图像数字处理6-图像分割
数字图像复习题整理
第一章1、数字图像处理的目的是什么?1.提升图像的视觉质量以提供人眼主观满意或较满意的效果。
2.提取图像中目标的某些特征,以便于计算机分析或机器人识别。
3.为了存储和传输庞大的图像和视频信息。
4.信息的可视化。
5.信息安全的需要。
2、试简述数字图像处理的特点。
1.处理精度高2.重现性能好3.灵活性高4.图像信号占用频带较宽5.处理费时3、习题1.3数字图像处理主要包括哪些研究内容?1.图像获取与数字化2.图像增强3.图像复原4.图像重建5.图像变换6.图像编码与压缩7.图像分割8.图像融合4、习题1.4图像、视频、图形及动画等视觉信息之间的联系和区别?图形和图像:图形和图像都是多媒体中的可视元素。
图形是指从点、线、面到三维空间的黑白或彩色几何图形,也称为矢量图形。
图像是由称为像素的点构成的矩阵图,也称为位图。
图像和视频:最大区别就是图像是静止的图像信号,而视频则是连续的。
视频和动画:最大区别就是视频是一组真实图像数据连续播放形成而动画则是由计算机模拟的连续图像播放而成。
第二章5、习题2.2色调、色饱和度、亮度的定义是?在表征图像中一点的颜色时,起什么作用?色调表示颜色的种类,用角度来标定,用-180~180或0 0~360度量。
色饱和度表示颜色的深浅,在径向方向上的用离开中心线的距离表示。
用百分比来度量,从0%到完全饱和的100%。
亮度表示颜色的明亮程度,用垂直轴表示。
也通常用百分比度量,从0%(黑)到100%(白)。
6、习题2.6常见的数字图像处理开发工具有哪些?各有什么特点?1.Visual C++2.MATLAB的图形处理工具箱VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的Win 3 2 程序有着运行速度快、可移植能力强等优点。
VC++所提供的Micr osoft基础类库MFC对大部分与用户设计有关的Wi n 32应用程序接口API 进行了封装,提高了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。
数字图像处理实验报告——图像分割实验
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
图像的处理原理
图像的处理原理图像处理的原理是指通过一系列的算法和技术对图像进行分析、增强、编码、压缩等操作,以提取图像信息,改善图像质量,实现对图像的特定处理和应用。
图像处理的基本原理可以概括为以下几个方面:1. 图像获取图像的获取是图像处理的第一步,常见的图像获取方式包括数码相机、摄像机、扫描仪等设备。
通过这些设备,可以将现实世界中的光学信息转换为数字化的图像信息,形成数字图像。
2. 图像采样和量化图像采样是指将连续的图像信号离散化为离散的像素点阵,采集图像在空间上的信息。
采样的方式包括点采样、区域采样等。
图像量化是指将图像的每个像素点的灰度值等离散化为有限的取值范围,常见的灰度值量化范围为0~255。
3. 图像增强图像增强是指利用各种技术和方法,改善图像的质量、增强图像的可视性和可识别性。
图像增强技术主要包括直方图均衡化、模糊与锐化、滤波器应用等。
图像增强的目标是提高图像的对比度、亮度、清晰度等视觉效果。
4. 图像复原与去噪图像复原是指通过恢复或近似原始图像的原始信息,以减少图像模糊、失真等质量损失。
图像复原常用的方法有逆滤波、最小二乘法等。
图像去噪是指消除图像中的噪声干扰,提高图像质量。
图像去噪方法有中值滤波、小波去噪等。
5. 图像分割图像分割是将图像分成不同的区域,每个区域具有一定的特征或相似性质。
图像分割的目的是将图像中感兴趣的目标从背景中提取出来,常用的图像分割算法包括阈值法、区域生长法、边缘检测等。
6. 特征提取与识别特征提取是指从图像中提取出包含有用信息的特征,用于下一步的目标识别、分类等应用。
常用的特征提取方法包括边缘检测、纹理特征、颜色特征等。
特征提取后,可以利用机器学习、模式识别等方法进行目标识别。
7. 压缩与编码图像压缩是指通过去除冗余信息,将图像数据从原始表示转换为更紧凑的表示形式,以减少存储空间和传输带宽。
图像压缩方法有无损压缩和有损压缩两种。
图像编码是压缩的一种手段,将图像数据编码为比特流,以实现对图像的存储和传输。
图像处理流程
图像处理流程图像处理是指对数字图像进行一系列的操作和处理,以达到特定的目的。
