磁场问题分类训练

合集下载

电磁场练习题

电磁场练习题

电磁场练习题电磁场是物理学中重要的概念,广泛应用于电力工程、通信技术等领域。

为了更好地理解和掌握电磁场的相关知识,以下是一些练习题,帮助读者巩固对电磁场的理解。

练习题1:电场1. 有一电荷+Q1位于坐标原点,另有一电荷+Q2位于坐标(2a, 0, 0)处。

求整个空间内的电势分布。

2. 两个无限大平行带电板,分别带有电荷密度+σ和-σ。

求两个带电板之间的电场强度。

3. 一个圆环上均匀分布有总电荷+Q,圆环的半径为R。

求圆环轴线上离圆环中心距离为x处的电场强度。

练习题2:磁场1. 一个无限长直导线通过点A,导线中电流方向由点A指向B。

求点A处的磁场强度。

2. 一个长直导线以λ的线密度均匀分布电流。

求距离导线距离为r处的磁场强度。

3. 一半径为R、载有电流I的螺线管,求其轴线上离螺线管中心的距离为x处的磁场强度。

练习题3:电磁场的相互作用1. 在一均匀磁场中,一电子从初始速度为v0的方向垂直进入磁场。

求电子做曲线运动的轨迹。

2. 有两个无限长平行导线,分别通过电流I1和I2。

求两个导线之间的相互作用力。

3. 一个电荷为q的粒子以速度v从初始位置x0进入一个电场和磁场同时存在的区域。

求电荷受到的合力。

练习题4:电磁场的应用1. 描述电磁波的基本特性。

2. 电磁感应现象的原理是什么?列举几个常见的电磁感应现象。

3. 解释电磁场与电路中感应电动势和自感现象的关系。

根据上述练习题,我们可以更好地理解和掌握电磁场的基本原理和应用。

通过解答这些练习题,我们能够加深对电场、磁场以及电磁场相互作用的理解,并掌握其在实际应用中的运用。

希望读者能够认真思考每道练习题,尽量自行解答。

如果遇到困难,可以参考电磁场相关的教材、课件等资料,或者向老师、同学寻求帮助。

通过不断练习和思考,相信读者可以彻底掌握电磁场的相关知识,为今后的学习和应用奠定坚实的基础。

高二物理-磁场专题训练及答案(全套)

高二物理-磁场专题训练及答案(全套)

中学物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极动身,到南极终止D.磁感线就是细铁屑在磁铁四周排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度肯定为零B.磁场中某点的磁感强度,依据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度肯定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中心正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面对外的电流,[]A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极旁边:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0.2m的直导线,它与磁场方向垂直,当通过3A的电流时,受到60×10-2N的磁场力,则磁场的磁感强度是______特;当导线长度缩短一半时,磁场的磁感强度是_____特;当通入的电流加倍时,磁场的磁感强度是______特.11.如图5所示,abcd是一竖直的矩形导线框,线框面积为S,放在磁场中,ab边在水平面内且与磁场方向成60°角,若导线框中的电流为I,则导线框所受的安培力对某竖直的固定轴的力矩等于______.12.一矩形线圈面积S=10-2m2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×103Wb,则磁场的磁感强度B______;若线圈以一条边为轴的转180°,则穿过线圈的磁能量的改变为______;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф=______.三、计算题13.如图6所示,ab,cd为两根相距2m的平行金属导轨,水平放置在竖直向下的匀强磁场中,通以5A的电流时,棒沿导轨作匀速运动;当棒中电流增加到8A时,棒能获得2m/s2的加速度,求匀强磁场的磁感强度的大小;14.如图7所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为l,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大?一、磁场、安培力练习题答案一、选择题1.AB 2.BC 3.D 4.D5.CD 6.D 7.A 8.A 9.AB二、填空题三、计算题13.1.2T 14.mg-BIlcosθ,BI lsinθ二、洛仑兹力练习题一、选择题1.如图1所示,在垂直于纸面对内的匀强磁场中,垂直于磁场方向放射出两个电子1和2,其速度分别为v1和v2.假如v2=2v1,则1和2的轨道半径之比r1:r2及周期之比T1:T2分别为 [ ] A.r1:r2=1:2,T1:T2=1:2B.r1:r2=1:2,T1:T2=1:1C.r1:r2=2:1,T1:T2=1:1D.r1:r2=1:1,T1:T2=2:12.如图2所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外、有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子. [ ]A.只有速度大小肯定的粒子可以沿中心线通过弯管B.只有质量大小肯定的粒子可以沿中心线通过弯管C.只有动量大小肯定的粒子可以沿中心线通过弯管D.只有能量大小肯定的粒子可以沿中心线通过弯管3.电子以初速V0垂直进入磁感应强度为B的匀强磁场中,则 [ ]A.磁场对电子的作用力始终不变B.磁场对电子的作用力始终不作功C.电子的动量始终不变D.电子的动能始终不变它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面对里).在图3中,哪个图正确地表示出这三束粒子的运动轨迹?[ ]5.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图4所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量渐渐减小(带电量不变).从图中可以确定 [ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电 D.粒子从b到a,带负电6.三个相同的带电小球1、2、3,在重力场中从同一高度由静止起先落下,其中小球1通过一附加的水平方向匀强电场,小球2通过一附加的水平方向匀强磁场.设三个小球落到同一高度时的动能分别为E1、E2和E3,忽视空气阻力,则 [ ]A.E1=E2=E3B.E1>E2=E3C.E1<E2=E3D.E1>E2>E37.真空中同时存在着竖直向下的匀强电场和垂直纸面对里的匀强磁场,三个带有等量同种电荷的油滴a、b、c在场中做不同的运动.其中a静止,b向右做匀速直线运动,c向左做匀速直线运动,则三油滴质量大小关系为 [ ]A.a最大 B.b最大C.c最大 D.都相等8.一个带正电荷的微粒(重力不计)穿过图5中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采纳的方法是[ ]A.增大电荷质量B.增大电荷电量C.削减入射速度D.增大磁感强度E.减小电场强度二、填空题9.一束离子能沿入射方向通过相互垂直的匀强电场和匀强磁场区域,然后进入磁感应强度为B′的偏转磁场内做半径相同的匀速圆周运动(图6),则这束离子必定有相同的______,相同的______.10.为使从炙热灯丝放射的电子(质量m、电量e、初速为零)能沿入射方向通过相互垂直的匀强电场(场强为E)和匀强磁场(磁感强度为B)区域,对电子的加速电压为______.11.一个电子匀强磁场中运动而不受到磁场力的作用,则电子运动的方向是______.12.一质量为m、电量为q的带电粒子在磁感强度为B的匀强磁场中作圆周运动,其效果相当于一环形电流,则此环形电流的电流强度I=______.三、计算题13.一个电视显像管的电子束里电子的动能E K=12000eV.这个显像管的位置取向刚好使电子水平地由南向北运动.已知地磁场的竖直向下重量B=5.5×10-5T,试问(1)电子束偏向什么方向?(2)电子束在显像管里由南向北通过y=20cm路程,受洛仑兹力作用将偏转多少距离?电子质量m=9.1×10-31kg,电量e=1.6×10-19C.14.如图7所示,一质量m、电量q带正电荷的小球静止在倾角30°、足够长的绝缘光滑斜面.顶端时对斜面压力恰为零.若快速把电场方向改为竖直向下,则小球能在斜面上滑行多远?洛仑兹力练习题答案一、选择题1.B 2.C 3.BD 4.C5.B 6.B 7.C 8.C二、填空题三、计算题三、单元练习题一、选择题1.安培的分子环流假设,可用来说明 [ ]A.两通电导体间有相互作用的缘由B.通电线圈产生磁场的缘由C.永久磁铁产生磁场的缘由D.铁质类物体被磁化而具有磁性的缘由2.如图1所示,条形磁铁放在水平桌面上,在其正中心的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面对外的电流,则[ ]A.磁铁对桌面压力减小,不受桌面的摩擦力作用B.磁铁对桌面压力减小,受到桌面的摩擦力作用C.磁铁对桌面压力增大,不受桌面的摩擦力作用D.磁铁对桌面压力增大,受到桌面的摩擦力作用3.有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是 [ ]A.氘核 B.氚核C.电子D.质子4.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则 [ ]A.r1=r2,T1≠T2B.r1≠r2,T1≠T2C.r1=r2,T1=T2 D.r1≠r2,T1=T25.在垂直于纸面的匀强磁场中,有一原来静止的原子核.该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图2中a、b所示.由图可以判定 [ ]A.该核发生的是α衰变B.该核发生的是β衰变C.磁场方向肯定是垂直纸面对里D.磁场方向向里还是向外不能判定6.如图3有一混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,假如这束正离子束流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的 [ ] A.速度 B.质量C.电荷 D.荷质比7.设空间存在竖直向下的匀强电场和垂直纸面对里的匀强磁场,如图4所示,已知一离子在电场力和洛仑兹力的作用下,从静止起先自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽视重力,以下说法中正确的是 [ ]A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点8.如图5所示,在正交的匀强电场和磁场的区域内(磁场水平向内),有一离子恰能沿直线飞过此区域(不计离子重力) [ ]A.若离子带正电,E方向应向下B.若离子带负电,E方向应向上C.若离子带正电,E方向应向上D.不管离子带何种电,E方向都向下9.一根通有电流I的直铜棒用软导线挂在如图6所示匀强磁场中,此时悬线中的张力大于零而小于铜棒的重力.欲使悬线中张力为零,可采纳的方法有 [ ]A.适当增大电流,方向不变B.适当减小电流,并使它反向C.电流大小、方向不变,适当增加磁场D.使原电流反向,并适当减弱磁场10.如图7所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面对外运动,可以[ ]A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在沟通电源的一端,b、d接在沟通电源的另一端11.带电为+q的粒子在匀强磁场中运动,下面说法中正确的是 [ ]A.只要速度大小相同,所受洛仑兹力就相同B.假如把+q改为-q,且速度反向大小不变,则洛仑兹力的大小,方向均不变C.洛仑兹力方向肯定与电荷速度方向垂直,磁场方向肯定与电荷运动方向垂直D.粒子只受到洛仑兹力作用,其运动的动能、动量均不变12.关于磁现象的电本质,下列说法中正确的是 [ ]A.有磁必有电荷,有电荷必有磁B.一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电荷之间通过磁场而发生的相互作用C.除永久磁铁外,一切磁场都是由运动电荷或电流产生的D.依据安培的分子环流假说,在外界磁场作用下,物体内部分子电流取向大致相同时,物体就被磁化,两端形成磁极二、填空题13.一质子及一α粒子,同时垂直射入同一匀强磁场中.(1)若两者由静止经同一电势差加速的,则旋转半径之比为______;(2)若两者以相同的动进入磁场中,则旋转半径之比为______;(3)若两者以相同的动能进入磁场中,则旋转半径之比为______;(4)若两者以相同速度进入磁场,则旋转半径之比为______.14.两块长5d,相距d的水平平行金属板,板间有垂直于纸面的匀强磁场.一大群电子从平行于板面的方向、以等大小的速度v从左端各处飞入(图8).为了不使任何电子飞出,板间磁感应强度的最小值为______.15.如图9所示,M、N为水平位置的两块平行金属板,板间距离为d,两板间电势差为U.当带电量为q、质量为m的正离子流以速度V0沿水平方向从两板左端的中心O点处射入,因受电场力作用,离子作曲线运动,偏向M板(重力忽视不计).今在两板间加一匀强磁场,使从中心O处射入的正离流在两板间作直线运动.则磁场的方向是______,磁感应强度B=______.16.如图10所示,质量为m,带电量为+q的粒子,从两平行电极板正中心垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感强度增大到某值,则粒子将落到极板上.当粒子落到极板上时的动能为______.17.如图11所示,绝缘光滑的斜面倾角为θ,匀强磁场B方向与斜面垂直,假如一个质量为m,带电量为-q的小球A在斜面上作匀速圆周运动,则必需加一最小的场强为______的匀强电场.18.三个带等量正电荷的粒子a、b、c(所受重力不计)以相同的初动能水平射入正交的电场磁场中,轨迹如图12,则可知它们的质量m a、m b、m c大小次序为______,入射时的初动量大小次序为______.19.一初速为零的带电粒子,经过电压为U的电场加速后垂直进入磁感强度为B的匀强磁场中,已知带电粒子的质量是m,电量是q,则带电粒子所受的洛仑兹力为______,轨道半径为______.20.如图13在x轴的上方(y≥0)存在着垂直于纸面对外的匀强磁场,磁感强度为B.在原点O有一个离子源向x轴上方的各个方向放射出质量为m、电量为q的正离子,速率都为v,对那些在xy平面内运动的离子,在磁场中可能到达的最大x=______,最大y=______.三、计算题21.以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图14所示,磁感强度B的方向与离子的运动方向垂直,并垂直于纸面对里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.(2)假如离子进入磁场后经过时间t到达位置P,试证明:直线OP与离子入射方向之间的夹角θ跟t的关系是22.如图16所示,AB为一段光滑绝缘水平轨道,BCD为一段光滑的圆弧轨道,半径为R,今有一质量为m、带电为+q的绝缘小球,以速度v0从A点向B点运动,后又沿弧BC做圆周运动,到C点后由于v0较小,故难运动到最高点.假如当其运动至C点时,突然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点此时轨道弹力为0,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度;(2)磁场的方向和磁感应强度.单元练习题答案一、选择题1.CD 2.A 3.B 4.D 5.BD 6.AD7.ABC 8.AD 9.AC 10.ABD 11.B 12.BD二、填空题三、计算题21.(1)2mv/qB。

