(新)高中数学第三章空间向量与立体几何3_2_2平面的法向量与平面的向量表示学案新人教B版选修2-1

合集下载

高二数学选修课件:3-2-2平面的法向量与平面的向量表示

高二数学选修课件:3-2-2平面的法向量与平面的向量表示

人 教 B 版 数 学
第三章
空间向量与立体几何
[例 1]
如图, ABCD 是直角梯形, ∠ABC=90° SA⊥ ,
人 教 B 版 数 学
1 平面 ABCD,SA=AB=BC=1,AD=2,求平面 SCD 与平 面 SAB 的法向量.
第三章
空间向量与立体几何
[分析] 解答本题可先建立空间直角坐标系,写出每
个平面内两个不共线向量的坐标,再利用待定系数法求出 平面的法向量.
人 教 B 版 数 学
[解析]
∵AD、AB、AS 是三条两两垂直的线段,
→ → → ∴以 A 为原点,以AD、AB、AS的方向为 x 轴,y 轴, 1 z 轴的正方向建立坐标系, A(0,0,0), 2, 则 D( 0,0), C(1,1,0), → =(1,0,0),是平面 SAB 的法向量, S(0,0,1),AD 2 设平面 SCD 的法向量 n=(1,λ,μ),
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
1.知识与技能
掌握平面的法向量的概念及性质. 理解平面的向量表示. 2.过程与方法 用向量的观点认识平面、利用平面的法向量证明平行人ຫໍສະໝຸດ 教 B 版 数 学或垂直问题.
3.情感态度与价值观 培养学生转化的数学思想,增强应用意识.
第三章
空间向量与立体几何
人 教 B 版 数 学
第三章
空间向量与立体几何
重点:平面法向量的概念及性质. 难点:利用法向量法解决几何问题.
人 教 B 版 数 学
第三章
空间向量与立体几何
人 教 B 版 数 学

高中数学第三章空间向量与立体几何3.2空间向量在立体几何中的应用课件1新人教B版选修2_1

高中数学第三章空间向量与立体几何3.2空间向量在立体几何中的应用课件1新人教B版选修2_1
(回到图形问题)
各抒己见 百家争鸣
链接高考202X
强化作业: 在直三棱柱ABC-
A1B1C1中,∠ACB=90°,2AC=AA1= BC=2,D为AA1上一点.
(1)若D为AA1的中点,求证:平面B1CD⊥平面B1C1D; (2)若二面角B1-DC-C1的大小为60°,求AD的长
前置作业反馈
立体几何中的向 量方法
如果a⊥,那么向量a叫做平面的法向量.
l a
二、怎样求平面法向量?
利用空间向量求空间角
题型一:线线角
异面直线所成角的范围:
0,
2
C
D
A D1
B
结论: cos | cos CD, AB |
题题型型二二::线线面面角角
直线与平面所成角的范围: [0, ]
1、用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间 向量表示问题中涉及的点、直线、平面,把立体几 何问题转化为向量问题; (化为向量问题)
(2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。
数乘 减法:三角形法则
运算 数乘:ka,k为正数,负数,零
具有大小和方向的量 数乘:ka,k为正数,负数,零
运 加法交换律 a b b a 算 加法结合律 律 (a b) c a (b c)
数乘分配律
k(a b) ka+kb
加法交换律 a b b a 加法结合律
(a b) c a (b c) 数乘分配律 k(a b) ka+kb
2
An
直线AB与平面α所成
B O
的角θ可看成是向量与 平面α的法向量所成的 锐角的余角,所以有

3.2.2平面的法向量与平面的向量表示

3.2.2平面的法向量与平面的向量表示

3.2.2 平面的法向量与平面的向量表示峡山中学 高二数学组 2010-12-23【课标点击】(一)学习目标:1、掌握平面的法向量;2、利用平面的法向量判定平面的位置关系;3、平面的向量表示;4、线面垂直的判定定理;5、三垂线定理.(二)教学重、难点:平面的向量表示、线面垂直的判定,面面垂直的判定【课前准备】(一)知识连接:1、 空间直线的向量参数方程:a t OA OP +=或OB t OA t OP +-=)1(2、 设P 为AB 之中点则)(21OB OA OP +=3、 直线1l 与2l 的方向向量为1v 和2v ,则2121////v v l l ⇔,212121v v v v l l ⋅⇔⊥⇔⊥=04、 两直线成的角,与两直线的方向向量成角的关系5、 p 与a ,b 共面(a ,b 不共线)⇔R y x ∈∃,使b y a x p +=6、 点A 、B 、C 不共线,则点A 、B 、C 、P 共面⇔∃x 、y R ∈使AC y AB x AP += (二)问题导引:如何证明线面平行、线面垂直、面面平行、面面垂直?【学习探究】(一)自学引导:自主学习课本102页至103页部分. 1、平面的法向量2、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面(用向量方法证明)3、平面的向量表示:4、设1n 、2n分别是平面α、β的法向量,那么:α//β或α与β重合⇔ 21//n n αβ⊥⇔21n n ⊥5、三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直已知:,PO PA 分别是平面α的垂线和斜线,O A 是P A 在平面α内的射影,a α⊂,且a O A ⊥求证:a P A ⊥;证明:∵P O α⊥ ∴PO a ⊥,又∵,a OA PO OA O ⊥=∴a ⊥平面P O A ,∴a P A ⊥. 说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;(2)推理模式:,,PO O PA A a PA a a O A αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭6条斜线的射影垂直证明思路: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭.(二)思考与讨论:⑴三垂线指: (PA ,PO ,AO 都垂直α内的直线a )2)其实质是: ( 斜线和平面内一条直线垂直的判定和性质定理)注意:要考虑a 的位置,并注意两定理交替使用(三)典型例题:例1.在正方体111ABCD A B C D -中,求证:1D B是平面1AC D 的法向量.例2:已知正方体''''ABC D A B C D -.求证:平面''//A B D 平面'B D C .例3.如图,底面A B C D 是正方形,SA ⊥底面A B C D ,且SA AB =,E 是S C 中点. 求证:平面BD E ⊥平面A B C D .说明:一.证明垂直关系,可通过向量的数量积等于0来实现;二.要善于转化,即挖掘已知的垂直关系,将未知向已知转化(四)变式拓展:已知正方体1111ABC D A B C D -中,,E F 分别为1,BB C D 的中点, 求证:1D F ⊥平面A D E 。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

课件1:3.2.2平面的法向量与平面的向量表示

课件1:3.2.2平面的法向量与平面的向量表示
设平面 A1B1P 的一个法向量为 n1=(x1,y1,z1), 则nn11··AA→→11BP=1=00,, ⇒y-1=x10+,y1+(a-1)z1=0, ∴x1=(a-1)z1,y1=0.
令 z1=1,得 x1=a-1, ∴n1=(a-1,0,1). 设平面 C1DE 的一个法向量为 n2=(x2,y2,z2),
三垂线定理及其逆定理
求平面的法向量
如图 3-2-10,ABCD 是直角梯形,∠ABC=90°, SA⊥平面 ABCD,SA=AB=BC=1,AD=12,求平面 SCD 的法 向量.
【思路探究】 先确定平面 SCD 内的两个不共线向量,比 如D→C,S→C,再设出平面的法向量为 n=(x,y,z),构造方程组 求解.
∵P→D=0,2 3 3,-1,显然P→D=
3 3 n.
∴P→D∥n,∴P→D⊥平面 ABE,
即 PD⊥平面 ABE.
利用空间向量解决探索性问题 (12 分)在正方体 ABCD-A1B1C1D1 中,E 是棱 BC 的中点,试在棱 CC1 上求一点 P,使得平面 A1B1P⊥平面 C1DE.
图 3-2-13
D→A=(2,0,0),A→E=(0,2,1).
(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,
则 n1⊥D→A,n1⊥A→E,
即 n1·D→A=2x1=0, n1·A→E=2y1+z1=0,
得xz11==-0,2y1,
令 z1=2,则 y1=-1, 所以 n1=(0,-1,2).
因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
的中点,N 为 BC 的中点.
证明:直线 MN∥平面 OCD. 【思路探究】 只需建系证明M→N·n

