减水率均优于传统恒温聚合方式所得PCE;减水剂PCE 的使用,可延缓水化水泥的硬化过程,促进钙矾石的紧密排列,提高水泥的抗压和抗折等机械强度㊂参考文献:[1]㊀王子明.聚羧酸系高性能减水剂:制备㊃性能与应用[M].北京:中国建筑工业出版社,2009[2]㊀张坤,张莎莎,王晓俊,等.玉米秸秆糖醇黑液化学改性制备木质素基减水剂的研究[J].化工新型材料,2017,45(6):258-260Zhang Kun,Zhang Shasha,Wang Xiaojun,et al.Modi-fication product of black liquor of sugar alcohol from corn stover as ligno-sulfate based plasticizer [J].New Chemical Materials,2017,45(6):258-260(in Chi-nese)[3]㊀Yang Z,Yu M,Liu Y,et al.Synthesis and perform-ance of an environmentally friendly polycarboxylate su-perplasticizer based on modified poly (aspartic acid )[J].Construction and Building Materials,2019,202:154-161[4]㊀Tan H,Zhang X,Guo Y,et al.Improvement in fluidityloss of magnesia phosphate cement by incorporatingpolycarboxylate superplasticizer [J ].Construction andBuilding Materials,2018,165:887-897[5]㊀Sakthieswaran N,Sophia M.Effect of superplasticizerson the properties of latex modified gypsum plaster [J].Construction andBuildingMaterials,2018,179:675-691[6]㊀Mithanthaya I R,Marathe S,B S Rao N,et al.Influ-ence of superplasticizer on the properties of geopolymer concrete using industrial wastes [J].Materials Today:Proceedings,2017,4(9):9803-9806[7]㊀Shen Y.Carbothermal synthesis of metal-functionalizednanostructures for energy and environmental applications[J].Journal of Materials Chemistry,2015,3(25):13114-13188[8]㊀刘治华.不同羧基密度与功能基聚羧酸减水剂的合63第37卷第6期邵致成,等:高性能聚羧酸减水剂合成研究成及性能研究[D].北京:中国矿业大学(北京),2013Liu Zhihua.Research on synthesis,properties andmechanism of different carboxyl density and functional-lizing polycarboxylate superplasticizer[D].Beijing:China University of Mining&Technology(Beijing),2013(in Chinese)[9]㊀Matsuzawa K,Atarashi D,Miyauchi M,et al.Interac-tions between fluoride ions and cement paste containingsuperplasticizer[J].Cement and Concrete Research,2017,91:33-38[10]㊀Wang Q,Taviot-Gueho C,Leroux F,et al.Superplasti-cizer to layered calcium aluminate hydrate interfacecharacterized using model organic molecules[J].Ce-ment and Concrete Research,2018,110:52-69 [11]㊀白西凡,邢育红.硝基苯传统硝化工艺改进为绝热硝化工艺的讨论[J].甘肃科学学报,2008,20(1):156-158Bai Xifan,Xing Yuhong.The necessity of replacing tra-ditional nitrobenzene nitration technology by adiabaticnitration technology[J].Journal of Gansu Sciences,2008,20(1):156-158(in Chinese)[12]㊀郭峰,李传峰,杨爱武,等.乙烯基共聚物的溶液聚合生产技术[J].合成树脂及塑料,2010,27(2):64-68Guo Feng,Li Chuanfeng,Yang Aiwu,et al.Solutionpolymerization processing technology for vinyl copoly-mers[J].China Synthetic Resin and Plastics,2010,27(2):64-68(in Chinese)[13]㊀李顺,余其俊,韦江雄.聚羧酸减水剂的分子结构对水泥水化过程的影响[J].硅酸盐学报,2012,40(4):613-619Li Shun,Yu Qijun,Wei Jiangxiong.Effect of molecularstructure of polycarboxylate water reducers on hydrationof cement[J].Journal of the Chinese Ceramic Society,2012,40(4):613-619(in Chinese)[14]㊀Qian S,Yao Y,Wang Z,et al.Synthesis,characteriza-tion and working mechanism of a novel polycarboxylatesuperplasticizer for concrete possessing reduced viscosity[J].Construction and Building Materials,2018,169:452-461[15]㊀Lin X,Liao B,Zhang J,et al.Synthesis and character-ization of high-performance cross-linked polycarboxylatesuperplasticizers[J].Construction and Building Materi-als,2019,210:162-171[16]㊀LüS,Liu J,Zhou Q,et al.Synthesis of modified chi-tosan superplasticizer by amidation and sulfonation andits application performance and working mechanism[J].Industrial&Engineering Chemistry Research,2014,53(10):3908-3916[17]㊀Kong F,Pan L,Wang C,et al.Effects of polycarboxy-late superplasticizers with different molecular structureon the hydration behavior of cement paste[J].Construc-tion and Building Materials,2016,105:545-553 [18]㊀Arend J,Wetzel A,Middendorf B.In-situ-investigationof superplasticizer-particle-interaction by fluorescencemicroscopy[J].Materials Today:Proceedings,2018,5(7):15292-1529773。

