河南省洛阳市七年级(上)期末数学试卷(解析版)

合集下载

河南省洛阳市2018-2019学年七年级上学期数学期末考试试卷及参考答案

河南省洛阳市2018-2019学年七年级上学期数学期末考试试卷及参考答案

河南省洛阳市2018-2019学年七年级上学期数学期末考试试卷及参考答案一、选择题(每小题2分,共30分)1.下列不是生活中用直尺量长度的是()A.书本B.红绿灯C.衣服D.房子2.一个分米是()A.千分之一米B.百分之一米C.十分之一米D.二十分之一米3.下列不是角的是()A.圆角B.锐角C.直角D.钝角4.如图所示,把车逐块出租。

每亩地租金8000元。

请计算小冉全天的租金,用数字表示。

()A.¥1600B.¥3200C.¥4800D.¥64005.四个角相等的四边形不一定是()A.正方形B.平行四边形C.菱形D.梯形6.如图,已知直线k//l。

求∠c和∠d的度数之和是()A.120°B.180°C.100°D.200°7.梯形的两个底角的度数之和是()A.180°B.90°C.360°D.120°8.下列运算正确的是()A.23.4+88.6+14.7=126.7B.23.4+88.6-14.7=95.7C.23.4+88.6-14.7=97.3D.23.4-88.6-14.7=76.79.如图所示,∠A和∠B的度数之和是()A.110°B.120°C.140°D.150°10.如图所示,若∠m=105°,∠n=35°,则∠m和∠n构成的角平分线的度数是()A.60°B.70°C.80°D.90°11.一个角等于120°,那么它的补角是()A.60°B.30°C.50°D.80°12.如图所示,子弹从右侧射出。

如果子弹击中目标,那么方程x-50=0的解是()A.x=0B.x=50C.x=100D.解不存在13.正方形ABCD的角度之和是()A.90°B.360°C.270°D.180°14.小周去商场买衣服,一件羊毛衫120元,起100元打五折。

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案一、选择题 1.4 =( )A .1B .2C .3D .4 2.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.53.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1394.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .46.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程() A .10050062x x += B .1005006x 2x += C .10040062x x+= D .1004006x 2x+= 7.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+=8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.09.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.6cm B.3cm C.3cm或6cm D.4cm10.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=011.已知a=b,则下列等式不成立的是()A.a+1=b+1 B.1﹣a=1﹣b C.3a=3b D.2﹣3a=3b﹣2 12.3的倒数是()A.3B.3-C.13D.13-13.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+115.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟二、填空题16.已知x=5是方程ax﹣8=20+a的解,则a= ________17.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………19.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.20.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 21.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 23.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 24.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.25.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).26.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 27.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)28.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.29.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.33.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.34.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值. 35.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.36.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.37.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.B解析:B【解析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.4.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.本题考查了两点间的距离,利用了线段中点的性质.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.8.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.9.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.10.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。

洛阳市初一上学期数学期末试卷带答案

洛阳市初一上学期数学期末试卷带答案

洛阳市初一上学期数学期末试卷带答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108 B .6.5×107C .6.5×108D .65×1063.4 =( ) A .1B .2C .3D .44.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒5.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2066.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟7.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .38.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.9.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠10.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°11.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 12.已知一个多项式是三次二项式,则这个多项式可以是( ) A .221x x -+ B .321x +C .22x x -D .3221x x -+13.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 14.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .715.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题16.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.17.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 18.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.19.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 20.若523m xy +与2n x y 的和仍为单项式,则n m =__________.21.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________22.若3750'A ∠=︒,则A ∠的补角的度数为__________.23.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.24.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 25.52.42°=_____°___′___″.26.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 27.用“>”或“<”填空:13_____35;223-_____﹣3.28.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.29.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.33.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.34.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由. 38.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4. (1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.4.C解析:C 【解析】 【分析】根据题意直接把高度为102代入即可求出答案. 【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t 最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.5.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.6.D解析:D 【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.7.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB =AP ﹣AB =2t ﹣30,∴2t ﹣30=12t , t =20,当t >30时,此时点P 在Q 的右侧,∴AP =2t ,BQ =t ,∴PB =AP ﹣AB =2t ﹣30,∴2t ﹣30=12t , t =20,不符合t >30, 综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.8.C解析:C【解析】试题解析:A ∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .9.A解析:A【解析】【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可.【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意,故选:A.本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.10.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.解析:B【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误;故选B.13.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.14.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题16.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 17.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;20.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.21.-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x 取值解析:-5【解析】【分析】合并同类项后,由结果与x 的取值无关,则可知含x 各此项的系数为0,求出a 与b 的值即可得出结果.【详解】解:根据题意得:2261x bx ax x -++-+=(a-1)x 2+(b-6)x+1,由结果与x 取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x 的取值无关”的意义是解本题的关键.22.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.23.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB =90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a ∥b ,∠2=2∠1,∴∠3=∠1+∠CAB ,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.24.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大25.52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即解析:52; 25; 12.【解析】【分析】将高级单位化为低级单位时,乘60,用0.42乘60,可得:0.42°=25.2′;用0.2乘60,可得:0.2′=12′′;据此求解即可.【详解】52.42°=52°25′12″.故答案为52、25、12.【点睛】此题主要考查了度分秒的换算,要熟练掌握,解答此题的关键是要明确:1度=60分,即1°=60′,1分=60秒,即1′=60″.26.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键27.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.28.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.29.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.30.46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 32.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45,综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.33.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 34.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到20304050 40080012001600 >>>∴当商品标价为400元时,享受到最高的优惠率1155% 220=+=故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.35.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,。

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.下列判断正确的是()A.3a2bc与bca2不是同类项B.225m n的系数是2C.单项式﹣x3yz的次数是5D.3x2﹣y+5xy5是二次三项式3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106 4.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.5.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或736.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④7.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120208.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣19.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3y B .-10x +3yC .10x -9yD .10x +9y10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离12.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯13.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3 B .若-2x=-2y ,则x=y C .若x ym m=,则x y = D .若x y =,则x y m m= 14.若2m ab -与162n a b -是同类项,则m n +=( ) A .3 B .4C .5D .715.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2二、填空题16.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.17.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

2020-2021学年河南省洛阳市七年级(上)期末数学试卷(附详解)

2020-2021学年河南省洛阳市七年级(上)期末数学试卷(附详解)