图像处理流程是指在图像处理过程中,按照一定的步骤和方法进行处理,以获得所需的结果。
下面将介绍图像处理的基本流程。
首先,图像获取是图像处理的第一步。
图像可以通过摄像头、扫描仪等设备获取,也可以从已有的图像文件中读取。
在获取图像的过程中,需要注意图像的分辨率、色彩深度等参数,以及光照、对比度等因素对图像质量的影响。
接着,图像预处理是图像处理的重要环节。
在图像预处理中,通常包括图像去噪、图像增强、图像平滑、图像锐化等操作。
去噪是指去除图像中的噪声,以提高图像的质量;图像增强是指增强图像的对比度、亮度等,使图像更加清晰;图像平滑是指去除图像中的毛刺和颗粒,使图像更加平滑;图像锐化是指增强图像的边缘和细节,使图像更加清晰。
然后,图像分割是图像处理的关键步骤之一。
图像分割是指将图像分成若干个不同的区域,以便对每个区域进行单独的处理。
图像分割的方法有很多种,包括阈值分割、边缘检测、区域生长等。
图像分割的目的是提取出图像中的目标,为后续的处理和分析提供基础。
接着,特征提取是图像处理的重要环节之一。
在特征提取中,通常会提取图像的颜色、纹理、形状等特征,以描述图像中的信息。
特征提取的方法有很多种,包括直方图、小波变换、形状描述子等。
特征提取的目的是将图像转换成易于分析和识别的形式,为图像识别和分类提供基础。
最后,图像识别和分类是图像处理的最终目标。
在图像识别和分类中,通常会利用机器学习、模式识别等方法,对图像进行分析和判断,以实现对图像中目标的识别和分类。
图像识别和分类的应用非常广泛,包括人脸识别、车牌识别、医学影像识别等。
总之,图像处理流程包括图像获取、图像预处理、图像分割、特征提取、图像识别和分类等步骤。
在实际应用中,根据具体的需求和目标,可以灵活选择和组合这些步骤,以实现对图像的有效处理和分析。
图像处理技术的不断发展和创新,将为各行各业带来更多的应用和机会。
(完整版)数字图像处理每章课后题参考答案
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
Dip-6
p( z ) =
P 1 e 2π σ 1
−
( z − µ1 )2
2 2σ 1
+
P2 e 2π σ 2
−
( z − µ 2 )2
2 2σ 2
将该方程用于(6-1-1-1)得下列门限T的解:
AT 2 + BT + C = 0
其中
2 A = σ 12 − σ 2 2 B = 2 µ1σ 2 − µ 2σ 12
图像分割—门限法
将一个背景点当作目标点进行分类时,错误概率为:
E 1 (T
) = ∫− ∞
T
p 2 ( z )dz
将一个目标点当作背景点进行分类时,错误概率为:
E 2 (T
) = ∫T
∞
p 1 ( z )dz
出错率的整体概率是:
E (T ) = P2 E1 (T ) + P1 E 2 (T )
对E(T)求导并令导数为0,得
最优门限的选取 多数情况下,目标和背景的灰度分布有重叠。若二者的 灰度分布的概率密度函数已知,则可以选择门限使得错误概 率最小(统计最优)。
背景
图像中两个区域的灰度级概率密 度函数
目标
图像整体灰度级变化的总概率密度函数:
p ( z ) = P1 p 1 ( z ) + P2 p 2 ( z )
(P1和P2是两类象素出现的概率)
P p1 (T ) = P2 p2 (T ) 1
——(6-1-1-1)
解出的T即为最佳门限。如果P1=P2,则最佳门限位于P1(z)和P2(z) 的交点处。
图像分割—门限法
从T的表达式知,为了求取T,需要知道两个概率密度。在现实中 并不是总可以对这两个密度进行估计。通常的做法是利用参数化 模型。例如常考虑使用高斯密度:
数字图像处理图像分割
如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值
图像分割
Image Segmentation诸薇娜zhuweina@Image Segmentation•数字图像处理的目的之一是图像识别,图像分割与测量是图像识别工作的基础。
•图像分割将图像分为一些有意义的区域,然后可以对这些区域进行描述,相当于提取出某些目标区域图像的特征,判断图像中是否有感兴趣的目标。
