新课标-最新人教版七年级数学第一学期期中考试模拟试题4及答案解析-经典试题

合集下载

2023_20224学年人教版数学七年级上册期中测试(含答案)

2023_20224学年人教版数学七年级上册期中测试(含答案)

人教版七年级上册期中学业质量检测(一、二、三章)姓名 班级题号一二三四五六总分得分(满分:120分 考试时间120分钟)一、单项选择题(每小题2分,共12分)1.下列各数不是有理数的是( )A.0B.0.66……C.D.π2.下列说法正确的是( )A.若a 是有理数,那么-a 一定是负数.B.若a 是自然数,那么-a 一定是负数.C.若a 与-a 互为相反数,那么-a 一定是负数.D.a 与-a 一定化为相反数3.今年小刚的妈妈年龄正好是小刚年龄的3倍少2岁,小刚今年的年龄为x ,那么小刚妈妈5年前的年龄表示为( )A.3x+2+5 B.3(x+5) C.3x-2+5 D.3x-74.下列说法错误的是( )A.-3πa 的系数是-3B.-5是单项式C.3zb 的次数是2D.-的系数是-5.一元一次方程-2mx |m+1|+(1+n)y 3=5,则n+m 的值是( )A.-3 B.-1 C.0 D.1得分评卷人315ab 3536.一元一次方程=-2(2-)的解是x=6,则a 的值是( )A.3 B. C. D.2二、填空题(每题3分,共24分)7.某市当天的气温为零上5℃,记作+5℃,当天夜晚的温度为零下2℃,应记作 .8.A 、B 是数轴上两个点,表示的数分别是a 、b.那么|a-b |表示的是.9.单项式-πy 2的系数是 ,次数是 .10.某路公交车在公交线路上的三站上下乘客情况如下,A 站下车乘客6人,上车2人.B 站下车乘客1人,上车乘客5人.C 站下车3人,上车5人.那么这三站后车上的乘客比三站前的乘客变化 .11.绝对值大于1且小于5的所有整式的和是 .12.关于x 的方程3x+7=3-x 的解与方程4a-2x+2=-2(3-x)的解相同,那么a 的值是 .13.-3x |a+1|y 3与axy b+1是同类项,则a-b 的值是 .14.新定义一种算法“☯”,“☯”规定的计算法则为a ☯b=3a-2(a+b)-b x ☯2x=15的解是 .三、解答题(每题5分,共20分)15.计算:[|-|÷(-)×(-2)]÷(-)得分评卷人得分评卷人33x 2 5a221253x2312112721331116.先化简,再求值:x 3+2x 2-(x 2-y )-3(x 2+2y+x 3)其中x=-1,y=3.17.解方程:-=18.解方程:(2-3x)-(6+x)=-3四、解答题(每题7分,共28分)19.若图a 、b 、c 在数轴上位置,请从小到大排列|a|、a+c 、-b 、c.得分评卷人315.13x 25.1-4x 2.15-1236x 13-312120.每年的防汛期间,各地的防汛指挥部要密切关注水位的变化以应对洪涝灾害,下图是某地一周内的水位变化.⑴这周内水位上涨和回落各有几天?⑵这周水位最高升高了多少米,本周水位比上周上涨还是回落了,水位变化多少?21.已知a+b=3,ab=5,求整式-2(3a+5b-2ab)-5[ab-3(+)]22.观察下列数字,找出其中的规律解答问题 5、-15、37、-63、……⑴第十个数是多少?⑵这列数用含有n 的整式表示为?⑶-1599是第几个数字?星期日星期一星期二星期三星期四星期五星期六+0.3+0.5+0.75-0.4-0.3+0.155b a 15b4得分评卷人五、解答题(每题8分,共16分)23某工厂生产一批零件每个零件口径的标准尺寸是4cm±2.现抽查20个零件的尺寸,超过尺寸的记作“+”不足尺寸的记作“-”下图为尺寸的记录表个数1438310与标准尺-0.03-0.02-0.010+0.01+0.02+0.03寸的差值⑴这20个零件中尺寸与标准偏差最多是多少cm⑵20个抽查零件中合格率是?⑶如果工厂一天之中生产20000个零件有多不合格?24.某通讯公司推出了两种手机卡套餐:甲套餐月租为每月19元,含100分钟的通话时间和1G的流量,超出部分每分钟0.2元一分钟,3元/G.乙套餐月租为每月29元,含200分钟的通话时间和2G 的流量,超出部分为0.1元每分钟,1元/G.(不足一分钟按一分钟计算)⑴如果每月的通话时间是x分钟,那么甲、乙套餐每月的费用分别是多少?⑵当通话时间是多少时,两种套餐的费用相同⑶如果小王叔叔每个月需要130分钟的通话,和3G的流量哪个套餐更划算?得分评卷人六、解答题(每题10分,共20分)25.甲、乙两村分别收获了30吨和25吨的梨,要分别运到A、B两地.已知A地需要梨20吨,B地需要梨35吨.甲村到A、B两地的运费分别问150元每吨和250元每吨.乙村到A、B两地的运费为100元每吨和300元每吨.⑴已知甲村运往A地x吨梨,请用方程表示出甲,乙两村运往A、B 两地的梨的数量.⑵请表示出甲、乙两村运输的总费用⑶如果每吨梨可以有500元的利润那么甲、乙两村的利润和最多是多少?26.某商场为了吸引顾客商场推出来储值卡制度,即向储值卡内储值500元卡内的实际金额为600元,储值1000元卡内实际金额为1300元.储值超过200全部商品九五折,超过500元全部商品9折,超过1000元全部商品85折.⑴如果李阿姨要购买一件外套,李阿姨卡中扣款567元,外套的售价是多少,李阿姨实际花了多少钱?⑵如果购买一件商品卡中扣款1275元的物品实际花费金额为多少?答案:一、选择题1.D2.D3.D4.A5.A6.C 二、填空题7.-2 8.AB 两点的距离 9.-π 10.上车2人11.0 12.-3 13.-4 14.x=-3三、解答题15.-3 16.-2x 2-5y 17.x=5 18.-四、解答题19.a+c <c<-b<|a|20.⑴上涨4天回落2天 ⑵上涨了1米21.-3(a+b)+4ab 1122.⑴-399⑵(-1)n-1(2n)2+1⑶-1599五、解答题23.⑴3.97cm ⑵95%⑶1900024.⑴ x ≤100分钟 甲套餐:19 乙套餐:29 100<x ≤200分钟 甲套餐19+0.2(x-100) 乙套餐:293294200<x 甲套餐19+0.2(x-100)乙套餐29+0.1(x-200)⑵解:设通话时间为x19+0.2(x-100)=29 x=150通话时间为150分钟时甲乙两种套餐消费金额相同⑶甲套餐19+0.2(130-100)+3×2=31元乙套餐29+1=30 乙套餐合适六、解答题25.⑴甲运往B地:30-x 乙运往A地20-x 乙运往B地5+x⑵150x+250(30-x)+100(20-x)+300(5+x)=100x+9000⑶(25+30)×500-9000=18500元26.⑴解:设售价x元0.9x=567x=630 600-567=33 500-33=467售价为630元,实际消费467元⑵解:设售价x元0.85x=1275X=15001300-1275=25 1000-25=975元实际付款金额为975元。

七年级数学上册期中模拟卷人教版2024

七年级数学上册期中模拟卷人教版2024

七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版2024七年级上册1.1-3.2。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