木质素磺酸钙共聚改性聚羧酸系高效减水剂的制备与性能研究

木质素磺酸钙共聚改性聚羧酸系高效减水剂的制备与性能研究
b s d Su e plS iie a e p r a t z c
雷永林, 王万林, 霍冀川 ( 西南科技大学材料科学-T q 程学院,I) 绵阳 611)  ̄1 11 200
摘 要 :采用水溶液聚合法 ,将 木质素磺 酸钙 (L 、马来酸酐与聚 z- 10 酯化大单体和 丙烯 酰胺 ,共聚成一种新型改性木质素磺酸钙 ( L减水剂 。并用 C) , -醇 0 0 MC )
图 1 O 、M L O R L O f I 图 l
净浆流动度》 、G 0 6 19 测水泥净浆强度 》和 GB B 8 7 ̄ 9 7《 / T1 4—2 0 测水泥净浆减水率、凝结 时间》 。 3 6 o 1《 () 3 扫描电镜 (E ) S M 分析取空 白和掺 O5 L . %C 、MC L的 水 泥净浆硬 化试样 。选试样 内部具 有代表性 的断裂面 经喷
1 试 验
1 1 原料 、试剂及仪器 .
原 料及 试 剂 :木质 素磺 酸钙 l L) C ,简 称木 钙 吉 林 省 延边市 晨 鸣纸业有 限公 司 :水泥P0.25 普通硅酸 盐 . 4 .R
水 泥 . 四 川 双 马 水 泥 ( 团 ) 司 ; 丙 烯 酰 胺 聚 乙 二 醇 基 公
及掺合 料 品种 复杂 聚羧酸 系减水剂 在应用过 程 中出现 了
泌 水 、 离 析 、扒 底 等 适 应 差 的 问 题 。 采 用 减 水 增 强 效 果 明
研 究表 明 … 。 :通过物理及化学 方法联合改性 .其掺量就可 提 高到 05 . %~06 . %,减水率可达 1%~2 %。课题组前期 8 0 在 木质素 方面做 了部分 改性工作 -] 掺量 05 13 1 .% 减水率 可达 2 .7 36 %。为了更进一步提 高改性木质素磺酸钙 的减水

减水剂主要成分组成,减水剂配方分析技术及生产工艺

减水剂主要成分组成,减水剂配方分析技术及生产工艺

减水剂主要成分组成,减水剂配方分析技术及生产工艺本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March减水剂主要成分组成,配方分析技术及生产工艺导读:本文详细介绍了减水剂的背景,分类,配方等等,需要注意的是,本文中所列出配方表数据经过修改,如需要更详细的内容,请与我们的技术工程师联系。

减水剂是一种在维持混凝土坍落度不变的条件下,能减少拌合用水量的混凝土外加剂。

苏州禾川化学引进国外尖端配方解析技术,致力于减水剂成分分析,配方还原,研发外包服务,为建筑助剂相关企业提供一整套配方技术解决方案。

一. 背景硅酸盐水泥水化过程一般分为诱导前期、诱导期、加速期、减速期和稳定期五个阶段。

缓凝剂的作用实质上是延长水泥水化的诱导期,主要通过延缓水泥与水的水化作用,达到缓凝目的。

减水剂大多属阴离子型表面活性剂,掺入到混凝土中后,减水剂中的负离子–SO42-、-COO- 就会在水泥粒子的正电荷 Ca2+矿的作用下而吸附于水泥粒子上,形成扩散双电层(Zeta电位)的离子分布,在表面形成扩散双电层的离子分布,使水泥粒子在静电斥力作用下分散,使混凝土流动化。

Zeta 电位的绝对值越大,减水效果就越好。

禾川化学是一家专业从事精细化学品分析、研发的公司,具有丰富的分析研发经验,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决众多化工企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。