图像分割举例•图像分割是把图像分解成构成的部件和对象的过程•把焦点放在增强感兴趣对象–汽车牌照•排除不相干图像成分:–非矩形区域图像分割的策略•图像分割的基本策略是基于灰度值的两个基本特性:–不连续性•是基于亮度的不连续变化分割图像,如图像的边缘–区域内部的相似性•通过选择阈值,找到灰度值相似的区域•区域的外轮廓就是对象的边Image Segmentation•间断检测• 点检测• 线检测• 边缘检测 寻找间断的一般方法:模板检测 点检测•使用如图所示的模板,如果|R| >=T,则在模板中心位置检测到一个点–其中,T是阈值,R是模板计算值•基本思想:如果一个孤立点与它周围的点不同,则可以使用上述模板进行检测。
•注意:如果模板响应为0,则表示在灰度级为常数的区域TRImage SegmentationImage Segmentation线检测: 通过比较典型模板的计算值,确定一个点是否在某个方向的线上4个线检测模板• 第一个模板对水平线有最大响应• 第二个模板对45方向线有最大响应• 第三个模板对垂直线有最大响应• 第四个模板对-45方向线有最大响应Image Segmentation用R1,R2,R3和R4分别代表水平、45、垂直和-45方向线的模板响应,在图像中心的点,如果|Ri| >|Rj| , j !=i则此点被认为与在模板i方向上的线更相关例:如果|R1| > |R j| , j = 2,3,4则该点与水平线有更大的关联•在灰度恒定的区域,上述4个模板的响应为零•可以设计其它模板:•模板系数之和为0•感兴趣的方向系数值较大Image Segmentation边缘检测边缘检测•一阶–在边缘斜面上,一阶导数为正,–其它区域为零•二阶–在边缘与黑色交界处,二阶导数为正–在边缘与亮色交界处,二阶导数为负–沿着斜坡和灰度为常数的区域为零Image Segmentation边缘检测•结论– 一阶导数可用于检测图像中的一个点是否在–边缘上– 二阶导数可以判断一个边缘像素是在边缘亮–的一边还是暗的一边– 一条连接二阶导数正值和负值的虚构直线将–在边缘中点附近穿过零点– 一阶导数使用梯度算子,二阶导数使用拉普–拉斯算子边缘检测•一阶导数:用梯度算子来计算Image Segmentation边缘检测边缘检测边缘检测边缘检测•结论–Prewitt和Sobel算子是计算数字梯度时最常–用的算子–Prewitt模板比Sobel模板简单,但Sobel模–板能够有效抑制噪声Image SegmentationImage SegmentationImage SegmentationImage Segmentation边缘检测•二阶导数:通过拉普拉斯来计算边缘检测•拉普拉斯算子总结– 缺点:• 拉普拉斯算子对噪声具有敏感性• 拉普拉斯算子的幅值产生双边缘• 拉普拉斯算子不能检测边缘的方向– 优点:• 可以利用零交叉的性质进行边缘定位• 可以确定一个像素是在边缘暗的一边还是亮的一边边缘检测Image Segmentation边缘检测•高斯型拉普拉斯算子总结–高斯型函数的目的是对图像进行平滑处理–拉普拉斯算子的目的是提供一幅用零–交叉确定边缘位置的图像平滑处理减少了噪声的影响Image Segmentation边缘检测•对比二阶拉普拉斯算子和一阶Sobel梯度算子– 缺点• 边缘由许多闭合环的零交叉点决定• 零交叉点的计算比较复杂– 优点• 零交叉点图像中的边缘比梯度边缘细• 抑制噪声的能力和反干扰性能• 结论:梯度算子具有更多的应用边缘连接和边界检测• 为什么需要边缘连接?• 局部处理• 整体处理之霍夫变换边缘连接和边界检测•为什么需要边缘连接?–由于噪声、照明等产生边缘间断,使得一组像素难以完整形成边缘–因此,在边缘检测算法后,使用连接过程将间断的边缘像素组合成完整边缘边缘连接和边界检测•局部处理– 分析图像中每个边缘点(x,y)的一个邻域内的像素,根据某种准则将相似点进行连接,由满足该准则的像素连接形成边缘– 如何确定边缘像素的相似性• 边缘像素梯度算子的响应强度• 边缘像素梯度算子的方向边缘连接和边界检测Image Segmentation边缘连接和边界检测•通过Hough变换进行整体处理•Hough变换– 问题的提出– Hough变换的基本思想– 算法实现– Hough变换的扩展•Hough变换问题的提出– 在找出边界点集之后,需要连接,形成完整的边界图形描述•Hough变换的基本思想–对于边界上的n个点的点集,找出共线的点集和直线方程。
图像数字化处理常用方法
图像数字化处理常用方法1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4 )图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5 )图像描述:图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