2020-2021学年河南省洛阳市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. 14B. −14C. 4D. −42.在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A. 0.3369×107B. 3.369×106C. 3.369×105D. 3369×1033.下表是12月份某一天洛阳四个县区的平均气温:区县涧西栾川嵩县伊川气温℃+1−3−20这四个区中该天平均气温最低的是()A. 涧西B. 栾川C. 嵩县D. 伊川4.下列计算正确的是()A. 5a+6b=11abB. 9a−a=8C. −3(a+b)=−3a+3bD. −3(a+b)=−3a−3b5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是()A. −1B. −2C. −3D. −66.下列解方程的步骤中正确的是()A. 由x−5=7,可得x=7−5B. 由8−2(3x+1)=x,可得8−6x−2=xC. 由16x=−1,可得x=−16D. 由x−12=x4−3,可得2(x−1)=x−37.下列说法正确的是()A. 在所有连接两点的线中,直线最短B. 射线OA与射线AO表示的是同一条射线C. 连接两点的线段,叫做两点间的距离D. 两点确定一条直线8.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A. 80%(1+40%)x−x=78B. 40%(1+80%)x=78C. x−80%(1+40%)x=78D. 80%(1−40%)x−x=789.a,b,c在数轴上的位置如图所示,则a−b|a−b|−b−c|b−c|+c−a|c−a|的值是()A. −1B. 1C. −3D. 310.如图是一个运算程序:若x=−4,输出结果m的值与输入y的值相同,则y的值为()A. −2或1B. −2C. 1D. 2或−1二、填空题(本大题共5小题,共15.0分)11.若关于x的方程2x+a+4=0的解是x=−3,则a的值等于_________.12.若∠A=42°37′,则∠A的余角的大小为______.13.绝对值大于1.5并且小于3的整数之和是______.14.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为______.15.观察下列一组图形中的点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…,按此规律第10个图中点的个数共有______个.三、解答题(本大题共8小题,共75.0分)16.计算:(1)3×(−4)+18÷(−6)−(−5);|×(−1).(2)−14−16÷(−2)3+|−3217.化简求值3m2−[5m−2(2m−3)+4m2],其中m=−4.18.已知线段AB如图所示,延长AB至C,使BC=AB,反向延BC,点E是线段CD的中点.长AB至D,使AD=12(1)依题意补全图形;(2)若AB的长为4,求BE的长.19. 解方程:3x+25=1+2x−13.20. 观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1给出定义如下:我们称使等式a −b =2ab −1成立的一对有理数a ,b 为“同心有理数对”,记为(a,b),如:数对(1,23),(2,35),都是“同心有理数对”. (1)数对(−2,1),(3,47)是“同心有理数对”的是______. (2)若(a,3)是“同心有理数对”,求a 的值.(3)若(m,n)是“同心有理数对”,则(−n,−m) ______“同心有理数对”(填“是”或“不是”).21. 2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据,求出小王本周实际生产口罩数量;(3)若该厂实行每日计件工资制,每生产一个口罩可得0.6元,若超额完成每日计划工作量,则超过部分每个另外奖励0.15元,若完不成每天的计划量,则少生产一个扣0.2元,小王周五这一天的工资是多少?22.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多40件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多3件,则此月人均定额是多少件?23.阅读下面材料小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD.如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)根据小聪的画法可知,如图3,点O在直线AD上,射线OC平分∠BOD.请说明∠AOC 与∠BOC互补的理由;(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余(保留画图痕迹);(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ,若∠EPQ=β(45°<β<90°),直接写出锐角∠MPN的度数是______.答案和解析1.【答案】C【解析】解:−4的相反数是4.故选:C.根据相反数的定义作答即可.本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.【答案】B【解析】解:将3369000用科学记数法表示为3.369×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵|−3|=3,|−2|=2,而3>2,∴−3<−2<0<+1,∴这四个区中该天平均气温最低的是栾川.故选:B.正数大于负数,两个负数比较大小,绝对值大的其值反而小,据此判断即可.本题考查有理数大小的比较,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.4.【答案】D【解析】解:∵5a+6b≠11ab,∴选项A不符合题意;∵9a−a=8a≠8,∴选项B不符合题意;∵−3(a+b)=−3a−3b≠−3a+3b,∴选项C不符合题意;∵−3(a+b)=−3a−3b,∴选项D符合题意;故选:D.利用去括号和合并同类项法则,对每个选项进行判断,即可得出答案.本题考查了整式的加减,掌握去括号及合并同类项法则是解题的关键.5.【答案】A【解析】解:易得2和−2是相对的两个面;0和1是相对两个面;−4和3是相对的2个面,∵2+(−2)=0,0+1=1,−4+3=−1,所以原正方体相对两个面上的数字和最小的是−1.故选:A.根据相对的面相隔一个面得到相对的2个数,相加后比较即可.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.【答案】B【解析】解:A、由x−5=7,可得x=7+5,不符合题意;B、由8−2(3x+1)=x,可得8−6x−2=x,符合题意;C、由16x=−1,可得x=−6,不符合题意;D、由x−12=x4−3,可得2(x−1)=x−12,不符合题意,故选:B.各项方程变形得到结果,即可作出判断.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.【答案】D【解析】【分析】本题考查了“两点之间,线段最短“,两点确定一条直线,两点间的距离.根据“两点之间,线段最短“,两点确定一条直线,两点间的距离,既可解答.【解答】解:A.错误,在所有连接两点的线中,线段最短;B.错误,射线OA与射线AO表示的不是同一条射线;C.错误,连接两点的线段长度,叫做两点间的距离;D.正确,故选D.8.【答案】A【解析】解:由题意可得,x(1+40%)×0.8−x=78,即80%(1+40%)x−x=78,故选:A.根据利润=售价−进价,可以写出相应的方程,本题得以解决.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,写出相应的方程.9.【答案】C【解析】解:∵c<a<b,∴a−b<0,b−c>0,c−a<0,∴原式=a−b−(a−b)−b−cb−c+c−a−(c−a)=−1−1+(−1)=−1+(−1)+(−1) =−3,故选:C.根据数轴比较大小得c<a<b,从而a−b<0,b−c>0,c−a<0,根据绝对值的性质去绝对值化简即可.本题考查了数轴,绝对值,有理数的加减混合运算,掌握绝对值的性质是解题的关键,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0.10.【答案】C【解析】解:∵当x=−4,y=−2时,x<y,则m=|−4|−3×(−2)=4+6=10,当x=−4,y=2时,x<y,则m=|−4|−3×2=−2,当x=−4,y=1时,x<y,则m=|−4|−3×1,当x=−4,y=−1时,x<y,则m=|−4|−3×(−1)=7,∴当x=−4,y=1时,m=|−4|−3×1=1=y,故选:C.由题意得,此题属于x小于等于y的情况,通过试值可得此题结果.此题考查了代数式和有理数的运算能力,关键是能根据运算程序进行计算验证.11.【答案】2【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.把x=−3代入方程计算即可求出a的值.【解答】解:把x=−3代入方程得:−6+a+4=0,解得:a=2.故答案为2.12.【答案】47°23′【解析】解:∵∠A=42°37′,∴∠A的余角=90°−42°37′=47°23′,故答案为:47°23′.如果两个角的和是90°,那么称这两个角互为余角余角.由定义即可求解.本题考查余角的计算,熟练掌握两个角互余的定义,并能准确计算是解题的关键.13.【答案】0【解析】解:∵绝对值大于1.5并且小于3的整数的绝对值等于2,∴绝对值大于1.5并且小于3的整数是−2,2,∴绝对值大于1.5并且小于3的整数之和是0.故答案为:0.首先根据有理数大小比较的方法,判断出绝对值大于3,且小于7的整数有哪些;然后把它们相加即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.【答案】400x−3400=300x−100【解析】解:设有x个人,依题意,得:400x−3400=300x−100.故答案为:400x−3400=300x−100.设有x个人,根据金的价钱不变,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.【答案】166【解析】解:第1个图中共有点数为:1+1×3=4,第2个图中共有点数为:1+1×3+2×3=10,第3个图中共有点数为:1+1×3+2×3+3×3=19,…,第n个图有点数为:1+1×3+2×3+3×3+⋯+3n.所以第10个图中共有点的个数是1+1×3+2×3+3×3+⋯+10×3=166.故答案为:166.由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3= 10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+⋯+3n个点.此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.16.【答案】解:(1)原式=−12−3+5==15+5=−10;×(−1)(2)原式=−1−16÷(−8)+32=−1+2−32=1−32=−1.2【解析】(1)根据有理数的混合运算顺序计算即可,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)根据绝对值的性质以及有理数的混合运算顺序计算即可.本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.17.【答案】解:原式=3m2−(5m−4m+6+4m2)=3m2−5m+4m−6−4m2=−m2−m−6,当m=−4时,原式=−16+4−6=−18.【解析】去括号、合并同类项即可化简,再代入计算即可.本题考查整式的加减,掌握去括号、合并同类项法则是正确解答的关键.18.【答案】解:(1)图形如图所示:(2)∵AB =BC =4,AD =12AB =2,∴CD =AD +AB +BC =10,∴DE =EC =12CD =5, ∴EB =EC −BC =5−4=1.【解析】(1)根据要求作出图形即可;(2)求出EC ,BC ,可得结论.本题考查作图−复杂作图,线段的和差定义等知识,解题的关键是理解题意,正确作出图形,属于中考常考题型.19.【答案】解:去分母得:9x +6=15+10x −5,移项合并得:−x =4,解得:x =−4.【解析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】(3,47) 是【解析】解:(1)∵−2−1=−3,2×(−2)×1−1=−5,−3≠−5,∴数对(−2,1)不是“同心有理数对”;∵3−47=177,2×3×47−1=177, ∴3−47=2×3×47−1,∴(3,47)是“同心有理数对”,∴数对(−2,1),(3,47)是“同心有理数对”的是(3,47).故答案为:(3,47);(2)∵(a,3)是“同心有理数对”.∴a−3=6a−1,∴a=−2;5(3)∵(m,n)是“同心有理数对”,∴m−n=2mn−1.∴−n−(−m)=−n+m=m−n=2mn−1,∴(−n,−m)是“同心有理数对”.故答案为:是.(1)根据:使等式a−b=2ab−1成立的一对有理数a,b为“同心有理数对”,判断出)是“同心有理数对”的是哪个即可.数对(−2,1),(3,47(2)根据(a,3)是“同心有理数对”,可得:a−3=6a−1,据此求出a的值是多少即可.(3)根据(m,n)是“同心有理数对”,可得:m−n=2mn−1,据此判断出(−n,−m)是不是同心有理数对即可.此题主要考查了等式的性质,以及同心有理数对的含义和判断,要熟练掌握.21.【答案】291【解析】解:(1)小王星期五生产口罩数量为:300−9=291(个),故答案为:291;(2)+5−2−4+13−9+16−8=10(个),则本周实际生产的数量为:2100+10=2110(个)答:小王本周实际生产口罩数量为2110个;(3)第五天:(300−9)×0.6−9×0.2=172.8(元),答:小王周五这一天的工资是172.8元.(1)根据题意和表格中的数据,可以得到小王星期五生产口罩的数量;(2)根据题意和表格中的数据,可以得到小王本周生产口罩的数量;(3)根据题意和表格中的数据,可以解答本题.本题考查了正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.22.【答案】解:(1)设此月人均定额是x件,依题意得:4x+404=6x−205,解得:x=70.答:此月人均定额是70件.(2)设此月人均定额是y件,依题意得:4y+404−6y−205=3,解得:y=55.答:此月人均定额是55件.【解析】(1)设此月人均定额是x件,根据两组工人实际完成的此月人均工作量相等,即可得出关于x的一元一次方程,解之即可得出此月的人均定额;(2)设此月人均定额是y件,根据甲组工人实际完成的此月人均工作量比乙组的多3件,即可得出关于y的一元一次方程,解之即可得出此月的人均定额.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.【答案】45°或|β−45°|【解析】解:(1)如图3中,∵OC平分∠BOD,∴∠BOC=∠COD,∵∠AOC+∠COD=180°,∴∠AOC+∠BOC=180°,即∠AOC与∠BOC互补;(2)如图4中,射线OH即为所求;(3)如图,∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=∠MPQ+∠NPQ=12∠EPQ+12∠FPQ=12∠EPF,∵∠EPQ和∠FPQ互余,∴∠EPQ+∠FPQ=90°,即∠EPF=90°,∴∠MPN=45°;如图:∵PM平分∠EPQ,PN平分∠FPQ,∴∠MPQ=12∠EPQ,∠NPQ=12∠FPQ,∵∠MPN=|∠MPQ−∠NPQ|=|12∠EPQ−12∠FPQ|,∵∠EPQ和∠FPQ互余,∠EPQ=β,∴∠FPQ=90°−β,∴∠MPN=|12β−12∠(90°−β)|=|β−45°|,故答案为:45°或|β−45°|.(1)证明∠AOC+∠BOC=180°,即可解决问题;(2)延长AO到T,作∠BOT的角平分线OH,射线OH即为所求;(3)分两种情形分别画出图形求解即可.本题主要考查角平分线的定义,余角和补角,灵活运用角平分线的定义求解角度之间的关系是解题的关键.。

河南省洛阳市嵩县2022-2023学年七年级上学期期末数学试题(含答案)

河南省洛阳市嵩县2022-2023学年七年级上学期期末数学试题(含答案)

2022——2023学年第一学期期末考试七年级数学试卷注意事项:1.本试卷共三个大题,23个小题,满分120分,考试时间100分钟;2.本试卷上不要答题,请按答题卷上注意事项的要求直接把答案填写在答题卷上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列每小题均有四个选项,其中有且只有一个选项是正确的。