最新2019-2020年度人教版七年级数学上学期期中考试质量检测试题4及答案解析-经典试题

最新2019-2020年度人教版七年级数学上学期期中考试质量检测试题4及答案解析-经典试题

七年级上学期期中考试数学试题(有答案)(满分120分,考试时间120分钟)一、选择题:(本大题12个小题,每小题3分,共36分,答案填入下表) 1. 向东走5m ,记为 + 5m ,那么走 - 10m ,表示( )A. 向西走10mB. 向东走10mC. 向南走10mD. 向北走10m2. 据2010年第六次全国人口普查公布的数据显示,全桂林市总人口为498.84万人,那么用科学记数法表示为( )人.A .4.98846B .4.9884×106C .4.9884×107D .4.9884×108 3. 下列说法不正确的是( )A .0既不是正数,也不是负数B .1是绝对值最小的数C .一个有理数不是整数就是分数D .0的绝对值是0 4. 多项式6πa 3b 2c 2 - x 3y 3z + m 2n - 110的次数是( )A. 10次B. 8次C. 7次D. 9次5. 已知a 、b 、c 在数轴上的位置如图所示,试化简│a + b │-│b │+│b+ c │+│c │的结果是( )A. a + bB. a + b - 2cC. - a - b - 2cD. a + b + 2c 6. 下面的式子中正确的是( ) A .3a 2 - 2a 2=1B .5a + 2b = 7abC .3a 2 - 2a 2 = 2aD .5xy 2 - 6xy 2 = - xy 27. 下列式子:2x + 2,a 1+ 4,732ab ,cab ,- 5x ,0中,整式的个数是:( )A. 6B. 5C. 4D. 3 8. 当x = 1,y = - 2时,代数式2x+ y - 1的值是( ) A .1B .- 2C .2D .- 19. 某商店上月的营业额是a 万元,本月比上月增长15%,那么本月的营业额是( ) A .15%(a + 1)万元 B .15% a 万元 C .(1 + 15%)a 万元D .(1+15% )2 a 万元10. 下列是同类项的一组是( )A. ab 3与- 3b 3aB. - a 2b 与- ab 2C. ab 与abcD. m 与n11. 已知a - 2b = 5,则2a - 4b +ab -25的值( )A. 9B. - 3C. - 15D. 512. 计算3028864215144321-+-+-+-+-+-+- 结果等于( )A .41B .41-C .21 D .21-二、填空题:(本大题共6个小题,每小题3分,共18分)13. 单项式32b a -的系数是。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

新课标-最新人教版七年级数学第一学期期中复习考试模拟试题及答案解析-经典试题

新课标-最新人教版七年级数学第一学期期中复习考试模拟试题及答案解析-经典试题

第一学期期中测试初一数学试卷考试说明1.本卷共七道大题31道小题,考试时间100分钟 2.请将选择题答案写在机读卡上,计算题、解答题写清过程一、选择题(每题3分,共24分)下面各题均有四个选项,其中只有一个..是符合题意的 1.“a 、b 两数的平方差”用代数式表示为 ( )A .22b a -B .2)(b a -C .b a -2D .2b a - 2. 下列各组是同类项的是( )A. 32x 与23x B. ax 12与bx 8 C. 4x 与4a D. 32与3- 3.下列说法中,正确的是( )A .2(3)-是负数B .最小的有理数是零C .若5x =,则5x =或5-D .任何有理数的绝对值都大于零 4.下列计算正确的是 ( )A .94322= B .16-)4-(2=C .33⎪⎪⎭⎫ ⎝⎛ =-9 D .23 =-9 5.下列计算正确的是( )A .ab b a 33=+B .b a b a b a 2222=+-C .2a 52353a a =+ D .3a =-a 26. 下列关于多项式22521ab a bc --的说法中,正确的是( ) A.它的常数项是1 B.它是四次两项式 C.它的最高次项是22a bc - D.它是三次三项式7.下列去括号正确的是( ) A.()5252+-=+-x xB.()222421+-=--x x 校班C.()n m n m +=-323231D.x m x m 232232+-=⎪⎭⎫⎝⎛--8.下面的方程变形中正确的是( ) ①2x+8=-13, 变形为2x=-13+8;②,16133=--+x x 变形为2x-x-1=6; ③313252=-x x ,变形为6x-10x=5; ④12153+-=x x ,变形为6x=5(x-1)+1;A. ①B. ③C.②③D. ③④二、填空(每小题2分,共18分)9. 8-的相反数是,-6的绝对值是_____________.10.用四舍五入法将1.893取近似数并精确到0.01,得到的值是.11. 台湾是我国最大的岛屿,总面积约为36000平方千米,这个数字用科学记数法表示为___ __平方千米.12.单项式433xy -的系数是,次数是.13. 绝对值大于1.7而不大于4的整数有. 14. 已知x=2是关于x 的方程)2(31+=+-x k k x 的解,则k 的值等于. 15. a 、b 、c 在数轴上对2应的位置如下图,化简||||b c b a --+的结果是 .16.已知569,234,12222-+--=-=-b ab a b ab ab a 则的值等于.17.一组按规律排列的式子:()25811234,,,,0b b b b ab a a a a--≠ ,其中第7个式子是,第n 个式子是(n 为正整数).三、计算题(每小题4分,本题共24分)18. 1-2108-++ 19.51(3)()(1)64-⨯-÷-20.36)()613291(-⨯-+ 21. 2742()(12)(4)32⨯-÷--÷-22. 5)4(832182⨯--÷-23. )31()9()23(46222-÷---⨯+-四、合并同类项(本题共3分,每小题6分)24. a a a a 742322-+- 25. ()()x x y y x ----2233五、先化简,再求值(10分)26. )2(36222a a a a -+--,其中2=a .解:校班27. )2()1(22222y xy y x xy y x -----,其中2=x ,1-=y .解:六、解方程(每题4分共8分) 28.()()323173+-=--x x x 29. 21252--=-+x x x解: 解:七、解答题(每题5分共10分) 30. 阅读下面材料并解决有关问题:我们知道: (0),0 (0), (0),x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这一结论来化简含有绝对值的代数式,如果现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x ﹣2|时,可令x+1=0和x ﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x ﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x <﹣1;(2)﹣1≤x <2;(3)x ≥2.从而化简代数式|x+1|+|x ﹣2|可分以下3种情况:(1)当x <﹣1时,原式=﹣(x+1)﹣(x ﹣2)=﹣2x+1; (2)当﹣1≤x <2时,原式=x+1﹣(x ﹣2)=3; (3)当x ≥2时,原式=x+1+x ﹣2=2x ﹣1.通过以上阅读,请你解决以下问题: (1)|x+2|和|x ﹣4|的零点值分别为和;(2)请仿照材料中的例子化简代数式|x+2|+|x ﹣4|.31. 已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______________;(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等?校班初一数学试卷答案一、选择题(每题3分,共24分)1 2 3 4 5 6 7 8 ADCDBCDB二、填空(每小题2分,共18分)9、8,6 10、1.89 11、4103.6⨯ 12、443-, 13、432±±±,, 14、91 15、a+c 16、0 17、()nn n aba b 137201,--- 三、计算题(每小题4分,本题共24分)18、3 19、-2 20、-22 21、-11 22、-66 23、-108 四、合并同类项(本题共3分,每小题6分) 24、a a 972- 25、y x 116-五、先化简,再求值(10分)26、12,6572--a a 27、5,22--+-y xy六、解方程(每题4分共8分) 28、x=5 29、x=-7 七、解答题(每题5分共10分)30、(1)-2、4 31、(1)-1(2))2(22)42(6)4(22-≤+-<<-≥-x x x x x (2)1.5或-3.5 (3)2或34。