图像处理即图像识别过程
图像处理即图像识别过程图像处理(imageProcessing)利用计算机对图像进行分析,以达到所需的结果。
图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。
这种处理大多数是依赖于软件实现的。
其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
l)图像采集图像采集是数字图像数据提取的主要方式。
数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。
图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。
为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。
通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。
图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。
图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。
图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。
但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。
为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。
目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。
数字图像处理第6章二值图像处理-专业文档资料
二阶矩则描述了图像的对于直线和对轴与轴的转动惯量,因 此常常也把物体的二阶矩称为惯性矩。
中心矩 :
p q (x x)p(y y )qf(x ,y )d xp d ,q y 0 ,1 ,2
第6章 二值图像处理
低阶矩主要描述区域的面积、转动惯量、质心等等,具有 明显得几何意义,,四阶矩描述峰值的状态等等,一般 来说高阶矩受到图像离散化等的影响,高阶矩一般在应用中 不一定十分准确。
D e(ac)2(bd)2
② 街区距离,用Ds来表示:
(6-1)
D s |ac||bd|
③ 棋盘距离,用Dg表示如下:
(6-2)
D gma a x c|, ( |b|d|)
(6-3)
三者之间的关系为:Dg Ds,如De图6-1(a)、(b)和(c)所示。
第6章 二值图像处理
(a) 欧氏距离 (b) 街区距离 (c) 棋盘距离 (d)≤2构成菱形 (e)≤2构成正方形 图6-1 三种距离示意图
第6章 二值图像处理
6.2 二值图像的几何特征描述
6.2.1 二值图像中曲线的描述 6.2.1.1 轮廓跟踪-甲虫算法
目标区域的边界轮廓是描述目标的重要特征,对于二 值图像中的目标区域轮廓可以通过一种简单的轮廓跟踪算 法来得到,这种方法也被称作甲虫算法。如图6-6所示的二 值图像4连通分量,假定目标区域用1(黑色)表示,背景区域
1 (x,y)(x,y)
f(x,y)
0
else
M1N1
那么区域的面积为: S f (x, y) x0 y0
如果经过目标标记,区域占有的连通分量有k个,那么目
标区域的面积则是k个连通分量的面积总和,即有:
k
S Si i 1
图像分割
图像分割胡辑伟信息工程学院图像分割●概述●间断检测●边缘连接和边界检测●阈值处理●基于区域的分割●分割中运动的应用图像分割●分割的目的:将图像划分为不同区域●三大类方法✓根据区域间灰度不连续搜寻区域之间的边界,在间断检测、边缘连接和边界检测介绍✓以像素性质的分布进行阈值处理,在阈值处理介绍✓直接搜寻区域进行分割,在基于区域的分割中介绍图像分割●概述✓在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景✓为了辨识和分析目标,需要将有关区域分离提取出来,在此基础上对目标进一步利用,如进行特征提取和测量✓图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