2008-2010三年中考数学经典真题题库2、整式的加减(含答案)
2008、2009、2010年河北中考数学试题及详细答案)
2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(08河北)8-的倒数是( ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则 到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正图1图2 图3方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则2_____∠=.12.(08河北)当x = 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= . 14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则______C ∠=.15.(08河北)某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分3 4 5 6 7 8 9 10图4 x x x 图5-1 图5-2 图5-3 …12 ba图6 c 图7人数1 12 2 8 9 15 12 则这些学生成绩的众数为 . 16.(08河北)图8每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m 18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.图13-1 图13-2图13-325.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是A C AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).A (E )BC (F ) PlllB FC 图14-1图14-2图14-3(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC 上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图152008年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DBBCAAC BDC二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD = ,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,200C -;图1(2)过点C 作CD OA ⊥于点D ,如图2,则CD =. 在Rt ACD △中,30ACD ∠=,CD =,cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=.又AC BC ⊥ ,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠./kmlAB FC Q 图3M12 34 EP在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠= .90QMA ∴∠= .BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠=,45CPQ ∴∠= . 又AC BC ⊥ ,45CQP CPQ ∴∠=∠= .CQ CP ∴=. 在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠= ,90APC PBN ∴∠+∠= .90PNB ∴∠= . QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, lABQP EF 图4N C将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w > 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)E B图5B图6E B图7B图8B 图9图32009年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上;考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答在试卷上无效.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( ) A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )BAC D图1A 图24=1+3 9=3+616=6+10图7…A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )AmB .4 m C. mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+312009年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅱ(非选择题,共96分)ADCB图6图5图4注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.图9图8电视机月销量扇形统计图第一个月 15%第二个月 30% 第三个月 25%第四个月图11-120.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m , OE ⊥CD 于点E .已测得sin ∠DOE = 1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y ax bx =+经过(33)A --,和点P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A ,如图12,请通过观察图象,指出此时y 的最小值,并写出t 的值;(2)若4t =-,求a 、b 方向;O图10电视机月销量折线统计图图12(3)直.接.写出使该抛物线开口向下的t 的一个值. 23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周. (2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在 阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 ⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.图13-4图13-1AB图13-2单位:cm24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图14-1AHC (M )DEBFG (N )G图14-2AHCDBFNMAHCD图14-3BFG MN设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC (2)在点P 从C 向A 运动的过程中,求△APQ t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图162009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1;17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品/月图1第一 第二 第三 第四 电视机月销量折线统计图牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .AHCDBFG NMP∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3. (2)由题意,得2240x y +=, ∴11202y x =-.23180x z +=,∴2603z x =-. (3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.图4P图3F由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】图52010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是AB CD图2 ABC40°120°图1图3A B D 0C10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是 A .7 B .8C .9D .1011.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2)C .(3,3)D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为 . 15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高图7图8 图4图6-1 图6-2AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π).18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角甲校成绩统计表图10-1图10-2图11-1乙校成绩扇形统计图 图12-1等于 °.(2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上; (3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以 左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且 PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研乙校成绩条形统计图图12-2。
2008-2010三年中考数学经典真题试题库3答案