人教版七年级上学期期中数学试卷及答案四

人教版七年级上学期期中数学试卷及答案四

人教版七年级上学期期中数学试卷及答案一、选择题(共10小题,每小题3分,本大题满分30分.每一道小题有A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填涂在答题卡内相应题号下的方框中,不涂、涂错或一个方框内涂写的代号超过一个,一律得0分.)1.实数2的相反数是()A.2B.C.﹣D.﹣22.在﹣5,﹣,﹣3.5,﹣0.01,﹣2,﹣12各数中,最大的数是()A.﹣12B.﹣C.﹣0.01D.﹣53.下列计算:①(﹣)2=;②﹣32=9;③()2=;④(﹣)=;⑤(﹣2)2=﹣4,其中错误的有()A.5个B.4个C.3个D.2个4.下列式子,符合代数式书写格式的是()A.a+b人B.1a C.a×8D.5.下列说法中,正确的是()A.0是最小的整数B.互为相反数的两个数之和为零C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数6.下列代数式中a,﹣2ab,x+y,x2+y2,﹣1,ab2c3,单项式共有()A.6个B.5个C.4个D.3个7.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5B.它的系数是,次数是5C.它的系数是,次数是6D.它的系数是,次数是58.据报道,2018年国庆假期中国民航共保障国内外航班近77800次,将77800用科学记数法表示应为()A.0.778×105B.7.78×105C.77.8×103D.7.78×1049.一个多项式的次数是3,则这个多项式的各项次数()A.都等于3B.都小于3C.都不小于3D.都不大于310.下列结论:①﹣24的底数是﹣2;②若有理数a,b互为相反数,那么a+b=0;③把1.804精确到0.01约等于1.80;④﹣2xy2+2xy2=0;⑤式子|a+2|+6的最大值是6,其中正确的个数有()A.3个B.2个C.5个D.4个二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分.)11.3的相反数是;﹣3的倒数等于;立方等于它本身的数是.12.若3a2bc m为七次单项式,则m的值为.13.2022年国庆假日七天里,某便民商店销售额为75436元,把数字75436精确到百位≈.14.我们定义一种新运算,规定:图表示a﹣b+c,图形表示﹣x+y﹣z,则+的值为.15.观察一列数表:根据数表所反映的规律,猜想第n行与n列的交叉点上的数应为(用含有正整数n的代数式表示).16.我们知道:相同加数的和用乘法表示,相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,我们把n个a(a≠0)相除记作an,读作“a的圈n次方”.根据所学概念,求(﹣4)③的值是.三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分.)17.计算:(1)+(﹣)+(﹣)+(+);(2)|﹣4|+23+3×(﹣5).18.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连起来.﹣22,|﹣2.5|,,0,﹣(﹣1)100,|﹣4|19.已知|x﹣4|+(y﹣3)2=0,求x+y的值.20.求多项式2x2﹣5x+x2+4x﹣3x2﹣2的值,其中.21.已知多项式﹣x2y m+2+xy2﹣x3+6是六次四项式,单项式x3n y4﹣m z的次数与这个多项式的次数相同,求n的值.22.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176例2:﹣16×233+17×233=(﹣16+17)×233=233解答下列问题:(1)计算:6÷(﹣+)方方同学的计算过程如下:原式=6÷.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程):①999×(﹣15);②999×118+333×(﹣)﹣999×.23.观察下列三行数,并完成后面的问题:①﹣2,4,﹣8,16,…;②1,﹣2,4,﹣8,…;③0,﹣3,3,﹣9,…;(1)思考第①行数的规律,写出第n个数字是;(2)第③行数和第②行数有什么关系;(3)设x、y、z分别表示第①②③行数的第2022个数字,求x+y+z的值.24.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?25.阅读材料,解答下列问题:例:当a=5,则|a|=|5|=5,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是0;当a<0时,如a=﹣5,则|a|=|﹣5|=﹣(﹣5)=5,故此时a的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=,这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣3|=;(2)如果|x+1|=2,求x的值;(3)若数轴上表示数a的点位于﹣3与5之间,求|a+3|+|a﹣5|的值;(4)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.参考答案一、选择题(共10小题,每小题3分,本大题满分30分.每一道小题有A、B、C、D的四个选项,其中有且只有一个选项最符合题目要求,把最符合题目要求的选项的代号直接填涂在答题卡内相应题号下的方框中,不涂、涂错或一个方框内涂写的代号超过一个,一律得0分.)1.实数2的相反数是()A.2B.C.﹣D.﹣2【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.解:实数2的相反数是﹣2.故选:D.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.在﹣5,﹣,﹣3.5,﹣0.01,﹣2,﹣12各数中,最大的数是()A.﹣12B.﹣C.﹣0.01D.﹣5【分析】首先把题目中的分数化为小数然后比较即可.解:化简﹣=﹣0.1.以上各数都是负数,根据数轴的特点,都在原点的左侧,因为原点左侧的数,绝对值越小则值越大,所以以上各数中|﹣0.01|=0.01最小,则最大的数是﹣0.01.故选:C.【点评】本题考查数轴上的点的性质特点,在学习中要注意培养数形结合的数学思想.3.下列计算:①(﹣)2=;②﹣32=9;③()2=;④(﹣)=;⑤(﹣2)2=﹣4,其中错误的有()A.5个B.4个C.3个D.2个【分析】根据有理数的乘方运算计算并判断.解:①(﹣)2=;②﹣32=﹣9;③()2=;④(﹣)=﹣;⑤(﹣2)2=4,原题计算中错误的有②③④⑤共计4个,故选:B.【点评】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方运算法则.4.下列式子,符合代数式书写格式的是()A.a+b人B.1a C.a×8D.【分析】根据代数式书写格式的要求判定.解:a+b人应写成(a+b)人,A错误;1a应写成a,B错误;a×8应写成8a,C错误;符合代数式书写格式,D正确;故选:D.【点评】本题考查的是代数式的书写格式,掌握代数式的概念、代数式的规范书写形式是解题的关键.5.下列说法中,正确的是()A.0是最小的整数B.互为相反数的两个数之和为零C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数【分析】利用有理数的分类,非负数性质,以及相反数定义判断即可.解:A、0不是最小的整数,还有负整数,错误;B、互为相反数的两个数之和为零,正确;C、有理数包括正有理数,0和负有理数,错误;D、一个有理数的平方总数非负数,错误,故选:B.【点评】此题考查了有理数,熟练掌握有理数的性质是解本题的关键.6.下列代数式中a,﹣2ab,x+y,x2+y2,﹣1,ab2c3,单项式共有()A.6个B.5个C.4个D.3个【分析】直接利用单项式的定义得出答案.解:代数式中a,﹣2ab,x+y,x2+y2,﹣1,ab2c3,单项式有:a,﹣2ab,﹣1,ab2c3,共4个.故选:C.【点评】此题主要考查了单项式,正确把握单项式的定义是解题关键.7.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5B.它的系数是,次数是5C.它的系数是,次数是6D.它的系数是,次数是5【分析】直接利用单项式的次数与系数确定方法进而得出答案.解:单项式﹣的系数是,次数是5,故选:A.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.8.据报道,2018年国庆假期中国民航共保障国内外航班近77800次,将77800用科学记数法表示应为()A.0.778×105B.7.78×105C.77.8×103D.7.78×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将77800用科学记数法表示应为7.78×104,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.一个多项式的次数是3,则这个多项式的各项次数()A.都等于3B.都小于3C.都不小于3D.都不大于3【分析】根据多项式的次数(多项式的次数是指多项式中各个项的最高次数)的定义判断即可.解:∵多项式的次数是指多项式中各个项的最高次数,∴如果一个多项式的次数是3,那么这个多项式的任何一项次数小于或等于3,即不大于3,故选:D.【点评】本题考查了对多项式的次数的理解和运用,注意:多项式的次数是指多项式中各个项的最高次数.10.下列结论:①﹣24的底数是﹣2;②若有理数a,b互为相反数,那么a+b=0;③把1.804精确到0.01约等于1.80;④﹣2xy2+2xy2=0;⑤式子|a+2|+6的最大值是6,其中正确的个数有()A.3个B.2个C.5个D.4个【分析】各项计算得到结果,即可做出判断.解:①﹣24的底数是2,错误;②若有理数a,b互为相反数,那么a+b=0,正确;③把1.804精确到0.01约等于1.80,正确;④化简﹣2xy2+2xy2不能合并,错误;⑤式子|a+2|+6的最小值是6,错误,则其中正确的个数2个,故选:B.【点评】此题考查了整式的加减,以及实数的运算,熟练掌握运算法则是解本题的关键.