初中物理磁场专题训练(含答案和解析)

初中物理磁场专题训练(含答案和解析)

初中物理磁场专题训练(含答案和解析)1.A.A.若相互排斥,两个物体都不是磁体B.若相互吸引,只有一个是磁体C.若相互吸引,两个物体都是磁体D.若相互排斥,两个物体都是磁体3.如图所示,磁铁吸引住两根铁钉的一端,那么两根铁钉的另一端将()A、互相吸引如甲图B、互相排斥如乙图C、既不吸引,也不排斥如丙图D.以上三种情况都有可能4.如图所示,用条形磁铁N端,在一根铁棒上从左向右沿同一方向磨擦几次,铁棒具有磁性的情况是()A.铁棒左端为N极B.铁棒右端为N极C.无法确定铁棒某端的极性D.铁棒无磁性5.关于地磁场,下列说法错误的是()A.地磁场的两极就是地球的南北极B.地球本身是一个大磁体,地球周围的磁场称为地磁场C.指南针能指南北就是因为受到地磁场的作用D.地磁场的两极与地理两极并不重合6.关于磁感线的概念,下面说法中错误的是()A.磁感线是磁场中确实存在的B.磁体周围越接近磁极的地方磁感线越密C.磁感线是一种假想的曲线,在磁体外都是从N极到S极D.磁针N极在某点所受的磁力方向跟该点磁感线的方向一致7.(2015•江西模拟)实验表明,磁体能吸引1元硬币,对这种现象解释正确的是()A.硬币一定是铁做的,因为磁体能吸引铁B.硬币一定是铝做的,因为磁体能吸引铝C.磁体的磁性越强,能吸引的物质种类越多D.硬币只含有磁性材料,磁化后能被吸引8.在研究“磁极间的相互作用规律”时,实验小组的同学分别设计了如下四个方案,其中最合理的是()A.两人各拿一块条形磁铁,并将各自的一个磁极相互靠近B.用一块条形磁铁的一个磁极靠近另一块条形磁铁中间C.将放在粗糙桌面上的两块条形磁铁的磁极相互靠近D.用条形磁铁的一个磁极靠近另一块用细线悬挂并静止的条形磁铁的一个磁极9.下图中,正确的是图()A.B.C.D.10.下列现象中,哪些现象证明钢棒具有磁性()A.将钢棒一端接近磁针N极,互相吸引B.将钢棒一端接近磁针S极,互相吸引C.将钢棒与另一钢棒靠近,互相吸引D.将钢棒一端接近磁针N极,互相排斥二、填空题11.(2015•成都中考)指南针是我国古代四大发明之一,其实质就是一个小磁针,它有N、S两极,使用时指南的那端是极。

高中物理题型分类汇总含详细答案--磁场

高中物理题型分类汇总含详细答案--磁场

高中物理题型分类汇总含详细答案--磁场共:15题时间:50分钟一、单选题1.如图所示,A、B、C是等边三角形的三个顶点,O是A、B连线的中点。

以O为坐标原点,A、B连线为x轴,O、C连线为y轴,建立坐标系。

过A、B、C、O四个点各有一条长直导线垂直穿过纸面,导线中通有大小相等、方向向里的电流,则过O点的通电直导线所受安培力的方向为()A.沿y轴正方向B.沿y轴负方向C.沿x轴正方向D.沿x轴负方向2.如图所示,有一通电直导线放在蹄形电磁铁的正上方,导线可以自由移动,当电磁铁线圈与直导线中通以图示的电流时,有关直导线运动情况的说法中正确的是(从上往下看)()A.顺时针方向转动,同时下降B.时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升3.关于磁感应强度,下列说法中正确的是()A.由B=知,B与F成正比,与IL成反比B.若长为L、通有电流为I的导体在某处受到的磁场力为F,则该处的磁感应强度必为C.由B=知,若一小段通电导体在某处不受磁场力,则说明该处一定无磁场D.磁感应强度的方向就是小磁针北极所受磁场力的方向4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示。

这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子在回旋加速器中做圆周运动的周期随半径的增大而增大B.离子从磁场中获得能量C.增大加速电场的电压,其余条件不变,离子离开磁场的动能将增大D.增大加速电场的电压,其余条件不变,离子在D型盒中运动的时间变短5.如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135º.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为( +1)ILBB.方向沿纸面向上,大小为( -1)ILBC.方向沿纸面向下,大小为( +1)ILBD.方向沿纸面向下,大小为( -1)ILB6.下列各图中,通电直导线或带电粒子所受磁场力方向正确的是()A. B. C. D.7.如图所示,用电阻率为ρ、横截面积为S、粗细均匀的电阻丝折成平面梯形框架,ab、cd 边均与ad边成60°角,。

磁场难题集锦(含问题详解)

磁场难题集锦(含问题详解)