高中数学平面的法向量与平面的向量表示知识点解析

高中数学平面的法向量与平面的向量表示知识点解析

第三章 §3.2 直线的方向向量与直线的向量方程
3.2.2 平面的法向量与平面的向量表示
学习目标
XUEXIMUBIAO
1.理解平面的法向量的概念,会求平面的法向量. 2.会用平面的法向量证明平面与平面平行、垂直. 3.了解三垂线定理及其逆定理.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测
12345
课堂小结
KETANGXIAOJIE
1.用法向量来解决平面与平面的关系问题,思路清楚,不必考虑图形的位置 关系,只需通过向量运算,就可得到要证明的结果. 2.利用三垂线定理证明线线垂直,需先找到平面的一条垂线,有了垂线,才 能作出斜线的射影,同时要注意定理中的“平面内的一条直线”这一条件, 忽视这一条件,就会产生错误结果.
置;若不存在,请说明理由.
题型三 利用空间向量证明垂直问题
例3 三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为 A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A= 3,AB=AC=2A1C1=2,D为 BC的中点.证明:平面A1AD⊥平面BCC1B1.
反思感悟 利用空间向量证明面面垂直通常可以有两个途径,一是利用两 个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂 直;二是直接求解两个平面的法向量,证明两个法向量垂直,从而得到两 个平面垂直.
1 自主学习
PART ONE
知识点一 平面的法向量 已知平面α,如果 向量n的基线与平面α垂直 ,则向量n叫做平面α的法向量或 说向量n与平面α正交. 知识点二 平面的向量表示 设A是空间任一点,n为空间内任一非零向量,则适合条件 A→M·n=0 的点M的 集合构成的图形是过空间内一点A并且与n垂直的平面.这个式子称为一个平面 的向量表示式.

【数学】3.2.2《平面法向量与平面的向量表示》课件(新人教B选修2-1)

【数学】3.2.2《平面法向量与平面的向量表示》课件(新人教B选修2-1)
解:由题意可得, = ( x − x0 , y − y0 , z − z0 ) AM
又 AM ⋅ n = 0
∴ A( x − x0 ) + B( y − y0 ) + C ( z − z0 ) = 0
平面 α 的方程
3、平面法向量的应用
β n 设 n1, 2 分别是平面 α , 的法向量,
n1 = λ n2 ⇔ n1 // n2 ⇔ α // β 或α与β 重合 ⇒ ⇒ n1 ⋅ n2 = 0 ⇔ n1 ⊥ n2 ⇔ α ⊥ β
C
n
B O A x y
n ⋅ AB = ( x, y, z ) ⋅ (− a, b,0) = − ax + by = 0 则 n ⋅ AC = ( x, y, z ) ⋅ (− a,0, c) = − ax + cz = 0 a a 解得y = x, z = x b c
令x = bc,则y = ac, z = ab
总结:
1)总结利用向量证明两平面平行的方法。 • 一个平面的一组基底与另一个平面共面 两平面至少有 一个非公共点 • 两平面的法向量互相平行 2)证明两平面垂直即证两平面的法向量互相垂直 3)如何利用平面的法向量证明直线与平面垂直? 设 µ 是平面 α 的法向量, ν 是直线 l 的方向向量
l ⊥ α ⇔ µ //ν
a a 令x = 1,则 y = , z = b c
n = (bc, ac, ab)
a a n = (1, , ) b c
有何 关系?
课堂练习
1、下列结论中,正确的有____________: (1)同一平面的不同法向量是共线向量; (2)若 a 是平面α 的法向量, 是平面 β 的法向量, b a⋅b = 0 则 ; (3)设非零向量 b 、c 均与平面 α 共面,若 a ⋅ b = 0 b ⋅ c = 0 ,则 a 是平面 α 的法向量。 2、平面的一个法向量为 (1,2,0) ,平面的一个法 向量为( 2,−1,0),则平面 α 与 β 的位置关系是 _____________。 3、已知平面经过三点A(1,2,3)、 ( 2,0,−1) 、 (3,−2,0) C B 试求平面α 的一个法向量。

高中数学 3.2.2平面的法向量与平面的向量表示配套课件 新人教B版选修21

高中数学 3.2.2平面的法向量与平面的向量表示配套课件 新人教B版选修21
3.2.2
3.2.2 平面的法向量与平面的向量表示
【学习要求】 1.理解平面的法向量的概念,会求平面的法向量. 2.会用平面的法向量证明平面与平面平行、垂直. 3.理解并会应用三垂线定理及其逆定理,证明有关垂直问题. 【学法指导】
在证明过程中,体会向量法与几何法证明的不同之处.从不同 的角度阐明数学证明的原理,培养我们善于探索、独立思考、 集体交流的好习惯.
第十二页,共28页。
研一研·问题探究、课堂(kètáng)
3.2.2
更高效
跟踪训练 2 已知正方体 ABCD—A1B1C1D1 的棱长为 2,E、
F 分别是 BB1、DD1 的中点,求证:
(1)FC1∥平面 ADE;
(2)平面 ADE∥平面 B1C1F.
证明 (1)建立如图所示空间直角坐标系
Dxyz,
研一研·问题(wèntí)探究、课堂
3.2.2
更高效
例2 在四面体 ABCD 中,AB⊥平面 BCD,BC=CD,∠BCD
=90°,∠ADB=30°,E、F 分别是 AC、AD 的中点,求
证:平面 BEF⊥平面 ABC.
证明 建系如图,设 A(0,0,a),
则易得 B(0,0,0),C
23a,
23a,0,
练一练·当堂检测(jiǎn cè)、目标达成 落实处
3.2.2
3.已知 l∥α,且 l 的方向向量为(2,m,1),平面 α 的法向量 为1,12,2,则 m=________. 解析 ∵(2,m,1)·1,12,2=2+12m+2=0. ∴m=-8.
答案 -8
第二十五页,共28页。
练一练·当堂检测(jiǎn cè)、目标达成
3.2.2
问题 2 根据下列条件,判断相应的直线与平面、平面与平 面的位置关系. (1)直线 l 的方向向量、平面 α 的法向量分别是 a=(3,2,1), n=(-1,2,-1); (2)平面 α、β 的法向量分别是 n1=(1,3,0),n2=(-3,-9,0); (3)平面 α、β 的法向量分别是 n1=(1,-3,-1),n2=(8,2,2). 解 (1)∵a=(3,2,1),n=(-1,2,-1), ∴a·n=-3+4-1=0,∴a⊥n,∴l⊂α 或 l∥α.