1.一张学生课桌的面积大约是2400( )A.平方分米B.平方厘米C.平方毫米D.平方米2.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途径城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示为( )A.31310⨯B.31.310⨯C.41310⨯D.41.310⨯ 3.用四含五入法对0.03049取近似值,精确到0.001的结果是( )A.0.0305B.0.04C.0.030D.0.0314.如图,将矩形纸片ABCD 绕边CD 所在直线旋转一周,得到的立体图形是( )A. B. C. D.5.如图所示的几何体的俯视图是( )A. B. C. D.6.如图,下列说法中正确的是( )A.OA 的方向是北偏东30°B.OB 的方向是北偏西60°C.OC 的方向是南偏西15°D.OC 的方向是南偏西75°7.下列各式中,去括号或添括号正确的是( )A.()22a b c a b c --+=-+B.()()2121x t a x t a ---+=--+-C.()35213521x x x x x x ---=--+⎡⎤⎣⎦D.()321321a x y a x y -+-=+-+-8.下列计算正确的是( )A.23x x x +=B.2222ab ba ab -=C.222325x y yx x y +=D.13232⎛⎫÷-⨯=- ⎪⎝⎭9.如图是一个长方体纸盒的表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()A.6B.8C.10D.1510.如图,AB EF ∥,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A.βαγ∠=∠+∠B.180αβγ∠+∠+∠=︒C.90αβγ∠+∠-∠=︒D.90βγα∠+∠-∠=︒ 二、填空题(每小题3分,共15分)11.()6--的相反数是_________.12.若27 m n a b -+与443a b -的和仍是一个单项式,则m n -=_________.13.如图,C 是线段AB 上一点,点M 是线段AC 的中点,若10cm AB =,2cm BC =,则MC =________.14.一副三角板如图摆放,且AB CD ∥,则1∠的度数为_________.15.已知:定义()()()121C 123m m n n n n m m ⨯-⨯-⨯⋅⋅⋅⨯-+=⨯⨯⋅⋅⋅⨯为从n 个数中抽出m 个数的组合数,例如:2332C 312⨯==⨯,35543C 10123⨯⨯==⨯⨯,466543C 151234⨯⨯⨯==⨯⨯⨯,…,观察上面的计算过程,寻找规律并计算811C =_________.三、解答题(共8小题,共75分)16.(10分)计算:(1)()()40281924----+-;(2)()271112669126⎛⎫+-⨯-+ ⎪⎝⎭; (3)()22113110.544-+⨯--⨯-;(4)()()()32162813⎡⎤-÷---⨯--⎣⎦. 17.(9分)画一条数轴,在数轴上标出下列各数,并用“<把它们连接起来。

河南省洛阳市七年级上册期末数学试卷(解析版)

河南省洛阳市七年级上册期末数学试卷(解析版)

河南省洛阳市2017-2018学年七年级(上)期末数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.2.下列比较大小正确的是()A.﹣(﹣3)>﹣|﹣3| B.(﹣2)3>(﹣2)2C.(﹣3)3>(﹣2)3 D.<3.一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y4.国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<07.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+68.有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2二、填空题(本大题共7小题,每小题3分,共21分)9.在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是.10.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n= .11.如图是一个数值转换器,若输入x的值是﹣5,则输出的值是12.已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.13.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.14.已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为.15.观察下列有规律的数:,,,,,…根据规律可知第n个数是(n 是正整数).三、解答题(本大题共8小题,共75分)16.(8分)计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].17.(8分)先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.18.(8分)解方程:(x+15)=﹣(x﹣7)19.(8分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:.20.(10分)已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.21.(10分)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.22.(11分)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?23.(12分)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM= 度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是秒.2017-2018学年河南省洛阳市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.|﹣2|的相反数为( )A .﹣2B .2C .D .【考点】14:相反数;15:绝对值.【分析】利用相反数,绝对值的概念及性质进行解题即可.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A .【点评】此题主要考查了相反数,绝对值的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;求出|﹣2|=2,再利用相反数定义是解决问题的关键.2.下列比较大小正确的是( )A .﹣(﹣3)>﹣|﹣3|B .(﹣2)3>(﹣2)2C .(﹣3)3>(﹣2)3D .<【考点】18:有理数大小比较.【分析】求出每个式子的值,再根据求出的结果判断即可.【解答】解:A 、∵﹣(﹣3)=3,﹣|﹣3|=﹣3,∴﹣(﹣3)>﹣|﹣3|,故本选项正确;B 、∵(﹣2)3=﹣8,(﹣2)2=4,∴(﹣2)3<(﹣2)2,故本选项错误;C 、∵(﹣3)3=﹣27,(﹣2)3=﹣8,∴(﹣3)3<(﹣2)3,故本选项错误;D 、∵|﹣|=,|﹣|=,∴﹣>﹣,故本选项错误;故选A .【点评】本题考查了有理数的大小比较,相反数,绝对值,有理数的乘方等知识点的应用,主要考查学生的计算能力和辨析能力.3.一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y【考点】32:列代数式.【分析】根据题意可以用相应的代数式表示出调换位置后的两位数.【解答】解:由题意可得,调换位置后的两位数是:10y+x,故选C.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.4.国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元【考点】1I:科学记数法—表示较大的数.【分析】首先把67.67万亿化为676700亿,再用科学记数法表示676700亿,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c| C.|a|>|b| D.abc<0【考点】13:数轴.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.【点评】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.7.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6【考点】4G:平方差公式的几何背景.【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.【点评】本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.8.有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2【考点】89:由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:由题意可得,50x+10=52x﹣2,故选B.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.二、填空题(本大题共7小题,每小题3分,共21分)9.在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是 3 .【考点】12:有理数.【分析】根据大于或等于零的有理数是非负有理数,可得答案.【解答】解:﹣(﹣1)=1,+,0是非负有理数,故答案为:3.【点评】本题考查了有理数,利用非负有理数的定义是解题关键.10.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n= 6 .【考点】34:同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11.如图是一个数值转换器,若输入x的值是﹣5,则输出的值是﹣12【考点】1G:有理数的混合运算.【分析】首先用﹣5的平方减去1,求出差是多少;然后用所得的差除以﹣2,求出输出的值是多少即可.【解答】解:[(﹣5)2﹣1]÷(﹣2)=(25﹣1)÷(﹣2)=24÷(﹣2)=﹣12故答案为:﹣12.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.12.已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.【考点】85:一元一次方程的解.【分析】把x=2代入方程计算即可求出a的值.【解答】解:把x=2代入方程得:3a=a+2,解得:a=.故答案为:.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm .【考点】IE:比较线段的长短.【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.14.已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为105°.【考点】IJ:角平分线的定义.【分析】利用角平分线的性质得出∠COB=∠AOB,∠DOC=∠AOC,进而得出∠DOC的度数进而得出答案.【解答】解:∵OB是∠AOC的角平分线,OC是∠AOD的角平分线,∴∠COB=∠AOB,∠DOC=∠AOC,∵∠AOB=35°,∴∠BOC=35°,∴∠DOC=∠AOC=70°,∴∠BOD=70°+35°=105°.故答案为:105°.【点评】此题主要考查了角平分线的性质,正确得出∠DOC的度数是解题关键.15.观察下列有规律的数:,,,,,…根据规律可知第n个数是(n是正整数).【考点】37:规律型:数字的变化类.【分析】分子都是1,分母拆成两个连续自然数的乘积,可得规律.【解答】解:∵第1个数=,第2个数=,第3个数=,第4个数=,…∴第n个数为,故答案为:.【点评】此题考查数字的变化规律,解题的关键是根据所给出的数据找出之间的运算规律,利用规律解决问题.三、解答题(本大题共8小题,共75分)16.计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].【考点】1G:有理数的混合运算.【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和括号里面的运算,然后计算除法和乘法,最后计算减法和加法即可.【解答】解:(1)(﹣56)+(+7)+150+(+93)+(﹣44)=﹣49+150+93﹣44=150(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2]=2﹣(﹣0.5)+(﹣8)=﹣5.5【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.17.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【考点】45:整式的加减—化简求值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1 时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.解方程:(x+15)=﹣(x﹣7)【考点】86:解一元一次方程.【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:6(x+15)=15﹣10(x﹣7),去括号得:6x+90=15﹣10x+70,移项合并得:16x=﹣5,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:∠AON,∠BOD .【考点】IH:方向角.【分析】(1)根据方向角的定义即可作出;(2)根据方向角定义即可作出;(3)作线段AB,AB和OE的交点就是D;(4)根据余角的定义即可解答.【解答】解:(1)如图;(2)如图;(3)如图;(4)∠AOD的所有余角是:∠AON,∠BOD.故答案是:∠AON,∠BOD.【点评】本题考查了方向角的定义,理解定义是本题的关键.20.(10分)(2016秋•洛阳期末)已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.【考点】ID:两点间的距离.【分析】分类讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段中点的性质,可得MC、NC的长,根据线段的和差,可得答案.【解答】解:当点C在线段AB上时,由点M、N分别是AC、BC的中点,得MC=AC=×8cm=4cm,CN=BC=×6cm=3cm,由线段的和差,得MN=MC+CN=4cm+3cm=7cm;当点C在线段AB的延长线上时,由点M、N分别是AC、BC的中点,得MC=AC=×8cm=4cm,CN=BC=×6cm=3cm.由线段的和差,得MN=MC﹣CN=4cm﹣3cm=1cm;即线段MN的长是7cm或1cm.【点评】本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.21.(10分)(2016秋•洛阳期末)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.【考点】IL:余角和补角;IJ:角平分线的定义.【分析】设∠BOC=x,根据互补的定义得出∠AOB=180°﹣x.根据角平分线的定义得出∠AOB=2∠BOD=2(x+21°),那么180°﹣x=2(x+21°),解方程即可.【解答】解:设∠BOC=x,∵∠BOC与∠AOB互为补角,∴∠AOB=180°﹣x.∵OD平分∠AOB,∠COD=21°,∴∠AOB=2∠BOD=2(∠BOC+∠COD)=2(x+21°),∴180°﹣x=2(x+21°),∴x=46°,即∠BOC是46°.【点评】本题考查了互补的定义:如果两个角的和等于180°,就说这两个角互为补角.即其中一个角是另外一个角的补角.也考查了角平分线的定义.22.(11分)(2016秋•洛阳期末)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款180 元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?【考点】8A:一元一次方程的应用.【分析】(1)按活动规定实际付款=商品的总价×0.9,依此列式计算即可求解;(2)可设第2次购物商品的总价是x元,根据等量关系:小丽第2次购物花费490元,列出方程求解即可;(3)先得到两次购得的商品的总价,再根据促销活动活动规则列式计算即可求解.【解答】解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.23.(12分)(2016秋•洛阳期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM= 120 度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是6或24 秒.【考点】IK:角的计算.【分析】(1)根据OM恰好平分∠BOC,用∠BOC的度数除以2,求出∠BOM的度数,即可求出∠AOM的度数是多少.(2)首先根据∠AOM﹣∠NOC=30°,∠BOC=120°,求出∠A0C=60°,然后根据∠AON=90°﹣∠AOM=60°﹣∠NOC,判断出∠AOM与∠NOC之间满足什么等量关系即可.(3)首先设三角板绕点O旋转的时间是x秒,根据∠BOC=120°,可得∠AOC=60°,∠BON=∠COD=30°;然后根据旋转60°时ON平分∠AOC,可得10x=60或10x=240,据此求出x的值是多少即可.【解答】解:(1)∵OM恰好平分∠BOC,∴∠BOM=120°÷2=60°,∴∠AOM=180°﹣120°=60°.(2)如图3,,∠AOM﹣∠NOC=30°,∵∠BOC=120°,∴∠A0C=60°,∵∠AON=90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°.(3)设三角板绕点O旋转的时间是x秒,∵∠BOC=120°,∴∠AOC=60°,∴∠BON=∠COD=30°,∴旋转60°时ON平分∠AOC,∵10x=60或10x=240,∴x=6或x=24,即此时三角板绕点O旋转的时间是6或24秒.故答案为:120、6或24.【点评】此题主要考查了角的计算,考查了分类讨论思想的应用,以及角平分线的性质和应用,要熟练掌握.。