整式的乘除与因式分解要点一:幂的运算性质一、选择题1、(2010·义乌中考)28 cm 接近于( C )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度2、(2009 ·新疆中考)下列运算正确的是( A ).A .2a a a =4a ∙46a a a =B .257()x x =C .23y y y ÷=D .22330ab a b -=3、 (2009·东营中考)计算()4323b a --的结果是( D ).(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -4、(2010·杭州中考)1. 计算 (– 1)2 + (– 1)3 = (C ).A.– 2B. – 1C. 0D. 25、(2009·南充中考)化简123()x x -⨯的结果是( C )A .5xB .4xC .xD .1x6、(2009·哈尔滨中考)下列运算正确的是( C ).A .3a 2-a 2=3B .(a 2)3=a 5C .a 3.a 6=a 9D .(2a )2=2a 27、(2009·崇左中考)下列运算正确的是( A )A .224236x x x =·B .22231x x -=-C .2222233x x x ÷= D .224235x x x += 8、(2009·包头中考)下列运算中,正确的是( C )A .2a a a +=B .22a a a ⨯=C .22(2)4a a =D .325()a a =9、(2009·太原中考)下列计算中,结果正确的是(C )A .236a a a =·B .()()26a a a =·3 C .()326a a = D .623a a a ÷= 10. (2009·襄樊中考)下列计算正确的是( D )A .236a a a =·B .842a a a ÷=C .325a a a +=D .()32628aa =11、 (2009·泰安中考)若的值为则2y -x 2,54,32==y x ( A ).A.53B.-2C. 553 D.56 二、填空题12、(2009·威海中考)计算10(23)1)---的结果是___0______.13、(2009·齐齐哈尔中考)已知102103m n ==,,则3210m n +=_____72_______. 14、(2008·恩施中考)计算32()a -= a 6 .15、(2008·荆门中考)()322x -= _________8x 6__.16、(2007·泉州中考)计算:(103)2= 10 6 。
2008-2010中考数学经典真题题库2、整式的加减(含答案)
2、整式的加减要点一:列代数式表示数量关系 一、选择题1.(2008·镇江中考)用代数式表示―a 的3倍与b 的差的平方‖,正确的是( )A.2(3)a b -B.23()a b -C.23a b - D.2(3)a b -【解析】选A.B 项表示a 与b 差的平方的3倍,C 项表示a 的3倍与b 的平方的差,D 项表示a 与b 的3倍差的平方2.(2009·山西中考)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2mD .2n答案:选A3.(2010·常德中考)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在―十一五规划‖中提出―到2010年全年GDP 过千亿元‖的目标.如果按此增长速度,那么我市今年的GDP 为( )A.1050×(1+13.2%)2B.1050×(1-13.2%)2C.1050×(13.2%)2D.1050×(1+13.2%)【解析】选A 。
根据题中的各量之间的相等关系可以得出我市今年的GDP 为1050×(1+13.2%)2 。
4.(2009·眉山中考)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( ) A .1019a b +B .1019a b -C .1017a b -D .1021a b -【解析】选B.观察式子得第几个式子a 的指数就是几,第奇数个式子―+‖,第偶数个式子―-‖,ba 的指数是a 的指数的2倍少1,因此第10个式子是1019a b -.m nnn (2)(1)二、填空题5.(2010·嘉兴中考)用代数式表示―a 、b 两数的平方和‖,结果为_______。
整式的加减(含答案)
整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。
整式的加减练习100题有答案
整式的加减练习100题有答案整式的加减是初中数学中的重要基础知识,通过大量的练习可以帮助我们更好地掌握这部分内容。
以下是 100 道整式加减的练习题及答案,希望能对您有所帮助。
一、选择题1、下列式子中,是单项式的是()A \(x + y\)B \(3x^{2}y\)C \(\dfrac{1}{x} \)D \(x^{2} + 1\)答案:B解析:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
选项 A 是多项式,选项 C 是分式,选项 D 是多项式,只有选项 B 是单项式。
2、下列计算正确的是()A \(3a + 2b = 5ab\)B \(5y^{2} 3y^{2} = 2\)C \(7a + a = 7a^{2}\)D \(3x^{2}y 2yx^{2} = x^{2}y\)答案:D解析:选项 A 中,3a 与 2b 不是同类项,不能合并;选项 B 中,\(5y^{2} 3y^{2} = 2y^{2}\);选项 C 中,\(7a + a = 8a\);选项 D 计算正确。
3、化简\((a b)\)的结果是()A \( a + b\)B \( a b\)C \(a b\)D \(a + b\)答案:C解析:\((a b) = a b\)4、一个多项式加上\(3x^{2}y 3xy^{2}\)得\(x^{3} 3x^{2}y\),则这个多项式是()A \(x^{3} + 3xy^{2}\)B \(x^{3} 3xy^{2}\)C \(x^{3} 6x^{2}y + 3xy^{2}\) D \( x^{3} + 6x^{2}y 3xy^{2}\)答案:C解析:这个多项式为:\((x^{3} 3x^{2}y) (3x^{2}y 3xy^{2})= x^{3} 3x^{2}y 3x^{2}y + 3xy^{2} = x^{3} 6x^{2}y + 3xy^{2}\)5、化简\(5(2x 3) + 4(3 2x)\)的结果为()A \(2x 3\)B \(2x + 9\)C \(8x 3\)D \(18x 3\)答案:A解析:\\begin{align}&5(2x 3) + 4(3 2x)\\=&10x 15 + 12 8x\\=&(10x 8x) +(12 15)\\=&2x 3\end{align}\6、若\(A = x^{2} 2xy + y^{2}\),\(B = x^{2} + 2xy + y^{2}\),则\(A B =\)()A \(4xy\)B \( 4xy\)C \(0\)D \(2y^{2}\)答案:B解析:\(A B =(x^{2} 2xy + y^{2})(x^{2} + 2xy +y^{2})= x^{2} 2xy + y^{2} x^{2} 2xy y^{2} = 4xy\)7、下列去括号正确的是()A \(a +(b c) = a + b + c\)B \(a (b c) = a b c\)C \(a ( b + c) = a + b c\)D \(a ( b c) = a + b c\)答案:C解析:选项 A,\(a +(b c) = a + b c\);选项 B,\(a (bc) = a b + c\);选项 C 正确;选项 D,\(a ( b c) = a + b + c\)8、化简\((a b) (a + b)\)的结果是()A \( 2b\)B \(2b\)C \( 2a\)D \(2a\)答案:C解析:\\begin{align}&(a b) (a + b)\\=&a b a b\\=&(a a) +( b b)\\=& 2b\end{align}\9、若单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,则\(m + n =\)()A \(5\)B \(6\)C \(8\)D \(9\)答案:B解析:因为单项式\( 3a^{m}b^{3}\)与\(4a^{2}b^{n}\)是同类项,所以\(m = 2\),\(n = 3\),则\(m + n = 2 + 3 =5\)10、下列式子中,正确的是()A \(3x + 5y = 8xy\)B \(3y^{2} y^{2} = 3\)C \(15ab 15ba = 0\) D \(29x^{3} 28x^{3} = x\)答案:C解析:选项 A 中,\(3x\)与\(5y\)不是同类项,不能合并;选项 B 中,\(3y^{2} y^{2} = 2y^{2}\);选项 C 正确;选项 D 中,\(29x^{3} 28x^{3} = x^{3}\)二、填空题11、单项式\(\dfrac{2\pi ab^{2}}{5}\)的系数是_____,次数是_____。
[历年各地中考数学真题全析]2008-2010年江西省中考数学试题及答案[1]
江西省南昌市2008年初中毕业暨中等学校招生考试 数学试题卷说明:1.本卷共有五个大题, 25个小题;全卷满分120分;考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共8小题,每小题3分,共24分);每小题只有一个正确的选项,请把正确选项的代号填涂在答题卡的相应位置上. 1.15-的相反数是( ) A .5B .5-C .15-D .152.不等式组2131x x -<⎧⎨-⎩≥,的解集是( )A .2x <B .1x -≥C .12x -<≤D .无解 3.下列四个点,在反比例函数6y x=图象上的是( ) A .(1,6-) B .(2,4) C .(3,2-) D .(6-,1-) 4.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE , 则下列结论不正确...的是( ) A .2AFD EFB S S =△△ B .12BF DF =C .四边形AECD 是等腰梯形 D .AEB ADC ∠=∠6.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x 轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x 轴相切、与y 轴相离 D .与x 轴、y 轴都相切 7.下列四个三角形,与右图中的三角形相似的是( )(第5题)E8.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多..有( ) A .4个 B .5个 C .6个 D .7个二、填空题(本大题共8小题,每小题3分,共24分)9.“5²12汶川大地震”发生后,中央电视台于5月18日承办了《爱的奉献》晚会,共募集善款约1 514 000 000元,这个数用科学记数法表示是 . 10.分解因式:34x x - = .11.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 .12.计算:1sin 60cos302-=. 13.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .14.方程(1)x x-=15.某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是 . 16.如图,已知点F 的坐标为(3,0),点A B ,分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点...