高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案

高中数学 第3章 空间向量与立体几何 3.2.2 空间线面关系的判定1数学教案

3.2.2 空间线面关系的判定设空间两条直线l 1,l 2的方向向量分别为e 1,e 2,两个平面α1,α2的法向量分别为n 1,n 2,则有下表:思考:否垂直?[提示] 垂直1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α斜交B [∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α.]2.已知不重合的平面α,β的法向量分别为n 1=⎝ ⎛⎭⎪⎫12,3,-1,n 2=⎝ ⎛⎭⎪⎫-16,-1,13,则平面α与β的位置关系是________.平行 [∵n 1=-3n 2,∴n 1∥n 2,故α∥β.]3.设直线l 1的方向向量为a =(3,1,-2),l 2的方向向量为b =(-1,3,0),则直线l 1与l 2的位置关系是________.垂直 [∵a·b =(3,1,-2)·(-1,3,0)=-3+3+0=0,∴a⊥b ,∴l 1⊥l 2.] 4.若直线l 的方向向量为a =(-1,2,3),平面α的法向量为n =(2,-4,-6),则直线l 与平面α的位置关系是________.垂直 [∵n =-2a ,∴n ∥a ,又n 是平面α的法向量,所以l ⊥α.]利用空间向量证明线线平行【例1】 如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.[证明] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12,∴AE →=⎝ ⎛⎭⎪⎫-1,0,12,FC 1→=⎝ ⎛⎭⎪⎫-1,0,12,EC 1→=⎝ ⎛⎭⎪⎫0,1,12,AF→=⎝ ⎛⎭⎪⎫0,1,12, ∵AE →=FC 1→,EC 1→=AF →, ∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直. 1.长方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝⎛⎭⎪⎫a ,b 3,23c . ∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.利用空间向量证明线面、面面平行[探究问题]在用向量法处理问题时,若几何体的棱长未确定,应如何处理? 提示:可设几何体的棱长为1或a ,再求点的坐标.【例2】 在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD .[思路探究][证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →.即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 1.本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1),又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1.2.若本例换为:在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .向量法证明垂直问题【例3】 如图所示,在四棱锥P ­ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE . [思路探究] 建系→求相关点的坐标→求相关向量的坐标→判断向量的关系→确定线线、线面关系[证明] AB ,AD ,AP 两两垂直,建立如图所示的空间直角坐标系,设PA =AB =BC =1, 则P (0,0,1). (1)∵∠ABC =60°, ∴△ABC 为正三角形,∴C ⎝ ⎛⎭⎪⎫12,32,0,E ⎝ ⎛⎭⎪⎫14,34,12. 设D (0,y,0),由AC ⊥CD ,得AC →·CD →=0, 即y =233,则D ⎝ ⎛⎭⎪⎫0,233,0,∴CD →=⎝ ⎛⎭⎪⎫-12,36,0.又AE →=⎝ ⎛⎭⎪⎫14,34,12,∴AE →·CD →=-12×14+36×34=0,∴AE →⊥CD →,即AE ⊥CD .(2)法一:∵P (0,0,1),∴PD →=⎝ ⎛⎭⎪⎫0,233,-1.又AE →·PD →=34×233+12×(-1)=0,∴PD →⊥AE →,即PD ⊥AE . ∵AB →=(1,0,0),∴PD →·AB →=0.∴PD ⊥AB ,又AB ∩AE =A ,∴PD ⊥平面ABE .法二:AB →=(1,0,0),AE →=⎝ ⎛⎭⎪⎫14,34,12,设平面ABE 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧x =0,14x +34y +12z =0,令y =2,则z =-3,∴n =(0,2,-3).∵PD →=⎝ ⎛⎭⎪⎫0,233,-1,显然PD →=33n .∴PD →∥n ,∴PD →⊥平面ABE ,即PD ⊥平面ABE . 1.证明线线垂直常用的方法证明这两条直线的方向向量互相垂直. 2.证明线面垂直常用的方法(1)证明直线的方向向量与平面的法向量是共线向量; (2)证明直线与平面内的两个不共线的向量互相垂直. 3.证明面面垂直常用的方法 (1)转化为线线垂直、线面垂直处理; (2)证明两个平面的法向量互相垂直.2.在例3中,平面ABE 与平面PDC 是否垂直,若垂直,请证明;若不垂直,请说明理由.[解] 由例3,可知CD →=⎝ ⎛⎭⎪⎫-12,36,0,PD →=⎝ ⎛⎭⎪⎫0,233,-1,设平面PDC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CD →=-12x +36y =0,m ·PD →=233y -z =0,令y =3,则x =1,z =2,即m =(1,3,2),由例3知,平面ABE 的法向量为n =(0,2,-3), ∴m·n =0+23-23=0,∴m⊥n . 所以平面ABE ⊥平面PDC .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).3.(1)证明线面垂直问题,可以利用直线的方向向量和平面的法向量之间的关系来证明. (2)证明面面垂直问题,常转化为线线垂直、线面垂直或两个平面的法向量垂直. 1.判断(正确的打“√”,错误的打“×”)(1)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(2)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (3)若一直线与平面垂直,则该直线的方向向量与平面内所有直线的方向向量的数量积为0.( )(4)两个平面垂直,则其中一个平面内的直线的方向向量与另一个平面内的直线的方向向量垂直.( )[答案] (1)√ (2)√ (3)√ (4)×2.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx,5=λy , ∴x =6,y =152.]3.已知平面α和平面β的法向量分别为a =(1,2,3),b =(x ,-2,3),且α⊥β,则x =________.-5 [∵α⊥β,∴a ⊥b , ∴a ·b =x -4+9=0, ∴x =-5.]4.在正方体ABCD ­A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . [证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B1BD的法向量为n2=(1,-1,0),由n1·n2=0,知n1⊥n2,∴平面B1DE⊥平面B1BD.。