样品分析检测流程:样品确认—物理表征前处理—大型仪器分析—工程师解谱—分析结果验证—后续技术服务。

有任何配方技术难题,可即刻联系禾川化学技术团队,我们将为企业提供一站式配方技术解决方案!二.减水剂的分类2.1聚烷基芳基磺酸盐高效减水剂萘系高效减水剂合成原理是由工业萘、浓硫酸、甲醛及碱在一定反应条件下经磺化、水解、缩合及中和反应而成。

减水剂作用机理及几种常用减水剂

减水剂作用机理及几种常用减水剂

减水剂的作用机理及几种常见减水剂1、作用机理分散作用水泥加水拌合后由于水泥颗粒分子引力的作用使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性。

当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动从而有效地增加混凝土拌合物的流动性。

润滑作用减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜,这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。

空间位阻作用减水剂结构中具有亲水性的聚醚侧链,伸展于水溶液中,从而在所吸附的水泥颗粒表面形成有一定厚度的亲水性立体吸附层。

当水泥颗粒靠近时,吸附层开始重叠,即在水泥颗粒间产生空间位阻作用,重叠越多,空间位阻斥力越大,对水泥颗粒间凝聚作用的阻碍也越大,使得混凝土的坍落度保持良好。

接枝共聚支链的缓释作用新型的减水剂如聚羧酸减水剂在制备的过程中,在减水剂的分子上接枝上一些支链,该支链不仅可提供空间位阻效应,而且,在水泥水化的高碱度环境中,该支链还可慢慢被切断,从而释放出具有分散作用的多羧酸,这样就可提高水泥粒子的分散效果,并控制坍落度损失。

2、减水剂的功能使水泥颗粒分散,改善和易性,降低用水量,从而提高水泥基材料的致密性和硬度,增大其流动性。

减水剂的种类有木质素磺酸盐、萘系减水剂、密胺系减水剂、聚羧酸盐减水剂、干酪素减水剂、氨基磺酸盐减水剂、丙烯酸系减水剂等。

3、几种市场上用量较大的减水剂木质素磺酸盐:它属于普通的减水剂,它的原料是木质素,一般从针叶树材中提取,木质素是由对亘香醇、松柏醇、芥子醇这三种木质素单体聚合而成的,用于砂浆中可改进施工性、流动性,提高强度,减水率在5%-10%。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系 高性能减水剂的合成工艺。因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。聚 酯类:包括酯化和聚合两个过程。聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
(3)、中和反应,将反应好的聚合物降温至50C以下,边搅拌边加入片 碱100kg,调节PH值6—乙反应完成,得到含固量为30%勺聚酯类聚羧酸系高 性能减水剂成品。
(二)、聚醚类聚羧酸系高性能减水剂合成工艺
(1)、合成工艺简图:
聚合反应―中和反应―成品
(2)、反应过程如下:
1、聚合反应:计量维生素C:,疏基乙酸:,配以580kg去离子水,泵 入滴定罐A备用,是为A料。计量丙烯酸,配以44kg去离子水,泵入滴定罐B备用,是为B料。往反应釜内加入去离子水930kg,烯丙醇聚氧乙烯醚1800kg,由室温升至55C,加入双氧水(配114kg去离子水),同时滴定A B料,B料3小时滴定完,A料小时滴定完,保温1小时。(温度控制60±2C)。
聚羧酸减水剂生产工艺
一、引言
一般认为, 减水剂的发展分为三个阶段: 以木质素磺酸钙为代表的第一代普通减 水剂阶段; 以萘系为代表的第二代高效减水剂阶段; 以聚羧酸系为代表的第三代 高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚 羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合 成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、 (甲基)丙烯酸、 烯丙醇聚氧乙烯醚等。2.在分子结构上, 聚羧酸系高性能减水剂的分子结构是线 形梳状结构, 而不是传统减水剂单一的线形结构。 该类减水剂主链上聚合有多种 不同的活性基团,如羧酸基团(一COOH羟基基团(一0H、磺酸基(一S03Na等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的 空间位阻效应。由于其广泛的原料来源,独特的分子结构,故而具有前两代减水 剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已 成为混凝土外加剂研究领域的重点和热点之一。

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺

聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。

与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。

2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。

该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(一COOH)、羟基基团(一0H)、磺酸基(一S03Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。