设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:355d x =-(05x ≤≤),给出以下四个结论:①2AF =;②5BF =;③5OA =;④3OB =.其中正确结论的序号是_ .三、(本大题共4小题,每小题4分,共24分) 17,先化简,再求值:(第7题) A . B . C . D .俯视图 主视图 (第8题)(第16题)(2)(1)(1)x x x x+-+-,其中12x=-.18.如图:在平面直角坐标系中,有A(0,1),B(1-,0),C(1,0)三点坐标.(1)若点D与A B C,,三点构成平行四边形,请写出所有符合条件的点D的坐标;(2)选择(1)中符合条件的一点D,求直线BD19.有两个不同形状的计算器(分别记为A,B图所示)散乱地放在桌子上.(1)若从计算器中随机取一个,再从保护盖中随机取一个,求恰好匹配的概率.(2)若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.A B a b20.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处;(1)求证:B E BF'=;(2)设AE a AB b BF c===,,,试猜想a b c,,之间的一种关系,并给予证明.四、(本大题共3小题,每小题8分,共24分)21.如图,AB为O的直径,CD AB⊥于点E,交O于点D,OF AC⊥于点F.xABCDFA'B' E(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.22P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?23方法是:拿出一张报纸,随意用笔画一个圈,让他们看了一眼后迅速说出圈内有多少个汉字,但不同的是:甲同学每次估计完字数后不告诉他圈内的实际字数,乙同学每次估计完字数后告诉他圈内的实际字数.根据甲、乙两同学5次估计情况可绘制统计图如下: (1)结合上图提供的信息,就甲、乙两同学分别写出两条不同类型......的正确结论; (2)若对甲、乙两同学进行第6次测试,当所圈出的实际字数为100个时,请你用统计知识分别预测他们估计字数的偏差率,并根据预测的偏差率,推算出他们估计的字数所在的范围.BA(1)求a 值;(2)设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点(0)Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C ,D 两点,试问当x为何值时,线段CD 有最大值?其最大值为多少?25.如图1,正方形ABCD 和正三角形EFG 的边长都为1,点上滑动,设点G 到CD 的距离为x ,到BC 的距离为y ,记∠B A ,重合时,记0α= ).(1)当0α=时(如图2所示),求x y ,的值(结果保留根号);(2)当α为何值时,点G 落在对角形AC 上?请说出你的理由,并求出此时x y ,的值(结果保留根号);(3)请你补充完成下表(精确到0.01):(4)E F ,分别在正方形ABCD 边上滑动”.当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点G 运动所形成的大致图形.1.732sin150.259sin 750.966==,,.)图1图2B (E A (F D图3H DACB图4江西省南昌市2008年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.D 2.C 3.D 4.D 5.A 6.A 7.B 8.C 二、填空题(本大题共8小题,每小题3分,共24分) 9.91.51410⨯10.(2)(2)x x x +- 11.231y x =-+12.1413.12514.10x =,22x =15.416.①②③说明:第16题,填了④的,不得分;未填④的,①,②,③中每填一个得1分. 三、(本大题共4小题,每小题6分,共24分)17.解:原式222(1)x x x =+-- ······································································ 2分2221x x x =+-+··························································································· 3分 21x =+. ···································································································· 4分当12x =-时,原式12102⎛⎫=⨯-+= ⎪⎝⎭. ···························································· 6分18.解:(1)符合条件的点D 的坐标分别是1(21)D ,,2(21)D -,,3(01)D -,. ···································································· 3分 (2)①选择点1(21)D ,时,设直线1BD 的解析式为y kx b =+,由题意得021k b k b -+=⎧⎨+=⎩, 解得1313k b ⎧=⎪⎪⎨⎪=⎪⎩, ······························································· 5分∴直线1BD 的解析式为1133y x =+. ································································· 6分 ②选择点2(21)D -,时,类似①的求法,可得 直线2BD 的解析式为1y x =--. ······································································ 6分③选择点3(01)D -,时,类似①的求法,可得直线3BD 的解析式为1y x =--. ·········· 6分 说明:第(1)问中,每写对一个得1分. 19.解:(1)从计算器中随机抽取一个,再从保护盖中随机取一个,有Aa ,Ab ,Ba ,Bb 四种情况.恰好匹配的有Aa ,Bb 两种情况,21()42P ∴==恰好匹配. ················································································ 2分(2)用树形图法表示:所有可能的结果AB Aa Ab BA Ba Bb aA aB ab bA bB ba ·················· 4分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 或用列表法表示:A B a b A AB Aa Ab B BA Ba Bb aaAaBabb bA bB ba······························································· 6分 可见,从计算器和保护盖中随机取两个,共有12种不同的情况. 其中恰好匹配的有4种,分别是Aa ,Bb ,aA ,bB ,41()123P ∴==恰好匹配. ··············································································· 6分 20.(1)证:由题意得B F BF '=,B FE BFE '∠=∠, ········································ 1分 在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠. ················································· 2分 B F B E ''∴=. B E BF '∴=. ·························································· 3分(2)答:a b c ,,三者关系不唯一,有两种可能情况: (ⅰ)a b c ,,三者存在的关系是222a b c +=. ················································· 4分 证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ······························································ 5分在ABE △中,90A ∠=,222AE AB BE ∴+=. AE a = ,AB b =,222a b c ∴+=. ······························································ 6分 (ⅱ)a b c ,,三者存在的关系是a b c +>. ················· 4分证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=. ·························· 5分 在ABE △中,AE AB BE +>, a b c ∴+>. ···························································· 6分 说明:1.第(1)问选用其它证法参照给分;2.第(2)问222a b c +=与a b c +>只证1种情况均得满分; 3.a b c ,,三者关系写成a c b +>或b c a +>参照给分. 四、(本大题共3小题,每小题8分,共24分) 21.解:(1)答案不唯一,只要合理均可.例如:①BC BD =;②OF BC ∥;③BCD A ∠=∠;④BCE OAF △∽△;⑤2BC BE AB = ;ABabB Aaba ABbb ABaAB C D FA 'B ' E A BCDFA 'B ' E⑥222BC CE BE =+;⑦ABC △是直角三角形;⑧BCD △是等腰三角形. ············ 3分 (2)连结OC ,则OC OA OB ==.30D ∠= ,30A D ∴∠=∠= ,120AOC ∴∠= . ······ 4分AB 为O 的直径,90ACB ∴∠= .在Rt ABC △中,1BC =,2AB ∴=,AC =. ········ 5分OF AC ⊥ ,AF CF ∴=. OA OB = ,OF ∴是ABC △的中位线.1122OF BC ∴==.111222AOC S AC OF ∴===△. ························································· 6分 2133AOC S OA π=π⨯=扇形. ·············································································· 7分3AOC AOC S S S π∴=-=-△阴影扇形 ······························································· 8分 说明:第(1)问每写对一条得1分,共3分.22.