高中数学 3.2.2 平面的法向量与平面的向量表示学案 新人教B版选修2-1-新人教B版高中选修2-

高中数学 3.2.2 平面的法向量与平面的向量表示学案 新人教B版选修2-1-新人教B版高中选修2-

3.2.2 平面的法向量与平面的向量表示1.理解平面的法向量的概念, 会求平面的法向量.(重点) 2.会用平面的法向量证明平面与平面平行、垂直.(重点)3.理解并会应用三垂线定理及其逆定理,证明有关垂直问题.(难点)[基础·初探]教材整理1 平面的法向量与向量表示 阅读教材P 102~P 103“例1”,完成下列问题. 1.平面的法向量已知平面α,如果向量n 的基线与平面α垂直,则向量n 叫做平面α的法向量或说向量n 与平面α正交.2.平面的向量表示设A 是空间任一点,n 为空间内任一非零向量,适合条件AM →·n =0的点M 的集合构成的图形是过空间内一点A 并且与n 垂直的平面.这个式子称为一个平面的向量表示式.3.两平面平行、垂直的判定设n 1,n 2分别是平面α,β的法向量,则 (1)α∥β或α与β重合⇔n 1∥n 2; (2)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.1.若直线l 的方向向量a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( ) A .l ∥α B .l ⊥α C .l ⊂αD .l 与α斜交【解析】 ∵n =(-2,0,-4)=-2(1,0,2)=-2a , ∴n ∥a ,∴l ⊥α. 【答案】 B2.若平面α,β的法向量分别为a =(2,-1,0),b =(-1,-2,0),则α与β的位置关系是( )A .平行B .垂直C.相交但不垂直D.无法确定【解析】∵a·b=-2+2+0=0,∴a⊥b,∴α⊥β.【答案】 B教材整理2 三垂线定理及其逆定理阅读教材P104第5行~P105第2行内容,完成下列问题.1.正射影已知平面α和一点A,过点A作α的垂线l与α相交于点A′,则A′就是点A在平面α内的正射影,简称射影.2.三垂线定理如果在平面内的一条直线与平面的一条斜线在这个平面内的射线垂直,则它也和这条斜线垂直.3.三垂线定理的逆定理如果平面内的一条直线和这个平面的一条斜线垂直,则它也和这条斜线在平面内的射影垂直.判断(正确的打“√”,错误的打“×”)(1)若a是平面α的一条斜线,直线b垂直于a在α内的射影,则a⊥b.( )(2)若a是平面α的斜线,平面β内的直线b垂直于a在平面α内的射影,则a⊥b.( )(3)若a是平面α的斜线,直线b⊂α,且b垂直于a在另一个平面β内的射影,则a ⊥b.( )(4)若a是平面α的斜线,b∥α,直线b垂直于a在平面α内的射影,则a⊥b.( )【答案】(1)×(2)×(3)×(4)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:________________________________________________________解惑:________________________________________________________疑问2:________________________________________________________解惑:________________________________________________________疑问3:________________________________________________________解惑:________________________________________________________[小组合作型]利用平面法向量证明平行关系已知正方体ABCD ­A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .【精彩点拨】 建立空间直角坐标系,利用平面的法向量求解.【自主解答】 (1)建立如图所示空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1.令z 1=2,则y 1=-1, 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0, 所以FC 1→⊥n 1.又因为FC 1⊄平面ADE , 所以FC 1∥平面ADE .(2)∵C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的法向量.由n 2⊥FC 1→,n 2⊥C 1B 1→,得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .用向量方法证明空间平行关系的方法线线 平行设直线l 1,l 2的方向向量分别是a ,b ,则要证明l 1∥l 2,只需证明a ∥b ,即a =k b (k ∈R ).线面平行(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行判定定理在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)证明一条直线l 与一个平面α平行,只需证明l 的方向向量能用平面α内两个不共线向量线性表示即可.面面 平行 (1)转化为相应的线线平行或线面平行.(2)求出平面α,β的法向量u ,v ,证明u ∥v 即可说明α∥β.[再练一题]1.在正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G ,H ,M ,N 分别是正方体六个表面的中心,证明:平面EFG ∥平面HMN .【证明】 如图所示,建立空间直角坐标系,不妨设正方体的棱长为2,则E (1,1,0),F (1,0,1),G (2,1,1),H (1,1,2),M (1,2,1),N (0,1,1).∴EF →=(0,-1,1), EG →=(1,0,1), HM →=(0,1,-1), HN →=(-1,0,-1).设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面EFG 和HMN 的法向量, 由⎩⎪⎨⎪⎧ m ·EF →=0,m ·EG →=0,得⎩⎪⎨⎪⎧-y 1+z 1=0,x 1+z 1=0,令x 1=1,得m =(1,-1,-1). 由⎩⎪⎨⎪⎧n ·HM →=0,n ·HN →=0,得⎩⎪⎨⎪⎧y 2-z 2=0,-x 2-z 2=0.令x 2=1,得n =(1,-1,-1).于是有m =n ,即m ∥n ,故平面EFG ∥平面HMN .利用向量证明线面垂直如图3­2­14所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别是B 1B ,DC 的中点,求证:AE ⊥平面A 1D 1F .图3­2­14【精彩点拨】 建立空间直角坐标系,得到有关向量的坐标,求出平面A 1D 1F 的法向量,然后证明AE →与法向量共线.【自主解答】如图所示,建立空间直角坐标系,设正方体的棱长为1,则A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,A 1(1,0,1),D 1(0,0,1),F ⎝ ⎛⎭⎪⎫0,12,0, ∴AE →=⎝⎛⎭⎪⎫0,1,12,A 1D 1→=(-1,0,0),D 1F →=⎝⎛⎭⎪⎫0,12,-1.设平面A 1D 1F 的法向量n =(x ,y ,z ), 则n ·A 1D 1→=0,n ·D 1F →=0, 即⎩⎪⎨⎪⎧-x =0,12y -z =0,解得x =0,y =2z .令z =1,则n =(0,2,1). 又AE →=⎝ ⎛⎭⎪⎫0,1,12,∴n =2AE →.∴n ∥AE →,即AE ⊥平面A 1D 1F .1.坐标法证明线面垂直有两种思路 方法一:(1)建立空间直角坐标系; (2)将直线的方向向量用坐标表示;(3)找出平面内两条相交直线,并用坐标表示它们的方向向量; (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系; (2)将直线的方向向量用坐标表示; (3)求出平面的法向量;(4)判断直线的方向向量与平面的法向量平行.2.使用坐标法证明时,如果平面的法向量很明显,可以用方法二,否则常常选用方法一解决.[再练一题]2.如图3­2­15,长方体ABCD ­A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点,求证:直线PB 1⊥平面PAC .图3­2­15【证明】 依题设,以D 为坐标原点,如图所示,建立空间直角坐标系Dxyz ,则C (1,0,0),P (0,0,1),A (0,1,0),B 1(1,1,2),于是CA →=(-1,1,0),CP →=(-1,0,1),PB 1→=(1,1,1), ∴CA →·PB 1→=(-1,1,0)·(1,1,1)=0, CP →·PB 1→=(-1,0,1)·(1,1,1)=0,故CP →⊥PB 1→,CA →⊥PB 1→,即PB 1⊥CP ,PB 1⊥CA , 又CP ∩CA =C ,且CP ⊂平面PAC ,CA ⊂平面PAC . 故直线PB 1⊥平面PAC .三垂线定理及其逆定理的应用在正方体ABCD ­A 1B 1C 1D 1中,求证:A 1C ⊥平面BDC 1.图3­2­16【自主解答】 在正方体中,AA 1⊥平面ABCD ,所以AC 是A 1C 在平面ABCD 内的射影,又AC ⊥BD ,所以BD ⊥A 1C .同理D1C是A1C在平面CDD1C1内的射影.