程图像分割●概述(续)✓特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域✓图像分割算法是基于亮度值的不连续性和相似性不连续性是基于亮度的不连续变化分割图像,如图像的边缘根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合图像分割举例PR=0.718PR=0.781#249061#253036#169012PR=0.800PR=0.607PR=0.758PR=0.759PR=0.933PR=0.897PR=0.763PR=0.933PR=0.897PR=0.953PR=0.951PR=0.670PR=0.865PR=0.710#134052Image MDL MML ERL1ERL2#3096#85048#175043#182053#219090pr=0.521 pr=0.480 pr=0.861pr=0.740pr=0.375pr=0.613pr=0.822 pr=0.565pr=0.401pr=0.858pr=0.820 pr=0.850pr=0.789pr=0.890pr=0.914Row 1: Image Row 2: RPCL Row 3: CAC Row 4: ERL基于边缘生长的图像分割算法结果参考文献:林通,“基于内容的视频索引与检索方法的研究”,北京大学数学科学学院,博士论文,2001。
摄像头图像处理技术
摄像头图像处理技术随着社会的发展和科技的不断进步,摄像头的应用越来越广泛,涉及到了许多重要领域,如智能安防、视频监控、机器人视觉等等。
而这些应用中的核心技术之一便是图像处理技术。
现如今,随着图像处理技术的不断提升和发展,摄像头所能实现的功能越来越多,也变得越来越智能化。
一、图像采集首先,图像处理的基础是图像的采集。
图像采集主要包括三个步骤:光学成像、图像传感器采集和数字信号处理。
光学成像是将被拍摄的物体投射到图像传感器上的过程。
传感器采集的图像信号是模拟信号,需要进行模数转换(A/D转换)之后,将其转化为数字信号进行处理。
数字信号处理则包括对图像进行去噪、增加对比度、滤波等处理以提高图像的质量与清晰度。
二、图像分割图像分割是将一张完整的图像分成若干个互不重叠的子区域的过程。
图像分割通常包括基于颜色、纹理、形状、运动、边缘等多种特征提取方法,同时结合多种分割算法,如基于阈值分割、边缘分割、区域生长等。
分割后的图像可用于人脸识别、运动跟踪等应用。
三、目标识别和跟踪目标识别和跟踪是将图像中感兴趣的目标从复杂的背景中分离出来,并跟踪移动目标的过程。
此过程与图像分割密切相关,需要提取目标的特征,如形状、颜色、纹理等。
同时,需要通过运动估计及跟踪算法,跟踪已被识别的目标。
目标识别与跟踪可用于自动驾驶、拍摄运动影像等应用。
四、图像增强图像增强可应用于提高图像的清晰度、亮度、对比度等。
图像增强的方法包括直方图均衡化、多尺度增强、锐化、去噪等。
图像增强可用于图像检索、图像匹配、图像重建等应用。
五、智能分析图像智能分析是将图像中的信息提炼出来,进行数据分析和统计学习,从而得出一些有意义的结论。
图像智能分析包括目标检测、人脸识别、图像分类等多种应用。
例如,用于人员考勤打卡、闸机进出人员识别、数码相册智能拼接等等。
六、深度学习最近几年,深度学习在图像处理领域中的成果给人们带来了很大的惊喜。
深度学习是一种可以自动提取图像特征的复杂学习模型。
数字图像处理---图像分割
数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
数字图像处理与应用(MATLAB版)第6章 图像的分割
是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰
,
度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。
基
本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像
重
分割技术。
点
难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x 1, y)
其中,f(x,y)是具有整数像素坐标的输入图 像。其中的平方根运算使该处理类似于人类视觉 系统中发生的过程。
Sobel边缘算子