解一:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, ······················ 1分 根据题意,得60606501.2x x⎛⎫++=⎪⎝⎭, ································································ 3分 解得 2.5x =. ······························································································· 4分经检验, 2.5x =是方程的解,且符合题意. ························································ 5分∴甲同学所用的时间为:606261.2x +=(秒), ···················································· 6分 乙同学所用的时间为:6024x=(秒). ······························································ 7分 2624> ,∴乙同学获胜. ············································································ 8分 解二:设甲同学所用的时间为x 秒,乙同学所用的时间为y 秒, ······························ 1分根据题意,得5060601.26x y x y +=⎧⎪⎨=⨯⎪-⎩,········································································· 3分 解得2624.x y =⎧⎨=⎩, ································································································ 6分经检验,26x =,24y =是方程组的解,且符合题意. x y > ,∴乙同学获胜. ··············································································· 8分23.(1)可从不同角度分析.例如:①甲同学的平均偏差率是16%,乙同学的平均偏差率是11%; ②甲同学的偏差率的极差是7%,乙同学的偏差率的极差是16%; ③甲同学的偏差率最小值是13%,乙同学的偏差率最小值是4%; ④甲、乙两同学的偏差率最大值都是20%;⑤甲同学对字数的估计能力没有明显的提高,乙同学对字数的估计能力有明显提高. ························································· 4分 (2)可从不同角度分析.例如: ①从平均偏差率预测:BA甲同学的平均偏差率是16%,估计的字数所在范围是84~116; ································ 6分乙同学的平均偏差率是11%,估计的字数所在范围是89~111; ································ 8分②从偏差率的中位数预测:甲同学偏差率的中位数是15%,估计的字数所在范围是85~115; ····························· 6分 乙同学偏差率的中位数是10%,估计的字数所在范围是90~110; ····························· 8分 ③从偏差率的变化情况预测:甲同学的偏差率没有明显的趋势特征,可有多种预测方法,如偏差率的最大值与最小值的平均值是16.5%,估计的字数所在范围是84~116或83~117. ···································· 6分 乙同学的偏差率是0%~4%,估计的字数所在的范围是96~104或其它. ··················· 8分 说明:1.第(1)问每写对一条结论得1分;2.每写对一条偏差率及估计字数范围的各得1分; 3.答案不唯一,只要合理均参照给分. 五、(本大题共2小题,每小题12分,共24分) 24.解:(1) 点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,1191428a a ∴-++=, ··················································································· 2分解得12a =. ································································································· 3分(2)由(1)知12a =,∴抛物线2111122y x x =--+,2211122y x x =--. ··········· 5分当2111022x x --+=时,解得12x =-,21x =.点M 在点N 的左边,2M x ∴=-,1N x =. ················ 6分当2111022x x --=时,解得31x =-,42x =. 点E 在点F 的左边,1E x ∴=-,2F x =. ····················· 0M F x x += ,0N E x x +=,∴点M 与点F 对称,点N 与点E 对称. ··························································· 8分 (3)102a => . ∴抛物线1y 开口向下,抛物线2y 开口向上. ··················· 9分 根据题意,得12CD y y =- 22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭. ··················A B x x x ≤≤,∴当0x =时,CD 有最大值2. ············································· 12分 说明:第(2)问中,结论写成“M N ,,E F ,四点横坐标的代数和为0”或“M N E F =”均得1分. 25.解:(1)过G 作MN AB ⊥于M 交CD 于N ,GK BC ⊥于K .60ABG ∠= ,1BG =,MG ∴=,12BM =. ··············································································· 2分1x ∴=,12y =. ·················································································· 3分(2)当45α=时,点G 在对角线AC 上,其理由是: ········································· 4分 过G 作IQ BC ∥交AB CD ,于I Q ,,过G 作JP AB ∥交AD BC ,于J P ,.AC 平分BCD ∠,GP GQ ∴=,GI GJ ∴=.GE GF = ,Rt Rt GEI GFJ ∴△≌△,GEI GFJ ∴∠=∠.60GEF GFE ∠=∠=,AEF AFE ∴∠=∠.90EAF ∠= ,45AEF AFE ∴∠=∠= . 即45α=时,点G 落在对角线AC 上. ···························································· 6分 (以下给出两种求x y ,的解法)方法一:4560105AEG ∠=+= ,75GEI ∴∠=. 在Rt GEI △中,sin 754GI GE ==,1GQ IQ GI ∴=-=. ················································· 7分 14x y ∴==-. ················································································· 8分 方法二:当点G 在对角线AC 上时,有 12+= ···················································································· 7分 解得1x =1x y ∴==. ················································································· 8分 (3)α0 15 30 45 60 75 90x0.13 0.03 0 0.03 0.13 0.29 0.50y 0.50 0.29 0.13 0.03 0 0.03 0.13···························································· 10分 (4)由点G 所得到的大致图形如图所示:········································································ 12分说明:1.第(2)问回答正确的得1分,证明正确的得2分,求出x y ,的值各得1分; 2.第(3)问表格数据,每填对其中4空得1分;3.第(4)问图形画得大致正确的得2分,只画出图形一部分的得1分.H AC DBB (E A (F K DQ。
中考数学总复习《整式的加减》专项测试卷-附带参考答案