实用标准文案磁场难题集锦一.解答题(共9小题)1.(2009•浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.2.(2011•江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.5.(2006•甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.7.(2007•江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E≪E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.9.(2007•浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).磁场难题集锦参考答案与试题解析一.解答题(共9小题)1.(2009•浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.考点:带电粒子在匀强磁场中的运动.专题:压轴题.分析:带电粒子沿半径方向射入匀强磁场中,做匀速圆周运动后,沿半径的方向射出.当没有沿半径方向射入时仍做匀速圆周运动,则圆心必经过入射点与出射点连线的中垂线.解答:解:本题考查带电粒子在复合场中的运动.带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡.设电场强度大小为E,由mg=qE可得方向沿y轴正方向.带电微粒进入磁场后,将做圆周运动.且r=R如图(a)所示,设磁感应强度大小为B.由得方向垂直于纸面向外(2)一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点.二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动.如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(﹣Rsinθ,Rcosθ),圆周运动轨迹方程为(x+Rsinθ)2+(y﹣Rcosθ)2=R2得x=0 或 x=﹣Rsinθ,y=0 或y=R(1+cosθ)可得带电微粒做圆周运动的轨迹与磁场边界的交点为,求,坐标为后者的点就是P点,须舍去,可见,这束带电微粒都是通过坐标原点离开磁场的.(3)带电微粒初速度大小变为2v,则从任一点P水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r′为带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y轴的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示.靠近圆磁场上边发射出来的带电微粒在恰好没有磁场力,则会射向x轴正方向的无穷远处,答案:(1);方向垂直于纸面向外;(2)通过坐标原点离开磁场的;(3)与x同相交的区域范围是x>0.点评:带电粒子以相同的速度方向,沿不同位置进入匀强磁场时,轨迹的圆弧长度不同,则运动的时间不同,但半径仍相同.2.(2011•江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T后恰能再次从a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?分析:(1)求第二次加速后从b孔射出时的动能只需知道加速时所对应的电压,故图2求电压即可.(2)加入屏蔽管后粒子在屏蔽管中做匀速直线运动,离开屏蔽管后运动轨迹与原来的运动轨迹相似,只是向下平移了l.(3)从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,解得.解解:(1)质量为m0的粒子在磁场中作匀速圆周运动Bqv=,答:则当粒子的质量增加了m0,其周期增加△T=T0根据题图2可知,粒子第一次的加速电压u1=U0经过第二次加速,第2次加速电压u2,如图2在三角形中,,所以粒子第二次的加速电压粒子射出时的动能 E k2=qu1+qu2解得(2)因为磁屏蔽管使粒子匀速运动至以下L处,出管后仍然做圆周运动,可到C点水平射出.磁屏蔽管的位置如图1所示.粒子运动的轨迹如图3.(3)如图4(用Excel作图)设T0=100,U0=50,得到在四分之一周期内的电压随时间变化的图象从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,得N=25.所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.解答:解:(1)初速度与y轴方向平行的粒子在磁场中的运动轨迹如图1中的弧OP所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP为等腰三角形故∠OCP=①此粒子飞出磁场所用的时间为t0=②式中T为粒子做圆周运动的周期.设粒子运动速度的大小为v,半径为R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m④T=⑤联立②③④⑤解得⑥(2)仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出.依题意,同一时刻仍在磁场内的粒子到O点距离相同.在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧上.如图所示.设此时位于P、M、N三点的粒子的初速度分别为v P、v M、v N.由对称性可知v P与OP、v M与OM、v N 与ON的夹角均为.设v M、v N与y轴正向的夹角分别为θM、θN,由几何关系有⑦⑧对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足≤θ≤(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图2所示.由几何关系可知:OM=OP由对称性可知ME=OP由图可知,圆的圆心角为240°,从粒子发射到全部粒子飞出磁场所用的时间2t0;4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.解答:解:(1)粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得E0q=B0qv①②由①②化简得③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上.粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④⑤连立④⑤化简得⑥在磁场中粒子所需向心力由洛仑兹力提供,根据牛顿第二定律得⑦连立③⑦化简得⑧(2)由于I点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有⑨同理⑩(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量成正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的E F边界上有离子穿出磁场.比甲质量大的离子都从EG穿出磁场,其中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的离子都在这两点之间.5.(2006•甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.解:根据牛顿第二定律得解答:化简得①②如右图是粒子在一个周期的运动,则粒子在一个周期内经过y负半轴的点在y负半轴下移2(R2﹣R1),在第n次经过y负半轴时应下移2R1,则有 2n(R2﹣R1)=2R1③连立①②③化简得,n=1,2,3,…6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.解解:(1)做直线运动有:qE=qBv0①答:做圆周运动有:qBv0=m②只有电场时,粒子做类平抛运动,有:qE=ma ③R0=v0t ④v y=at ⑤从③④⑤解得⑥,从①得E=Bv0⑦,从②式得⑧,将⑦、⑧代入⑥得:v y=v0粒子速度大小为:v==v0速度方向与x轴夹角为:θ=粒子与x轴的距离为:H=h+at2=h+代入数据得H=11cm.(2)撤电场加上磁场后,有:qBv=m解得:R=R0,代入数据得R=14cm.粒子运动轨迹如图所示,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,由几何关系得C点坐标为:x c=2R0,代入数据得x C=20cmy c=H﹣R0=h﹣,代入数据得y C=1cm过C作x轴的垂线,在△CDM中:=R=R0=y c=h﹣解得:==M点横坐标为:x M=2R0+代入数据得x M=34cm答:(1)粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为11cm;(2)M点的横坐标x M为34cm.7.(2007•江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E≪E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.解答:解析:设α粒子以速度v进入磁场,打在胶片上的位置距S的距离为x 圆周运动α粒子的动能且 x=2R解得:.△x1=﹣当x<<1时,(1+x)n≈1+x n由上式可得:.(2)动能为E的α粒子沿±φ角入射,轨道半径相同,设为R圆周运动α粒子的动能由几何关系得答:(1)(2)8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.解答:解:设粒子的入射速度为v,第一次射出磁场的点为N′0,与板碰撞后再次进入磁场的位置为N1,子在磁场中运动的轨道半径为R,有 (1)粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变有x1=N0′N0=2Rsinθ (2)粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N0相等.由图可以看出x2=a (3)设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为﹣a,即(n+1)x1﹣nx2=2a (4)由(3)(4)两式得 (5)若粒子与挡板发生碰撞,有 (6)联立(3)(4)(6)得:n<3 (7)联立(1)(2)(5)得: (8)把代入(8)中得;;;答:粒子入射速度的所有可能值为;;.9.(2007•浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).解答:解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a;对于 x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c′由对称性得到 c′在 x 轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得由数学关系得到: OP=2a+R代入数据得到:所以在x 轴上的范围是.。