二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分.)11.3的相反数是﹣3;﹣3的倒数等于﹣;立方等于它本身的数是±1、0.【分析】利用有理数的乘方运算,倒数的定义,相反数的定义计算即可.解:3的相反数是﹣3;﹣3的倒数等于﹣;立方等于它本身的数是±1、0;故答案为:﹣3;﹣;±1、0.【点评】本题考查了有理数的运算,解题的关键是掌握有理数的乘方运算,倒数的定义,相反数的定义.12.若3a2bc m为七次单项式,则m的值为4.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.13.2022年国庆假日七天里,某便民商店销售额为75436元,把数字75436精确到百位≈7.54×104.【分析】先利用科学记数法表示,然后把十位上的数字3进行四舍五入即可.解:75436≈7.54×104(精确到百位).故答案为:7.54×104.【点评】本题考查了近似数:“精确到第几位”是近似数的精确度的常用的表示形式.14.我们定义一种新运算,规定:图表示a﹣b+c,图形表示﹣x+y﹣z,则+的值为﹣3.【分析】先认真读题,再根据列出算式,最后根据有理数的加法法则进行计算即可.解:+=2﹣3+4+(﹣5+6﹣7)=2﹣3+4﹣5+6﹣7=﹣3,故答案为:﹣3.【点评】本题考查了有理数的加减法则的应用,能根据题意列出算式是解此题的关键,主要考查了学生的理解能力和计算能力.15.观察一列数表:根据数表所反映的规律,猜想第n行与n列的交叉点上的数应为2n﹣1(用含有正整数n的代数式表示).【分析】根据数据分析可知:第一行为自然数列,第二行为n+1数列,第三行为n+2数列…则第n行与n列的交叉点上的数应为n+n﹣1.解:通过分析可知:第n行与n列的交叉点上的数应为n+n﹣1=2n﹣1.【点评】此题考查的是自然数列的变化规律,通过观察分析可找出规律,再计算得出结论.16.我们知道:相同加数的和用乘法表示,相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,我们把n个a(a≠0)相除记作an,读作“a的圈n次方”.根据所学概念,求(﹣4)③的值是﹣.【分析】根据新定义内容列出算式,然后将除法转化为乘法,再根据乘法和乘方的运算法则进行化简计算.解:(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4××=﹣.故答案为:﹣.【点评】本题属于新定义题型,考查有理数乘除运算法则及对有理数乘方运算的理解,理解新定义内容,掌握有理数乘除法和有理数乘方的运算法则是解题关键.三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分.)17.计算:(1)+(﹣)+(﹣)+(+);(2)|﹣4|+23+3×(﹣5).【分析】(1)先化简,然后根据加法的交换律和结合律计算即可;(2)先去绝对值和计算乘法,再算加法即可.解:(1)+(﹣)+(﹣)+(+)=+(﹣)+(﹣)+=[+(﹣)]+[(﹣)+]=﹣+=﹣+=﹣;(2)|﹣4|+23+3×(﹣5)=4+23+(﹣15)=12.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.18.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连起来.﹣22,|﹣2.5|,,0,﹣(﹣1)100,|﹣4|【分析】先把各点在数轴上表示出来,从左到右的顺序用“<”号把这些数连接起来即可.解:如图所示,故﹣22<﹣(﹣1)100<0<﹣(﹣)<|﹣2.5|<|﹣4|.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.19.已知|x﹣4|+(y﹣3)2=0,求x+y的值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解:由题意得,x﹣4=0,y﹣3=0,解得x=4,y=3,所以x+y=4+3=7.故答案为:7.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.求多项式2x2﹣5x+x2+4x﹣3x2﹣2的值,其中.【分析】原式合并同类项进行化简,然后代入求值.解:原式=2x2+x2﹣3x2﹣5x+4x﹣2=﹣x﹣2,当x=时,原式=﹣﹣2=﹣.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.21.已知多项式﹣x2y m+2+xy2﹣x3+6是六次四项式,单项式x3n y4﹣m z的次数与这个多项式的次数相同,求n的值.【分析】根据已知得出方程2+m+2=6,求出m=2,根据已知得出方程2+m+2=6,求出方程的解即可.解:∵多项式x2y m+2+xy2﹣x3+6是六次四项式,∴2+m+2=6,m=2,∵单项式x3n y4﹣m z的次数与这个多项式的次数相同,∴3n+4﹣m=6,∴3n=4,n=.【点评】本题考查了多项式的有关内容的应用,注意:多项式中次数最高的项的次数叫多项式的次数.22.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176例2:﹣16×233+17×233=(﹣16+17)×233=233解答下列问题:(1)计算:6÷(﹣+)方方同学的计算过程如下:原式=6÷.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程):①999×(﹣15);②999×118+333×(﹣)﹣999×.【分析】(1)根据题目中的解答过程,可以判断方方的计算过程不正确,然后写出正确的计算过程即可;(2)①先变形,然后根据乘法分配律计算即可;②先变形,然后根据乘法分配律计算即可.解:(1)方方同学的计算过程不正确,6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36;(2)①999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;②999×118+333×(﹣)﹣999×=999×118+999×(﹣)﹣999×=999×[118+(﹣)﹣]=999×100=99900.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,利用乘法分配律解答.23.观察下列三行数,并完成后面的问题:①﹣2,4,﹣8,16,…;②1,﹣2,4,﹣8,…;③0,﹣3,3,﹣9,…;(1)思考第①行数的规律,写出第n个数字是(﹣2)n;(2)第③行数和第②行数有什么关系;(3)设x、y、z分别表示第①②③行数的第2022个数字,求x+y+z的值.【分析】(1)根据题目中的数字,可以发现第一行中的数字都是乘以﹣2得到后面的数字,从而可以写出第n 个数字;(2)根据题目中的数字,可以发现第③行数和第②行数之间的关系;(3)根据题目中的数字,可以得到x、y、z的值,然后计算即可解答本题.解:(1)∵①﹣2,4,﹣8,16,…,∴第n个数字为(﹣2)n,故答案为:(﹣2)n;(2)∵②1,﹣2,4,﹣8,…;③0,﹣3,3,﹣9,…;∴第③行数和第②行对应的数字之间的关系是第②行的数字减去1得到第③行对应的数字;(3)∵①﹣2,4,﹣8,16,…;②1,﹣2,4,﹣8,…;③0,﹣3,3,﹣9,…;∴第①行第n个数字为(﹣2)n,第②行第n个数字为(﹣2)n﹣1,第③行第n个数字为(﹣2)n﹣1﹣1,∴当n=2022时,x=(﹣2)2022,y=(﹣2)2021,z=(﹣2)2021﹣1,∴x+y+z=(﹣2)2022+(﹣2)2021+(﹣2)2021﹣1=(﹣2)×(﹣2)2021+[(﹣2)2021+(﹣2)2021]﹣1=(﹣2)×(﹣2)2021+2×(﹣2)2021﹣1=﹣1.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.24.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次17+(﹣9)=8,第三次8+7=15,第四次15+(﹣15)=0,第五次0+(﹣3)=﹣3,第六次﹣3+11=8,第七次8+(﹣6)=2,第八次2+(﹣8)=﹣6,第九次﹣6+5=﹣1,第十次﹣1+16=15,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.【点评】本题考查了正数和负数,(1)利用了有理数的加法,(2)计算出每次与出发点的距离是解题关键,(3)单位耗油量乘以路程.25.阅读材料,解答下列问题:例:当a=5,则|a|=|5|=5,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是0;当a<0时,如a=﹣5,则|a|=|﹣5|=﹣(﹣5)=5,故此时a的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=,这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=1;|﹣3|=3;(2)如果|x+1|=2,求x的值;(3)若数轴上表示数a的点位于﹣3与5之间,求|a+3|+|a﹣5|的值;(4)当a=1时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是9.【分析】(1)根据绝对值的概念即可解决;(2)根据绝对值可得:x+1=±2,即可解答;(3)根据|a+3|+|a﹣5|表示数a的点到﹣3与5两点的距离的和即可求解;(4)分类讨论,即可解答.解:(1)|﹣4+5|=1,|﹣3|=3;故答案为:1,3;(2)∵|x+1|=2,∴x+1=±2,x=1或﹣3,;(3)∵数轴上表示数a的点位于﹣3与5之间,∴|a+3|+|a﹣5|=(a+3)+(5﹣a)=8;(4)当a≥4时,原式=a+5+a﹣1+a﹣4=3a,此时的最小值为3×4=12当1≤a<4时,原式=a+5+a﹣1﹣a+4=a+8,此时的最小值为1+8=9当﹣5≤a<1时,原式=a+5﹣a+1﹣a+4=﹣a+10,此时的最小值为1+8=9当a≤﹣5时,原式=﹣a﹣5﹣a+1﹣a+4=﹣3a,这时的最小值为﹣3×(﹣5)=15综上所述当a=1时,式子的最小值为9,故答案为:1、9.【点评】本题考查了数轴上两点之间的距离的算法:数轴上两点之间的距离等于相应两数差的绝对值,应牢记且会灵活应用.。