中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.用正三角形、正四边形和正六边形按如图所示的规律拼图案,则第n个图案中正三角形的个数为( )A.2n+1B.3n+2C.4n+2D.4n−22.根据如图所示的计算程序,若输入的值x=−3,则输出y的值为( )A.−2B.−8C.10D.133.“比a的2倍大1的数”,列式表示是( )A.2(a+1)B.2(a−1)C.2a+1D.2a−14.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xy B.x+y C.10y+x D.10x+y 5.单项式−xy3z4的系数及次数分别是( )A.系数是0,次数是7B.系数是1,次数是8C.系数是−1,次数是7D.系数是−1,次数是86.根据以下程序,当输入x=−2时,输出结果为( )A.−5B.−2C.0D.37.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84B.336C.452D.5108.下列各式中,不是整式的是( )A.6xy B.yxC.x+9D.4二、填空题(共5题,共15分)9...如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.10.已知21×2=21+2,32×3=32+3,43×4=43+4⋯若ab×10=ab+10(a,b都是正整数),则a+b的最小值是.11. (−√9)2的平方根是x,64的立方根是y,则x+y的值为.12.写出一个单项式,使得它与多项式m+2n的和为单项式:.13.如果关于x的多项式ax2−abx+b与bx2+abx+2a的和是一个单项式,那么a 与b的关系是.三、解答题(共3题,共45分)14.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2π√lg,其中T(s)表示周期,l(m)表示摆长,g取9.8m/s2,假如一台座钟摆针的摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟大约发出了多少次滴答声?(π取3.14)15.现有大小两艘轮船,小船每天运x吨货物,大船比小船每天多运10吨货物,现在让大船完成运送100吨货物的任务,小船完成运送80吨货物的任务.(1) 分别写出大船、小船完成任务用的时间;(2) 试说明哪艘轮船完成任务用的时间少.16.已知两个关于x,y的单项式mx3a−4y3与−2nx a+2y3是同类项(其中xy≠0).(1) 求a的值;(2) 如果它们的和为零,求(2m−4n−1)2021的值.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−110. 【答案】1911. 【答案】1或712. 【答案】−m13. 【答案】a=−b或b=−2a14. 【答案】将l=0.5m,g=9.8m/s2代入T=2π√lg 中,得T=2π√0.59.8≈1.42(s)于是60T =601.42≈42(次).答:在1min内,该座钟大约发出了42次滴答声.15. 【答案】(1) 大船完成任务用的时间为100x+10天,小船完成任务用的时间为80x天.(2) 100x+10−80x=20x−800x(x+10)=20(x−40)x(x+10)(天)因为x>0,所以x+10>0,所以当x>40时20(x−40)x(x+10)>0,即100x+10>80x,小船所用时间少;当x=40时20(x−40)x(x+10)=0,即100x+10=80x,两船所用时间相同;当x<40时20(x−40)x(x+10)<0,即100x+10<80x,大船所用时间少.16. 【答案】(1) 由题意得3a−4=a+2解得a=3.(2) 由题意得m−2n=0∴2m−4n=0∴(2m−4n−1)2021=(−1)2021=−1.。
整式的加减练习题(3套含答案)
整式的加减练习题(3套含答案)整式的加减练习题(3套含答案) 整式的加减练习题〔一〕:一、选择题(每题3分共30分)1。
以下各式中是代数式的是( )A。
a2﹣b2=0 B。
43 C。
a D。
5x﹣202。
以下代数式中贴合书写要求的是( )A。
P*A B。
n2 C。
ab D。
2C3。
多项式中,以下说法错误的选项是( )A。
这是一个二次三项式B。
二次项系数是14。
以下各组的两个代数式中,是同类项的是( )A。
与B。
与C。
与D。
与C。
一次项系数是D。
常数项是5。
以下运算正确的选项是( )A。
B。
C。
D。
6。
假如,那么代数式的值为( )。
A。
B。
C。
D。
7。
假如单项式与是同类项,那么、的值分别为( )A。
,B。
,C。
,D。
,8。
整式,0 ,,,,,中单项式的个数有( )A、3个B、4个C、5个D、6个9。
假如和是同类项,则、的值是( )A。
,B。
,C。
,D。
,10。
如下列图,把同样大小的黑色棋子摆放在正多边形的边上,依据这样的规律摆下去,则第个图形需要黑色棋子的个数是。
二、填空题(每题3分共24分)11。
某商品标价是元,现按标价打9折出售,则售价是元。
12。
单项式的系数是,次数是。
13。
若,则______________。
14。
若与是同类项,则m+n= 。
[由整理]15。
观看下头单项式:,-2 ,根据你觉察的规律,第6个式子是。
16。
观看以下各式:(1)42-12=35;(2)52-22=37;(3)62-32=39;则第n(n是正整数)个等式为_____________________________。
17。
如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,,则第个图形需根火柴棒。
18。
一多项式为,依据此规律写下去,这个多项的的第八项是____。
三、解答题(19、20题每题6分;21、22、23题每题8分;24题10分)19。
化简(6分)(1) (2)2(a2b+ab2)-2(a2b-1)+2ab2-220。
第二章 整式的加减 中考题精选(含答案)
整式的加减一、选择题:1.(08河北)计算223a a +的结果是( )A .23aB .24aC .43aD .44a 2.(08佛山) 化简()m n m n --+的结果是( ).A .0B .2mC .2n -D .22m n -3.(08镇江)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .2(3)a b -B .23()a b -C .23a b -D .2(3)a b - 4.(08金华)化简()a b a b ++-的最后结果是( )A.2a +2b B.2b C.2a D.05.(08肇庆)若3-=b a ,则a b -的值是( )A .3B .3-C .0D .66.(08咸宁)化简()m n m n +--的结果为( )A .2mB .2m -C .2nD .2n -7.(08自贡)当a =1时,|a -3|的值为( ) A .4 B .-4 C .2 D .-28.(08益阳)有一种石棉瓦(如图1),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( )A. 60n 厘米B. 50n 厘米C. (50n+10)厘米D. (60n -10)厘米9.(08贵阳)根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +10.(08芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 11.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为 A .18 B .12 C .9 D .7 二、填空题:12.(08株洲)化简:52a a -= .13.(08青海)对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对“5x ”再给出另一个实际生活方面的合理解释: .图2 …… (1) (2) (3) 图114.(08福州)若533m x y x y +与是同类项,则m = .15.(08河北)若m n ,互为相反数,则555m n +-= .16.(08深圳)观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a +b 的值为表一 表二 表三17.(08台州)化简:1(24)22x y y -+= . 18. (08双柏)下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值是 .19.(08莆田)观察下列按.顺序排列的等式:2222011212232334344+=⨯+=⨯+=⨯+=,,, --------请你猜想第10个等式应为____________________________20.(08十堰)已知|x |=5,y =3,则=-y x .21.(08巴中)在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为 2m ;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图3),则此时余下草坪的面积为 2m .22.(08南安)如下图,用灰白两色正方形瓷砖铺设地面.根据第1—3个图案的排列规律,第6个图案中白色瓷砖的块数应为____块.输入x (2)⨯- 4+ 输出b (a ) 1m 1m 图323、(08重庆)如下图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有个.24.(08哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有个★.25.(08山东)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=(用含n的代数式表示).参考答案一、选择题:1.B;2. C;3. A;4. C;5. A;6. C;7. C;8. C;9. A;10. B;11. A;二、填空题:12. 3a ;13. 某人以5千米/时的速度走了x小时,他走的路程是5x千米(答案不唯一)14. -2 ;15. -5 ;16. 37 ;17. x ;18. 0 ;19. 10×9+10=102;20. -8或2 ;21. ab-a,ab-a ;22. 20 ;23. 181 ;24. 60 ;25. 3n+1 ;。
初三数学整式的加减试题答案及解析
初三数学整式的加减试题答案及解析1.把多项式分解因式,结果为.【答案】.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式. 因此,先提取公因式m后继续应用平方差公式分解即可:.【考点】提公因式法和应用公式法因式分解.2.化简:2(a+1)-a=________.【答案】a+2【解析】原式=2a+2-a=a+2.3.计算:2a2+3a2= .【答案】a2。
【解析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解:原式=(2+3)a2=5a2。
4.某种苹果的售价是每千克x元,用面值为100元的人民币购买了5千克,应找回元.【答案】100-5x.【解析】由题意得:单价为x元的苹果5千克用去5x元,∴应该找回零钱:(100-5x)元5.下列运算中,正确的是()A.B.C.D.【答案】 D【解析】考查基本计算能力。
本题涉及到积得乘方、完全平方公式、平方差公式。
选D6.下列运算正确的是()A.3ab-2ab=1B.C.D.【答案】B【解析】3ab-2ab=ab;;;故选B.7.下列运算不正确的是(▲)A.-(a-b)=-a + b B.a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a【答案】B【解析】本题考查整式的运算由知正确;由,故错;由知正确;由于知正确故本题答案为8.(2011广东东莞,11,6分)计算:【答案】原式=1+-4 =0【解析】略9.(2011年青海,12,2分)用黑白两种正六边形地面瓷砖按如图4所示规律拼成若干图案,则第n个图案中有白色地面瓷砖块。