由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。

但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。

因此,本文在此予以简介之。

二、聚羧酸系高性能减水剂合成工艺简介。

聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。

聚酯类:包括酯化和聚合两个过程。

聚醚类:只有聚合一个过程。

(一)、聚酯类聚羧酸系高性能减水剂合成工艺。

1、合成工艺简图冷凝器去离子水中和 成 反应 品f f 氢氧化钠聚乙二醇 过硫酸铵 Jmm 酯化 mu 计量槽宀宀聚合甲基丙烯酸mm 反应mu 计量槽宀宀反应 ff去离子水 2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg ,将其在 水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg ,以及小料1份(对苯 二酚:5.28kg 、吩噻嗪:1.06kg ),升温至90C ,加入浓硫酸 69.3kg ,继续升温 至120C ,保持4.5小时,后充氮气2小时,(6川/时,每30分钟充1瓶,共4 瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。

萘系减水剂

萘系减水剂

萘系高效减水剂改性研究摘要:本文研究了木质素磺酸盐接枝共聚萘系高效减水剂的可能性。

实验探讨并调整两种减水剂的质量比、时间和温度,成功实现了两种减水剂的接枝共聚。

性能对比实验结果表明,形成的改性萘系高效减水剂具有减水率高、坍落度损失小、合成成本低,大大改善了萘系减水剂的性能。

关键词:萘系高效减水剂;木质素磺酸盐;接枝共聚1 前言我国目前在商品混凝土中使用的混凝土减水剂都是通过与不同外加剂复合,运用于工程之中。

单一组分的高效减水剂对水泥和混凝土的减水效果显著,但往往难以满足新拌混凝土的工作性能及混凝土硬化后的特定性能要求。

因此,新型混凝土减水剂的发展方向之一。

萘系高效减水剂(FDN)减水率高、分散性好,但是坍落度损失过快,不利于应用,直接影响到减水剂的使用效果。

由于工业萘价格不断上扬,导致了萘系减水剂的成本偏高。

由于萘系减水剂自身存在不足,对其改性已成为必然。

通过接枝共聚,在萘系高效减水剂分子主链上引入支链结构,使吸附了减水剂的水泥颗粒在颗粒间电荷斥力不变的情况下提高水泥颗粒分子之间的位阻斥力,使水泥颗粒之间的分子排斥力进一步增强,阻止水泥颗粒间的絮凝,达到控制坍落度损失过快的目的。

2 实验1.1原材料萘系高效减水剂:山东产,固含量39%;木质素减水剂:甘肃产;液碱:含量30%,福建产。

石子:北京卢沟桥碎卵石,含泥量0.4%,针片状含量3.6%,最大粒径20mm,泥块含量无;砂:卢沟桥中砂,细度模数2.8,含泥量1.5%,泥块含量无;水泥:GB8076-2008规定的基准普通硅酸盐水泥;粉煤灰:Ⅱ级。

1.2 合成工艺将木质素减水剂按一定比例缓慢加入萘系减水剂中,恒温下接枝反应一段时间,加碱调整其pH值在7~9之间,即得到改性萘系高效减水剂(m-FDN)。

另外,为了验证接枝合成的效果,进行木质素减水剂与萘系减水剂的冷复配实验,即在常温下将木质素减水剂与萘系减水剂按一定比例混合配制。

1.3性能测试方法水泥净浆流动度:按照GB/T8077-2000《混凝土外加剂均质性试验方法》进行测试。

水泥减水剂

水泥减水剂
制备方法
:一般主要有两种脱取木质素制造减水剂的方法。
(1)将亚硫酸盐废液用碱性溶液中和,经生物发酵去除糖类物质,蒸发烘干成粉状减水剂。
如吉林开山屯化学纤维纸浆厂的产品即采用此法。它采用该厂亚硫酸盐蒸煮木材(75%以上是白松)制得化纤浆柏生产过程中的废液为原料,先经生物发酵处理脱糖提取酒精,把存下10%左右浓度的酒精废液,经蒸发器浓缩到50%左右,然后输送到喷雾器干燥,再经200℃以卜热风喷雾干燥而成。其pH=4.5-5.5。 术材种类不同、蒸煮工艺不同,对亚硫酸盐纸浆废液及制成的木质素磺酸盐化学成分影响较大,因而影响着减水剂的性能。
(3)水解:由于在磺化反应中产生了α-萘磺酸,它的存在不利于缩合反应,因此需要加水将α-萘磺酸进行水解。
(4)缩合:待水解反应结束之后向缩合釜滴加甲醛,与β-萘磺酸发生反应生成萘系磺化甲醛缩合物。
(5)中和:缩合之后的料进入中和釜中,滴加液碱,将磺化反应中过剩的硫酸中和掉,待 PH 到 7-9 的时候停止滴加。
温度的最优条件为104℃;反应时间的最优条件为6h;甲醛用量的最优条件为0.75;最大预期理论值为18.3。[6]
工业生产流程:
(1)化萘:常温下萘为固体,需要将萘投入化萘釜中进行加热融化。
(2)磺化:磺化过程是向磺化釜中加入浓硫酸与之反应,产生萘磺酸。萘磺酸有两种:α-萘磺酸和β-萘磺酸。
生产原料为萘,首先用浓硫酸进行磺化反应,萘与硫酸的摩尔比为l:1.3一1.4。温度为160—165℃,反应时间为3h。然后将反应物降温到120℃进行水解,此时13一萘磺酸稳定,而d一萘磺酸易水解,从而降低了b一萘磺酸的量,以利于下一步的缩聚反应,水解时间约为30min。缩合反应是b一萘磺酸盐减水剂生产过程中的重要反应。在一定温度下,将磺化后的萘与甲醛进行缩合形成高分子化合物。该步反应强烈影响着产品的性能。为了找出最优的工艺参数,运用均匀设计的方法,考察缩合时间、缩合温度、甲醛与萘的配比3个因素对产品性能的影响。