人教版七年级第一学期期中数学试卷及答案四

人教版七年级第一学期期中数学试卷及答案四

人教版七年级第一学期期中数学试卷及答案一、选择题。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.下列数中,﹣4的相反数是()A.4B.﹣4C.D.﹣2.在﹣2,+3.5,0,﹣,﹣0.7,11,﹣(﹣1)中,负分数有()A.1个B.2个C.3个D.4个3.下列方程中,是一元一次方程的是()A.x+(4﹣x)=0B.x+1=0C.x+y=1D.+x=04.下列式子中:﹣a,,x﹣y,,8x3﹣7x2+2,整式有()A.2个B.3个C.4个D.5个5.下列说法正确的是()A.的系数是﹣5B.单项式a的系数为1,次数是0C.的次数是6D.xy+x﹣1是二次三项式6.下列方程的变形中,正确的是()A.由﹣2x=9,得x=﹣B.由x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由3=x﹣2,得x=3+27.已知有理数a,b,c在数轴上的对应点的位置如图所示,则下列结论不正确的是()A.c<a<b B.a﹣c>0C.bc<0D.a+b>0(多选)8.下列说法正确的是()A.若a=b,则ac=bc B.若a=b,则a+c=b+cC.若a=b,则D.若a2=b2,则a=b9.按照如图所示的计算程序,若x=3,则输出的结果是()A.1B.9C.﹣71D.﹣8110.观察后面一组单项式:1,﹣4a,7a2,﹣10a3,…,根据你发现的规律,则第2022个单项式是()A.﹣6061a2021B.﹣6061a2022C.﹣6064a2021D.﹣6064a2022二、填空题。

(每小题3分,共18分.请直接将答案填写在答题卡中,不写过程)11.2022年某省人口数超过105000000,将这个数用科学记数法表示为.12.若|b﹣2|+(a+3)2=0,则(a+b)2022的值为.13.小于3而大于﹣2的整数的和为.14.对于任意有理数a,b,我们规定:a⊗b=a2﹣2b,例如:3⊗4=32﹣2×4=9﹣8=1.若2⊗x=3+x,则x的值为.15.数轴上表示数2m和m+2的点到原点的距离相等,则m的值为.16.将9个数填入幻方的九个格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等,如图:将满足条件的另外9个数中的三个数填入了图二,则这9个数的和为(用含a的整式表示)三、解答题。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

七年级上学期数学期中试卷及答案精选模拟人教 (4)

七年级上学期数学期中试卷及答案精选模拟人教 (4)

七年级上学期数学期中试卷及答案精选模拟人教一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )A .B .C .D . 3.若点(),P a b 在第四象限,则点(),Q b a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是直线AC 右边任意一点(点E 不在直线AB ,CD 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-,④360αβ︒--,AEC ∠的度数可能是( )A .①②③B .①②④C .①③④D .①②③④ 6.小雪在作业本上做了四道题目:①327-=﹣3;②±16=4;③381=9;④2(6)-=-6,她做对了的题目有( )A .1道B .2道C .3道D .4道7.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,DE 与AC 交于点M ,若//BC EF ,则DMC ∠的大小为( )A .95°B .105°C .115°D .125°8.如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点P (﹣2,3)关于x 轴的对称点的坐标是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,BD 平分∠ABC ,ED ∥BC ,∠1=25°,则∠2=_____°,∠3=______°.13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.如图,数轴上A ,B 2和4.1,则A ,B 两点之间表示整数的点共有____个.15.已知点A 在x 轴上方,y 轴左侧,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________.16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.三、解答题17.计算:(13116+84(2)3232-.18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.按逻辑填写步骤和理由,将下面的证明过程补充完整.如图,//a b ,点A 在直线a 上,点B 、C 在直线b 上,且AB AC ⊥,点D 在线段BC 上,连接AD ,且AC 平分DAF ∠.求证:35∠=∠.证明:AB AC ⊥( )90BAC ∴∠=︒( )23∴∠+∠= ︒14180BAC ∠+∠+∠=︒(平角定义)1418090BAC ∴∠+∠=︒-∠=︒ AC 平分DAF ∠(已知)1∴∠=∠ ( )34∴∠=∠( )//a b (已知)4∴∠=∠ ( )35∴∠=∠(等量代换)20.如图,在平面直角坐标系中,A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1).△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+2,y 0+4),将△ABC 作同样的平移得到△A 1B 1C 1.(1)请画出△A 1B 1C 1并写出点A 1,B 1,C 1的坐标;(2)求△A 1B 1C 1的面积;21.阅读下面文字: 我们知道:2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用21-来表示2的小数部分,事实上小明的表示法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部分是72-.(1)10的整数部分是________,小数部分是________;(2)如果5的小数部分是a ,37整数部分是b ,求25b a -+的值;(3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 24.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由.【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.【详解】解:∵(±5)2=25∴25的平方根±5.故选A.【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)当点E在CD的下方时,同理可得,∠AEC=α-β.综上所述,∠AEC的度数可能为β-α,α+β,α-β.即①α+β,②α-β,③β-α,都成立.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】①327-=-3,故①正确;②±16=±4,故②错误;381=333,故③错误;④2-=6,故④错误.(6)故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7.B【分析】根据BC∥EF,∠E=45°可以得到∠EDC=∠E=45°,然后根据C=30°,∠C+∠MDC+∠DMC=180°,即可求解.【详解】解:∵BC∥EF,∠E=45°∴∠EDC=∠E=45°,∵∠C=30°,∠C+∠MDC+∠DMC=180°,∴∠DMC=180°-∠C-∠MDC=105°,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0, (4)个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为解析:(﹣2,﹣3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【详解】点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3).【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD是角平分线,DE⊥AC,∴,又∵BC=6cm,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】,作DF BC∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可解析:50【分析】由两直线平行,内错角、同位角分别相等可得出∠2=∠DBC ,∠3=∠ABC=∠1+∠DBC ,又由BD 平分∠ABC 得出∠DBC=∠1=25°,利用等价替换法分别求出∠2和∠3即可.【详解】解:∵BD 平分∠ABC ,∴∠DBC=∠1=25°;又∵ED ∥BC ,∴∠2=∠DBC=25°,∠3=∠ABC=∠1+∠DBC=50°.故答案为:25、50.【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法.13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.14.3【分析】根据无理数的估算、结合数轴求解即可【详解】解:∴∴∴在到4.1之间由2,3,4这三个整数故答案为:3.本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解析:3【分析】根据无理数的估算、结合数轴求解即可【详解】<<<<解:1234 4.1∴22<<12∴<<12∴4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键.15.(-4,3) .【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A的坐解析:(-4,3) .【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.所以点A的坐标为(-4,3)故答案为:(-4,3) .【点睛】本题考查点的坐标,利用数形结合思想解题是关键.16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.三、解答题17.(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3解析:(1)512;(2)【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣12=512;(2)原式===【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【详解】证明:∵AB ⊥AC (已知),∴∠解析:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.证明:∵AB⊥AC(已知),∴∠BAC=90°(垂直的定义),∴∠2+∠3=90°,∵∠1+∠4+∠BAC=180°(平角定义),∴∠1+∠4=180°-∠BAC=90°,∵AC平分∠DAF(已知),∴∠1=∠2(角平分线的定义),∴∠3=∠4(等角的余角相等),∵a∥b(已知),∴∠4=∠5(两直线平行,内错角相等),∴∠3=∠5(等量代换).故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等.【点睛】本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆.20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)7 2【分析】(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.(2)利用分割法求解即可.【详解】解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).(2)△A1B1C1的面积=3×3-12×3×2-12×1×2-12×1×3=72.【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3103;(2)853)123【分析】(110的范围,再求出即可;(2537的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出3x、y的值,最后代入求出即可.【详解】解:(1)∵91016∴310<4,∴10310-3,故答案为:310-3;(2)∵459363747∴253,6377,∴a5,b=6,∴)256522585b a-+=-+(3)∵132,∴11<10312,∴x=11,y=1031131=,∴1111212y x --==【点睛】 本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q =∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠, ∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析 【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t ;(3)设∠AON=3t ,则∠AOC=30°+6t ,由题意列出方程,解方程即可;(4)根据转动速度关系和OC 平分∠MOB ,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON 与OC 重合;(2)∵MN ∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.。