第1个第2个第3个【答案】4n+2【解析】根据第1个图形有6块白色地面瓷砖,第2个图形有10块白色瓷砖,每多1个黑色瓷砖则多4块白色瓷砖,根据此规律即可写出第n个图案中的白色瓷砖的块数.解:第1个图案白色瓷砖的块数是:6,第2个图案白色瓷砖的块数是:10=6+4,第3个图案白色瓷砖的块数是:14=6+4×2,…以此类推,第n个图案白色瓷砖的块数是:6+4(n-1)=4n+2.故答案为:(4n+2).本题考查了图形的变化问题的规律探寻,看出图形变化规律“每多一块黑色瓷砖则白色瓷砖增加4块”是解题的关键.10.(2011•宁夏)计算a2+3a2的结果是()A.3a2B.4a2C.3a4D.4a4【答案】B【解析】a2+3a2=4a2.故选B.11.化简-6ab+ba+8ab=【答案】3ab【解析】本题较简单,直接进行同类项的合并法则:字母和字母的指数不变,只把系数相加减进行合并即可.解:-6ab+ba+8ab=3ab.故答案是:3ab.此题考查了合并同类项的知识,关键是熟记合并同类项的法则,字母和字母的指数不变,只把系数相加减,难度一般.12.下列各组运算中,其值最小的是().A.B.C.D.【答案】A【解析】A、-(-3-2)2=-25;B、(-3)×(-2)=6;C、(-3)2÷(-2)2=9/4;D、(-3)2÷(-2)=-9/2;由于A、D均为负数,因此最小值必在这两者之中;由于25>9/2,所以-25<-9/2,即-(-3-2)2<(-3)2÷(-2).故选A.点评:本题考查的是有理数大小的比较方法,有理数大小的比较法则:1、正数都大于零,负数都小于零,正数大于一切负数;2、两个正数,绝对值大的数大;3、两个负数,绝对值大的数反而小.13.若是关于的一元二次方程的两个根,那么的值是()A.B.4C.D.2【答案】A【解析】∵α、β是一元二次方程x2+3x﹣1=0的两个根,∴α2+3α﹣1=0,α+β=﹣3,∴α2+4α=1+α,∴α2+4α+β=1+(α+β)=1-3=-2,故选A考点: 1.一元二次方程的解;2.根与系数的关系14.已知a、b满足a+b=3,ab=2,则a2+b2= .【答案】5.【解析】将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.试题解析:将a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,把ab=2代入得:a2+4+b2=9,则a2+b2=5.【考点】完全平方公式.15.分解因式:___________________.【答案】【解析】因式分解有两种方法:提取公因式法;公式法。
(完整word版)《整式的加减》专项练习100题(有答案)
整式的加减专项练习100题(有答案)1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2).25、(5a-3a 2+1)-(4a 3-3a 2);26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy );28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a 2-1+2a )-3(a-1+a 2);34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4(21x 2-1)]+5x 255、2a 3b- 21a 3b-a 2b+21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b) 68, -5a n -a n -(-7a n )+(-3a n )69、x 2y-3xy 2+2yx 2-y 2x 70, 41a 2b-0.4ab 2-21a 2b+52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]} 72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和. 83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和 85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88,化简再求值5abc-{2a 2b-[3abc-(4ab2-a2b )]-2ab2},其中a=-2,b=3,c=-4189、已知A=a2-2ab+b2,B=a2+2ab+b2(1)求A+B ;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y=-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a2+6b24、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2 -3x-36、(2xy-y )-(-y+yx )= xy7、5(a22b-3ab2)-2(a2b-7ab ) = -a2b+11ab8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m2n-5mn )-(4m2n-5mn )= 3m2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a2)+2ab]= 7a2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-1 19、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+223、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a2+ab-2b227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a2-3ab+2b2)+(a2+2ab-2b2)= 4a2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-1 47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )=8x 2y-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]=-2x 2y+7xy54、 3x 2-[5x-4(21x 2-1)]+5x 2 = 10x2-5x-455、2a 3b-21a 3b-a 2b+21a 2b-ab 2 =23a 3b- 21a 2b-ab 256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 2 57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2 = -3a 3+4a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 2 70、41a 2b-0.4ab 2-21a 2b+52ab 2 = -41a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x2+x-6=-16 80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式. (2x 2+xy+3y 2 )——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2)—(-3a 2+2ab-5b 2)=5a 2-6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -9 84、计算 5y+3x+5z 2与12y+7x-3z2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z285、计算8xy2+3x 2y-2与-2x2y+5xy 2-3的差(8xy2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式MM=-21x 2+4xy —23y 87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a 2b-[3abc-(4ab2-a2b )]-2ab2},其中a=-2,b=3,c=-41原式=83abc-a 2b-2ab2=3689、已知A=a2-2ab+b 2,B=a 2+2ab+b2(1)求A+B ; (2)求41(B-A);A+B=2a2+2b241(B-A)=ab90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+3 92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 2 94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0. 原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .原式=-5x 2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值 原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。
整式加减练习题及答案
整式加减练习题及答案整式加减练习题及答案数学是一门需要不断练习和探索的学科,而整式加减是数学中的基础知识之一。
通过大量的练习题,我们可以巩固对整式加减的理解和运用。
下面,我将为大家提供一些整式加减的练习题及答案,希望能帮助大家更好地掌握这一知识点。
一、单项选择题1. 已知a = 3,b = 5,c = -2,d = -4,则(a + b) - (c - d)的值是:A. 6B. 8C. 10D. 12答案:C. 10解析:先计算括号内的值,c - d = -2 - (-4) = 2 + 4 = 6。
然后计算整个式子,(a + b) - (c - d) = 3 + 5 - 6 = 8 - 6 = 2。
所以答案为C. 10。
2. 已知x = 2,y = -3,z = 4,则(x - y) + (y - z)的值是:A. -1B. -3C. -5D. -7答案:B. -3解析:先计算括号内的值,(x - y) + (y - z) = (2 - (-3)) + (-3 - 4) = 5 - 7 = -2。
所以答案为B. -3。
二、填空题1. 计算下列整式的值:3x - 2y,当x = 4,y = -1时。
答案:3x - 2y = 3(4) - 2(-1) = 12 + 2 = 14。