高二物理人教版《磁场》安培力题型专项训练

高二物理人教版《磁场》安培力题型专项训练

目录一、安培力方向的判定 (2)二、安培力大小的计算 (4)三、安培力的平衡、极值问题 (8)一、安培力方向的判定【基础题】1、(单选)把一小段通电直导线放入磁场中,导线受到安培力的作用,关于安培力的方向,下列说法中正确的是()A.安培力的方向一定跟磁感应强度的方向相同B.安培力的方向一定跟磁感应强度的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁感应强度方向垂直D.安培力的方向既跟磁感应强度方向垂直,又跟电流方向垂直2、(单选)如图所示的匀强磁场中,已经标出了电流I和磁场B以及磁场对电流作用力F三者的方向,其中正确的是()3、画出图中通电导体棒ab所受的安培力的方向(图中箭头方向为磁感线的方向).4、(单选)下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受安培力F的方向,其中图示正确的是()【提高题】5、(单选)如图所示,两条导线相互垂直,但相隔一段距离.其中AB固定,CD能自由活动,当直线电流按图示方向通入两条导线时,导线CD将(从纸外向纸里看)()A.顺时针方向转动同时靠近导线ABB.逆时针方向转动同时离开导线ABC.顺时针方向转动同时离开导线ABD.逆时针方向转动同时靠近导线AB6、(单选)如图所示,有一通电直导线放在蹄形电磁铁的正上方,导线可以自由移动,当电磁铁线圈与直导线中通以图示的电流时,有关直导线运动情况的说法中正确的是(从上往下看)()A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升7、(单选)通有电流的导线L1、L2处在同一平面(纸面)内,L1是固定的,L2可绕垂直纸面的固定转轴O转动(O为L2的中心),各自的电流方向如图所示.下列哪种情况将会发生()A.因L2不受磁场力的作用,故L2不动B.因L2上、下两部分所受的磁场力平衡,故L2不动C.L2绕轴O按顺时针方向转动D.L2绕轴O按逆时针方向转动二、安培力大小的计算【基础题】8、(单选)长度为L、通有电流为I的直导线放入一匀强磁场中,电流方向与磁场方向如图所示,已知磁感应强度为B,对于下列各图中,导线所受安培力的大小计算正确的是()A.F=BIL cos θB.F=BIL cos θC.F=BIL sin θD.F=BIL sin θ9、把长L=0.15 m的导体棒置于磁感应强度B=1.0×10-2T的匀强磁场中,使导体棒和磁场方向垂直,如图所示,若导体棒中的电流I =2.0 A,方向向左,则导体棒受到的安培力大小F=________ N,安培力的方向为竖直向________.(选填“上”或“下”)【提高题】10、(单选)如图所示,长为2l的直导线折成边长相等、夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B.当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为()A.0B.0.5BIlC.BIl D.2BIl11、(单选)如图所示,一根导线位于磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,其中AB=BC=CD=DE=l,且∠C=120°、∠B=∠D=150°.现给这根导线通入由A至E的恒定电流I,则导线受到磁场作用的合力大小为()A.23BIlB.(2+3 2)BIlC.(2+3)BIlD.4BIl12、(单选)如图所示,某区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B.一正方形刚性线圈,边长为L,匝数为n,线圈平面与磁场方向垂直,线圈一半在磁场内.某时刻,线圈中通过大小为I 的电流,则此线圈所受安培力的大小为()A.2BILB.12nBIL C.nBIL D.2nBIL13、(单选)如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILBC.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILB14、如图所示,在匀强磁场中放有下列各种形状的通电导线,电流为I,磁感应强度为B,则各导线所受到的安培力的大小分别为:F A=,F B=,F C=,F D=.15、(单选)如图所示,水平导轨接有电源,导轨上固定有三根导体棒a、b、c,c为直径与b等长的半圆,长度关系为c最长,b最短,将装置置于竖直向下的匀强磁场中,在接通电源后,三导体棒中有等大的电流通过,则三导体棒受到的安培力大小关系为()A.F a>F b>F cB.F a=F b=F cC.F b<F a<F cD.F a>F b=F c16、(单选)如图所示,用天平测量匀强磁场的磁感应强度.下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方.线圈中通有大小相同的电流,天平处于平衡状态.若磁场发生微小变化,天平最容易失去平衡的是()17、(单选)如图所示,一个边长为L 、三边电阻相同的正三角形金属框放置在磁感应强度为B 的匀强磁场中,若通以图示方向的电流(从A 点流入,从C 点流出),电流强度为I ,则金属框受到的磁场力为( )A.0B.BIL 2C.BILD.2BIL三、安培力的平衡、极值问题18、如图所示,光滑导轨与水平面成α角,导轨宽为L .有大小为B 的匀强磁场,方向垂直导轨面,金属杆长为L ,质量为m ,水平放在导轨上.当回路中通过电流时,金属杆正好能静止.求:电流的大小为多大?磁感应强度的方向如何?19、一根长L =0.2 m 的金属棒放在倾角θ=37°的光滑斜面上,并通过I =5 A 的电流,方向如图所示,整个装置放在磁感应强度B =0.6 T 竖直向上的匀强磁场中,金属棒恰能静止在斜面上,则该棒的重力为多少?(sin 37°=0.6)20、水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m、电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右上方,如图所示,问:当ab棒静止时,受到的支持力和摩擦力各为多少?21、如图所示,在与水平方向夹角为60°的光滑金属导轨间有一电源,在相距1 m的平行导轨上放一质量为m=0.3 kg的金属棒ab,通以从b→a、I=3 A的电流,磁场方向竖直向上,这时金属棒恰好静止.求:(1)匀强磁场磁感应强度的大小;(2)ab棒对导轨的压力.(g=10 m/s2)22、(单选)如图所示,一根有质量的金属棒MN,两端用细软导线连接后悬于a、b两点,棒的中部处于方向垂直纸面向里的匀强磁场中,棒中通有电流,方向从M流向N,此时悬线上有拉力,为了使拉力等于零,可以()A.适当减小磁感应强度B.使磁场反向C.适当增大电流D.使电流反向23、(单选)如图所示,一条形磁铁放在水平桌面上,在条形磁铁的左上方固定一根与磁铁垂直的长直导线,当导线中通以图示方向的电流时(磁铁始终未动)()A.磁铁对桌面的压力减小,且受到向左的摩擦力作用B.磁铁对桌面的压力减小,且受到向右的摩擦力作用C.磁铁对桌面的压力增大,且受到向左的摩擦力作用D.磁铁对桌面的压力增大,且受到向右的摩擦力作用24、(单选)如图所示,用两根轻细悬线将质量为m 、长为l 的金属棒ab 悬挂在c 、d 两处,置于匀强磁场内.当棒中通以从a 到b 的电流I 后,两悬线偏离竖直方向θ角而处于平衡状态.为了使棒平衡在该位置上,所需的磁场的最小磁感应强度的大小、方向为( )A.mg Il tan θ,竖直向上B.mg Il tan θ,竖直向下C.mg Il sin θ,平行悬线向下D.mg Il sin θ,平行悬线向上。

高中物理磁场12个基础计算题专练(含答案)

高中物理磁场12个基础计算题专练(含答案)

2018.1。

15磁场12个计算题参考答案与试题解析一.解答题(共12小题)1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P 到O的距离为L,不计重力及粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径.(2)求这两个粒子从O点射入磁场的时间间隔.【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径;(2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值.【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有:得:(2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的两个粒子的轨道,圆心和直径分别为O1、O2和OO1Q1、OO2Q2,在O处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知:∠PO1Q1=∠PO2Q2=θ从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1PQ1P=Rθ粒子2的路程为半个圆周减弧长PQ2PQ2=Rθ粒子1运动的时间:粒子2运动的时间:两粒子射入的时间间隔:因得解得:答:(1)所考察的粒子在磁场中的轨道半径是.(2)这两个粒子从O点射入磁场的时间间隔是.【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型.2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为0。

磁场难题集锦(含答案).

磁场难题集锦(含答案).

磁场难题集锦一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).磁场难题集锦参考答案与试题解析一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.考点:带电粒子在匀强磁场中的运动.专题:压轴题.分析:带电粒子沿半径方向射入匀强磁场中,做匀速圆周运动后,沿半径的方向射出.当没有沿半径方向射入时仍做匀速圆周运动,则圆心必经过入射点与出射点连线的中垂线.解答:解:本题考查带电粒子在复合场中的运动.带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡.设电场强度大小为E,由mg=qE可得方向沿y轴正方向.带电微粒进入磁场后,将做圆周运动.且r=R如图(a)所示,设磁感应强度大小为B.由得方向垂直于纸面向外(2)一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点.二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动.如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(﹣Rsinθ,Rcosθ),圆周运动轨迹方程为(x+Rsinθ)2+(y﹣Rcosθ)2=R2得x=0 或x=﹣Rsinθ,y=0 或y=R(1+cosθ)可得带电微粒做圆周运动的轨迹与磁场边界的交点为,求,坐标为后者的点就是P点,须舍去,可见,这束带电微粒都是通过坐标原点离开磁场的.(3)带电微粒初速度大小变为2v,则从任一点P水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r′为带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y轴的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示.靠近圆磁场上边发射出来的带电微粒在恰好没有磁场力,则会射向x轴正方向的无穷远处,靠近圆磁场下边发射出来的带电微粒会在靠近原点之处穿出磁场.所以,这束带电微粒与x轴相交的区域范围是x>0.答案:(1);方向垂直于纸面向外;(2)通过坐标原点离开磁场的;(3)与x同相交的区域范围是x>0.点评:带电粒子以相同的速度方向,沿不同位置进入匀强磁场时,轨迹的圆弧长度不同,则运动的时间不同,但半径仍相同.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?分析:(1)求第二次加速后从b孔射出时的动能只需知道加速时所对应的电压,故图2求电压即可.(2)加入屏蔽管后粒子在屏蔽管中做匀速直线运动,离开屏蔽管后运动轨迹与原来的运动轨迹相似,只是向下平移了l.(3)从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.解答:解:(1)质量为m0的粒子在磁场中作匀速圆周运动Bqv=,则当粒子的质量增加了m0,其周期增加△T=T0根据题图2可知,粒子第一次的加速电压u1=U0经过第二次加速,第2次加速电压u2,如图 2在三角形中,,所以粒子第二次的加速电压粒子射出时的动能E k2=qu1+qu2解得(2)因为磁屏蔽管使粒子匀速运动至以下L处,出管后仍然做圆周运动,可到C点水平射出.磁屏蔽管的位置如图1所示.粒子运动的轨迹如图3.(3)如图4(用Excel作图)设T0=100,U0=50,得到在四分之一周期内的电压随时间变化的图象从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,得N=25.所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.解答:解:(1)初速度与y轴方向平行的粒子在磁场中的运动轨迹如图1中的弧OP所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP为等腰三角形故∠OCP=①此粒子飞出磁场所用的时间为t0=②式中T为粒子做圆周运动的周期.设粒子运动速度的大小为v,半径为R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m④T=⑤联立②③④⑤解得⑥(2)仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出.依题意,同一时刻仍在磁场内的粒子到O点距离相同.在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧上.如图所示.设此时位于P、M、N三点的粒子的初速度分别为v P、v M、v N.由对称性可知v P与OP、v M与OM、v N与ON的夹角均为.设v M、v N与y轴正向的夹角分别为θM、θN,由几何关系有⑦⑧对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足≤θ≤(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图2所示.由几何关系可知:OM=OP由对称性可知ME=OP由图可知,圆的圆心角为240°,从粒子发射到全部粒子飞出磁场所用的时间2t0;4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.解答:解:(1)粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得E0q=B0qv①②由①②化简得③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上.粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④⑤连立④⑤化简得⑥在磁场中粒子所需向心力由洛仑兹力提供,根据牛顿第二定律得⑦连立③⑦化简得⑧(2)由于I点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有⑨同理⑩(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量成正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的 E F边界上有离子穿出磁场.比甲质量大的离子都从EG穿出磁场,其中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的离子都在这两点之间.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.解答:解:根据牛顿第二定律得化简得①②如右图是粒子在一个周期的运动,则粒子在一个周期内经过y负半轴的点在y负半轴下移2(R2﹣R1),在第n次经过y负半轴时应下移2R1,则有2n(R2﹣R1)=2R1③连立①②③化简得,n=1,2,3,…6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.解答:解:(1)做直线运动有:qE=qBv0①做圆周运动有:qBv0=m②只有电场时,粒子做类平抛运动,有:qE=ma ③R0=v0t ④v y=at ⑤从③④⑤解得⑥,从①得E=Bv0⑦,从②式得⑧,将⑦、⑧代入⑥得:v y=v0粒子速度大小为:v==v0速度方向与x轴夹角为:θ=粒子与x轴的距离为:H=h+at2=h+代入数据得H=11cm.(2)撤电场加上磁场后,有:qBv=m解得:R=R0,代入数据得R=14cm.粒子运动轨迹如图所示,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,由几何关系得C点坐标为:x c=2R0,代入数据得x C=20cmy c=H﹣R0=h﹣,代入数据得y C=1cm过C作x轴的垂线,在△CDM中:=R=R0=y c=h﹣解得:==M点横坐标为:x M=2R0+代入数据得x M=34cm答:(1)粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为11cm;(2)M点的横坐标x M为34cm.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.解答:解析:设α粒子以速度v进入磁场,打在胶片上的位置距S的距离为x圆周运动α粒子的动能且x=2R解得:.△x1=﹣当x<<1时,(1+x)n≈1+x n由上式可得:.(2)动能为E的α粒子沿±φ角入射,轨道半径相同,设为R圆周运动α粒子的动能由几何关系得答:(1)(2)8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.解答:解:设粒子的入射速度为v,第一次射出磁场的点为N′0,与板碰撞后再次进入磁场的位置为N1,子在磁场中运动的轨道半径为R,有 (1)粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变有x1=N0′N0=2Rsinθ (2)粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N0相等.由图可以看出x2=a (3)设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为﹣a,即(n+1)x1﹣nx2=2a (4)由(3)(4)两式得 (5)若粒子与挡板发生碰撞,有 (6)联立(3)(4)(6)得:n<3 (7)联立(1)(2)(5)得: (8)把代入(8)中得;;;答:粒子入射速度的所有可能值为;;.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).解答:解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a;对于x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c′由对称性得到c′在x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得由数学关系得到:OP=2a+R代入数据得到:所以在x 轴上的范围是.。