两个卷积核形成了Sobel边缘算子。图像中 的每个点都用这两个核做卷积。 一个核对通常的垂直边缘响应最大而另一个 对水平边缘响应最大。两个卷积的最大值作为该 点的输出值。运算结果是一幅边缘幅度图像。
形态学图像处理
术语
1. 集合论术语(Definition)
形态学处理语言中,二值图像B和结构元素S 都是定义在二维笛卡儿网格上的集 合,“1”是这些集合中的元素。 当一个结构元素的原点位移到点(x,y)处时, 我们将其记作。形态学运算的输出是另一个集合, 这个运算可用一个集合论方程来确定。
2. 腐蚀和膨胀(Dilation and Erosion)
Kirsch边缘算子
Kirsch边缘算子
边缘检测器性能:
使用两个掩模板组成边缘检测器时,通常取 较大得幅度作为输出值。这使得它们对边缘的走 向有些敏感。取它们的平方和的开方可以获得性 能更‘致的全方位响应。这与真实的梯度值更接 近。
边缘提取方法原图
边缘提取方法边缘提取后
8.4.2边缘连接
。
如果边缘质量函数很复杂而且要评价的缺口 既多又长,启发式搜索技术的计算会很复杂。这 样的技术在相对简单的图像中性能很好,但不一 定能找出两端点间的全局最佳路径。
(2) 曲线拟合
假定有一组散布在两个特定边缘点A和B之间的
边缘点,我们希望从中选取一个子集作为从A到 B一条分段线性路径上的结点集。 首先:从A到B引一条直线。 其次:接着计算其它的每个边缘点到该直线的垂 直距离。
区域增长算法主要分成两类
(1)简单连接
这是基于单个像素的区域增长法,它从满足 的 检测的点(连接核)开始,考察其周围(4邻 域或8邻域)的不属于任何一个区域的点,如果其 特性符合接收准则,就把它作为同一个区域加以 合并,形成连接核,继而检测周围的点,并把符 合接入准则的点并入,产生新的核。 重复上述过程,直到没有可并入的点时,生 产过程结束。
8.6.2开运算和闭运算
开运算 :
先腐蚀后膨胀的过程称为开运算。它具有消 除细小物体、在纤细点处分离物体、和平滑较大 物体的边界时又不明显改变其面积的作用。开运 算定义为:
B S (B S ) S
闭运算 :
先膨胀后腐蚀的过程称为闭运算。它具有填 充物体内细小空洞、连接邻近物体、在不明显改 变物体面积的情况下平滑其边界的作用。闭运算 定义为:
解决方法
启发ቤተ መጻሕፍቲ ባይዱ搜索 曲线拟合
Hough变换
(1) 启发式搜索
假定在一幅边缘图像的某条边界上有一个像 间隙的缺口,但是这 个缺口太长而不能仅用 一条直线填充,它还可能不是同一条边界 上 的缺口,可能在两条边界上。作为质量的度 量,我们可以建立 一个可以在任意连接两端 点(称为 A,B)的路径上进行计算的函数。
(2)子区合并法 合并过程: 首先:将图像分割成个,大小为的小区域(简 称子区)。 其次:从左上角第一个子区开始,分别计算子 区和相邻子区的灰度统计量,然后做相 似性判定。若两者的灰度分布相似且符 合接收准则。相邻子区并入当前子区, 形成下一轮判定合并时的当前子区。
如果某个相邻子区不符合接收准则,就打上 “未分割标记”。继续新一轮判定,使当前子 区不断“生长”,知道没有可归并的子区为止, 一个区域分割完毕。 最后:搜索图像全域,对凡具有“未分割标记” 的子区重复上述步骤。
相似性判定准则一般是:
N max h1 ( F ) h2 ( F ) N T1
N h1 ( F ) h2 ( F ) N T2
8.6 二值图像处理
二值图像: 只具有两个灰度级的图像,它是数字图像的 一个重要子集。一个二值图像(例如,一个剪影 像或一个轮廓图)通常是由一个图像分割操作产 生的。如果初始的分割不够令人满意,对二值图 像的某些形式的处理通常能提高其质量。
1.直方图技术
含有一个与背景明显对比的物体的图像其有包含
双峰的灰度直方图
背景的灰度值
T阈值
A H ( D)dD
T
直方图生成 a = imread('d:\pic\i_boat_gray.bmp'); imshow(a) figure imhist(a) 利用灰度阈值T对物体面积进行计算的定义是:
8.4
边缘检测和连接
边缘点 :
确定图像中的物体边界的另一种方法是先检测 每个像素和其直接邻域的状态,以决定该像素是 否确实处于一个物体的边界上。具有所需特性的 像素被标为边缘点。 边缘图像: 当图像中各个像素的灰度级用来反映各像素符 合边缘像素要求的程度时,这种图像被称为边缘 图像。
8.4.1边缘检测
第八章
图像分割
徐 晓林
信息工程学院
Contents