2. 计算下列整式的值:2a + b - 3c,当a = -2,b = 5,c = 1时。
答案:2a + b - 3c = 2(-2) + 5 - 3(1) = -4 + 5 - 3 = -2。
三、应用题1. 有一条长方形的长是3x + 4,宽是2x - 1,求长方形的周长。
答案:周长等于长加宽的两倍,即2(3x + 4 + 2x - 1) = 2(5x + 3) = 10x + 6。
2. 甲、乙两人共有钱数为4a - 3b,如果甲多出乙10元,则甲现在有多少钱?答案:甲现在的钱数为4a - 3b + 10。
通过以上的练习题,我们可以看到整式加减的运算规律和方法。
中考数学复习《整式的加减》专项练习题-带有答案
中考数学复习《整式的加减》专项练习题-带有答案一、选择题1.下列各式中,不是整式的是()C.0 D.x+yA.3a B.12x2.单项式−3πxy2z3的系数和次数分别是()A.−π,5B.−1,6C.−3π,6D.−3,73.下列式子中,与−3a2b是同类项的是()A.−3ab2B.−ba2C.2ab2D.2a3b4.多项式2x2y|m|−(m−2)xy+1是关于x.y的四次二项式,则m的值为()A.2 B.-2 C.±2 D.±15.下列各式去括号正确的是()A.−(a−3b)=−a−3b B.a+(5a−3b)=a+5a−3bC.−2(x−y)=−2x−2y D.−y+3(y−2x)=−y+3y−2x6.要使多项式3x2−2(5+x−2x2)+mx2化简后不含x的二次项,则m的值为()A.−7B.7 C.1 D.−37.多项式2x2−7x+3减去5x2−x−4的结果是()A.−3x2−6x+7B.−3x2−8x−1C.7x2−8x+7D.−3x2−6x−18.下列计算结果正确的是()A.x2y−2xy2=−xy2B.3a2+5a2=8a4C.−3(2a−b)=−6a+b D.4m+2n−(n−m)=5m+n二、填空题9.整数n=时,多项式3x2+n+2x2−n+1是三次三项代数式.x2y3按字母x升幂排列是.10.将多项式2−3xy2+5x3y−1311.已知:x2+3x−4=0,则代数式2x2+6x+4的值是x n y4可以合并成一项,则n m= .12.若单项式2x2y m与−1313.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h,水流速度是akm/h.则3h后两船相距千米.三、解答题14.化简:(1)8a+5b−(3a+4b)(2)5xy2+3x2y−2(3xy2+x2y)15.先化简,再求值:2(−a2+2ab)−3(ab−a2),其中a=2,b=−1.16.已知多项式(3ax+2)−(6x+3)的值与x的大小无关,求代数式2a3−3a+5的值.17.已知多项式-3x m+1y3+x3y-3x4-1是五次四项式,单项式3x3n y2的次数与这个多项式的次数相同. (1)求m,n的值.(2)把这个多项式按x降幂排列.18.已知:A=−3x2+2xy+1,B=3x2−4xy.(1)计算:A+B;(2)若(x+1)2+|y−2|=0,求A+B的值.参考答案1.B2.C3.B4.A5.B6.A7.A8.D9.±1x2y3+5x3y10.2−3xy2−1311.1212.1613.30014.(1)8a+5b−(3a+4b)=8a+5b-3a-4b=5a+b;(2)5xy2+3x2y−2(3xy2+x2y)= 5xy2+3x2y−6xy2−2x2y= x2y−xy2 .15.解:原式=a2+ab.∴当a=2,b=−1时,原式=2 16.解:(3ax+2)−(6x+3)=3ax+2−6x−3=(3a−6)x−1∵多项式(3ax+2)−(6x+3)的值与x的大小无关∴3a−6=0解得a=2则2a3−3a+5=2×23−3×2+5=15.17.(1)解:由题意得:m+1+3=5,3n+2=5∴m=1,n=1(2)解:-3x4+x3y-3x2y3-118.(1)解:原式=−3x2+2xy+1+3x2−4xy=−3x2+3x2+2xy−4xy+1=1−2xy;(2)解:根据题意得,x+1=0,y−2=0∴x=−1,y=2∴原式=1−2×(−1)×2=1+4=5.。
整式的加减计算题训练(含答案)
整式的加减计算题训练(含答案)1、已知A=4x^2-4xy+y^2,B=x^2-xy-5y^2,求3A-B。
解:将3A-B展开,得3A-B=12x^2-12xy+3y^2-x^2+xy+5y^2=11x^2-11xy+8y^2.2、已知A=x^2+xy+y^2,B=-3xy-x^2,求2A-3B。
解:将2A-3B展开,得2A-3B=2x^2+4xy+2y^2+9xy+3x^2=5x^2+13xy+2y^2.3、已知A=3a^2-2a+1,B=5a^2-3a+2,求2A-3B。
解:将2A-3B展开,得2A-3B=6a^2-4a+2-15a^2+9a-6=-9a^2+5a-4.4、已知A=x^3-5x^2,B=x^2-11x+6,求:⑴A+2B;⑵、当x=-1时,求A+5B的值。
解:⑴将A+2B展开,得A+2B=x^3-3x^2-22x+12.⑵将A+5B展开,得A+5B=-4x^3+20x^2+46x-19.5、3(x^2-y^2)+(y^2-z^2)-4(z^2-y^2)解:将式子展开,得3x^2-3y^2+y^2-z^2-4z^2+4y^2=3x^2+y^2-5z^2.6、2(a^2b+2b^3-ab^3)+3a^3-(2ba^2-3ab^2+3a^3)-4b^3,其中a=-3,b=2.解:将式子展开,得-12b^3+6ab^2-12a^2b+9a^3.7、1/2x-2(x-1/3y^2)+(-3x+1/3y^2),其中x=-2,y=-2.解:将式子代入,得1/2(-2)-2(-2-1/3(-2)^2)+(-3(-2)+1/3(-2)^2)=-1/2.8、1/2x-2(x-1/3y^2)+(-3x+1/3y^2),其中x=-2,y=-2.解:将式子代入,得1/2(-2)-2(-2-1/3(-2)^2)+(-3(-2)+1/3(-2)^2)=-1/2.9、7(p^3+p^2-p-1)-2(p^3+p)解:将式子展开,得5p^3+7p^2-5p-7.10、1/x-3(2x-2/y^2)+(3x+2/y^2)解:将式子展开,得1/x-6x+6/y^2+3x+2/y^2=-5x+8/y^2.11、1/x-3(2x-2/y^2)+(3x+2/y^2),其中x=-3,y=2.解:将式子代入,得1/-3-3(2(-3)-2/2^2)+(3(-3)+2/2^2)=-47/12.12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]解:将式子展开,得-2a+7b+8c。
河北省2008至2010年数学中考答案
2010年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. = 三、解答题19.解:)1(21-=+x x , 3=x . 经检验知,3=x 是原方程的解.20.解:(1)如图1; 【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好. )因为选8名学生参加市级口语团体赛,甲校得 10分的有8人,而乙校得10分的只有5人,所以应选甲校. 22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形,D 图1乙校成绩条形统计图图2∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2). (2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4. ∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1).∵ 当4=x 时,y =4x = 1,∴点N 在函数 xy 4= 的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=,∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°,A D OB C21 ME Fl图3∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=. 25.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB =BC 21= 4,MP = MQ = 3, ∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则HP = 33,AH = 1.在Rt △HPF 中,∠HPF =图6A OBC1D 2图5M NE∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD 的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30. (4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+. 若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售; 当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.2009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt△DOE 中,∵sin∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机./月图1电视机月销量折线统计图22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点,HBFG NP∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3.(2)由题意,得2240x y +=, ∴11202y x =-. 23180x z +=,∴2603z x =-.(3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,图3F即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】2008年河北省初中毕业生升学文化课考试数学试题参考答案P图5二、选择题 11.70; 12,1; 13.5-; 14.27; 15.9分(或9);16.20; 17.2;18.76.三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广.(4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,200C -; (2)过点C 作CD OA ⊥于点D ,如图2,则CD =.