所以C1D⊥A1C.又C1D∩BD=D,所以A1C⊥平面BDC1.1.三垂线定理及其逆定理主要用于证明空间两条直线的垂直问题.对于同一平面内的两直线垂直问题也可用“平移法”,将其转化为空间两直线的垂直问题,用三垂线定理证明.2.当图形比较复杂时,要认真观察图形,证题的思维过程是“一定二找三证”,即“一定”是定平面和平面内的直线,“二找”是找平面的垂线、斜线和斜线在平面内的射影,“三证”是证直线垂直于射影或斜线.[再练一题]3.正三棱锥P­ABC中,求证:BC⊥PA.【证明】如图,在正三棱锥P­ABC中,P在底面ABC内的射影O为正三角形ABC的中心,连接AO,则AO是PA在底面ABC内的射影,且BC⊥AO,所以BC⊥PA.[探究共研型]利用向量证明面面垂直探究1【提示】只需求出两个平面的法向量,再看它们的法向量的数量积是否为0即可.探究2 在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F 分别是AC,AD的中点,求证:平面BEF⊥平面ABC.【提示】建系如图,取A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎪⎫32a ,32a ,0,D (0,3a,0),E ⎝⎛⎭⎪⎫34a ,34a ,a 2,F ⎝ ⎛⎭⎪⎫0,32a ,a 2.∵∠BCD =90°,∴CD ⊥BC .又AB ⊥平面BCD ,∴AB ⊥CD .又AB ∩BC =B ,∴CD ⊥平面ABC ,∴CD →=⎝ ⎛⎭⎪⎫-32a ,32a ,0为平面ABC 的一个法向量.设平面BEF 的法向量n =(x ,y ,z ), 由n ·EF →=0, 即(x ,y ,z )·⎝ ⎛⎭⎪⎫-34a ,34a ,0=0,有x =y . 由n ·BF →=0,即(x ,y ,z )·⎝ ⎛⎭⎪⎫0,32a ,a 2=0,有32ay +a2z =0⇒z =-3y . 取y =1,得n =(1,1,-3).∵n ·CD →=(1,1,-3)·⎝ ⎛⎭⎪⎫-32a ,32a ,0=0,∴n ⊥CD →,∴平面BEF ⊥平面ABC .如图3­2­17所示,在直三棱柱ABC ­A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .图3­2­17【精彩点拨】 要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n 1,n 2,证明n 1·n 2=0.【自主解答】由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=⎝ ⎛⎭⎪⎫-2,0,12.设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎪⎨⎪⎧ n 1·AA 1→=0,n 1·AC →=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧n 2·AC 1→=0,n 2·AE →=0⇒⎩⎪⎨⎪⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0,令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .1.利用空间向量证明面面垂直通常可以有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度.[再练一题]4.在正方体ABCD ­A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD . 【证明】 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .[构建·体系]1.已知AB →=(2,2,1),AC →=(4,5,3),则平面ABC 的一个单位法向量为( ) A.⎝ ⎛⎭⎪⎫-13,-23,-23B .⎝ ⎛⎭⎪⎫-13,23,-23C.⎝ ⎛⎭⎪⎫-13,23,23D .⎝ ⎛⎭⎪⎫13,23,23 【解析】 设平面ABC 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧2x +2y +z =0,4x +5y +3z =0,取x =1,则y =-2,z =2.所以n =(1,-2,2).由于|n |=3,所以平面ABC 的一个单位法向量可以是⎝ ⎛⎭⎪⎫-13,23,-23.【答案】 B2.已知直线l 的方向向量是a =(3,2,1),平面α的法向量是u =(-1,2,-1),则l 与α的位置关系是( )A .l ⊥αB .l ∥αC .l 与α相交但不垂直D .l ∥α或l ⊂α【解析】 因为a ·u =-3+4-1=0,所以a ⊥u .所以l ∥α或l ⊂α. 【答案】 D3.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论: ①AP ⊥AB ; ②AP ⊥AD ;③AP →是平面ABCD 的法向量; ④AP →∥BD →.其中正确的是________.(填序号)【解析】 由于AP →·AB →=-1×2+2×(-1)+(-1)×(-4)=0,AP →·AD →=(-1)×4+2×2+(-1)×0=0,所以①②③正确.【答案】 ①②③4.如图3­2­18,已知PO ⊥平面ABC ,且O 为△ABC 的垂心,则AB 与PC 的关系是________.【导学号:15460075】图3­2­18【解析】 ∵O 为△ABC 的垂心, ∴CO ⊥AB .又∵OC 为PC 在平面ABC 内的射影, ∴由三垂线定理知AB ⊥PC . 【答案】 垂直5.在四棱锥P ­ABCD 中,底面ABCD 是正方形,侧棱PD 垂直于底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 于点F .求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】 建立如图所示的空间直角坐标系.D 是坐标原点,设DC =a .(1)连接AC 交BD 于G ,连接EG ,依题意得D (0,0,0),A (a,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫0,a 2,a 2.因为底面ABCD 是正方形,所以G 是此正方形的中心,故点G 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,0,所以EG →=⎝ ⎛⎭⎪⎫a 2,0,-a 2. 又PA →=(a,0,-a ),所以PA →=2EG →,这表明PA ∥EG . 而EG ⊂平面EDB ,且PA ⊄平面EDB , 所以PA ∥平面EDB .(2)依题意得B (a ,a,0),PB →=(a ,a ,-a ),DE →=⎝ ⎛⎭⎪⎫0,a 2,a 2,所以PB →·DE →=0+a 22-a 22=0,所以PB →⊥DE →,即PB ⊥DE .又已知EF ⊥PB ,且EF ∩DE =E , 所以PB ⊥平面EFD .我还有这些不足:(1)________________________________________________________ (2)________________________________________________________ 我的课下提升方案:(1)________________________________________________________ (2)________________________________________________________学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5【解析】 ∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0.∴k =-5. 【答案】 D2.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是( )A .(4,2,-2)B .(2,0,4)C .(2,-1,-5)D .(4,-2,2)【解析】 ∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故应选D.【答案】 D3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B .407,-157,4C.407,-2,4 D .4,407,-15【解析】 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4, 又BP ⊥平面ABC ,∴BP →⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧x -1+5y +6=0,3x -1+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.【答案】 B4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .⎝ ⎛⎭⎪⎫1,3,32C.⎝⎛⎭⎪⎫1,-3,32D .⎝⎛⎭⎪⎫-1,3,-32【解析】 对于B ,AP →=⎝ ⎛⎭⎪⎫-1,4,-12,则n ·AP →=(3,1,2)·⎝ ⎛⎭⎪⎫-1,4,-12=0, ∴n ⊥AP →,则点P ⎝ ⎛⎭⎪⎫1,3,32在平面α内.【答案】 B5.