2019—2020年人教版七年级数学第一学期期中考试模拟检测题4及答案解析.docx

2019—2020年人教版七年级数学第一学期期中考试模拟检测题4及答案解析.docx

七年级(上)期中数学试卷一、单项选择题(本大题有10小题,每小题3分,共30分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.如果向左2m记作﹣2m,那么向右5m记作()A.﹣2m B.+2m C.﹣5m D.+5m3.据悉,2015年9月,中国在西雅图购进了美国波音公司300架客机,价值38 000 000 000美元.用科学记数法表示这一数据为()A.3.8×109B.3.8×1010C.3.8×1011D.3.8×1084.下面几个有理数最大的是()A.2 B.0 C.﹣3 D.﹣15.单项式2a2b的系数和次数分别是()A.2,2 B.2,3 C.3,2 D.4,26.若x m y3与﹣3xy n是同类项,则m等于()A.1 B.﹣1 C.3 D.﹣37.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a8.(﹣1)2015的值是()A.﹣1 B.1 C.2015 D.﹣20159.数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.510.下列说法不正确的是()A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数二、填空题(本大题6小题,每小题4分,共24分)11.按括号内的要求取近似数:4.47876≈(精确到百分位).12.多项式5x3+4x﹣y2是次项式.13.去括号:2a﹣(b+c)= .14.比较大小:﹣3 ﹣1(填“>”“<”或“=”).15.如果|x|=6,则x= .16.观察下列一组数:,,,,,…,根据该组数的排列规律,可以推出第8个数是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:0﹣32+|﹣2|﹣(﹣4)18..19.先化简,再求值:(2x2+3x)﹣2(2x﹣1+x2),其中x=﹣.四、解答题(二)(本大题3小题,每小题7分,共21分)20.在数轴上表示下列各数,并按照从小到大的顺序用“<”把这些数连接起来.﹣3,1,0,﹣1,2.521.如果5x﹣3与﹣2x﹣9是互为相反数,求x的值.22.已知三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a,求这个三角形的周长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克)2,3,﹣7.5,﹣3,5,﹣8,3.5,4.5,8,﹣1.5.这10名学生的总体重为多少?平均体重为多少?24.观察下列各式:﹣1×=﹣1+﹣×=﹣+﹣×=﹣+…(1)你能探索出什么规律?(用文字或表达式)(2)试运用你发现的规律计算:(﹣1×)+(﹣×)+(﹣×)+…+(﹣×)+(﹣×)25.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)参考答案与试题解析一、单项选择题(本大题有10小题,每小题3分,共30分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣【考点】倒数.【专题】常规题型.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.2.如果向左2m记作﹣2m,那么向右5m记作()A.﹣2m B.+2m C.﹣5m D.+5m【考点】正数和负数.【专题】探究型.【分析】根据向左2m记作﹣2m,可以得到向右5m记作什么.【解答】解:∵向左2m记作﹣2m,∴向右5m记作+5m.故选D.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.3.据悉,2015年9月,中国在西雅图购进了美国波音公司300架客机,价值38 000 000 000美元.用科学记数法表示这一数据为()A.3.8×109B.3.8×1010C.3.8×1011D.3.8×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:38 000 000 000=3.8×1010,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下面几个有理数最大的是()A.2 B.0 C.﹣3 D.﹣1【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<2,∴几个有理数中最大的是2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.单项式2a2b的系数和次数分别是()A.2,2 B.2,3 C.3,2 D.4,2【考点】单项式.【分析】根据单项式的次数是字母指数和,单项式的系数是数字因数,可得答案.【解答】解:2a2b的系数和次数分别是2,3.故选:B.【点评】本题考查了单项式,单项式是数与字母的乘积,单项式的次数是字母指数和,单项式的系数是数字因数,注意π是常数不是字母.6.若x m y3与﹣3xy n是同类项,则m等于()A.1 B.﹣1 C.3 D.﹣3【考点】同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:由x m y3与﹣3xy n是同类项,得m=1,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.8.(﹣1)2015的值是()A.﹣1 B.1 C.2015 D.﹣2015【考点】有理数的乘方.【分析】根据有理数的乘方,负数的奇次幂是负数,即可解答.【解答】解:(﹣1)2015=﹣1.故选:A.【点评】本题考查了有理数的乘方,解决本题的关键是明确负数的奇次幂是负数.9.数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.5【考点】数轴.【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为5,即表示5和﹣5的点.【解答】解:根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C.【点评】本题考查了数轴的知识,利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.10.下列说法不正确的是()A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数【考点】绝对值;相反数.【分析】有理数包括:正有理数、负有理数和0;0既不是正数也不是负数;0的相反数是0.绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:A、任何一个有理数的绝对值都是非负数.错误;B、C、D都正确.故选A.【点评】考查的是有理数的分类、正数和负数的定义以及绝对值的定义.二、填空题(本大题6小题,每小题4分,共24分)11.按括号内的要求取近似数:4.47876≈ 4.48 (精确到百分位).【考点】近似数和有效数字.【分析】把千分位上的数字8进行四舍五入即可.【解答】解:4.47876≈4.48(精确到百分位).故答案为4.48.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.多项式5x3+4x﹣y2是三次三项式.【考点】多项式.【专题】推理填空题.【分析】根据多项式5x3+4x﹣y2可得该多项式是几次几项式.【解答】解:∵多项式5x3+4x﹣y2,∴该多项式最高次项是5x3,它的次数是三次,该多项有三个单项式组成.故该多项式是三次三项式.故答案为:三,三.【点评】本题考查多项式,解题的关键是明确多项式是几次几项式是如何判断的.13.去括号:2a﹣(b+c)= 2a﹣b﹣c .【考点】去括号与添括号.【分析】根据去括号法则如果括号前是“﹣”,去括号后,括号里的各项都变号,即可得出答案.【解答】解:2a﹣(b+c)=2a﹣b﹣c;故答案为:2a﹣b﹣c.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.14.比较大小:﹣3 <﹣1(填“>”“<”或“=”).【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣3|=3,|﹣1|=1,∵3>1,∴﹣3<﹣1.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.15.如果|x|=6,则x= ±6 .【考点】绝对值.【专题】计算题.【分析】绝对值的逆向运算,因为|+6|=6,|﹣6|=6,且|x|=6,所以x=±6.【解答】解:|x|=6,所以x=±6.故本题的答案是±6.【点评】绝对值具有非负性,绝对值是正数的数有两个,且互为相反数.16.观察下列一组数:,,,,,…,根据该组数的排列规律,可以推出第8个数是.【考点】规律型:数字的变化类.【分析】由分子1,2,3,4,5,…即可得出第n个数的分子为n;分母为3,5,7,9,11,…即可得出第n个数的分母为:2n+1,即可得出结果.【解答】解:∵分子为1,2,3,4,5,…,∴第n个数的分子为n,∵分母为3,5,7,9,11,…,∴第n个数的分母为2n+1,∴第8个数为:=,故答案为:.【点评】此题考查了数字的变化规律;找出数字之间的运算规律得出规律,利用规律解决问题是解答此题的关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:0﹣32+|﹣2|﹣(﹣4)【考点】有理数的混合运算.【专题】计算题.【分析】根据幂的乘方和有理数的加减法法则进行计算即可.【解答】解:0﹣32+|﹣2|﹣(﹣4)=0﹣9+2+4=﹣3.【点评】本题考查有理数的混合运算,解题的关键是明确有理数加减混合运算的计算方法.18..【考点】有理数的混合运算.【专题】计算题.【分析】按运算顺序,先算乘除,后算加减即可.【解答】解:原式=﹣5+(﹣1)=﹣(5+1)=﹣6.【点评】本题考查了有理数的混合运算,是一道基础题,比较简单要熟练掌握.19.先化简,再求值:(2x2+3x)﹣2(2x﹣1+x2),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2x2+3x﹣4x+2﹣2x2=﹣x+2,当x=﹣时,原式=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.在数轴上表示下列各数,并按照从小到大的顺序用“<”把这些数连接起来.﹣3,1,0,﹣1,2.5【考点】有理数大小比较;数轴.【专题】作图题;实数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣<﹣1<0<1<2.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.21.如果5x﹣3与﹣2x﹣9是互为相反数,求x的值.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:依题意得:(5x﹣3)+(﹣2x﹣9)=0,去括号得:5x﹣3﹣2x﹣9=0,移项合并得:3x=12,解得:x=4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.已知三角形的第一边长为3a+2b,第二边比第一边长a﹣b,第三边比第二边短2a,求这个三角形的周长.【考点】整式的加减.【专题】几何图形问题.【分析】本题涉及三角形的周长,三角形的周长为三条边相加的和.【解答】解:第一边长为3a+2b,则第二边长为(3a+2b)+(a﹣b)=4a+b,第三边长为(4a+b)﹣2a=2a+b,∴(3a+2b)+(4a+b)+(2a+b)=3a+2b+4a+b+2a+b=9a+4b.【点评】解决此类题目的关键是熟记三角形的周长公式.根据第一条边求出另外两条边的长度,三者相加即可求出周长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克)2,3,﹣7.5,﹣3,5,﹣8,3.5,4.5,8,﹣1.5.这10名学生的总体重为多少?平均体重为多少?【考点】有理数的混合运算;正数和负数.【专题】应用题.【分析】这10名学生的总体重=50×10+大于或小于基准数的数的总和,平均体重=总体重÷学生数,把相关数值代入计算即可.【解答】解:这10名学生的总体重=50×10+[2+3+(﹣7.5)+(﹣3)+5+(﹣8)+3.5+4.5+8+(﹣1.5)]=506千克;平均体重为506÷10=50.6千克.答:这10名学生的总体重为506千克,平均体重为50.6千克.【点评】解决本题的关键是得到10名学生总体重及平均体重的等量关系;注意总体重应等于10名学生的基准体重之和加上10名学生大于或小于基准数的数的总和.24.观察下列各式:﹣1×=﹣1+﹣×=﹣+﹣×=﹣+…(1)你能探索出什么规律?(用文字或表达式)(2)试运用你发现的规律计算:(﹣1×)+(﹣×)+(﹣×)+…+(﹣×)+(﹣×)【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)通过分析前三个算式可推出规律为:;(2)将乘法算式变成加法算式,再正负抵消化简算式.【解答】(1)﹣×=﹣+;(2)(﹣1×)+(﹣×)+(﹣×)+…+(﹣×)+(﹣×)=﹣1+﹣+﹣++﹣+﹣+=﹣1+=﹣.【点评】此类题是分数的一种技巧计算,能让复杂的算式变得非常简单,在做题中经常可见.25.某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为1500a 元,乙旅行社的费用为1600a﹣1600 元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为7a .(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【考点】列代数式.【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣1600=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