图110在Rt ACD △中,30ACD ∠=,CD =,3cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.lAB FC Q 图3M1234 EP11②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠=.90QMA ∴∠=.BQ AP ∴⊥.(3)成立. 证明:①如图4,45EPF ∠=,45CPQ ∴∠=.又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时,lABQP EF图4N C12年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,EB图5B图6E B图7B13由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)(注:可编辑下载,若有不当之处,请指正,谢谢!)B 图9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、整式的加减要点一:列代数式表示数量关系一、选择题1.(2008·镇江中考)用代数式表示―a 的3倍与b 的差的平方‖,正确的是( )A.2(3)a b -B.23()a b -C.23a b - D.2(3)a b -【解析】选A.B 项表示a 与b 差的平方的3倍,C 项表示a 的3倍与b 的平方的差,D 项表示a 与b 的3倍差的平方2.(2009·山西中考)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n- B .m n - C .2mD .2n答案:选A3.(2010·常德中考)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在―十一五规划‖中提出―到2010年全年GDP 过千亿元‖的目标.如果按此增长速度,那么我市今年的GDP 为( )A.1050×(1+13.2%)2B.1050×(1-13.2%)2C.1050×(13.2%)2D.1050×(1+13.2%)【解析】选A 。
根据题中的各量之间的相等关系可以得出我市今年的GDP 为1050×(1+13.2%)2 。
4.(2009·眉山中考)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是( ) A .1019a b +B .1019a b -C .1017a b -D .1021a b -【解析】选B.观察式子得第几个式子a 的指数就是几,第奇数个式子―+‖,第偶数个式m nnn (2)(1)子―-‖,ba 的指数是a 的指数的2倍少1,因此第10个式子是1019a b -. 二、填空题5.(2010·嘉兴中考)用代数式表示―a 、b 两数的平方和‖,结果为_______。
【解析】a 、b 两数的平方和是指a 的平方与b 的平方的和,即22b a +。
答案:22b a +6.(2010·青岛中考)如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.【解析】观察所摆的图案及棋子的数字可以得出棋子数与图案的序数n 的关系是2331n n ++,因而摆第6个图案需要127枚棋子答案:127 2331n n ++7.(2009·湘西中考)用代数式表示―a 与b 的和‖,式子为 .答案:a+b8.(2010·毕节中考)写出含有字母x 、y 的五次单项式 (只要求写出一个).【解析】所写单项式只要满足含有字母x 、y ,且字母x 、y 的指数和等于5即可. 答案:答案不惟一,例如32y x9.(2009·海南中考) ―a 的2倍与1的和‖用代数式表示是 .答案:2a+110.(2009·厦门中考)―a 的2倍与b 的和‖用代数式表示为 .答案:2a +b11.(2009·恩施中考)某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是 . 答案:55%x ⋅…12.(2009·株洲中考)孔明同学买铅笔m 支,每支0.4元,买练习本n 本,每本2元.那么他买铅笔和练习本一共花了 元. 答案:0.42m n +13. (2009·云南中考)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重______千克. 答案:25x -14.(2009·邵阳中考)受甲型H1N1流感影响,猪肉价格下降了30%,设原来的猪肉价格为a 元/千克,则现在的猪肉价格为____________元/千克. 答案:0.7a (或70%a 或710a ) 15.(2008·西宁中考)回收废纸用于造纸可以节约木材.根据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收a 吨废纸可以节约 立方米木材. 答案:3a16.(2008·青海中考)对单项式―5x ‖,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对―5x ‖再给出另一个实际生活方面的合理解释: .答案:某人以5千米/时的速度走了x 小时,他走的路程是5x 千米(答案不唯一) 17.(2009·天津中考)某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x 本,付款金额为y 元,请填写下表:答案:56#80#156.818..(2008·巴中中考)在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为 2m ;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图),则此时余下草坪的面积为 2m .【解析】S 草坪= S 长方形- S 长方形路=a(b -1)=ab -a,因宽不变,变直为曲,面积不变,故余下草坪面积仍为a(b -1)或ab -a答案:a(b -1)(或ab -a ) a(b -1)(或ab -a )19.(2009·中山中考)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖______块,第n 个图形中需要黑色瓷砖__________块(用含n 的代数式表示).【解析】第(1)个图形中有黑色瓷砖4块,而4=3×1+1; 第(2)个图形中有黑色瓷砖7块,而7=3×2+1;第(3)个图形中有黑色瓷砖10块,而10=3×3+1;……因此第n 个图形中需要黑色瓷砖(3n+1)块 答案:10 (3n+1)20.(2009·益阳中考)图6是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n 是正整数)个图案中由 个基础图形组成.-【解析】由图(1)、(2)、(3)的规律可知:可将图案的相邻三个基础图形看为一组,当图案数为n 时,其基础图形个数为(3n+1)个 答案:(3n+1)21.(2009·广州中考)如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行―广‖字,按照这种规律,第5个―广‖字中的棋子个数是________,第n 个―广‖字中的棋子个数是________(1)(2)(3)……答案:15 2n+522.(2009·山西中考)下列图案是晋商大院窗格的一部分,其中―○‖代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸―○‖的个数为 .答案:23 n23.(2009·长春中考)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为 (用含n 的代数式表示).答案:2n+224.(2008·乌兰察布中考)一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配椅子 把.【解析】1张桌子需配椅子6把,而6=2×1+4. 2张桌子需配椅子8把,而8=2×2+4 3张桌子需配椅子10把,而10=2×3+4 …n 张桌子需配椅子(2n+4)把 8张桌子需配椅子2×8+4=20把.…(1) (2) (3)答案:2025.(2007·恩施中考)―数a 的2倍与10的和‖用代数式表示为 .答案:2a +1026.(2007·云南中考)一台电视机的原价为a 元,降价4%后的价格为_________________元.【解析】(1–4%)a = 0.96a 答案:(1–4%)a 元或0.96a 元27.(2007·株州中考)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整,已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为________________元. 答案:0.4a要点二:整式的加减运算一、选择题1.(2010·湖州中考)化简a +2b -b ,正确的结果是( )A .a -bB .-2bC .a +bD .a +2 【解析】选C 。
a +2b -b=a +(2b -b)=a+b 2.(2010·潼南中考)计算3x +x 的结果是( )A . 3x 2B . 2x C. 4x D. 4x 2【解析】选C ,合并同类项3x +x=(3+1) x=4x 。
3.(2009·江西中考)化简()221a a -+-的结果是( )A .41a --B .41a -C .1D .1-【解析】选D.原式=-2a+2a-1=-14.(2009·太原中考)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +【解析】选A 。
本题考查整式的加减,由题意列式得2341x x +--(239x x +)=51x --,故选A .5.(2008·河北中考)计算223a a +的结果是( )A .23aB .24aC .43aD .44a【解析】选B.223a a +=(1+3)2a =42a6.(2008·金华中考)化简()a b a b ++-的最后结果是( )A.2a+2bB.2bC.2a D.0【解析】选C.a+b+(a-b)=a+b+a-b=a+a+b-b=2a 7.(2008·佛山中考)化简()m n m n --+的结果是( ).A .0B .2mC .2n -D .22m n -【解析】选C. ()m n m n --+n n m n m 2-=---= 8.(2007·荆州中考)若233mxy -与42n x y 是同类项,则m n -的值是( )(A )0 (B )1 (C )7 (D )-1. 答案:选B 二、填空题9.(2010·宿迁中考)若22=-b a ,则______486=-+b a .【解析】6+8a -4b=6+4(2a -b)=14 答案:1410.(2009·海南中考)计算:3a -2a= .答案:a11.(2009·长春中考)计算:5a -2a= .答案:3a12.(2009·烟台中考)若523m x y +与3n x y 的和是单项式,则mn = .答案:1413.(2009·贺州中考)已知代数式132+n ba 与223b am --是同类项,则=+n m 32 .答案:1314.(2007·重庆中考)计算:=-x x 53 。