设A 是空间一定点,n 为空间内任一非零向量,满足条件AM →·n =0的点M 构成的图形是( )A .圆B .直线C .平面D .线段【解析】 M 构成的图形经过点A ,且是以n 为法向量的平面. 【答案】 C 二、填空题6.已知直线l 与平面α垂直,直线l 的一个方向向量u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =________.【解析】 由题意知u ⊥v ,∴u ·v =3+6+z =0,∴z =-9. 【答案】 -97.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.【解析】 由题意,知⎩⎪⎨⎪⎧-x +2y -12=0,x -4-4z =0,-1-2y +3z =0.解得x =-64,y =-26,z =-17. 【答案】 (-64,-26,-17)8.若A ⎝ ⎛⎭⎪⎫0,2,198,B ⎝ ⎛⎭⎪⎫1,-1,58,C ⎝ ⎛⎭⎪⎫-2,1,58是平面α内的三点,设平面α的法向量a =(x ,y ,z ),则x ∶y ∶z =________.【导学号:15460076】【解析】 因为AB →=⎝ ⎛⎭⎪⎫1,-3,-74,AC →=⎝⎛⎭⎪⎫-2,-1,-74,又因为a ·AB →=0,a ·AC →=0, 所以⎩⎪⎨⎪⎧x -3y -74z =0,-2x -y -74z =0,解得⎩⎪⎨⎪⎧x =23y ,z =-43y .所以x ∶y ∶z =23y ∶y ∶⎝ ⎛⎭⎪⎫-43y =2∶3∶(-4). 【答案】 2∶3∶(-4) 三、解答题9.如图3­2­19,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:AM ⊥平面BDF .图3­2­19【证明】 以C 为坐标原点,建立如图所示的空间直角坐标系,则A (2,2,0),B (0,2,0),D (2,0,0),F (2,2,1),M ⎝⎛⎭⎪⎫22,22,1.所以AM →=⎝ ⎛⎭⎪⎫-22,-22,1,DF →=(0, 2,1),BD →=(2,-2,0).设n =(x ,y ,z )是平面BDF 的法向量, 则n ⊥BD →,n ⊥DF →,所以⎩⎪⎨⎪⎧n ·BD →=2x -2y =0,n ·DF →=2y +z =0⇒⎩⎨⎧x =y ,z =-2y ,取y =1,得x =1,z =- 2. 则n =(1,1,-2). 因为AM →=⎝ ⎛⎭⎪⎫-22,-22,1.所以n =- 2 AM →,得n 与AM →共线. 所以AM ⊥平面BDF .10.底面ABCD 是正方形,AS ⊥平面ABCD ,且AS =AB ,E 是SC 的中点.求证:平面BDE ⊥平面ABCD .【证明】法一 设AB =BC =CD =DA =AS =1,建立如图所示的空间直角坐标系Axyz ,则B (1,0,0),D (0,1,0),A (0,0,0),S (0,0,1),E ⎝ ⎛⎭⎪⎫12,12,12.连接AC ,设AC 与BD 相交于点O ,连接OE ,则点O 的坐标为⎝ ⎛⎭⎪⎫12,12,0.因为AS →=(0,0,1),OE →=⎝ ⎛⎭⎪⎫0,0,12,所以OE →=12AS →.所以OE ∥AS .又因为AS ⊥平面ABCD , 所以OE ⊥平面ABCD . 又因为OE ⊂平面BDE , 所以平面BDE ⊥平面ABCD .法二 设平面BDE 的法向量为n 1=(x ,y ,z ), 因为BD →=(-1,1,0),BE →=⎝ ⎛⎭⎪⎫-12,12,12,所以⎩⎪⎨⎪⎧n 1⊥BD →,n 1⊥BE →,即⎩⎨⎧n 1·BD →=-x +y =0,n 1·BE →=-12x +12y +12z =0,令x =1,可得平面BDE 的一个法向量为n 1=(1,1,0). 因为AS ⊥平面ABCD ,所以平面ABCD 的一个法向量为n 2=AS →=(0,0,1). 因为n 1·n 2=0,所以平面BDE ⊥平面ABCD .[能力提升]1.如图3­2­20,在正方体ABCD ­A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是( )图3­2­20A .(1,-2,4)B .(-4,1,-2)C .(2,-2,1)D .(1,2,-2)【解析】 设平面AEF 的一个法向量为n =(x ,y ,z ),正方体ABCD ­A 1B 1C 1D 1的棱长为1, 则A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,12,F ⎝ ⎛⎭⎪⎫12,0,1.故AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫-12,0,1.所以⎩⎪⎨⎪⎧AE →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y +12z =0,-12x +z =0,所以⎩⎪⎨⎪⎧y =-12z ,x =2z .当z =-2时,n =(-4,1,-2),故选B. 【答案】 B2.如图3­2­21,在三棱柱ABC ­A 1B 1C 1中,侧棱AA 1⊥底面A 1B 1C 1,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1的中点,P 是AD 的延长线与A 1C 1的延长线的交点.若点Q 在线段B 1P 上,则下列结论正确的是( )图3­2­21A .当点Q 为线段B 1P 的中点时,DQ ⊥平面A 1BD B .当点Q 为线段B 1P 的三等分点时,DQ ⊥平面A 1BDC .在线段B 1P 的延长线上,存在一点Q ,使得DQ ⊥平面A 1BDD .不存在DQ 与平面A 1BD 垂直【解析】 以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则由已知得A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1),D ⎝⎛⎭⎪⎫0,1,12,P (0,2,0),A 1B →=(1,0,1),A 1D →=⎝⎛⎭⎪⎫0,1,12,B 1P →=(-1,2,0),DB 1→=⎝⎛⎭⎪⎫1,-1,-12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·A1B →=x +z =0,n ·A 1D →=y +12z =0,取z =-2,则x =2,y =1,所以平面A 1BD 的一个法向量为n =(2,1,-2).假设DQ ⊥平面A 1BD ,且B 1Q →=λB 1P →=λ(-1,2,0)=(-λ,2λ,0),则DQ →=DB 1→+B 1Q →=⎝⎛⎭⎪⎫1-λ,-1+2λ,-12,因为DQ →也是平面A 1BD 的法向量,所以n =(2,1,-2)与DQ →=⎝ ⎛⎭⎪⎫1-λ,-1+2λ,-12共线,于是有1-λ2=-1+2λ1=-12-2=14成立,但此方程关于λ无解.故不存在DQ 与平面A 1BD 垂直,故选D. 【答案】 D3.如图3­2­22,四棱锥P ­ABCD 的底面ABCD 是边长为1的正方形,PD ⊥底面ABCD ,且PD =1,若E ,F 分别为PB ,AD 中点,则直线EF 与平面PBC 的位置关系________.图3­2­22【解析】 以D 为原点,DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则E ⎝ ⎛⎭⎪⎫12,12,12,F ⎝ ⎛⎭⎪⎫12,0,0,∴EF →=⎝ ⎛⎭⎪⎫0,-12,-12,平面PBC 的一个法向量n =(0,1,1),∵EF →=-12n ,∴EF →∥n ,∴EF ⊥平面PBC . 【答案】 垂直4.如图3­2­23,在四棱锥P ­ABCD 中,底面ABCD 为直角梯形,且AD ∥BC ,∠ABC =∠PAD =90°,侧面PAD ⊥底面ABCD .若PA =AB =BC =12AD .图3­2­23(1)求证:CD ⊥平面PAC ;(2)侧棱PA 上是否存在点E ,使得BE ∥平面PCD ?若存在,指出点E 的位置并证明,若不存在,请说明理由.【解】 因为∠PAD =90°,所以PA ⊥AD .又因为侧面PAD ⊥底面ABCD ,且侧面PAD ∩底面ABCD =AD ,所以PA ⊥底面ABCD .又因为∠BAD =90°,所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.设AD =2,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,1). (1)AP →=(0,0,1),AC →=(1,1,0),CD →=(-1,1,0), 可得AP →·CD →=0,AC →·CD →=0,所以AP ⊥CD ,AC ⊥CD . 又因为AP ∩AC =A ,所以CD ⊥平面PAC .(2)设侧棱PA 的中点是E ,则E ⎝ ⎛⎭⎪⎫0,0,12,BE →=⎝ ⎛⎭⎪⎫-1,0,12. 设平面PCD 的法向量是n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD →=0,n ·PD →=0,因为CD →=(-1,1,0),PD →=(0,2,-1),所以⎩⎪⎨⎪⎧-x +y =0,2y -z =0,取x =1,则y =1,z =2,所以平面PCD 的一个法向量为n =(1,1,2).所以n ·BE →=(1,1,2)·⎝ ⎛⎭⎪⎫-1,0,12=0,所以n ⊥BE →. 因为BE ⊄平面PCD ,所以BE ∥平面PCD . 综上所述,当E 为PA 的中点时,BE ∥平面PCD .。