数学初一上学期数学期中模拟试卷带答案人教

数学初一上学期数学期中模拟试卷带答案人教

数学初一上学期数学期中模拟试卷带答案人教一、选择题1.4的算术平方根是()A .2B .4C .2±D .4±2.下列四幅名车标志设计中能用平移得到的是( )A .奥迪B .本田C .奔驰D .铃木3.点()3,5A -在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交.A .1个B .2个C .3个D .4个5.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 6.下列等式正确的是( ) A .93-=- B .49714412=± C .23(8)4-= D .327382--=- 7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )A .120°B .135°C .150°D .160°8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2021A 的位置上,则点2021A 的坐标为( ).A .()2019,0B .()2019,1C .()2020,0D .()2020,1二、填空题9.25的算术平方根是 _______ .10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图1是//AD BC 的一张纸条,按图示方式把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中21CFE ∠=︒,则图2中AEF ∠的度数为______.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.16.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.三、解答题17.计算下列各式的值:(1)|–2|–3–8 + (–1)2021; (2)()2133+3––6⎛⎫ ⎪⎝⎭. 18.求下列各式中x 的值.(1)4x 2=64;(2)3(x ﹣1)3+24=0.19.按逻辑填写步骤和理由,将下面的证明过程补充完整.如图,//a b ,点A 在直线a 上,点B 、C 在直线b 上,且AB AC ⊥,点D 在线段BC 上,连接AD ,且AC 平分DAF ∠.求证:35∠=∠.证明:AB AC ⊥( )90BAC ∴∠=︒( )23∴∠+∠= ︒14180BAC ∠+∠+∠=︒(平角定义)1418090BAC ∴∠+∠=︒-∠=︒AC 平分DAF ∠(已知)1∴∠=∠ ( )34∴∠=∠( )//a b (已知)4∴∠=∠ ( )35∴∠=∠(等量代换)20.如图,三角形ABC 的顶点都在格点上,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:1A ______,1B ______,1C ______;(2)画出平移后三角形111A B C ;(3)求三角形ABC 的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 是43的整数部分. (1)求,,a b c 的值;(2)求922a b c -+的平方根. 22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm 2,则此正方形的对角线AC 的长为 dm . (2)若一圆的面积与这个正方形的面积都是2πcm 2,设圆的周长为C 圆,正方形的周长为C 正,则C 圆 C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm 2,李明同学想沿这块正方形边的方向裁出一块面积为12cm 2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由;(2)把直角三角形ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN交于点E,BA与PQ交于点F,点G在线段CE上,连接DG,有BDF GDF∠=∠,求AENCDG∠∠的值;(3)如图3,若点D是MN下方一点,BC平分PBD∠,AM平分CAD∠,已知25PBC∠=︒,求ACB ADB∠+∠的度数.24.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.【参考答案】一、选择题1.A解析:A【分析】依据算术平方根的定义解答即可.【详解】4的算术平方根是2,故选:A.【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.2.A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A 、是经过平移得到的,故符合题意;B 、不是经过平移得解析:A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A 、是经过平移得到的,故符合题意;B 、不是经过平移得到的,故的符合题意;C 、不是经过平移得到的,故不符合题意;D 、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案.【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误,②过直线外一点有且只有一条直线与已知直线平行,故本小题错误,③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个.故选D .【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、49144表示计算算术平方根,所以49714412=,故错误C、233(8)64=4-=,故正确D、32733 822⎛⎫--=--=⎪⎝⎭,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7.D【分析】如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.【详解】解:如图,∵∠4=45°,∠1=25°,∠4=∠1+∠3,∴∠3=45°-25°=20°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-20°=160°,故选:D.【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.8.D【分析】探究规律,利用规律即可解决问题.【详解】解:由题意,,,,,,,,,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D .【点睛】本题考查了点的坐标的规律变化解析:D【分析】探究规律,利用规律即可解决问题.【详解】解:由题意1(0,1)A ,2(2,1)A ,3(3,0)A ,4(3,0)A ,5(4,1)A ,6(6,1)A ,()77,0A ,8(7,0)A ,9(8,1)A ,⋯每4个一循环,202150541=⨯+则2021个纵坐标等于1轴,坐标应该是(2020,1),故选:D .【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点P 向右前行4个单位.二、填空题9.5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根. ∵52=25, ∴25的算术平方根是5.考点:算术平方根.解析:5【详解】试题分析:根据算术平方根的定义即可求出结果,算术平方根只有一个正根.∵52=25, ∴25的算术平方根是5.考点:算术平方根.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC和∠CDE的平分线交于点F,∴∠CBF+∠CDF=1×270°=135°,2∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F作FG平行于AB,由AB与CD平行,得到FG与CD平行,利用两直线平行同位角相∠的度数.等,同旁内角互补,得到1100EFG∠+∠=︒,即可确定出3GFC∠=∠=︒,2180【详解】解:如图:过F作FG平行于AB,AB CD,////∴,FG CD∴∠=∠=︒,1100EFG2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.113°【分析】如图,设∠B′FE =x ,根据折叠的性质得∠BFE =∠B′FE =x ,∠AEF =∠A′EF ,则∠BFC =x−21°,再由第2次折叠得到∠C′FB =∠BFC =x−21°,于是利用平角定 解析:113°【分析】如图,设∠B′FE =x ,根据折叠的性质得∠BFE =∠B′FE =x ,∠AEF =∠A′EF ,则∠BFC =x −21°,再由第2次折叠得到∠C′FB =∠BFC =x −21°,于是利用平角定义可计算出x =67°,接着根据平行线的性质得∠A′EF =180°−∠B′FE =113°,所以∠AEF =113°.【详解】解:如图,设∠B′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B′FE =x ,∠AEF =∠A′EF ,∴∠BFC =∠BFE ﹣∠CFE =x ﹣21°,∵纸条沿BF 折叠,∴∠C′FB =∠BFC =x ﹣21°,而∠B′FE +∠BFE +∠C′FE =180°,∴x +x+x ﹣21°=180°,解得x =67°,∵A ′D′∥B′C′,∴∠A′EF =180°﹣∠B′FE =180°﹣67°=113°,∴∠AEF =113°.故答案为113°.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 14.;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为解析:()4,4-【分析】根据点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为相反数∴()228a =a +--解得,2a =∴M 点坐标为(4,-4).