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文

浅谈聚羧酸高性能减水剂的合成及复配技术综述论文•相关推荐浅谈聚羧酸高性能减水剂的合成及复配技术综述论文0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚 Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。

聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。

聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。

聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。

对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。

1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG聚醚类、酯类产品几乎已退出了市场。

木质素磺酸钠聚羧酸减水剂的制备研究

木质素磺酸钠聚羧酸减水剂的制备研究


要 : 以 木 质 素磺 酸 钠 作 为 聚 羧 酸 减 水 剂 的 合 成 原 料 , 水 溶 液 中 与 聚 羧 酸 减 水 剂 单 体 进 行 接 枝 共 聚 反 在
应 , 得 木 质 素 磺 酸 钠 聚 羧 酸减 水 剂 , 对 其 制 备 工 艺 进 行 优 化 , 到 最 优 实验 方 案 为 : 质 素 磺 酸 钠 质 量 分 数 为 制 并 得 木 1 , E 6 P G一 1 0 0 0和 MA 的物 质 的 量 比 为 0 9: . , . 1 0 丙烯 酸 与 马 来酸 酐物 质 的量 比 为 2 8: . , 合 时 间 为 3 h 酯 . 10 聚 ,
Re eve 2 e e b r 201 c i d 8 D c m e r vie 1 pr l20 1; e s d 8 A i 12;ac e e ay 2 2 c pt d 3 M 01 Ab ta t sr c : T he o u l os l hon t s di m i gn u p a e— C O— po y a b yl cd l c r Ox i a i w a e r duc r c tr e e wa pr pa e g a t o ol m e ia in f s e r d by r f c p y rz to o p y a bo ol e r xyl cd m o m e ih r w a e ilo o um inos p na e i qu ou o uto . The pr e s a ptm ie i a i no c rw t a m t ra fs di 1g u1 ho t n a e s s l ins oc s e w s o i z d, a t e o i al on tons ncud d 1 nd h ptm c dii i l e 6 ofs di o um l os l on t os ge, 0 i gn u ph a e d a .9 : 1 0 oft ol a i f PEG 一 1 0 a . he m arr to o 00 nd

聚羧酸高性能减水剂标准

聚羧酸高性能减水剂标准

聚羧酸高性能减水剂是以聚羧酸盐为主体的多种高分子有机化合物,经接枝共聚生成的,具有极强的减水性能,属当今世界上技术领先的环保型混凝土外加剂。

已广泛应用于水利、电力、港口、铁路、桥梁、公路、机场、军事工程以及各种公民建主体结构的混凝土施工。

一般情况下,掺量标准是,折算20%含固量时掺量为胶凝材料重量的0.5~1.5%,推荐掺量为1.0%。

使用完之后,我们在储存与包装时要注意以下几点:
1.塑料桶密封包装,规格为200KG,或根据客户要求包装。

2.产品在低温时,可能会产生凝固的现象,但经升温及拌匀后,其性能可恢复,不影响性能。

3.产品为非易燃、易爆水溶性溶液,无腐蚀、无毒害作用。

4.产品保持期为一年,如超过期限,经检验合格后方可使用。

聚羧酸高性能减水剂

聚羧酸高性能减水剂

聚羧酸高性能减水剂随着现代混凝土技术向高强、绿色高性能方向发展,和人类社会向和谐、可持续的进步,对混凝土外加剂尤其是高效减水剂提出了更高、更全面的要求。

以往传统的减水剂,如第一代的木质素系和第二代的萘磺酸盐系、磺化三聚氰胺系、氨基磺酸盐系等减水剂,由于掺量大、减水率不高(10-20%左右)、增强效果不甚显著、混凝土坍落度损失大,尤其是在生产过程中要采用工业萘、浓硫酸、甲醛等有毒有害化学物质,难免会对环境造成污染,存在不利于可持续发展等缺点,从而部分地限制了进一步的推广应用。