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)课件苏

高中数学第三章空间向量与立体几何3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定(一)课件苏
→ n1· DA=2x1=0, 即 → AE=2y1+z1=0, n1·
→ → 则 n1⊥DA,n1⊥AE,
x1=0, 得 z1=-2y1,
令z1=2,则y1=-1,所以n1=(0,-1,2). → → 因为FC1· n1=-2+2=0,所以FC1⊥n1. 又因为FC1⊄平面ADE,所以FC1∥平面ADE.
中点,求证: (1)FC1∥平面ADE;
证明
建立如图所示的空间直角坐标系D-xyz, 则有D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), → → → 所以FC1=(0,2,1),DA=(2,0,0),AE=(0,2,1). 设n1=(x1,y1,z1)是平面ADE的法向量,
(2)平面ADE∥平面B1C1F. 证明
—→ 因为C1B1=(2,0,0),设 n2=(x2,y2,z2)是平面 B1C1F 的一个法向量. → —→ 由 n2⊥FC1,n2⊥C1B1,
→ n2· FC1=2y2+z2=0, 得 —→ C1B1=2x2=0, n2· x2=0, 得 z2=-2y2.
利用空间向量解决平行问题时,第一,建立立体图形与空间向量的
联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何
问题转化为向量问题;第二,通过向量的运算,研究平行问题;
第三,把向量问题再转化成相应的立体几何问题,从而得出结论.
题型探究
类型一
求直线的方向向量、平面的法向量
例1
如图,四棱锥P-ABCD中,底面ABCDAD= 3,试建立恰当的空间直角坐标系,
求平面ACE的一个法向量.
解答
引申探究 若本例条件不变,试求直线PC的一个方向向量和平面 PCD的一个 法向量.

3.2.2 平面的法向量与平面的向量表示

3.2.2 平面的法向量与平面的向量表示

直线与平面垂直的判定定理 如果一条直线和平面的两条相交直线垂 直,那么这条直线垂直于这个平面。 那么这条直线垂直于这个平面。 已知: 、 是平面 是平面α内 已知 a、b是平面 内 的两条相交直线, 的两条相交直线,且 直线n⊥ , ⊥ , 直线 ⊥a,n⊥b, 求证: ⊥ 求证:n⊥α.
α
n b c a
例3.已知点 .已知点A(a,0,0),B(0,b,0), , , , , , , C(0,0,c),其中abc≠0,如图,求平面 , , ,其中 ,如图, ABC的一个法向量。 的一个法向量。 的一个法向量
z C n
r , , n =(bc,ac,ab)
O B x
y
分别是平面α的垂线 例4.已知:AB,AC分别是平面 的垂线 .已知: , 分别是平面 和斜线, 是 在 内的射影 内的射影, α且 和斜线,BC是AC在α内的射影,l ⊂ 且 l⊥BC,求证:l⊥AC. ⊥ ,求证: ⊥ 三垂线定理
4. 如图,在长方体 ABCD-A1B1C1D1 中,AB 如图, - =BC=2,AA1=1,则 BC1 与平面 BB1D1D 所 = , , 成角的正弦值为( 成角的正弦值为 D ) 6 2 5 15 10 A. B. C. D. 3 5的向量表示
r 已知平面α, 的基线与平面α 已知平面 ,如果向量 n的基线与平面 r 垂直,则向量 叫做平面α的法向量或说 垂直, 叫做平面 的法向量或说 n r 向量 与平面α正交。 与平面 正交。 正交 n
由平面法向量的定义可知,平面 的一个 由平面法向量的定义可知,平面α的一个 法向量垂直于与平面共面的所有向量。 法向量垂直于与平面共面的所有向量。 由于同时垂直于同一平面的两条直线平 可以推知, 行,可以推知,一个平面的所有法向量互 相平行。 相平行。 由平面法向量的性质, 由平面法向量的性质,很容易通过向量 运算证明直线与平面垂直的判定定理。 运算证明直线与平面垂直的判定定理。 直线与平面垂直的判定定理

人B版数学选修2-1:第3章 3.2.2 平面的法向量与平面的向量表示

人B版数学选修2-1:第3章 3.2.2 平面的法向量与平面的向量表示

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.已知平面α的法向量为a =(1,2,-2),平面β的法向量为b =(-2,-4,k ),若α⊥β,则k =( )A .4B .-4C .5D .-5【解析】 ∵α⊥β,∴a ⊥b ,∴a ·b =-2-8-2k =0.∴k =-5.【答案】 D2.已知平面α的一个法向量是(2,-1,1),α∥β,则下列向量可作为平面β的一个法向量的是( )A .(4,2,-2)B .(2,0,4)C .(2,-1,-5)D .(4,-2,2)【解析】 ∵α∥β,∴β的法向量与α的法向量平行,又∵(4,-2,2)=2(2,-1,1),故应选D.【答案】 D3.已知AB→=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B .407,-157,4 C.407,-2,4 D .4,407,-15【解析】 ∵AB →⊥BC →,∴AB →·BC→=0,即3+5-2z =0,得z =4, 又BP ⊥平面ABC ,∴BP→⊥AB →,BP →⊥BC →,则⎩⎪⎨⎪⎧ (x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧ x =407,y =-157.【答案】 B4.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .⎝ ⎛⎭⎪⎫1,3,32 C.⎝ ⎛⎭⎪⎫1,-3,32 D .⎝ ⎛⎭⎪⎫-1,3,-32 【解析】 对于B ,AP →=⎝ ⎛⎭⎪⎫-1,4,-12, 则n ·AP →=(3,1,2)·⎝ ⎛⎭⎪⎫-1,4,-12=0, ∴n ⊥AP →,则点P ⎝ ⎛⎭⎪⎫1,3,32在平面α内. 【答案】 B5.设A 是空间一定点,n 为空间内任一非零向量,满足条件AM →·n =0的点M 构成的图形是( )A .圆B .直线C .平面D .线段【解析】 M 构成的图形经过点A ,且是以n 为法向量的平面.【答案】 C二、填空题6.已知直线l 与平面α垂直,直线l 的一个方向向量u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =________.【解析】 由题意知u ⊥v ,∴u ·v =3+6+z =0,∴z =-9.【答案】 -97.已知a =(x,2,-4),b =(-1,y,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.。