故答案为(4,-4)【点睛】本题考查了点的坐标,理解点M 是第四象限内一点且到两坐标轴距离相等,则点M 的横坐标与纵坐标互为相反数是解题的关键.16.(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n 为自然数)”,根解析:(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2020=4×504+4,∴点A 2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”.三、解答题17.(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=,=3.(2)原式,=解析:(1)3;(2)–2【分析】(1)根据绝对值、立方根、乘方解决此题.(2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题.【详解】解:(1)原式=()()221--+-,=3.(2)原式==3+1-6,=–2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键.18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【详解】证明:∵AB⊥AC(已知),∴∠解析:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题.【详解】证明:∵AB ⊥AC (已知),∴∠BAC =90°(垂直的定义),∴∠2+∠3=90°,∵∠1+∠4+∠BAC =180°(平角定义),∴∠1+∠4=180°-∠BAC =90°,∵AC 平分∠DAF (已知),∴∠1=∠2(角平分线的定义),∴∠3=∠4(等角的余角相等),∵a ∥b (已知),∴∠4=∠5(两直线平行,内错角相等),∴∠3=∠5(等量代换).故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等.【点睛】本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆.20.(1),,;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案; (3)将△ABC 补全为长方形解析:(1)()4,7,()1,2,()6,4;(2)见解析;(3)192【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC 补全为长方形,然后利用作差法求解即可.【详解】解:(1)平移后的三个顶点坐标分别为:()14,7A ,()11,2B ,()16,4C ;(2)画出平移后三角形111A B C ;(3)1519255322ABC ABE GBC AFC EBGF S S S S S =---=---=长方形.【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=.<67∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为4±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为32>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.23.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以;(3)75°解析:(1)见解析;(2)12【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-1∠CDG,2由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.24.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407︒().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级第一学期(上)期中数学试卷
姓名 得分
一 、精心选一选(每题2分,共24分)
1. 在2
12-,+107,-3.2,0,4.5,-1中,负数有( ) A.1个 B.2个 C.3个 D.4个
2. 任何一个有理数的绝对值在数轴上的位置是( )
A.原点两旁
B.整个数轴
C.原点右边
D.原点及其右边
3. 下列比较大小,正确的是( ) A. 3
2-<107- B. 98-<95- C.73<31- D. 92<51 4. 如果=2a (3-)2,那么a 等于( )
A.3
B.-3
C.9
D.± 3
5. 2007-[2007-(2006-2007)]的值为( )
A.-1
B.-2007
C.-2
D.2006
6. 一个数的倒数的相反数是5
13,那么这个数是( ) A.516- B.516 C. 165 D. 16
5- 7. 32表示( )
A.2×2×2
B.2×3
C.3×3
D.2+2+2
8. 近似数2.30×410的有效数字有( )
A.5个
B.3个
C.2个
D.以上都不对
9. 某商品的销售价为225元,利润率为25%,则该商品的进价为( )
A.200元
B.250元
C.225元
D.180元
10. 下面的正确结论的是 ( )
A. 0不是单项式;
B. 52abc 是五次单项式;
C. -4和4是同类项;
D. 3m 2n 3-3m 3n 2=0
11.如果∣2+a ∣+(1-b )2=0,那么2007)(b a +的值是( )
A.-2007
B.2007
C.-1
D.1
12. 下面运算正确的是 ( )
A. ab b a 963=+
B. 03333=-ba b a
C. a a a 26834=-
D.
61312122=-y y 二 、用心填一填(每空1分,共26分)
13. 8的相反数是______;—2
11的倒数是______;______的绝对值是1。

14. 水位上升30㎝记作+30㎝,那么-16㎝表示______________。

15. 在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至-183℃。

则月球表面昼夜的温差为________℃.
16. 列式表示:
(1)比a 大1的数:_______________;(2)m 的四分之三:____________;
(3)x 的一半减y 的差:____________;(4)比a 的三分之一小2的数:____________。

17. 用“<”、“=”或“>”填空:
(1)-(-1)_______-∣-1∣;(2)-0.1______-0.01;(3)-(-1)______∣-1∣。

18. 太阳半径大约是696000千米,用科学记数法表示为____________千米;若保留2个有效数字, 则近似值为__________.
19. 计算:
(1)—3+2=__________;(2)2-2×3=__________;
(3)0-(-4)=__________;(4)—2÷3×3=__________。

20. 3)2
3(-的底数是________,指数是________,幂是________。

21. 单项式8
53ab -的系数是__________,次数是_________. 22. 若12351
+k y x 与833
7y x -是同类项,则k =________. 23. 当2x =-时,代数式651x x
+-的值是________; 24观察下列单项式:0,3x 2,8x 3,15x 4,24x 5,……,按此规律写出第13个单项式是______。

三 、细心答一答(共50分)
25. 计算:(每题4分,共24分)
① 22)2(417)52(3-⨯--÷--+ ②)4
1(2521)25(4325-⨯+⨯--⨯
③[]
3241210315.01(1)()()
----⨯⨯--- ④)()(5361211659730-÷⎥⎦⎤⎢⎣⎡⨯-+-
⑤2312)3221(39+⨯-+÷- ⑥()⎥⎥⎦
⎤⎢⎢⎣⎡--⎪⎭⎫ ⎝⎛-⨯-÷-322223223
26.化简: (共4小题,每题4分,共16分)
(1)
144
mn mn -; (2)2237(43)2x x x x ⎡⎤----⎣⎦;
(3)(2)()xy y y yx ---+ ; (4)22225(3)2(7)a b ab a b ab ---.
27.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米): +8、-9、+4、+7、-2、-10、+18、-3、+7、+5
回答下列问题:(每题5分,共10分)
(1)收工时在A 地的哪边?距A 地多少千米?
(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升?
参考答案
一 、选择
C DBDA
D ABDCCB
二 、填空
13.-8;-3
2;1± 14. 水位下降16㎝ 15. 310 16.(1)1+a ;(2)m 43
;(3)y x -2
;(4)231-b 17.> < = 18. 6.96×105 ,7.0×105 19. -1;-4;4;-2 20. 2
3-;3;827- 21.85-, 4; 22. 27; 23.73-; 24. (132-1)x 13=168x 13. 三 、解答
25.(1)7; (2)25; (3)-1; (4)5
6; (5)4; (6)23 26. (1) 4
15- mn ; (2)5x 2-3x-3 (3) xy (4) 3a 2b-ab 2 27. 解:(1)收工时在A 地的东边,距A 地25千米。

(2)若每千米耗油0.3升,从A 地出发到收工时,共耗油21。

9升.。

相关文档
最新文档