河南省洛阳市2022-2023学年七年级上学期期末数学试题(含答案)

河南省洛阳市2022-2023学年七年级上学期期末数学试题(含答案)

洛阳市2022—2023学年第一学期期末考试七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,满分120分,考试时间100分钟. 2.试题卷上不要答题,错用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( ) A .3m + B .5m - C .3m - D .1m 3+ 2.据互联网数据显示,2022年全网“双11”全球狂欢购物节交易额为5571亿元,数据5571亿用科学记数法表示为( )A .8557110⨯B .9557.110⨯C .1055.7110⨯D .115.57110⨯3.下面立体图形中,从左面看到的平面图形与其他三个不一样的是( )A .B .C .D .4.如图,四个有理数在数轴上的对应点分别为M ,P ,N ,Q .若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A .点QB .点NC .点MD .点P 5.下列代数式中:①23a ;②2r π;③2112x +;④23a b -;⑤a b c +,单项式的个数是( ) A .2 B .3 C .4 D .56.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( )A .32a b +B .34a b +C .62a b +D .64a b +7.解方程211263x x x ---=-,下列去分母变形正确的是( ) A .()32321x x x -+=-- B .()32621x x -=-- C .()()32121x x x -+=-- D .()32621x x x -+=-- 8.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,盈三.问人数、羊价各几何厂题意是:若干人共同出资买羊,每人出5文钱,则差45文钱;每人出7文钱,则多3文钱,求人数和羊价各是多少?若设买羊人数为x 人,则根据题意可列方程为( )A .54573x x +=+B .54573x x +=-C .45357x x -+=D .45357x x +-= 9.如图,直线AE 与CD 相交于点B ,60ABC ∠=︒,95FBE ∠=︒,则CBF ∠的度数是( )A .35°B .85°C .145°D .155°10.找岀以下图形变化的规律,计算第2022个图形中黑色正方形的个数是( )A .3031B .3032C .3033D .3034二、填空题(每题3分,共15分)11.如图从教室门B 到图书馆A ,总有一些同学不文明,为了走捷径,不走人行道而横穿草坪,其中包含的数学几何知识为:__________.12.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和x ,那么x 的值为__________.13.如图,甲从“点出发向北偏东6030'︒方向走到点B ,乙从点A 出发向南偏西2040'︒方向走到点C ,则BAC ∠=__________.14.小华同学以8折的优惠价格买了一双鞋子,比不打折时节省了20元,则他买这双鞋子实际花了__________元.15.如图,有两个长方形的纸片面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m 和()n m n >,则m n -=__________.三、解答题(本大题共8个小题,共75分)16.(8分)计算:(1)()()10596--+-+(2)()341261293⎛⎫-÷+⨯-+- ⎪⎝⎭17.(9分)先化简,再代入求值:()()22223252x y xy x y xy --+,其中()2520x y ++-=.18.(9分)2022年6月小黄到银行开户,存入了3000元钱,以后的每月都根据家里的收支悄况存入一笔钱.下表为小黄从7月到12月的存款数较上个月的统计情况,其中比上月多存为“+”,少存为“-”:(1)从7月到12月中,哪个月存入的钱最多?哪个月最少?(2)截止到12月,小黄共存入多少元?19.(9分)A 、B 、C 、D 四个车站的位置如图所示,求:(1)A 、D 两站的距离;(2)A 、C 两站的距离.20.(9分)(1)如图,点C 在线段AB 上,点M 、N 分别为AC 、BC 的中点.如果6cm AC =,10cm MB =,求线段BC 、MN 的长;(2)如果点C 在线段AB 的延长线上,M 、N 分别是线段AC 、BC 的中点,且满足cm AC BC b -=,求MN 的长度.21.(10分)接种疫苗是阻断新冠病錐传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作爪不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,毎天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.22.(10分)已知O 是直线AB 上的一点,90COD ∠=︒,OE 平分BOC ∠.(1)如图①,若40AOC ∠=︒,则DOE ∠=__________.(2)如图①,若AOC α∠=,则DOE ∠=__________(用含α的代数式表示).(3)图①中的COD ∠绕顶点O 顺时针旋转至图②的位阻其他条件不变,那么(2)中所求岀的结论是否还成立?请说明理由.23.(11分)如图①,在长方形ABCD 中,10cm AB =,5cm BC =.点P 沿AB 边从点力开始向点B 以3cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以2cm/s 的速度移动.设点P ,Q 同时出发,用()t s 表示移动的时间.【发现】AQ =________cm ,AP =________cm .(用含t 的代数式表示)【拓展】(1)如图①,当t =________s 时,线段AQ 与线段AP 相等?(2)如图②,点P ,Q 分别到达B ,A 后继续运动,点P 到达点C 后都停止运动.当t 为何值时,13AQ CP = 【探究】若点P ,Q 分别到达点B ,A 后继续沿若A B C D A ----的方向运动,当点P 与点Q 第一次相遇时,请写出相辿点的位莊并说明理由.洛阳市2022—2023学年第一学期期末考试七年级数学参考答案一、选择题:1-5:CDBAB 6-10:ADBCC二、填空题:11.两点之间,线段最短. 12.5 13.14010'︒ 14.80 15.17三、解答题:16.解:(1)原式1059612=+=+=;3分(2)原式9286243=-⨯+⨯+ 3分 184212=-++=-.5分17.解:原式22226352x y xy x y xy =--- 4分225x y xy =-,5分 ∵()2520x y ++-=∴50x +=,20y -=.∴5x =-,2y =.7分原式()()2252552150=-=-⨯-⨯=.9分18.解:(1)七月:()30004002600+-=元;八月:()26001002500+-=元 九月:()25005003000++=元;十月:()30003003300++=元;十一月:()33001003400++=元;十二月:()34005002900+-=元;3分 ∴存钱最多的是十一月,存钱最少的是八月.5分(2)截止到十二月份存折上共有:300026002500300033003400290020700++++++=(元).9分 19.解:(1)根据题意得:3243AD AB BD a b a b a b =+=+++=+;4分 (2)根据题意得:AC AB BC =+()()323a b a b a b +++-+⎡⎤⎣⎦6分323a b a b a b =+++--3a =.9分20.(1)解:∵6cm AC =,M 是AC 的中点,∴13cm 2AM MC AC ===. ∵10cm MB =,∴7cm BC MB MC =-=,2分 ∵N 为BC 的中点,∴1 3.5cm 2CN BC ==, ∴ 6.5cm MN MC CN =+=.4分 (2)如下图所示.∵M 是AC 中点,N 是BC 中点,∴12MC AC =,12NC BC =.6分 ∵cm AC BC b -=, ∴()()1111cm 2222MN MC NC AC BC AC BC b =-=-=-=.9分 21.解:(1)设当前参加生产的工人有x 人,由题意可得: ()50010500810x x ⨯=⨯+.2分解得:40x =.故当前参加生产的工人有40人;4分(2)设还需要生产y 天才能完成任务,780万7800000=,由题意可得: ()450010404010105007800000y ⨯⨯⨯++⨯⨯=,8分解得:28y =.故该车间还需要28天才能完成任务.10分22.解:(1)20︒;2分(2)2a ;5分 (3)成立,理由如下:设AOC α∠=,∴180180BOC AOC α∠=︒-∠=︒-. ∵OE 平分BOC ∠,∴119022COE BOC α∠=∠=︒-;8分 ∴1190909022DOE COE αα⎛⎫∠=︒-∠=︒-︒-= ⎪⎝⎭. ∴(2)中所求出的结论还成立.10分23.解:【发现】52t -,3n 2分【拓展】(1)1;4分(2)由题意,得()25cm AQ t =-,()153cm CP t =-, 所以()25153t t -=-,解得103t = 即当103t x =时,13AQ CP = 7分 【探究】解:点P 与点Q 第一次相遇在点C 处.理由如下:设点P 经过t 秒能追上Q 点.则根据题意列方程如下: 3225t t -=,解得25t =,9分∴点Q 走过的路程为:222550t =⨯=(cm )∴()503020cm -=,20cm DA AB BC ++=,则点P 与点Q 第一次相遇在点C 处.11分。