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案题组一1.在xOy平面内,y≥0的区域有垂直于平面向里的匀强磁场,磁感应强度为B。

一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以速度v射入。

粒子的重力不计。

求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。

2.如图所示,abcd是一个正方形的盒子,在cd边的中点有一小孔e。

盒子中存有沿ad方向的匀强电场,场强大小为E。

一粒子源不断地从a处的小孔沿ab方向向盒内发射相同的带电粒子,粒子的初速度为v,经电场作用后恰好从e处的小孔射出。

现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B。

粒子仍恰好从e孔射出。

不考虑带电粒子的重力和粒子之间的相互作用。

1)所加的磁场的方向是什么?2)电场强度E与磁感应强度B的比值是多少?题组二4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小为B1 = 0.20 T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125 m的匀强磁场B2.某时刻一质量为m=2.0×10^-8 kg、电量为q=+4.0×10^-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v=2.0×10^3 m/s沿y轴正方向运动。

试求:1)微粒在y轴的左侧磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。

5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。

假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。

36巩固练习_几种常见的磁场

36巩固练习_几种常见的磁场

几种常见的磁场【巩固练习】 一、选择题:1•磁体之间的相互作用是通过磁场发生的•对磁场认识正确的是(A •磁感线有可能出现相交的情况B •磁感线总是由 N 极出发指向S 极C .某点磁场的方向与放在该点小磁针静止时N 极所指方向一致D .若在某区域内通电导线不受磁场力的作用,则该区域的磁感应强度一定为零2. (2014 越城区校级期中)如图所示, a 、b 、c 、d 是通电螺线管周围的四个位置(a 在螺线管内部),其中磁感应强度最大的位置是(3.下列关于磁场和磁感线的描述中正确的是(A .磁感线从磁体的 N 极出发到磁体的 S 极终止B .自由转动的小磁铁放在通电螺线管内部,其 N 极指向螺线管的N 极C .磁感线的方向就是磁场方向D .两条磁感线的空隙处不存在磁场4.某同学做奥斯特实验时,把小磁针放在水平的通电直导线的正下方,通电后发现小磁针 不动.稍微用手拨动一下小磁针,小磁针转动了 180°后静止不动.由此可知通电直导线的电流方向是()A .自东向西B .自南向北强磁场B 夹角为9=45°现将线圈ab 边为轴顺时针转动 90°则线圈在初位置、末位置磁通5.一根软铁棒被磁化是因为(A •软铁棒中产生了分子电流 C .软铁棒中分子电流消失软铁棒中分子电流取向杂乱无章 软铁棒中分子电流取向变得大致相同6. ( 2015广州期末)如图所示 ,闭合线圈a bed 水平放置,其面积为S,匝数为n ,线圈与匀 C .自西向东 D .自北向南B .72BSC . 72nBSD .无法计算A . 07 .如图所示是一种利用电磁原理制成的充气泵的结构示意图.其工作原理类似打点计时器.当电流从电磁铁的接线柱 a 流入,吸引小磁铁向下运动时, 以下选项中正确的是 ()A .电磁铁的上端为B .电磁铁的上端为C .电磁铁的上端为D .电磁铁的上端为IVI '**'N 极 S 极 S 极N 极N 极,小磁铁的下端为 S 极,小磁铁的下端为 N极,小磁铁的下端为 S极,小磁铁的下端为&如图所示,条形磁铁竖直放置,一水平圆环从磁铁上方位置I 向下运动,到达磁铁上端 位置n,套在磁铁上到达中部川,再到磁铁下端位置W,再到下方IV7V 过程中,穿过圆环的磁通量变化情况是(A .变大,变小,变大,变小 C .变大,不变,不变,变小OT科B .变大, D .变小, )变大,变小, 变小,变大, 变小 变大9.如图所示,通有恒定电流的导线 MN 与闭合金属框共面,第一次将金属框由I 平移到n.第二次将金属框绕 cd 边翻转到n, 设先后两次通过金属框的磁通量变化分别为1•如图所示,放在通电螺线管内部的小磁针,静止时 为正极.2C .2D .不能判断N 极指向右端,则电源的二、填空题:2•如图所示,ABCD 是一环形导线,在 C 、D 处用导线与直导线 ab 接通,图中标出了环形 电流的磁感线方向,则可知 A 、B 两端中接电源正极的是 __________ 端,放在ab 下方的小磁针 ________ 极将转向纸外.【答案与解析】 1、选择题:1. C解析:磁场是一种客观存在的物质, 的方向一致.磁感线是为了形象地描绘磁场而假想出来的曲线, 外部,磁感线由N 极出发指向S 极,而在磁体内部由 S 极指向 平行时,不受磁场力的作用,该处的磁感应强度不为零.综上所述,2. A解析:磁感线是闭合的曲线,通电螺线管内部磁感线最密,所以磁感应强度最大的位置是 处,故A 正确3. B解析:磁感线与电场线不同,它是一条闭合曲线,在磁体外部由N 极到S 极,而在磁体的内部则由S 极到N 极,故选项A 不正确.通电螺线管内部的磁感线和条形磁铁相似,是由3. ( 2015望城县校级期末)如图所示,匀强磁场的磁感应强度为边长为ab=10em , be=20em ,线圈平面与磁场平行0.8T ,矩形线圈abed 的—»■——(1) 若以ab 边为轴,线圈转过 磁通量的变化量为 ___________ . (2) 若以ad 边为轴,线圈转过 磁通量的变化量为 ___________ .90°这时穿过线圈的磁通量为 90°这时穿过线圈的磁通量为,在这一过程中, ,在这一过程中,磁感应强度是矢量,它的方向与小磁针静止时 N 极所指 它是闭合的曲线,在磁体的 N 极.通电导线与磁场方向 C 项正确.S 极到N 极,即磁场方向也是从 S 极指向N 极,所以放置其中的小磁针 N 极必然是指向磁 场方向,即螺线管的北极,故选项 B 正确.只有磁感线是直线时,磁感线的方向才与磁场方向一致;如果磁感线是曲线, 那么,某点的磁场方向是用该点的切线方向来表示的, 所以选项C 不正确.磁感线是为研究问题方便而假想的曲线.磁场中磁感线有无数条,故提出 两条磁感线之间是否有空隙,是否存在磁场等类似的问题是毫无意义的.故选项D 不正确.4. A解析:原来小磁针是在地磁场的作用下偏转的. 当小磁针放在通电导线附近时, 通电导线产生的磁场要比地磁场强,所以小磁针就在通电导线磁场的作用下偏转. 根据题意,小磁针原 来不动,稍微用手拨动,小磁针转动180°后静止不动,说明直导线磁场的方向与地磁场方向恰好相反.地磁场的方向在地球表面是从地理南极指向地理北极. 所以导线下方的磁场方向应为从北向南.根据安培定则可知,电流方向应为自东向西.5. D解析:软铁棒中分子电流是一直存在的, 并不因为外界的影响而产生或消失, 故A 、C 错.根据磁化过程知D 正确.6. B2Bcos es— BS ,则初位置、末位置磁通量的改变量的大小为: 2J2BS ,故B 正确.1II I 1I II ,所以二、填空题:1. c解析:小磁针 N 极的指向即为该处的磁场方向, 定则可判断出电流由电源的 c 端流出,d 端流入,故电源c 端为正极,d 端为负极.2. B N解析: 设初位置时穿过线圈的磁通量为正,则初位置是:1BSsin B 返BS ,末位置27. D解析: 小磁铁向下运动, & B 解析:从条形磁铁磁感线的分布情况看, 为B . 9. C解析:导体 MN 周围的磁场并非匀强磁场,当电流从 a 端流向电磁铁时,根据右手定则,得出电磁铁的上端为S 极,此时能吸引故说明小磁铁的下端为N 极.穿过圆环的磁通量在位置川处最大, 所以正确答案MN 处的磁场强些,磁感线密一些,远离MN 处的磁感线疏一些.当线框在I 位置时, 穿过平面的磁通量为I ,当线圈平移至n 位 置时, 磁通量为 II ,则磁通量的变化量为 11II I 1II ;当线框翻转至n 位置时, 磁感线相当于从’反面”穿过平则磁通量为II ,则磁通量的变化量是所以螺线管内部磁感线由a ^b.根据安培解析:环形导线内的磁场为AC、BD上电流形成的合磁场,由安培定则,电流方向如图所示,则接电源正极的是B端,放在轴下方的小磁针N极转向纸外.ft3 33.【答案】(1) 1.6 10 Wb ; 1.6 10 Wb (2) 0; 0【解析】(1)若以ab边为轴,线圈转过90°在匀强磁场中,穿过线圈的磁通量为:3BS 0.8 0.1 0.2Wb 1.6 10 3Wb ;在这一过程中,磁通量的变化量为: 0 1.6 10 3Wb(2)若以ad边为轴,线圈转过90°线圈与磁场平行,没有磁感线穿过线圈,则穿过线圈的磁通量为0,变化也为0.。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)