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面

高中数学 第三章 空间向量与立体几何 3.2 立体几何中的向量方法 3.2.1 直线的方向向量及平面

3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法第一课时空间向量与平行、垂直关系a21

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法第一课时空间向量与平行、垂直关系a21

(3)根据法向量的定义建立关于x,y,z的方程组:
n n
a b
0, 0.
(4)解方程组,取其中的一组解,即得该平面的一个法向量.由于平面的法
向量有无数个,故可在方程组的解中取一个较简单的作为平面的法向量.
7.利用空间向量表示立体几何中的平行与垂直关系 因为直线的方向向量与平面的法向量可以确定直线与平面的位置关系,所 以我们可以利用直线的方向向量与平面的法向量来研究空间直线、平面 的平行(或垂直)问题. 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则
4.已知直线l的方向向量为(2,m,1),平面α的法向量为(1, 1 ,2),且l∥α,
2
则m=
.
答案:-8
5.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的
值为
.
答案:-10
课堂探究
题型一 求平面的法向量 【例1】 如图所示,在四棱锥S-ABCD中,底面是直角梯形,∠ABC=90°, SA⊥底面ABCD,且SA=AB=BC=1,AD= 1 ,建立适当的空间直角坐标系,求平面 SCD与平面SBA的一个法向量. 2
法三
因为 MN
= C1N
- C1M
=
1 2
D1
A1
-
1 2
D1D
=
1 2
(
DB +
BA )-
1 2
(
D1 A1
+
A1D
)=
1 2
DB
+
1 2
BA
-
1 2
D1 A1
-
1 2
A1D
=
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.2 平面的法向量与平面的向量表示学习目标 1.理解平面的法向量的概念,会求平面的法向量.2.会用平面的法向量证明平面与平面平行、垂直.3.理解并会应用三垂线定理及其逆定理,证明有关垂直问题.知识点一平面的法向量思考平面的法向量有何作用?是否唯一?梳理平面的法向量已知平面α,如果________________________________,则向量n叫做平面α的法向量或说向量n与平面α正交.知识点二平面的向量表示设A是空间任一点,n为空间内任一非零向量,则适合条件____________的点M的集合构成的图形是过空间内一点A并且与n垂直的平面.这个式子称为一个平面的向量表示式.知识点三两平面平行或垂直的判定及三垂线定理1.两平面平行或垂直的判定方法设n1,n2分别是平面α,β的法向量,则容易得到α∥β或α与β重合⇔____________;α⊥β⇔__________⇔__________.2.三垂线定理如果在平面内的一条直线与平面的一条斜线在这个平面内的射影垂直,则它也和这条斜线垂直.类型一求平面的法向量例1 如图,在四棱锥P—ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.AB =AP=1,AD=3,试建立恰当的空间直角坐标系,求平面ACE的一个法向量.引申探究若本例条件不变,试求直线PC 的一个方向向量和平面PCD 的一个法向量.反思与感悟 利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量.跟踪训练1 如图,在四棱锥P —ABCD 中,底面ABCD 是矩形.平面PAB ⊥平面ABCD ,△PAB 是边长为1的正三角形,ABCD 是菱形.∠ABC =60°,E 是PC 的中点,F 是AB 的中点,试建立恰当的空间直角坐标系,求平面DEF 的法向量.类型二 利用空间向量证明平行问题例2 已知正方体ABCD —A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .反思与感悟 利用向量证明平行问题,可以先建立空间直角坐标系,求出直线的方向向量和平面的法向量,然后根据向量之间的关系证明平行问题.跟踪训练2 如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,PB 与底面所成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,PA =BC =12AD =1,问在棱PD 上是否存在一点E ,使CE ∥平面PAB ?若存在,求出E 点的位置;若不存在,请说明理由.类型三 三垂线定理及应用例3 在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,E 为CC 1的中点.求证:EO ⊥平面A 1DB .反思与感悟 利用三垂线定理及其逆定理证明线线垂直是一种常用方法,其基本环节有三个.跟踪训练3 如图,已知PO ⊥平面ABC ,且O 为△ABC 的垂心,求证:AB ⊥PC .1.若直线l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m 为( )A .-4B .-6C .-8D .82.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥βB .α⊥βC .α,β相交但不垂直D .以上均不正确3.若a =(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是( ) A .(0,1,2) B .(3,6,9) C .(-1,-2,3)D .(3,6,8)4.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,则λ的值是( ) A .-103B .6C .-6D.1035.在正方体ABCD —A 1B 1C 1D 1中,平面ACD 1的一个法向量为________.1.用法向量来解决平面与平面的关系问题,思路清楚,不必考虑图形的位置关系,只需通过向量运算,就可得到要证明的结果.2.利用三垂线定理证明线线垂直,需先找到平面的一条垂线,有了垂线,才能作出斜线的射影,同时要注意定理中的“平面内的一条直线”这一条件,忽视这一条件,就会产生错误结果.提醒:完成作业 第三章 3.2.2答案精析问题导学 知识点一思考 平面的法向量与空间一点可以确定一个平面,利用平面的法向量可以判断直线与平面、平面与平面的位置关系.平面的法向量不唯一,它们都是共线的. 梳理 向量n 的基线与平面α垂直 知识点二 AM →·n =0知识点三1.n 1∥n 2 n 1⊥n 2 n 1·n 2=0 题型探究例1 解 因为PA ⊥平面ABCD ,底面ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,建立空间直角坐标系,则D (0,3,0),E (0,32,12),B (1,0,0),C (1,3,0), 于是AE →=(0,32,12),AC →=(1,3,0).设n =(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +3y =0,32y +12z =0,所以⎩⎨⎧x =-3y ,z =-3y ,令y =-1,则x =z = 3.所以平面ACE 的一个法向量为n =(3,-1,3).引申探究解 如图所示,建立空间直角坐标系,则P (0,0,1),C (1,3,0),所以PC →=(1,3,-1)即为直线PC 的一个方向向量. 设平面PCD 的法向量为n =(x ,y ,z ). 因为D (0,3,0),所以PD →=(0,3,-1). 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +3y -z =0,3y -z =0,所以⎩⎨⎧x =0,z =3y ,令y =1,则z = 3.所以平面PCD 的一个法向量为n =(0,1,3).跟踪训练1 解 因为PA =PB ,F 为AB 的中点,所以PF ⊥AB , 又因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,PF ⊂平面PAB . 所以PF ⊥平面ABCD ,因为AB =BC ,∠ABC =60°, 所以△ABC 是等边三角形, 所以CF ⊥AB .以F 为坐标原点,建立空间直角坐标系(如图所示).由题意得F (0,0,0),P (0,0,32), D (-1,32,0), C (0,32,0),E (0,34,34).所以FE →=(0,34,34),FD →=(-1,32,0).设平面DEF 的法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·FE →=0,m ·FD →=0,即⎩⎪⎨⎪⎧34y +34z =0,-x +32y =0.所以⎩⎪⎨⎪⎧z =-y ,x =32y ,令y =2,则x =3,z =-2.所以平面DEF 的一个法向量为m =(3,2,-2). 例2 证明 (1) 建立如图所示空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1). 设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1, 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0, 所以FC 1→⊥n 1.又因为FC 1⊄平面ADE , 所以FC 1∥平面ADE .(2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量.由n 2⊥FC 1→,n 2⊥C 1B 1→, 得⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F .跟踪训练2 解 分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,∴P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则PE →=(0,y ,z -1), PD →=(0,2,-1),∵PE →∥PD →,∴y (-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面PAB 的法向量, 又CE →=(-1,y -1,z ),CE ∥平面PAB , ∴CE →⊥AD →,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,∴存在E 点,当点E 为PD 中点时,CE ∥平面PAB .例3 证明 方法一 取F 、G 分别为DD 1和AD 的中点, 连接EF 、FG 、GO 、AC .由正方体的性质知FG 为EO 在平面ADD 1A 1内的射影. 又A 1D ⊥FG ,∴A 1D ⊥EO (三垂线定理).又AC ⊥BD ,CO 为EO 在平面ABCD 内的射影,∴EO ⊥BD (三垂线定理). 又A 1D ∩BD =D ,∴EO ⊥平面A 1DB .方法二连接AC、A1O、A1E,A1C1,设正方体棱长为2,由方法一已证BD⊥OE,又OE2=(2)2+12=3.A1O2=22+(2)2=6,A1E2=(22)2+12=9.∴A1E2=OE2+A1O2.∴A1O⊥OE,又A1O∩BD=O,∴OE⊥平面A1DB.跟踪训练3 证明∵PO⊥平面ABC,O为垂足,∴PC在平面ABC内的射影为OC.又O为△ABC的垂心,∴AB⊥OC.据三垂线定理得AB⊥PC.当堂训练1.C 2.A 3.B 4.B5.(1,1,1)(答案不唯一)。

相关文档
最新文档