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案

洛阳市七年级上学期期末数学试题题及答案一、选择题1.4 =( )A.1 B.2 C.3 D.42.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D.1004006 x2x+=3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④4.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.6cm B.3cm C.3cm或6cm D.4cm5.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×26.当x=3,y=2时,代数式23x y-的值是()A.43B.2 C.0 D.37.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离8.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+9.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==10.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+112.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 15.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 20.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.21.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 22.数字9 600 000用科学记数法表示为 .23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 27.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?30.如图,数轴上有A , B两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)31.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.D解析:D 【解析】 【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程. 【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D . 【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.3.A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.4.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.5.A解析:A 【解析】 【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.6.A解析:A 【解析】 【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.7.A解析:A 【解析】 【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.8.D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.9.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.10.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.11.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.12.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键16.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′P F-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.17.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭ba b a a b a b a b a b=()()+⋅-+b a b a b a b b=1a b - 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.20.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x 的值.【详解】若经过一次输入结果得131,则5x +1=131,解得x =26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.21.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.22.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a |<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.23.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()+++++++=+x x x x x1771416x+.故答案为416【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3 =﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2=(3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°∴∠MEN =12×180°=90° (2)∵EN 平分∠AEF ,EM 平分∠BEG∴∠NEF =12∠AEF ,∠MEG =12∠BEG ∴∠NEF +∠MEG =12∠AEF +12∠BEG =12(∠AEF +∠BEG )=12(∠AEB ﹣∠FEG ) ∵∠AEB =180°,∠FEG =30° ∴∠NEF +∠MEG =12(180°﹣30°)=75° ∴∠MEN =∠NEF +∠FEG +∠MEG =75°+30°=105°(3)若点G 在点F 的右侧,∠FEG =2α﹣180°,若点G 在点F 的左侧侧,∠FEG =180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.27.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.28.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.29.(1)﹣4,6﹣5t ;(2)①当点P 运动5秒时,点P 与点Q 相遇;②当点P 运动1或9秒时,点P 与点Q 间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A ,然后根据B 在A 的左侧和它们之间的距离确定点B ,由点P 从点A 出发向左以每秒5个单位长度匀速运动,表示出点P 即可;(2)①由于点P 和Q 都是向左运动,故当P 追上Q 时相遇,根据P 比Q 多走了10个单位长度列出等式,根据等式求出t 的值即可得出答案;②要分两种情况计算:第一种是点P 追上点Q 之前,第二种是点P 追上点Q 之后.【详解】解:(1)∵数轴上点A 表示的数为6,∴OA =6,则OB =AB ﹣OA =4,点B 在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相30.(1)25遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】-,35解:(1)25(2)设运动时间为x秒13x2x2535+=+=解得x4-⨯=352427答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,-+=,∵25305∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.31.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).。

2021-2022学年河南省洛阳市七年级(上)期末数学试卷(解析版)

2021-2022学年河南省洛阳市七年级(上)期末数学试卷(解析版)