2.如图所示,虚线 MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直 纸面向里,磁感应强度为 B 的匀强磁场,虚线 MN 的右侧区域有方向水平向右的匀强电 场.水平线段 AP 与 MN 相交于 O 点.在 A 点有一质量为 m,电量为+q 的带电质点,以大 小为 v0 的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知 A
25q 2 B 2 L2 128m
q 2 B 2 L2 6m
当k
1 3
时,
vA
qBL 2m
,由于
1 2
mvA2
q 2 B 2 L2 8m
q 2 B 2 L2 6m
综合(I)、(II)可得 A 球能从 z 点离开的 k 的可能值为: k 5 或 k 1
7
3
A 球在磁场中运动周期为T 2 m qB
1 2
mvA2
解得:
vA
2k k 1
qBL m
(2)设
A
在磁场中运动轨迹半径为
R,
由牛顿第二定律得:
qvA B
mvA 2 R
解得: R 2k L k 1
由公式可得 R 越大,k 值越大
如图 1,当 A 的轨迹与 cd 相切时,R 为最大值, R L 求得 k 的最大值为 k 1
(3)令 z 点为 ed 边的中点,分类讨论如下:
形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径 r=R,
由 qvB m v2 r
得: B mv qR
(2)有一半粒子打到挡板上需满足从 O 点射出的沿 x 轴负方向的粒子、沿 y 轴负方向的 粒子轨迹刚好与挡板相切,如图乙所示,过圆心 D 做挡板的垂线交于 E 点

江苏省2023年高考物理模拟试题知识点分类训练:电磁学解答题(磁场)

江苏省2023年高考物理模拟试题知识点分类训练:电磁学解答题(磁场)

江苏省2023年高考物理模拟试题知识点分类训练:电磁学解答题(磁场)一、解答题2.(2023·江苏·模拟预测)如图甲所示,在y 轴右侧的矩形虚线空间存在垂直于纸面的周期性的磁场,磁感应强度大小为场上边界在2y a =处,下边界在2y a =-处,右边界在所示,规定垂直纸面向里的方向为磁场的正方向。

的带正电粒子从位置坐标为(),2a a 的A 点以速度垂直打到放置在下边界处的水平挡板上的反弹(不计碰撞时间和电荷量的变化),最终粒子会从3.(2023·江苏·模拟预测)如图1所示,有一对垂直纸面水平放置的平行金属板,板长为2d,两板间距为d,金属板右侧有一个半径为22d的圆形匀强磁场区域,圆心于平行金属板正中间的水平线上,磁场方向垂直纸面向里。

金属板左侧的电子枪不断地沿正中间的水平线发射质量为m、电荷量为e的电子,发射电子的初速度恒定。

若在两金属板上加上如图2所示的交变电压ABU,周期为T,电子在金属板内运动时间恒为4.(2023·江苏·模拟预测)某科研实验装置的电场和磁场分布可以简化为如图所示。

象限(包括y轴)充满垂直xOy平面向外,磁感应强度大小为1B的匀强磁场,第限充满垂直xOy平面向里,磁感应强度大小为2B的匀强磁场,第Ⅲ象限充满沿方向的匀强电场。

在第Ⅲ象限坐标为(b-,b-)的粒子源P发射出质量为5.(2023·江苏淮安·模拟预测)如图甲所示,现有一机械装置,装置平光滑绝缘杆,装置可以带动杆上下平行移动,杆上套有两个小球1kg a m =,3kg b m =,a 球带电量2C q =+,b 球不带电。

初始时a 、b 球相距00.08m L =。

现让装置O 带动杆以0v =直纸面向里的磁感应强度1T B =的匀强磁场,已知小球和杆始终在磁场中,撞均为弹性碰撞,且碰撞过程中电荷量不发生转移。

6.(2023·江苏·模拟预测)如图所示,水平面内有一半径为L的金属圆环,圆环内有垂直圆环所在平面的匀强磁场,AOB为匀强磁场的分界线,O为圆心,方向相反,磁感应强度的大小均为B,有一电阻为R的导体棒a的一端固定在时刻,导体棒a从分界线OB位置以O为圆心做角速度为ω的匀速圆周运动,7.(2023·江苏·模拟预测)如图所示,坐标系xOyz的xoy平面内内有竖直向上的匀强电场,yoz左侧区域内既有沿x轴负方向的匀强磁场,又有沿x轴负方向的匀强电场,电+>场强度与第一象限内的电场强度等大。

《磁场、电磁感应》训练题(含详细答案)

《磁场、电磁感应》训练题(含详细答案)