聚羧酸系高性能减水剂是目前世界上科技最前沿的一种高效减水剂,是减水剂发展史上的第三次重大突破,它主要通过不饱和单体在引发剂作用下发生接枝共聚,将带有活性基团的侧链接枝到聚合物的主链上,具有以下独特的优点:低掺量、高减水率、和水泥的适应性好、混凝土坍落度损失小,而且生产过程中无任何有害物质加入和排放,对环境无任何影响,是一种安全的绿色环保型高性能减水剂。

我公司运用分子结构设计原理,以DLVO电荷排斥理论和空间位阻效应理论为基础,采用单体合成、接技、共聚等方法,研制成PCA系KJ-JS聚羧酸高性能减水剂。

一. 主要技术性能1、KJ-JS外观为浅棕色液体密度为1.06±0.02g/cm3,属表面活性剂,产品无毒、不燃、无腐蚀。

2、掺量小、减水率高。

在混凝土中掺入水泥或胶结材重量0.5%~2.0%(0.1%~0.4%折固)的KJ-JS(仅为萘系掺量的1/3~1/5),减水率可达24%~38%。

3、早强增强效果好。

掺入适量的KJ-JS,混凝土早期强度可提高40%~100%,后期强度可提高30%以上,从而可大幅度降低水泥用量,或大大提高矿物掺合料的掺量,降低工程成本。

4、混凝土坍落度经时损失小。

由于KJ-JS能在水泥颗粒表面形成立体保护层,产生空间位阻效应,因此使混凝土的坍落度损失减小,与大多数水泥的适应性较好。

5、KJ-JS与国外同类先进产品比较,含气量合适(2%~5%),可调且气泡结构好,从而有利于改善混凝土拌合物的和易性、减小泌水,提高硬化混凝土的外观质量和耐久性能,尤其适用于清水混凝土工程中使用。

木质素磺酸钠接枝改性脂肪族高效减水剂的研究

木质素磺酸钠接枝改性脂肪族高效减水剂的研究

(.aj gHyrui Reerh Istt, D Hih T c o t. nig 2 0 2 ,ins , hn ; 1N ni dal sac ntueR& g — eh C .Ld, j 10 4Jagu C ia n c i Na n 2Sho fMaeil Sin ea d E g er g Suh atU i ri , aj g2 18 ,ins , hn ) . olo tr s cec n n i ei , otes nv sy N ni 1 19 J gu C ia c a n n e t n a
收 稿 日期 :0 1 0 — 7 2 1- 3 1
2 浓度为4 % .t 5 0 左右的纸浆废液, 相应地降低了纸浆企业废
作者简 介: 陈国新 , 17 男,9 2生 , 苏无锡人 , 江 博士研 究生 , 高级工程 师, 主要从事水工混凝土及外加剂的研究 。地址: 南京市虎踞关 3 4号,
E- i g c e @n r.n。 mah x h n hic
液排放的化学污染。
本文利用木钠制备改性脂肪族高效减水剂,克服了普通
脂肪 族高 效减水剂在应用时出现的 混凝土离析、 水、 泌 颜色发
2 1. 01 8
・4 4・
新型建筑材 料
陈国新 , 木质素磺酸钠接枝改性脂肪族 高效减水剂的研 究 等:
O 前
混凝土行 业市 场日 益广阔。 族高 脂肪 效减水剂的优点突出, 但 目 前,国内商品混凝土市场上聚羧酸系高性能减水剂的 是也存在一些缺陷,如拌制的混凝土颜色鲜红,混凝土易离
剂的成本也大幅提升。为满足混凝土工程对高效减水剂的需

显, 生产工艺简单和成本相对低廉等优势l, 】 近几年在商品 - 2 ]

聚羧酸系高性能减水剂与常用减水剂复配性研究

聚羧酸系高性能减水剂与常用减水剂复配性研究

聚羧酸系高性能减水剂与常用减水剂复配性研究本文阐述了聚羧酸系减水剂(PC)的性能特点和应用趋势。

就PC 与常用的5种减水剂,即木质素磺酸盐减水剂(LS)、萘系高效减水剂(NSF)、密胺系高效减水剂(MSF),羧基焦醛高效减水剂(SAF)、和氨基磺酸盐系高效减水剂(ASF)之间的复配性能进行了试验研究。