2021-2022学年河南省洛阳市七年级第一学期期末数学试卷一、选择题:(每题3分,共30分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.52.为了“决战脱贫攻坚决胜全面小康”,5年来河南省贫困地区交通基础设施累计完成投资1415.4亿元,其中1415.4亿用科学记数法表示为()A.1.4154×103B.1.4154×108C.1.4154×1011D.1.4154×10123.下列各式中,相等的是()A.23和32B.﹣(﹣2)和﹣|﹣2|C.(﹣2)3和|﹣2|3D.(﹣3)3和﹣334.如图是一个正方体纸盒的平面展开图,已知纸盒相对两个面上的数相等.则a、b、c的值分别是()A.a=﹣2,b=﹣1,c=3B.a=﹣1,b=3,c=﹣2C.a=3,b=﹣1,c=﹣2D.a=﹣1,b=﹣2,c=35.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.两点之间,线段最短B.两点确定一条直线C.两直线相交只有一个交点D.经过一点有无数条直线7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?“其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍.问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第二天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+x+2x=34685D.x+x+x=346858.在2022年1月份的月历表中,任意框出表中竖列上或者横行上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()日一二三四五六1 2345678910111213141516171819202122232425262728293031A.72B.60C.51D.409.如图,线段AB=24cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8cm B.12cm C.16cm D.20cm10.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为()A.(12n+7)km B.(12n+5)km C.(12n﹣7)km D.(12n﹣5)km 二、填空题:(每题3分,共15分)11.绝对值是2021的有理数是.12.若单项式﹣3a m b4是7次单项式,则m=.13.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.14.已知∠α的补角的度数为125°12',则∠α的余角的度数是.15.规定计算机按如图所示程序工作,如果输出的数是125,那么输入的自然数是.三、解答题:(共8小题,满分75分)16.计算:(1)﹣24﹣(﹣1)2021﹣|﹣9|;(2)﹣8×(﹣)2+(﹣)÷(﹣).17.作图题:(截取用圆规,并保留痕迹)如图,平面内有四个点A,B,C,D.根据下列语句画图:①画直线BC;②画射线AD交直线BC于点E;③连接BD,用圆规在线段BD的延长线上截取DF=BD;④在图中确定点O,使点O到点A,B,C,D的距离之和最小.18.先化简,再求值:5a2b﹣[3a2b﹣2(3abc﹣a2b)+4abc],其中a=,b=﹣2,c=﹣3.19.某电脑组装公司计划每天组装200台电脑,由于工作人员轮休等原因,实际每天组装量与计划组装量有所差异.下表反映的是上周每天实际组装数量(超产的台数为正数,减产的台数为负数):星期一二三四五六日增减(单位:台)+7﹣2﹣6+14﹣11+15﹣8(1)该车间星期三组装电脑台;(2)请求出该公司上周实际组装电脑的数量;(3)该公司实行“每日计件工资制”,每组装一台电脑可以得60元,若超额完成任务,则超过部分每台在60元基础上另奖15元;少组装一台则倒扣20元,那么该公司工人这一周的工资总额是多少元?20.如果关于x的方程4x﹣(3a+1)=6x+2a﹣1的解与方程的解相同,求字母a的值.21.列方程解应用题:某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一条裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要购买裤子30件,T恤x件(x>30):(1)按方案一、购买裤子和T恤共需付款元(用含x的式子表示);按方案二,购买裤子和T恤共需付款元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请直接写出该购买方案下共需付款数目.22.数轴体现了数形结合的数学思想,若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离表示为AB=|a﹣b|.如:点A表示的数为2,点B表示的数为3,则AB=|2﹣3|=1.问题提出:(1)填空:如图,数轴上点A表示的数为﹣2,点B表示的数为13,A、B两点之间的距离AB=线段AB的中点表示的数为.拓展探究:(2)若点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,同时点Q从点B 出发,以每秒2个单位长度的速度向左运动.设运动时间为t秒(t>0),①用含t的式子表示:t秒后,点P表示的数为;点Q表示的数为;②求当t为何值时,P,Q两点相遇,并写出相遇点所表示的数.类比延伸:(3)在(2)的条件下,如果P,Q两点相遇后按照原来的速度继续运动,当各自到达线段AB的端点后立即改变运动方向,并以原来的速度在线段AB上做往复运动,那么再经过多长时间P,Q两点第二次相遇,请直接写出所需要的时间和此时相遇点所表示的数.23.点O是直线AB上的一点,∠COD=90°,射线OE平分△BOC.(1)如图①,如果∠AOC=48°,依题意补全图形,求∠DOE度数;(2)将OD绕点O顺时针旋转一定的角度得到图②,使得OC在直线AB的上方,若∠AOC=α,其他条件不变,依题意补全图形,并求∠DOE的度数(用含α的代数式表示);(3)将OD绕点O继续顺时针旋转一周,回到图①的位置.在旋转过程中,你发现∠AOC与∠DOE(0°<∠AOC<180°,0°<∠DOE<180°)之间有怎样的数量关系?请直接写出你的发现.参考答案一、选择题:(每题3分,共30分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【分析】根据相反数的定义求解即可.解:﹣0.5的相反数是0.5,故选:A.2.为了“决战脱贫攻坚决胜全面小康”,5年来河南省贫困地区交通基础设施累计完成投资1415.4亿元,其中1415.4亿用科学记数法表示为()A.1.4154×103B.1.4154×108C.1.4154×1011D.1.4154×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:1415.4亿=141540000000=1.4154×1011.故选:C.3.下列各式中,相等的是()A.23和32B.﹣(﹣2)和﹣|﹣2|C.(﹣2)3和|﹣2|3D.(﹣3)3和﹣33【分析】依据有理数的乘方法则进行计算,即可得到正确选项.解:A.23=8,32=9,故不合题意;B.﹣(﹣2)=2,﹣|﹣2|=﹣2,故不合题意;C.(﹣2)3=﹣8,|﹣2|3=8,故不合题意;D.(﹣3)3=﹣33=﹣27,符合题意;故选:D.4.如图是一个正方体纸盒的平面展开图,已知纸盒相对两个面上的数相等.则a、b、c的值分别是()A.a=﹣2,b=﹣1,c=3B.a=﹣1,b=3,c=﹣2C.a=3,b=﹣1,c=﹣2D.a=﹣1,b=﹣2,c=3【分析】根据正方体的平面展开图找相对面的方法,“Z”字两端是对面判断即可.解:由题意得:a与﹣1相对,c与﹣2相对,b与3相对,∵纸盒相对两个面上的数相等,∴a=﹣1,c=﹣2,b=3,故选:B.5.下列变形错误的是()A.若a=b,则3+a=3+b B.若a=b,则ac=bcC.若ac=bc(c≠0),则a=b D.若a2=b2,则a=b【分析】根据等式的性质逐个判断即可.解:A.若a=b,则3+a=3+b,故本选项不符合题意;B.若a=b,则ac=bc,故本选项不符合题意;C.若ac=bc,当c≠0时,a=b,故本选项符合题意;D.若a2=b2,则a=b或a=﹣b,故本选项符合题意;故选:D.6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.两点之间,线段最短B.两点确定一条直线C.两直线相交只有一个交点D.经过一点有无数条直线【分析】利用线段的性质解答即可.解:A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B 两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是两点之间,线段最短,故选:A.7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?“其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍.问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第二天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+x+2x=34685D.x+x+x=34685【分析】设他第二天读x个字,根据题意可得第一天读了x个字,第三天读了2x个字,再由条件“共有34685个字”列出方程即可.解:他第二天读x个字,根据题意可得:x+x+2x=34685,故选:C.8.在2022年1月份的月历表中,任意框出表中竖列上或者横行上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()日一二三四五六1 2345678910111213141516171819202122232425262728293031A.72B.60C.51D.40【分析】一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是3x,因而这三个数的和一定是3的倍数;一横行上相邻的三个数的关系是:左面的数总是比右面的数小1.可设中间的数是x,则左面的数是x﹣1,右面的数是x+1.则这三个数的和是3x,因而这三个数的和一定是3的倍数.解:①框出表中竖列上相邻的三个数,设中间的数是x,则上面的数是x﹣7,下面的数是x+7.则这三个数的和是(x﹣7)+x+(x+7)=3x,当3x=72时,x=24,这三个数分别是17、24、31,故不符合题意;当3x=60时,x=20,这三个数分别是13、20、27,故不符合题意;当3x=51时,x=17,这三个数分别是10、17、24,故不符合题意;当3x=40时,x不是正整数,故符合题意;②框出表中横行上相邻的三个数,设中间的数是x,则左面的数是x﹣1,右面的数是x+1.则这三个数的和是(x﹣1)+x+(x+1)=3x,因而这三个数的和一定是3的倍数..当3x=72时,x=24,这三个数分别是23、24、25,故不符合题意;当3x=60时,x=20,这三个数分别是13、20、27,故不符合题意;当3x=51时,x=17,这三个数分别是16、17、18,故不符合题意;当3x=40时,x不是正整数,故符合题意;故选:D.9.如图,线段AB=24cm,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8cm B.12cm C.16cm D.20cm【分析】根据AB=24cm,C为AB的中点,可计算出AC=BC的长度,根据AD:CB=1:3,可得AD=CB,即可计算出CD的长度,再根据DB=CD+CB计算即可得出答案.解:∵AB=24cm,C为AB的中点,∴==12(cm),∵AD:CB=1:3,∴AD=CB==4(cm),∴CD=AC﹣AD=12﹣4=8(cm),∴DB=CD+CB=8+12=20(cm).故选:D.10.如图,A,B两地之间有一条东西走向的道路.在A地的东边5km处设置第一个广告牌,之后每往东12km就设置一个广告牌.一辆汽车从A地出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为()A.(12n+7)km B.(12n+5)km C.(12n﹣7)km D.(12n﹣5)km 【分析】根据题意和图形,可以用代数式表示出这辆汽车行驶的路程,本题得以解决.解:由题意可得,一汽车在A地出发,沿此道路向东行驶.当经过第n个广告牌时,此车所行驶的路程为:5+12(n﹣1)=(12n﹣7)km,故选:C.二、填空题:(每题3分,共15分)11.绝对值是2021的有理数是±2021.【分析】根据绝对值的性质解答即可.解:绝对值是2021的有理数是±2021.故答案为:±2021.12.若单项式﹣3a m b4是7次单项式,则m=3.【分析】根据单项式的定义判断即可.解:由题意得:m+4=7,∴m=3,故答案为:3.13.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为4元.【分析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.14.已知∠α的补角的度数为125°12',则∠α的余角的度数是35°12′.【分析】由补角的定义可得出∠α的度数,再根据余角的定义,用90°﹣∠α的度数即可.解:∵180°﹣125°12'=54°48′,∴90°﹣54°48′=35°12′.故答案为:35°12′.15.规定计算机按如图所示程序工作,如果输出的数是125,那么输入的自然数是11或30.【分析】根据程序图列式计算.解:当输出的数为125时,125÷5+5=25+5=30,30÷5+5=6+5=11,11不能被5整除,∴输入的自然数是11或30,故答案为:11或30.三、解答题:(共8小题,满分75分)16.计算:(1)﹣24﹣(﹣1)2021﹣|﹣9|;(2)﹣8×(﹣)2+(﹣)÷(﹣).【分析】(1)原式先算乘方及绝对值,再算加减即可得到结果;(2)原式先算乘方,再算乘法,最后算加减即可得到结果.解:(1)原式=﹣16﹣(﹣1)﹣9=﹣16+1﹣9=﹣15﹣9=﹣24;(2)原式=﹣8×+(﹣)×(﹣24)=﹣2+×(﹣24)﹣×(﹣24)=﹣2﹣16+15=﹣3.17.作图题:(截取用圆规,并保留痕迹)如图,平面内有四个点A,B,C,D.根据下列语句画图:①画直线BC;②画射线AD交直线BC于点E;③连接BD,用圆规在线段BD的延长线上截取DF=BD;④在图中确定点O,使点O到点A,B,C,D的距离之和最小.【分析】①根据直线定义即可画直线BC;②根据射线定义即可画射线AD交直线BC于点E;③根据线段定义连接BD,用圆规在线段BD的延长线上截取DF=BD即可;④根据两点之间线段最短即可在图中确定点O,使点O到点A,B,C,D的距离之和最小.解:①如图,直线BC即为所求;②如图,射线AD,点E即为所求;③如图,线段BD,线段DF即为所求;④如图,点O即为所求.18.先化简,再求值:5a2b﹣[3a2b﹣2(3abc﹣a2b)+4abc],其中a=,b=﹣2,c=﹣3.【分析】原式去括号,合并同类项进行化简,然后代入求值.解:原式=5a2b﹣(3a2b﹣6abc+2a2b+4abc)=5a2b﹣3a2b+6abc﹣2a2b﹣4abc=2abc,当a=,b=﹣2,c=﹣3时,原式=2××(﹣2)×(﹣3)=2×××3=8.19.某电脑组装公司计划每天组装200台电脑,由于工作人员轮休等原因,实际每天组装量与计划组装量有所差异.下表反映的是上周每天实际组装数量(超产的台数为正数,减产的台数为负数):星期一二三四五六日增减(单位:台)+7﹣2﹣6+14﹣11+15﹣8(1)该车间星期三组装电脑194台;(2)请求出该公司上周实际组装电脑的数量;(3)该公司实行“每日计件工资制”,每组装一台电脑可以得60元,若超额完成任务,则超过部分每台在60元基础上另奖15元;少组装一台则倒扣20元,那么该公司工人这一周的工资总额是多少元?【分析】(1)根据星期三实际每天生产量比计划量少6台,可得结论;(2)根据每天组装200台电脑,超产记为正、减产记为负,即可解题;(3)根据这一周的生产量情况即可解题.解:(1)200﹣6=194(台).该车间星期三组装电脑194台;故答案为:194;(2)200×7+(7﹣2﹣6+14﹣11+15﹣8)=1400+9=1409(台),答:该公司上周实际组装电脑1409台;(3)1409×60+(7+14+15)×15﹣(2+6+11+8)×20=84540+540﹣540=84540(元),答:该公司工人这一周的工资总额是84540元.20.如果关于x的方程4x﹣(3a+1)=6x+2a﹣1的解与方程的解相同,求字母a的值.【分析】分别求解两个方程,再由同解方程可得﹣a=10,即可求a的值.解:4x﹣(3a+1)=6x+2a﹣1,4x﹣3a﹣1=6x+2a﹣1,﹣2x=5a,x=﹣a,,2(x﹣4)﹣48=﹣3(x+2),2x﹣8﹣48=﹣3x﹣6,5x=50,x=10,∵两个方程的解相同,∴﹣a=10,∴a=﹣4.21.列方程解应用题:某服装批发商促销一种裤子和T恤,在促销活动期间,裤子每件定价100元,T恤每件定价50元,并向客户提供两种优惠方案:方案一:买一条裤子送一件T恤;方案二:裤子和T恤都按定价的80%付款.现某客户要购买裤子30件,T恤x件(x>30):(1)按方案一、购买裤子和T恤共需付款(50x+1500)元(用含x的式子表示);按方案二,购买裤子和T恤共需付款(40x+2400)元(用含x的式子表示);(2)计算一下,购买多少件T恤时,两种优惠方案付款一样?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?若能,请直接写出该购买方案下共需付款数目.【分析】(1)根据已知,分方案一、方案二分别列出代数式即可;(2)根据(1)中的代数式列方程,即可解得答案;(3)用方案一购买裤子30件,送T恤30件,再用方案二购买10件T恤,即可得到共需付款数目.解:(1)购买裤子30件,T恤x件,按方案一共需付款100×30+50(x﹣30)=(50x+1500)元,按方案二共需付款30×100×80%+50x×80%=(40x+2400)元,故答案为:(50x+1500),(40x+2400);(2)根据题意得:50x+1500=40x+2400,解得x=90,答:购买90件T恤时,两种优惠方案付款一样;(3)能给出一种更为省钱的购买方案:用方案一购买裤子30件,送T恤30件,再用方案二购买10件T恤,共需付款30×100+50×(40﹣30)×80%=3400(元),∴共需付款3400元.22.数轴体现了数形结合的数学思想,若数轴上点A,B表示的数分别为a,b,则A,B两点之间的距离表示为AB=|a﹣b|.如:点A表示的数为2,点B表示的数为3,则AB=|2﹣3|=1.问题提出:(1)填空:如图,数轴上点A表示的数为﹣2,点B表示的数为13,A、B两点之间的距离AB=15线段AB的中点表示的数为.拓展探究:(2)若点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,同时点Q从点B 出发,以每秒2个单位长度的速度向左运动.设运动时间为t秒(t>0),①用含t的式子表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为13﹣2t;②求当t为何值时,P,Q两点相遇,并写出相遇点所表示的数.类比延伸:(3)在(2)的条件下,如果P,Q两点相遇后按照原来的速度继续运动,当各自到达线段AB的端点后立即改变运动方向,并以原来的速度在线段AB上做往复运动,那么再经过多长时间P,Q两点第二次相遇,请直接写出所需要的时间和此时相遇点所表示的数.【分析】(1)由A表示的数为﹣2,点B表示的数为13,即得AB=15,线段AB的中点表示的数为;(2)①t秒后,点P表示的数为﹣2+3t,点Q表示的数为13﹣2t;②根据题意得:﹣2+3t=13﹣2t,即可解得t=3,相遇点所表示的数为﹣2+3×3=7;(3)由已知返回途中,P表示的数是13﹣3(t﹣5),Q表示的数是﹣2+2(t﹣),即得:13﹣3(t﹣5)=﹣2+2(t﹣),可解得t=9,第二次相遇点所表示的数为:13﹣3×(9﹣5)=1.解:(1)∵A表示的数为﹣2,点B表示的数为13,∴AB=|13﹣(﹣2)|=15,线段AB的中点表示的数为=,故答案为:15,;(2)①t秒后,点P表示的数为﹣2+3t,点Q表示的数为13﹣2t,故答案为:﹣2+3t,13﹣2t;②根据题意得:﹣2+3t=13﹣2t,解得t=3,相遇点所表示的数为﹣2+3×3=7,答:当t为3时,P,Q两点相遇,相遇点所表示的数是7;(3)由已知得:P运动5秒到B,Q运动秒到A,返回途中,P表示的数是13﹣3(t﹣5),Q表示的数是﹣2+2(t﹣),根据题意得:13﹣3(t﹣5)=﹣2+2(t﹣),解得t=9,第二次相遇点所表示的数为:13﹣3×(9﹣5)=1,答:所需要的时间为9秒,相遇点所表示的数是1.23.点O是直线AB上的一点,∠COD=90°,射线OE平分△BOC.(1)如图①,如果∠AOC=48°,依题意补全图形,求∠DOE度数;(2)将OD绕点O顺时针旋转一定的角度得到图②,使得OC在直线AB的上方,若∠AOC=α,其他条件不变,依题意补全图形,并求∠DOE的度数(用含α的代数式表示);(3)将OD绕点O继续顺时针旋转一周,回到图①的位置.在旋转过程中,你发现∠AOC与∠DOE(0°<∠AOC<180°,0°<∠DOE<180°)之间有怎样的数量关系?请直接写出你的发现.【分析】(1)根据邻补角的定义,角平分线的定义以及角的和差即可得到结论;(2)根据邻补角的定义,角平分线的定义以及角的和差即可得到结论;(3)根据邻补角的定义,角平分线的定义以及角的和差即可得到结论.解:(1)补全图形如图1所示;∵∠AOC+∠BOC=180°,∠AOC=48°,∴∠BOC=132°;∵OE平分∠BOC,∴∠COE=66°,∵OD⊥OC,∴∠COD=90°,∵∠COD=90°,∠COE=66°,∴∠DOE=24°;(2)补全图形如图2所示;∵∠AOC=α,∴∠BOC=180°﹣α,∵射线OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=90°﹣∠COE=;(3)如图1,∠DOE=∠AOC,如图2,∵∠DOE=90°﹣∠BOC,∠AOC=180°﹣∠BOC,∴∠DOE=∠AOC,故∠AOC与∠DOE之间的数量关系为∠DOE=∠AOC.。