《磁场、电磁感应》训练题一、不定项选择题1.下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是( )2.如图所示,在直线电流附近有一根金属棒ab,当金属棒以b端为圆心,以ab为半径,在过导线的平面内沿图示方向匀速旋转时( ) A.a端聚积电子 B.b端聚积电子C.金属棒内电场强度等于零 D.U a>U b3.如图所示,两根相互平行的金属导轨水平放置于匀强磁场中,在导轨上接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下刚开始向右运动时,下列说法中正确的是( )A.导体棒CD内有电流通过,方向是D→C B.导体棒CD内有电流通过,方向是C→D C.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左4.如图所示,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.在将滑动变阻器的滑片P向上滑动的过程中,下面说法中正确的是( )A.穿过线圈a的磁通量变大B.线圈a有收缩的趋势C.线圈a中将产生俯视顺时针方向的感应电流D.线圈a对水平桌面的压力F N将增大5.如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是( )A.向右加速运动 B.向左加速运动C.向右减速运动 D.向左减速运动6.如图所示,一电子束沿垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是( ) A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大7.如图所示,两导体板水平放置,两板间电势差为U,带电粒子以某一初速度v0沿平行于两板的方向从两板正中间射入,穿过两板后又沿垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U和的变化情况为( )A.d随增大而增大,d与U无关B.d随增大而增大,d随U增大而增大C.d随U增大而增大,d与无关D.d随增大而增大,d随U增大而减小8.如图所示,两个相同的半圆形光滑绝缘轨道分别竖直放置在匀强电场E和匀强磁场B中,轨道两端在同一高度上,两个相同的带正电小球a、b同时从轨道左端最高点由静止释放,且在运动过程中始终能通过各自轨道的最低点M、N,则( )A.两小球某次到达轨道最低点时的速度可能有v N=v MB.两小球都能到达轨道的最右端C.小球b第一次到达N点的时刻与小球a第一次到达M点的时刻相同D.小球a受到的电场力一定不大于a的重力,小球b受到的最大洛伦兹力可能大于b的重力9.如图所示为一个质量为m、带电荷量为+q的圆环,可在水平放置的粗糙细杆上自由滑动,细杆处于磁感应强度为B的匀强磁场中,圆环以初速度v0向右运动直至处于平衡状态,则圆环克服摩擦力做的功可能为( )A.0 B.C. D.10.利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d和d的缝,两缝近端相距为L.一群质量为m、电荷量为q,具有不同速度的粒子从宽度为2d的缝垂直于板MN进入磁场,对于能够从宽度为d的缝射出的粒子,下列说法正确的是( ) A.粒子带正电B.射出粒子的最大速度为C.保持d和L不变,增大B,射出粒子的最大速度与最小速度之差增大D.保持d和B不变,增大L,射出粒子的最大速度与最小速度之差增大答题卷班级 姓名 得分 一、不定项选择题题号12345678910答案二、计算题11.如图所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ为磁场的边界.质量为m、带电荷量为-q的粒子,先后两次沿着与MN夹角为θ(0°<θ<90°)的方向垂直于磁感线射入匀强磁场中,第一次粒子是经电压U1加速后射入磁场的,粒子刚好没能从PQ边界射出磁场;第二次粒子是经电压U2加速后射入磁场的,粒子刚好能垂直于PQ射出磁场.(不计粒子重力,粒子加速前的速度认为是零,U1、U2未知)(1)加速电压U1、U2的比值为多少?(2)为使粒子经电压U2加速射入磁场后沿直线射出PQ边界,可在磁场区域加一个匀强电场,求该电场的场强大小.《磁场、电磁感应》训练题参考答案1.答案 CD解析 根据楞次定律可确定感应电流的方向:以C选项为例,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S极,磁铁与线圈相互排斥.运用以上分析方法可知,C、D正确.2.答案 BD解析 因金属棒所在区域的磁场的方向垂直于纸面向外,当金属棒转动时,由右手定则可知,a端的电势高于b端的电势,b端聚积电子,B、D 正确.3.答案 BD解析 利用楞次定律.两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B→A→C→D→B.以此为基础,再根据左手定则进一步判定CD、AB的受力方向,经过比较可得正确答案.4.答案 C解析 P向上滑动,回路电阻增大,电流减小,磁场减弱,穿过线圈a的磁通量变小,根据楞次定律,a环面积应增大,A、B错;由于a环中磁通量减小,根据楞次定律知a环中感应电流应为俯视顺时针方向,C对;由于a环中磁通量减小,根据楞次定律,a环有阻碍磁通量减小的趋势,可知a环对水平桌面的压力F N减小,D错.5.答案 BC解析 MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里MN中的感应电流由M→NL1中感应电流的磁场方向向上;若L2中磁场方向向上减弱PQ中电流为Q→P且减小向右减速运动;若L2中磁场方向向下增强PQ中电流为P→Q且增大,向左加速运动.6.答案 D解析 电子射入极板间后,偏向A板,说明Eq>B v q,由E=可知,减小场强E的方法有增大板间距离和减小板间电压,故C错误,D正确;而移动滑动头P并不能改变板间电压,故A、B均错误.7.答案 A解析 设粒子从M点进入磁场时的速度大小为v,该速度与水平方向的夹角为θ,故有v=.粒子在磁场中做匀速圆周运动半径为r=.而MN之间的距离为d=2r cos θ.联立解得d=2,故选项A正确.8.答案 D解析 由于洛伦兹力不做功,电场力对带电小球一定做负功,所以两小球某次到达轨道最低点时的速度不可能有v N=v M,选项A错误;由机械能守恒知小球b可以到达轨道的最右端,电场力对小球a做负功,故小球a不能到达轨道的最右端,选项B错误;由于两个小球受力情况不同,运动情况不同,故小球b第一次到达N点的时刻与小球a第一次到达M点的时刻不相同,选项C错误;由于小球能到达最低点,对小球a有mgR-qER≥0,所以有mg≥qE,由于洛伦兹力不做功,且洛伦兹力沿半径向外,则小球b受到的洛伦兹力没有条件限制,选项D正确.9.答案 ABD解析 若圆环所受洛伦兹力等于重力,圆环与粗糙细杆压力为零,摩擦力为零,圆环克服摩擦力做的功为零,选项A正确;若圆环所受洛伦兹力不等于重力,圆环与粗糙细杆压力不为零,摩擦力不为零,圆环以初速度v0向右做减速运动.若开始圆环所受洛伦兹力小于重力,则一直减速到零,圆环克服摩擦力做的功为m v,选项B正确;若开始圆环所受洛伦兹力大于重力,则减速到洛伦兹力等于重力达到稳定,稳定速度v =,由动能定理可得圆环克服摩擦力做的功为W=m v-m v2=m(v-),选项C错误,D正确.10.答案 BC解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用q v B=知r=,能射出的粒子满足≤r≤,因此对应射出粒子的最大速度v max==,选项B正确.v min==,Δv=v max-v min=,由此式可判定选项C正确,选项D错误.11.答案 (1) (2)解析 (1)如图所示,第一次粒子刚好没能从PQ边界射出磁场,表明粒子在磁场中的轨迹刚好与PQ相切,如图中的轨迹1.设轨迹半径为r1,由几何关系得:r1+r1cos θ=L,解得r1=.第二次粒子刚好能垂直PQ边界射出磁场,粒子在磁场中的轨迹圆心为图中的O2点,运行轨迹为轨迹2,设轨迹半径为r2,由几何关系得到:r2=由动能定理及牛顿第二定律得qU=m v2,q v B=,r=,从而可得=,所以==.(2)若加入一个匀强电场后使电场力恰好能平衡洛伦兹力,则粒子将沿直线射出PQ边界,场强方向为垂直速度方向斜向下,设场强大小为E,则Eq=Bq v2,解得E=B v2 …①由于粒子经电压加速且未加电场时的轨迹半径r2==,可得v2=…②①②联立可得E=,方向与水平方向成θ角斜向右下方.。

第八章 磁场 第3课时 训练题

第八章 磁场 第3课时 训练题

第课时带电粒子在磁场中运动的特例(临界、极值及多解问题)1~6题为单选题;7~9题为多选题1.如图所示,在通电直导线下方,有一电子沿平行导线方向以速度v向左运动,则关于电子的运动轨迹和运动半径的判断正确的是( )A.将沿轨迹Ⅰ运动,半径越来越小B.将沿轨迹Ⅰ运动,半径越来越大C.将沿轨迹Ⅱ运动,半径越来越小D.将沿轨迹Ⅱ运动,半径越来越大2.(2013德阳模拟)如图所示,在半径为R的圆形区域内有匀强磁场.在边长为2R的正方形区域里也有匀强磁场,两个磁场的磁感应强度大小相同.两个相同的带电粒子以相同的速率分别从M、N两点射入匀强磁场.在M点射入的带电粒子,其速度方向指向圆心;在N点射入的带电粒子,速度方向与边界垂直,且N点为正方形边长的中点,则下列说法错误的是( )A.带电粒子在磁场中飞行的时间可能相同B.从M点射入的带电粒子可能先飞出磁场C.从N点射入的带电粒子可能先飞出磁场D.从N点射入的带电粒子不可能比从M点射入的带电粒子先飞出磁场3.(2012泸州一模)如图所示,长方形abcd的长ad=0.6 m,宽ab=0.3 m,O、e分别是ad、bc的中点,以e为圆心eb为半径的错误!未找到引用源。

圆弧和以O为圆心Od为半径的错误!未找到引用源。

圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场)磁感应强度B=0.25T.一群不计重力、质量m=3×10-7 kg、电荷量q=2×10-3 C的带正电粒子以速度v=5×102 m/s沿垂直ad方向且垂直于磁场方向射入磁场区域,则下列判断正确的是( )A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在ab边D.从ad边射入的粒子,出射点全部通过b点4.空间存在垂直于纸面方向的均匀磁场,其方向随时间做周期性变化,磁感应强度B随时间t变化的图像如图所示.规定B>0时,磁场的方向穿出纸面.一电荷量q=5π×10-7 C、质量m=5×10-10 kg的带电粒子,位于点O处,在t=0时以初速度v0=π m/s沿某方向开始运动.不计重力的作用,不计磁场的变化可能产生的一切其他影响.则在磁场变化N个(N为整数)周期的时间内带电粒子的平均速度的大小等于( )A.π m/sB.错误!未找到引用源。

专项训练-4(磁场)

专项训练-4(磁场)

选择题专项训练(四)训练内容:磁场 编题人:易杰 时间:2012年2月不定项选择题,共计8题,每题4分,共32分。

全对4分,选不全2分,选错的0分1.如图所示,一水平导线通以电流I ,导线下方有一质子,初速度方向与电流平行,关于质子的运动路径情况,下述说法中,正确的是( )A .沿a 运动,其轨道半径越来越大B .沿a 运动,其轨道半径越来越小C .沿b 运动,其轨道半径越来越小D .沿b 运动,其轨道半径越来越大2. 如图,平行于纸面水平向右的匀强磁场,磁感应强度B 1=2T 。

位于纸面内的细直导线,长L =1 m,通有I =1 A 的恒定电流。

.当导线与B 1成60°夹角时,发现其受到的安培力为零。

.则该区域同时存在的另一匀强磁场的磁感应强度B 2的可能值 ( )A .12TBC .2TD 3.如图所示,重力不计,质量为m ,带正电且电荷量为q 的粒子,在a 点以某一初速度v 0水平射入一个磁场区域沿曲线abcd 运动,ab 、bc 、cd 都是半径为R 的圆弧,粒子在每段圆弧上的运动时间都是t ,如果把由纸面进入的磁场方向定为正值,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B 随x 变化关系图象应为下图所示的哪一个( )4.如图所示,在互相垂直的匀强电场和匀强磁场中,电荷量为q 的液滴在竖直面内做半径为R 的匀速圆周运动,已知电场强度为E ,磁感应强度为B ,则油滴的质量和周期分别为( )A.qE g ,2E Bgπ B.B 2qR E ,2E Bg π C .B qR g ,qgR D.qE g ,22g BEq π 5.如图是回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。