结果表明:(1)仅从溶液的互溶性来看,实际工程中PC与MSF或SAF减水剂溶液不能复配在一起掺加,PC可与LS,NSF,ASF进行复配(2)从复合掺加后的叠加效果来看,PC与LS和SAF存在复合掺加使用的可能性,但由于PC与SAF不互溶,实际上PC只能与LS进行复配使用。

减水剂,羧基焦醛高效减水剂,氨基磺酸盐高效减水剂,相溶性,复配聚羧酸系减水剂是一类分子中含羧基接枝共聚物的表面活性剂,其分子结构呈梳形主链短,由含羧基的活性单体聚合而成,侧链长,主要为PEO链具有较高的空间位阻效应。

其具有诸多优点,如掺量低、减水率高、坍落度损失小、对凝结时间影响小、使用效果不受掺加顺序影响等,其某些性能还可以通过优化合成工艺而达到,如活用聚合方法可调整分散性能和引气性能等。

另外,由于聚羧酸系减水剂合成生产过程中不使用甲醛和其他任何有害原材料,属于环境友好型的减水剂产品。

所以,聚羧酸系减水剂非常受研究界和工程界重视。

目前,聚羧酸系减水剂已成功地在高强商品混凝土、自密实商品混凝土、清水商品混凝土、商品混凝土预制精品构件等特种商品混凝土中应用,取得较好效果。

另外,我国东部地区的部分商砼站已经开始使用聚羧酸系减水剂来配制商品商品混凝土。

为适应不同工程的要求,或为降低产品成本、扩充产品种类、形成系列化产品,通常将不同品种的减水剂复配,或将某种减水剂与缓凝、早强、引气等化学组分复配在一起使用,获得取长补短、事半功倍的应用效果。