洛阳市初一上学期数学期末试卷带答案

洛阳市初一上学期数学期末试卷带答案

洛阳市初一上学期数学期末试卷带答案一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .3 3.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5925.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③B .①②C .②④D .③④ 6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( )A .﹣7B .﹣1C .9D .77.方程3x +2=8的解是( )A .3B .103C .2D .128.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .9.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D . 10.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人 11.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15012.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.|-3|=_________;15.化简:2xy xy +=__________.16.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.17.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.|﹣12|=_____. 20.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.21.已知一个角的补角是它余角的3倍,则这个角的度数为_____.22.钟表显示10点30分时,时针与分针的夹角为________.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、解答题25.解方程:(1)312x +=-(2)62123x x --=- 26.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 27.如图,//AB CD ,60A ∠=︒,C E ∠=∠,求E ∠.28.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)根据图表解答下列问题(1)这段时间内产生的厨余垃圾有多少吨?(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?29.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.30.设A =3a 2+5ab +3,B =a 2﹣ab .(1)化简;A ﹣3B .(2)当a 、b 互为倒数时,求A ﹣3B 的值.四、压轴题31.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?33.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.C解析:C【解析】【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可.【详解】解:∵ 2.5-<1-<0<3,∴最小的数是 2.5-,故选:C .【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.3.B解析:B【解析】【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数.【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数,点A 表示的数是a ,所以B 表示的数为-a ,又因为BC AB =,所以点C 表示的数为3a -.故选B.【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.4.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.6.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x=,化系数为1得:2x=,故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.9.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.10.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.11.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离. 解:2﹣(﹣1)=3.故答案为3考点:数轴.14.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.15..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.16.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.17.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.18.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.21.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.22.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°. 解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°. 解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 23.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、解答题25.(1)1x =-;(2)6x =.【解析】【分析】(1)根据题意进行移项、系数化为1解出x 值即可;(2)根据题意进行去分母,移项、合并同类型、系数化为1解出x 值即可.【详解】解:(1) 312x +=-移项得:33x =-解得:1x =- (2) 62123x x --=- 去分母得:6424x x --=-移项得:318x -=-解得:6x =.【点睛】本题考查的是解一元一次方程的问题,解题关键在于对解方程步骤的理解:去分母、移项、合并同类项、系数化为1解出x 值即可.26.2x y -,3.【解析】【分析】先去括号,再根据合并同类项法则合并出最简结果,把x 、y 的值代入求值即可.【详解】 原式222334322x xy x xy y x y =--+-=- 将2x =-,1y =代入得:原式2(2)13=--=【点睛】本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.27.30°.【解析】【分析】依据平行线的性质,即可得到∠DOE =60°,再根据三角形外角性质,即可得到∠E 的度数.【详解】解:∵AB ∥CD ,∠A =60°,∴∠DOE =∠A =60°,又∵∠C =∠E ,∠DOE =∠C+∠E ,∴∠E =12∠DOE =30°. 【点睛】 本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.28.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同【解析】【分析】(1)求出样本容量,进而求出厨余垃圾的吨数;(2)A 部分由400吨,总数量为800吨,求出所占的百分比,C 部分占整体的40800,因此C 部分所在的圆心角的度数为360°的40800. (3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,答:厨余垃圾有280吨;(2)400÷800=50%,360°×40800=18°, 答:在扇形统计图中,A 部分所占的百分比是50%,C 部分所对应的圆心角度数是18°. (3)80÷40=2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.【点睛】考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.29.-34.【解析】【分析】根据非负数之和为0,则每个非负数都为0,解出a ,b 的值,然后将x=-1代入方程求出c 的值,最后将代数式化简,代入数据求值.【详解】解:因为2(1)|2|0++-=a b ,(a+1)2 ≥0,|2|0-≥b所以a+1=0,b-2=0解得:a=-1,b=2因为关于x 的方程2x+c=1的解为-1所以2×(-1)+c=1 ,解得c=3因为8abc -2a 2b -(4ab 2-a 2b)=8abc-2a 2b-4ab 2+a 2b=8abc-a 2b-4ab 2把a=-1,b=2,c=3代入代数式8abc-a 2b-4ab 2中,得8×(-1)×2×3-(-1)2×2-4×(-1)×22=-48-2-(-16)=-34.【点睛】本题考查非负数的性质,一元一次方程的解,以及代数式化简求值,熟记非负数的性质求出a、b的值是解题的关键.30.(1)8ab+3;(2)11【解析】【分析】(1)把A与B代入A﹣3B中,然后进行化简即可;(2)根据倒数的性质可得ab=1,然后代入计算即可.【详解】解:(1)∵A=3a2+5ab+3,B=a2﹣ab,∴A﹣3B=3a2+5ab+3﹣3a2+3ab=8ab+3;(2)由a,b互为倒数,得到ab=1,则A﹣3B=8+3=11.【点睛】本题考查了整式的化简求值,灵活运用四则运算法则是解答本题的关键.四、压轴题31.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.32.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P 、Q 同时出发,13或17秒时P 、Q 之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。