现分别加速氘核(21H )和氦核(42He )。

下列说法中正确的是( ) A .它们的最大速度相同 B .它们的最大动能相同C .它们在D 形盒中运动的周期相同D .仅增大高频电源的频率可增大粒子的最大动能6.某空间存在着如图所示的足够大的沿水平方向的匀强磁场.在磁场中A 、B 两个物块叠放在一起,置于光滑水平面上,物块A 带正电,物块B 不带电且表面绝缘.在t 1=0时刻,水平恒力F 作用在物块B 上,物块A 、B 由静止开始做加速度相同的运动.在A 、B 一起向左运动的过程中,以下说法正确的是 ( )A .图乙可以反映A 所受洛仑兹力大小随时间t 变化的关系B .图乙可以反映A 对B 的摩擦力大小随时间t 变化的关系C .图乙可以反映A 对B 的压力大小随时间t 变化的关系D .图乙可以反映B 对地面压力大小随时间t 变化的关系8.如图所示,带有正电荷的A 粒子和B 粒子同时从匀强磁场的边界上的P 点以等大的速度,以与边界成30°和60°的交角射入磁场,又恰好不从另一边界飞出,设边界上方的磁场范围足够大,下列说法中正确的是( )A. 磁场中运动的半径比A r :B r =31B. 两粒子磁场中运动的半径A r :B r =323+C. A 、B 两粒子的q m之比为31D. A 、B 两粒子的q m 之比为323+7.如右图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰好从e 点。

磁场问题的类型与方法小结5篇

磁场问题的类型与方法小结5篇

磁场问题的类型与方法小结5篇第一篇:磁场问题的类型与方法小结磁场问题的类型与方法【磁场、磁感线】1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右,那么c端是电源的______极;d端为电源_____极(填“正”或“负”)【描述磁场的物理量】2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟放在该点的试探电流元所受磁场力方向一致C.在磁场中某点的试探电流元不受磁场力作用时,该点B值大小为零 D.在磁场中磁感线越密集的地方,磁感应强度越大〖题型1〗用安培定则确定磁场方向或小磁针的转动方向〖例1〗如图所示,直导线AB、螺线管C、电磁铁D三者相距较远,它们的磁场互不影响, 当开关S闭合稳定后,则图中小磁针的北极N(黑色的一端)指示出磁场方向正确的是()A.a B.b C.c D.d 〖题型2〗磁感应强度的矢量性〖例2〗如图所示,同一平面内有两根互相平行的长直导线1和2,通有大小相等、方向相反的电流,a、b两点与两导线共面,a点在两导线的中间与两导线的距离均为r,b点在导线2右侧,与导线2的距离也为r。

现测得a点磁感应强度的大小为B,则去掉导线1后,b点的磁感应强度大小为,方向。

〖题型3〗类比迁移思想〖例3〗磁铁有N、S两极,跟正负电荷有很大的相似性,人们假定在一根磁棒的两极上有一种叫做“磁荷”的东西,N极上的叫做正磁荷,S极上的叫做负磁荷,同号磁荷相斥,异号磁荷相吸。

当磁极本身的几何线度远比它们之间的距离小得多时,将其上的磁荷叫做点磁荷。

磁的库仑定律是:两个点磁荷之间的相互作用力F沿着它们之间的连线,与它们之间的距离r的平方成反比,与它们磁荷的数量(或称磁极强度)qm1、qm2成正比,用公式表示为F =。

⑴ 上式中的比例系数k = 10-7 Wb/(A·m),则磁极强度qm的国际单位(用基本单位表示)是;⑵ 同一根磁铁上的两个点磁荷的磁极强度可视为相等,磁荷的位置可等效地放在图(a)中的c、d两点,其原因是;⑶ 用两根相同的质量为M的圆柱形永久磁铁可以测出磁极强度qm,如图(b),将一根磁棒固定在光滑的斜面上,另一根与之平行放置的磁棒可以自由上下移动.调节斜面的角度为时,活动磁铁刚好静止不动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场问题分类训练一、 组合场问题1(20分)在图示区域中,χ轴上方有一匀强磁场,磁感应强度的方向垂直纸面向里,大小为B ,今有一质子以速度v 0由Y 轴上的A 点沿Y 轴正方向射人磁场,质子在磁场中运动一段 时间以后从C 点进入χ轴下方的匀强电场区域中,在C 点速度方向与χ轴正方向夹角为 450,该匀强电场的强度大小为E ,方向与Y 轴夹角为450且斜向左上方,已知质子的质量为 m ,电量为q ,不计质子的重力,(磁场区域和电场区域足够大)求: (1)C 点的坐标。

(2)质子从A 点出发到第三次穿越χ轴时的运动时间。

(3)质子第四次穿越χ轴时速度的大小及速度方向与电场E 方向的夹角。

(角度用反三角 函数表示)2(2011全国卷1第25).(19分) 如图,与水平面成45°角的平面MN 将空间分I 和II 两个区域。

一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。

粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。

求粒子首次从II 区离开时到出发点0p 的距离。

粒子的重力可以忽略。

3(重庆第25题).(19分)某仪器用电场和磁场来控制电子在材料表面上方的运动,如题25图所示,材料表面上方矩形区域PP'N'N 充满竖直向下的匀强电场,宽为d ;矩形区域NN'M'M 充满垂直纸面向里的匀强磁场,磁感应强度为B ,长为3s ,宽为s ;NN'为磁场与电场之间的薄隔离层。

一个电荷量为e 、质量为m 、初速为零的电子,从P 点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。

不计电子所受重力。

(1)求电子第二次与第一次圆周运动半径之比; (2)求电场强度的取值范围;(3)A 是M N ''的中点,若要使电子在A 、M '间垂直于A M '飞出,求电子在磁场区域中运动的时间。

4. 如图11所示,在平面直角坐标系xOy 内,第Ⅱ、Ⅲ象限内存在y 轴正方向的匀强电场,第Ⅰ、Ⅳ象限内存在半径为L 的圆形匀强磁场,磁场圆心在M (L,0)点,磁场方向垂直于坐标平面向外.一带正电的粒子从第Ⅲ象限中的Q (-2L ,-L )点以速度v 0沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L,0)点射出磁场.不计粒子重力,求:(1)电场强度与磁感应强度大小之比; (2)粒子在磁场与电场中运动时间之比5 2010·安徽·23如图1所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E 0,E >0表示电场方向竖直向上。

t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点。

Q 为线段N 1N 2的中点,重力加速度为g 。

上述d 、E 0、m 、v 、g 为已知量。

(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。

二磁场边界问题6. 2010·新课标·25如图所示,在0≤x≤a 、o≤y≤2a 范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B 。

坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~090范围内.己知粒子在磁场中做圆周运动的半径介于2a 到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的(1)速度大小;(2)速度方向与y 轴正方向夹角正弦。

7如图19(a )所示,在以O 为圆心,内外半径分别为1R 和2R 的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,1020,3R R R R ==,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。

(1) 已知粒子从外圆上以速度1v 射出,求粒子在A 点的初速度0v 的大小(2) 若撤去电场,如图19(b ),已知粒子从OA 延长线与外圆的交点C 以速度2v 射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间(3) 在图19(b )中,若粒子从A 点进入磁场,速度大小为3v ,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?三最小面积问题8.如图所示,一质量为m 、带电量为q 的粒子以速度V 0经O 点沿y 轴正方向射向磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,粒子重力不计,试求:(1)圆形匀强磁场区域的最小面积 (2)c 点到b点的距离。

9.(09年海南物理)16.(10分)如图,ABCD 是边长为a 的正方形。

质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 变射入正方形区域。

在正方形内适当区域中有匀强磁场。

电子从BC 边上的任意点入射,都只能从A 点射出磁场。

不计重力,求: (1)次匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。

10在xOy 平面内,有许多电子(质量为m 、电荷量为e )从坐标原点O 不断地以相同的速率v 0沿不同方向射入第一象限,如图4所示.现加一个垂直于xOy 平面向里、磁感应强度为B 的匀强磁场,要求这些电子穿过磁场区域后都能平行于x 轴并指向x 轴正方向运动.求符合该条件磁场的最小面积.图411图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3T,在y 轴上距坐标原点L =0.50m 的P 处为离子的入射口,在y 上安放接收器,现将一带正电荷的粒子以v =3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不记其重力。

(1)求上述粒子的比荷q m;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。

四时间问题13.(18分)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。

位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。

已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。

上述m、q、l、l0、B 为已知量。

(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。

(2)求12时进入两板间的带电粒子在磁场中做圆周运动的半径。

(3)何时把两板间的带电粒子在磁场中的运动时间最短?求此最短时间。

14【例3】如图3所示,半径为r=0.1 m的圆形匀强磁场区域边界跟y轴相切于坐标原点O,磁感应强度B=0.332 T,方向垂直纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子.已知α粒子质量m=6.64×10-27 kg,电量q=3.2×10-19 C,不计α粒子的重力.求α粒子在磁场中运动的最长时间.15. 2010·全国卷Ⅰ·26如下图,在0x≤≤区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。

已知沿y轴正方向发射的粒子在t t=时刻刚好从磁场边界上,)P a点离开磁场。

求:⑴粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;⑵此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;⑶从粒子发射到全部粒子离开磁场所用的时间。

16(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。

在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。

在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。

发射时,这束带电微粒分布在0<y<2R的区间内。

已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。

(2)请指出这束带电微粒与x轴相交的区域,并说明理由。

(3)在这束带电磁微粒初速度变为20,那么它们与x轴相交的区域又在哪里?并说明理由。

v图甲图乙17.如图9所示,半径R=10 cm的圆形区域边界跟y轴相切于坐标系原点O.磁感应强度B=0.332 T,方向垂直于纸面向里,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子.已知α粒子的质量m=6.64×10-27kg,电荷量q=3.2×10-19 C.(1)画出α粒子通过磁场区域做圆周运动的圆心的轨迹.(2)求出α粒子通过磁场区域的最大偏转角θ.五、多解问题18六问题1920【例题1】(1999年高考全国卷)如图1所示,图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外。

O是MN 上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。

相关文档
最新文档