如萘系高效减水剂常与木质素磺酸盐减水剂、缓凝组分、引气组分、保水组分等复配,一方面降低产品成本,另一方面可以延缓商品混凝土的凝结时间,或改善商品混凝土坍落度保持性和泵送性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 1 质 量 比对减 水 剂分散性 的影响 木质素磺 酸盐 、 聚 羧酸 中 间体 : 某 混凝 土 外加剂 有 限公 司提 2
. 3 %。 1 ) 室 内试验结 果表 明 , 通过合 理 的配合 比设计 , 多孔 玄武岩 为 5 3 ) 玄武岩吸水率在 3 %左 右 , 与普通石料相 比, 多孔 玄武 岩混 可用于上 面层 , 且各项 马歇 尔体积指标 和路 用性 能均能满 足相关 规范要求 。 合料 的油石 比偏大 , 通常 比普通石料大 0 . 3 %~ 0 . 5 %。 2 ) 根据配合 比设计 及路用性能试 验结果 , 确定配 合 比矿料 比 参 考 文献 :
睫。为此 , 国内外 均致力于其改性研究 , 但效制备 的木 质素 磺酸盐 与聚 2 试验 结 果分析 羧酸减水剂 中间体进行 接枝 共 聚 , 制 备 了木聚 羧酸 减水 剂 , 研 究 本文对影响木聚羧 酸减水 剂 分散性 的主要 因素 按照 单 因素 了其对混凝土性能 的影 响 , 为木质 素减水剂 的改性 和推广应 用提 法进行研究 , 包括 木质 素减水 剂与 聚羧 酸减水 剂 的质 量 比、 反应 供 了技术基础 。此举 不仅解 决了木质 素减水剂 减水率低 , 缓凝严 温度 。在最佳合成工艺条件 的基础 上 , 研究 了木聚羧 酸减水 剂对 重等 问题 , 还节约 了减水剂成本 , 降低 了纸浆废 液对环 境 的污染 , 混凝土性能 的影响 , 并 与 聚羧酸减 水剂 和冷复 配减 水剂 ( 木质 素
1 ] J T G F 4 0 — 2 0 0 4 , 公路 沥青路 面施 工技 术规 范[ S ] . 例为 : ( 9 . 5 m m ~1 6 m i l 1 ) : ( 4 . 7 5 m m 一9 . 5 m i l 1 ) : ( 2 . 3 6 m m一 [ 2 ] J T G E 2 0 - 2 0 1 1 , 公路工程沥青及 沥青 混合料试验规程 [ s ] . 4 . 7 5 m m) : ( 0 m m一 2 . 3 6 m m) : 矿粉 =2 7 : 3 2 : 6 : 3 0 : 5 , 最佳油石 比 [
减水率低 、 引气性高 等缺 陷 , 这限制 了木 质素 磺酸盐 作 为高效 减 后 , 开始缓慢 滴加 木 质素 磺酸 盐 中 间体 , 再 恒温 反应 一 段 时间 。 水剂在混凝土 中的应 用 , 也影 响 了其 自身 价值 的提 高 , 在配 制高 反应完毕降至室温 , 加入 3 0 %N a O H溶 液 , 中和 p H值 为 7— 9 , 所 性能混凝土时 , 无 法达到 工程 要求 l 4 J 。同时 , 随着 减水 率更 高 、 得红色透 明的高分子共 聚物溶液 即为木 聚羧酸减水剂 。 增强效果更优异 的萘 系 、 聚羧 酸高效 减水 剂等 的推 广应用 , 木质 1 . 3 试 验 方 法 素磺酸盐 的应用地 位一度严 重下 降 J 。这不 仅是 对 国内“ 既有 木聚羧酸减水剂对 水泥 的分散 效果 用水泥 净浆 流动 度来衡
资源” 的严重 浪费 , 同时 使得 纸浆废 液 污染 问题 又开始 变 的严 峻 量 , 水泥净浆流动度测试方法参 照 G B 8 0 7 7 - 2 0 0 0混凝土外加剂匀 起来 , 因此 , 对 木质 素减 水 剂进 行 化 学改 性 , 提 高其 性 能 追在 眉 质性试验方法进行 。混 凝土试 验参 照 G B 8 0 7 6 - 2 0 0 8混凝 土外加
具有很好 的经 济价值 和社会 效益 。
磺酸盐和聚羧酸盐物理 复配合 成 ) 进行 了对 比, 其 中混凝 土配 合 比为 c : s : G=1 : 1 . 9 7 : 3 . 3 3 , C=3 3 0 k g / m , 用水量根 据坍落度来
进行调整 。
1 试 验
1 . 1 原 材料
条件 , 并对木聚羧酸减水剂 的性 能进行了试验研究 , 结 果表明 , 合成的木聚羧酸 减水剂具有 良好的分散性、 保水性及保坍性 。 关键词 : 纸浆废 液 , 木质素磺酸盐 , 聚羧酸减水剂
中图分 类号 : T U 5 2 8 . 0 4 2 文献标识码 : A
造纸工业 的废 液污染是 众所 周 知的 , 且 目前 已成为 全球 “ 六 供 ; 液碱 : 3 O %N a O H溶液 。 大” 公 害之一 。而以纸浆 废液 中 的木质 素为原 料经 过磺化 、 缩合 水泥 : 4 2 . 5 R普通硅酸盐水泥 , 江苏某水泥厂 ; 砂: 普通黄砂 , 而成 的木质素磺 酸盐减水剂 作为 一种绿 色减 水剂 , 2 0世纪 3 O年 细度模数为 2 . 8 ; 石子 : 粒径 为 5 m m一 2 0 m l n连续 级配 的石灰 石 代已开始在美 国研究 和生产 , 具有 坍落度损 失较小 和泌水小 等优 碎石 , 来 自江苏某采石场 。 点, 为纸浆废 液的综合利用开辟 了新 的方 向 j 。但是 , 鉴 于木质 1 . 2 木聚 羧 酸减水 剂合 成 工 艺 素磺 酸盐减水剂 的基本性质 和减水作用 机理可 知 , 该 减水剂存 在 将 聚羧酸 中间体加 入 到 4口烧 瓶 中, 加 热搅 拌 至反 应 温度
第3 9卷 第 2 4期 2 0 1 3年 8月
山 西 建 筑
S HANXI ARC HI T E CT U RE
V0 1 . 3 9 No . 24
Au g . 2 0 1 3
・1 3 3・
文章编号 : 1 0 0 9 — 6 8 2 5( 2 0 1 3 ) 2 4 — 0 1 3 3 - o 3
木 质 素 磺 酸 盐 与 聚 羧 酸 接 枝 共 聚 制 备 减 水 剂
胡锦 林 邓树 成 刘艳 玲
( 1 . 河海大学土木与交通学院 , 江苏 南京 2 1 0 0 9 8 i 2 . 潍柴动力股份有限公司 , 山东 潍坊 2 6 1 0 4 1 )

要: 探讨 了木质 素磺酸盐和聚羧 酸中间体的质量 比、 反 应温度对木聚 羧酸盐减水 剂分散性 的影 响规 律 , 确 定 了最佳合成 工艺
相关文档
最新文档