洛阳市初一上学期数学期末试卷带答案

洛阳市初一上学期数学期末试卷带答案
(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.
30.若2a﹣b=4,则整式4a﹣2b+3的值是____、B两点表示的数分别为 和 ( ),则线段AB的长(点A到点B的距离)可表示为AB= .
请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.
33.结合数轴与绝对值的知识解决下列问题:
探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;
结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.
直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;
灵活应用:
(1)请你在图②的数轴上表示出P,Q两点的位置;
(2)若将图②中的点P向左移动 cm,点Q向右移动 cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含 的代数式表示);
(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为 (秒),当 为多少时PQ=2cm?
22.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.
23.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省洛阳市2017-2018学年七年级(上)期末数学试卷(解析版)一、选择题(本大题共8小题,每小题3分,共24分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.2.下列比较大小正确的是()A.﹣(﹣3)>﹣|﹣3|B.(﹣2)3>(﹣2)2C.(﹣3)3>(﹣2)3D.<3.一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y4.国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c|C.|a|>|b|D.abc<07.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+68.有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2二、填空题(本大题共7小题,每小题3分,共21分)9.在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是.10.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=.11.如图是一个数值转换器,若输入x的值是﹣5,则输出的值是12.已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.13.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为.14.已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为.15.观察下列有规律的数:,,,,,…根据规律可知第n个数是(n 是正整数).三、解答题(本大题共8小题,共75分)16.(8分)计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].17.(8分)先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.18.(8分)解方程:(x+15)=﹣(x﹣7)19.(8分)如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:.20.(10分)已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.21.(10分)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.22.(11分)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?23.(12分)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是秒.2017-2018学年河南省洛阳市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.|﹣2|的相反数为()A.﹣2 B.2 C.D.【考点】14:相反数;15:绝对值.【分析】利用相反数,绝对值的概念及性质进行解题即可.【解答】解:∵|﹣2|=2,∴|﹣2|的相反数为:﹣2.故选A.【点评】此题主要考查了相反数,绝对值的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;求出|﹣2|=2,再利用相反数定义是解决问题的关键.2.下列比较大小正确的是()A.﹣(﹣3)>﹣|﹣3|B.(﹣2)3>(﹣2)2 C.(﹣3)3>(﹣2)3 D.<【考点】18:有理数大小比较.【分析】求出每个式子的值,再根据求出的结果判断即可.【解答】解:A、∵﹣(﹣3)=3,﹣|﹣3|=﹣3,∴﹣(﹣3)>﹣|﹣3|,故本选项正确;B、∵(﹣2)3=﹣8,(﹣2)2=4,∴(﹣2)3<(﹣2)2,故本选项错误;C、∵(﹣3)3=﹣27,(﹣2)3=﹣8,∴(﹣3)3<(﹣2)3,故本选项错误;D、∵|﹣|=,|﹣|=,∴﹣>﹣,故本选项错误;故选A.【点评】本题考查了有理数的大小比较,相反数,绝对值,有理数的乘方等知识点的应用,主要考查学生的计算能力和辨析能力.3.一个两位数,十位上的数字是x,个位上的数字是y,把这个两位数十位上数字与个位上数字调换位置后的两位数用代数式表示为()A.yx B.xy C.10y+x D.10x+y【考点】32:列代数式.【分析】根据题意可以用相应的代数式表示出调换位置后的两位数.【解答】解:由题意可得,调换位置后的两位数是:10y+x,故选C.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.4.国家统计局的相关数据显示,2015年我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.67.67×1012元D.6.767×1014元【考点】1I:科学记数法—表示较大的数.【分析】首先把67.67万亿化为676700亿,再用科学记数法表示676700亿,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A.b+c<0 B.|b|<|c|C.|a|>|b|D.abc<0【考点】13:数轴.【分析】根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=﹣2,b=0,c=2,则b+c>0,故选项A错误;如果a=﹣2,b=﹣1,c=0,则|b|>|c|,故选项B错误;如果a=﹣2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选C.【点评】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.7.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6【考点】4G:平方差公式的几何背景.【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.【点评】本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.8.有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2 C.50x+10=52x+2 D.50x﹣10=52x+2【考点】89:由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:由题意可得,50x+10=52x﹣2,故选B.【点评】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.二、填空题(本大题共7小题,每小题3分,共21分)9.在“﹣(﹣1),﹣0.3,+,0,﹣3.3”这五个数中,非负有理数的个数是3.【考点】12:有理数.【分析】根据大于或等于零的有理数是非负有理数,可得答案.【解答】解:﹣(﹣1)=1,+,0是非负有理数,故答案为:3.【点评】本题考查了有理数,利用非负有理数的定义是解题关键.10.若代数式3a5b m+1与﹣2a n b2是同类项,那么m+n=6.【考点】34:同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m 的值,再代入代数式计算即可.【解答】解:根据题意得:n=5,m+1=2,解得:m=1,则m+n=5+1=6.故答案是:6.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11.如图是一个数值转换器,若输入x的值是﹣5,则输出的值是﹣12【考点】1G:有理数的混合运算.【分析】首先用﹣5的平方减去1,求出差是多少;然后用所得的差除以﹣2,求出输出的值是多少即可.【解答】解:[(﹣5)2﹣1]÷(﹣2)=(25﹣1)÷(﹣2)=24÷(﹣2)=﹣12故答案为:﹣12.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.12.已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.【考点】85:一元一次方程的解.【分析】把x=2代入方程计算即可求出a的值.【解答】解:把x=2代入方程得:3a=a+2,解得:a=.故答案为:.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.已知线段AB,延长AB到C,使BC=AB,D为AC的中点,若AB=9cm,则DC的长为6cm.【考点】IE:比较线段的长短.【分析】因为BC=AB,AB=9cm,可求出BC的长,从而求出AC的长,又因为D为AC的中点,继而求出答案.【解答】解:∵BC=AB,AB=9cm,∴BC=3cm,AC=AB+BC=12cm,又因为D为AC的中点,所以DC=AC=6cm.故答案为:6cm.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.14.已知:如图,OB是∠AOC的角平分线,OC是∠AOD的角平分线,∠AOB=35°,那么∠BOD的度数为105°.【考点】IJ :角平分线的定义.【分析】利用角平分线的性质得出∠COB=∠AOB ,∠DOC=∠AOC ,进而得出∠DOC 的度数进而得出答案.【解答】解:∵OB 是∠AOC 的角平分线,OC 是∠AOD 的角平分线,∴∠COB=∠AOB ,∠DOC=∠AOC ,∵∠AOB=35°,∴∠BOC=35°,∴∠DOC=∠AOC=70°,∴∠BOD=70°+35°=105°.故答案为:105°.【点评】此题主要考查了角平分线的性质,正确得出∠DOC 的度数是解题关键.15.观察下列有规律的数:,,,,,…根据规律可知第n 个数是 (n 是正整数). 【考点】37:规律型:数字的变化类. 【分析】分子都是1,分母拆成两个连续自然数的乘积,可得规律.【解答】解:∵第1个数=,第2个数=,第3个数=,第4个数=, …∴第n 个数为,故答案为:.【点评】此题考查数字的变化规律,解题的关键是根据所给出的数据找出之间的运算规律,利用规律解决问题.三、解答题(本大题共8小题,共75分)16.计算:(1)(﹣56)+(+7)+150+(+93)+(﹣44).(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].【考点】1G:有理数的混合运算.【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和括号里面的运算,然后计算除法和乘法,最后计算减法和加法即可.【解答】解:(1)(﹣56)+(+7)+150+(+93)+(﹣44)=﹣49+150+93﹣44=150(2)﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2]=2﹣(﹣0.5)+(﹣8)=﹣5.5【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.17.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【考点】45:整式的加减—化简求值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1 时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.解方程:(x+15)=﹣(x﹣7)【考点】86:解一元一次方程.【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:6(x+15)=15﹣10(x﹣7),去括号得:6x+90=15﹣10x+70,移项合并得:16x=﹣5,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.如图,货轮O航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A,同时在它的南偏东30°方向上,与之相距20海里处发现货轮B,在它的西南方向上发现客轮C.按下列要求画图并回答问题:(1)画出线段OB;(2)画出射线OC;(3)连接AB交OE于点D;(4)写出图中∠AOD的所有余角:∠AON,∠BOD.【考点】IH:方向角.【分析】(1)根据方向角的定义即可作出;(2)根据方向角定义即可作出;(3)作线段AB,AB和OE的交点就是D;(4)根据余角的定义即可解答.【解答】解:(1)如图;(2)如图;(3)如图;(4)∠AOD 的所有余角是:∠AON ,∠BOD .故答案是:∠AON ,∠BOD .【点评】本题考查了方向角的定义,理解定义是本题的关键.20.(10分)(2016秋•洛阳期末)已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.【考点】ID :两点间的距离.【分析】分类讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案.【解答】解:当点C 在线段AB 上时,由点M 、N 分别是AC 、BC 的中点,得MC=AC=×8cm=4cm ,CN=BC=×6cm=3cm ,由线段的和差,得MN=MC +CN=4cm +3cm=7cm ;当点C 在线段AB 的延长线上时,由点M 、N 分别是AC 、BC 的中点,得MC=AC=×8cm=4cm ,CN=BC=×6cm=3cm .由线段的和差,得MN=MC ﹣CN=4cm ﹣3cm=1cm ;即线段MN 的长是7cm 或1cm .【点评】本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.21.(10分)(2016秋•洛阳期末)已知如图,∠BOC与∠AOB互为补角,OD平分∠AOB,若∠COD=21°,求∠BOC的大小.【考点】IL:余角和补角;IJ:角平分线的定义.【分析】设∠BOC=x,根据互补的定义得出∠AOB=180°﹣x.根据角平分线的定义得出∠AOB=2∠BOD=2(x+21°),那么180°﹣x=2(x+21°),解方程即可.【解答】解:设∠BOC=x,∵∠BOC与∠AOB互为补角,∴∠AOB=180°﹣x.∵OD平分∠AOB,∠COD=21°,∴∠AOB=2∠BOD=2(∠BOC+∠COD)=2(x+21°),∴180°﹣x=2(x+21°),∴x=46°,即∠BOC是46°.【点评】本题考查了互补的定义:如果两个角的和等于180°,就说这两个角互为补角.即其中一个角是另外一个角的补角.也考查了角平分线的定义.22.(11分)(2016秋•洛阳期末)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款180元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?【考点】8A:一元一次方程的应用.【分析】(1)按活动规定实际付款=商品的总价×0.9,依此列式计算即可求解;(2)可设第2次购物商品的总价是x元,根据等量关系:小丽第2次购物花费490元,列出方程求解即可;(3)先得到两次购得的商品的总价,再根据促销活动活动规则列式计算即可求解.【解答】解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.23.(12分)(2016秋•洛阳期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=120度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是6或24秒.【考点】IK:角的计算.【分析】(1)根据OM恰好平分∠BOC,用∠BOC的度数除以2,求出∠BOM的度数,即可求出∠AOM的度数是多少.(2)首先根据∠AOM﹣∠NOC=30°,∠BOC=120°,求出∠A0C=60°,然后根据∠AON=90°﹣∠AOM=60°﹣∠NOC,判断出∠AOM与∠NOC之间满足什么等量关系即可.(3)首先设三角板绕点O旋转的时间是x秒,根据∠BOC=120°,可得∠AOC=60°,∠BON=∠COD=30°;然后根据旋转60°时ON平分∠AOC,可得10x=60或10x=240,据此求出x的值是多少即可.【解答】解:(1)∵OM恰好平分∠BOC,∴∠BOM=120°÷2=60°,∴∠AOM=180°﹣120°=60°.(2)如图3,,∠AOM﹣∠NOC=30°,∵∠BOC=120°,∴∠A0C=60°,∵∠AON=90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°.(3)设三角板绕点O旋转的时间是x秒,∵∠BOC=120°,∴∠AOC=60°,∴∠BON=∠COD=30°,∴旋转60°时ON平分∠AOC,∵10x=60或10x=240,∴x=6或x=24,即此时三角板绕点O旋转的时间是6或24秒.故答案为:120、6或24.【点评】此题主要考查了角的计算,考查了分类讨论思想的应用,以及角平分线的性质和应用,要熟练掌握.。

相关文档
最新文档