8.1 图像分割定义 8.2 使用阈值进行图像分割
8.3基于梯度的图像分割方法
8.4 边缘检测和连接
8.5 区域增长(Region Growing)
8.6 二值图像处理(Binary Image Processing)
8.7 分割图像的结构
小结
8.1 图像分割定义
A
T
H ( D)dD
2. 最大类间方差法(OTSU)
OTSU算法定义: 该算法是在灰度直方图的基础上用最小二乘法原 理推导出来的,具有统计意义上的最佳分割阈值。
OTSU基本原理:
以最佳阈值将图像的灰度直方图分割成两部 分,是两部分之间的方差取最大值,即分离性最 大。
3. 迭代法求阈值
B S (B S ) S
8.6.3腐蚀和膨胀的变体
通常反复施以腐蚀运算,将使一个物体变得不存
在。类似地,反复膨胀将把一幅图像中的所有物 体合并为一个。然而,这些过程可以改变一下, 以便在一些应用中产生更合适的结果。
8.2.2 自适应阈值
改进方法: 在许多的情况下,背景的灰度值并不是常数, 物件和背景的对比度在图像中也有变化,这时, 一个在图像中某一区域效果良好的阈值在其它区 域却可能效果很差。在这种情况下,把灰度阈值 取成一个随图像中位置缓慢变化的函数值是适宜 的。
8.2.3最佳阈值的选择
除非图像中的物体有陡峭的边沿,否则灰度阈 值的取值对所抽取物体的边界的定位和整体的尺 寸有很大的影响。这意味着后续的尺寸(特别是 面积)的测量对于灰度阈值的选择很敏感。由于 这个原因,我们需要一个最佳的,或至少是具有 一致性的方法确定阈值。
原理:图像中前景与背景之间的灰度分布为相互 不重叠,在该前提下,实现对两类对象的阈值分 割方法。
8.3基于梯度的图像分割方法
思路对比: 区域分割方法:通过将图像划分为内部点集和外部 点集来实现分割。 边界方法:利用边界具有高梯度值的性质直接把边 界找出来。
8.3.1边界跟踪
算法步骤 1:我们从一个梯度幅值图像着手进行处理,
问题: 如果边缘很明显,而且噪声级低,那么可以将边 缘图像二值化并将其细化为单像素宽的闭合连通 边界图。然而在非理想条件下,这种边缘图像会 有间隙出现,需要加以填充。
填充小的间隙可以简单地实现,通过搜索一个以
某端点为中心的5×5或更大的邻域,在邻域中 找出其它端点并填充上必要的边界像素,从而将 它们连接起来。 对具有许多边缘点的复杂场景,这种方法可能会 对图像过度分割。为了避免过度的分割,可以规 定:两个端点只有在边缘强度和走向相近的情况 下才能连接。
这个图像是从一幅处于和物体具有反差的 背景中的单一物体的图像进行计算得来的。 2:搜索以边界起始点为中心的3×3邻域,找 出具有最大灰度级的邻域点作为第2个边界点。
8.3.2梯度图像二值化
如果用适中的阈值对一幅梯度图像进行二值化,
Kirsch的分割法利用了这种现象。 算法步骤 用一个中偏低的灰度阈值对梯度图像进行二值化 从而检测出物体和背景,物体与背景被处于阈值 之上的边界点带分开。随着阈值逐渐提高,就引 起物体和背景的同时增长。当它们接触上而又不 至于合并时,可用接触点来定义边界。这是分水 岭算法在梯度图像中的应用。
hough直线检测结果
原图
直线检测结果
8.5 区域增长
方法:从把一幅图像分成许多小区域开始的。 这些初始的区域可能是小的邻域甚至是单个 像素。在每个区域中,对经过适当定义的 能反映一个物体内成员隶属程度的性质 度量)进行计算。用于区分不同物体内像 素的性质(度量)包括平均灰度值,纹 理,或颜色信息。
(3) Hough变换
直线y=mx+b可用极坐标表示为
x cos( ) y sin( )
其中定义了一个从原点到线上最近点的向量。这 个向量与该直线垂直。
如果有一组位于由参数确定的直线上的边缘点,
则每个边缘点对应了空间的一条正弦型曲线。所 有这些曲线必交于点,因为这是它们共享的一条 直线的参数。 建立一个在空间的二维直方图。对每个边缘点, 我们将给所有与该点的Hough变换(正弦曲线) 对应的空间的直方图方格一个增量。当对所有边 缘点施行完这种操作后,包含的方格将具有局部 最大值。然后对空间的直方图进行局部最大值搜 索可以获得边界线段的参数。
选用高斯低通滤波器进行预先平滑是很合适的。
由卷积的结合律可以将拉普拉斯算子和高斯脉冲 响应组合成一个单一的高斯拉普拉斯核:
2
1 2 2
x2 y2 2
2
e
x 2 y 2 2 2 [1 ]e 4 2 2 1
x2 y
2
这个脉冲响应对x和y是可分离的,因此可以有 效地加以实现。