九年级上册数学正多边形和圆重要知识点梳理与典型例题及答案解析人教版

合集下载

部编数学九年级上册专题13正多边形与圆、弧长和面积公式(热考题型)解析版含答案

部编数学九年级上册专题13正多边形与圆、弧长和面积公式(热考题型)解析版含答案

专题13 正多边形与圆、弧长和面积公式【思维导图】◎考点题型1 正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)例.(2022·江苏·九年级)中心角为45°的正n 边形的边数n 等于( )A .12B .10C .8D .6变式1.(2022·山东青岛·中考真题)如图,正六边形ABCDEF 内接于O e ,点M 在»AB 上,则CME Ð的度数为( )A .30°B .36°C .45°D .60°【答案】D 【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC 、OD 、OE ,如图所示:变式2.(2022·北京四中九年级阶段练习)如图,,AB BC 和AC 分别为O e 内接正方形,正六边形和正n 边形的一边,则n 是( ).A .六B .八C .十D .十二【点睛】本题主要考查了正多边形与圆,熟练掌握正多边形边数与中心角的关系是解题的关键.变式3.(2022·河南信阳·九年级期末)若正六边形的边长为4,则它的外接圆的半径为( )A.B.4C.D.2【点睛】本题考查了正多边形与圆、等边三角形的判定与性质,正确求出正六边形的中心角的度数是解题关键.◎考点题型2 弧长设的半径为,圆心角所对弧长为,弧长公式:(弧长的长度和圆心角大小和半径的取值有关)例.(2022·内蒙古鄂尔多斯·中考真题)实验学校的花坛形状如图所示,其中,等圆⊙O1与⊙O2的半径为3米,且⊙O1经过⊙O2的圆心O2.已知实线部分为此花坛的周长,则花坛的周长为( )A .4π米B .6π米C .8π米D .12π米变式1.(2022·河南三门峡·九年级期末)如图,在扇形OAB 中,100,9AOB OA Ð=°=,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为(结果保留p )( )A .pB .2pC .3pD .4p【答案】B根据折叠的性质知,OB =DB .又∵OD =OB ,∴OD =OB =DB ,即△ODB 是等边三角形,∴∠DOB =60°.∵∠AOB =100°,∴∠AOD =∠AOB -∠DOB =40°,变式2.(2021·浙江金华·九年级阶段练习)如图,在4×4的正方形网格中,若将△ABC 绕着点A 逆时针旋转得到△AB C ¢¢,则 ¼BB¢ 的长为( )A .pB .2pC .7D .6【答案】A 【分析】利用格点可知∠BAB ′=45°,再利用弧长公式,可求出弧¼BB¢的长.变式3.(2022·四川内江·中考真题)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和»BC的长分别为( )A .4,3pB .πC .43pD .2πQ 六边形ABCDEF 为正六边形,360606BOC °\Ð==°,故选:D.【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、勾股定理,熟练掌握正六边形的性质,由勾股定理求出OM是解决问题的关键.◎考点题型3 扇形面积扇形面积公式:例.(2022·浙江湖州·九年级期末)如图,已知扇形OAB的半径OA=6,点P为弧AB上一动点,过点P作PC⊥OA,PD⊥OB,连接CD,当CD取得最大值时,扇形OAB的面积为()A.9p B.12p C.13.5p D.15p变式1.(2021·湖北恩施·一模)如图,在边长为2的菱形ABCD中,以顶点A为圆心,AD为半径画弧,若顶点C恰好在BD弧上,则图中阴影部分的面积等于( )A .43p -B .23p -C .43p -D .23p变式2.(2022·内蒙古北方重工业集团有限公司第一中学三模)如图,点A ,B ,C 是O e 上的点,连接,,AB AC BC ,且15ACB Ð=°,过点O 作OD AB ∥交O e 于点D .连接,AD BD ,已知O e 半径为2,则图中阴影面积为( )A .2pB .3pC .4pD .23p变式3.(2022·广东河源·二模)如图,已知平行四边形ABCD ,以B 为圆心,AB 为半径作»AE 交BC 于E ,然后以C 为圆心,CE 为半径作»EF 交CD 于F ,若5AD =,3FD =,60B Ð=°,则阴影部分的面积为( )A .4324pB .3pC .596pD .12p【答案】B【分析】根据平行四边形的性质和题意可设AB =CD =BE =x ,CE =CF =x -3,则BE +CE =BC =AD =5,求出x 的值,再根据扇形面积公式求解即可.◎考点题型4求圆心角例.(2022·黑龙江牡丹江·模拟预测)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )A .90°B .100°C .120°D .150°变式1.(2021·山东泰安·期中)将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形的圆心角的度数为( )A .80120160°°°、、B .60120180°°°、、C .50100150°°°、、D .306090°°°、、【答案】A 【分析】根据一个圆分割成三个扇形,它们的面积之比为2:3:4,可得这三个扇形的圆心角的度数之比为2:3:4,可设这三个扇形的圆心角的度数分别为2,3,4x x x ,从而得到234360x x x ++=°,即可求解.【详解】解:∵一个圆分割成三个扇形,它们的面积之比为2:3:4,∴这三个扇形的圆心角的度数之比为2:3:4,设这三个扇形的圆心角的度数分别为2,3,4x x x ,根据题意得:234360x x x ++=°,解得:40x =°,∴这三个扇形的圆心角的度数分别为80,120,160°°°.故选:A .【点睛】本题主要考查了求扇形的圆心角,根据题意得到这三个扇形的圆心角的度数之比为2:3:4是解题的关键.变式2.(2021·福建师范大学附属中学初中部九年级期中)已知扇形半径是9cm ,弧长为4πcm ,则扇形的圆心角为( )A .20°B .40°C .60°D .80°变式3.(2021·全国·九年级专题练习)如图,点,,A B C 在半径为6的O e 上,劣弧»AB 的长为2p ,则ACB Ð的大小是( )A .20oB .30oC .45oD .60o【答案】B 【分析】连接,OA OB ,利用同弧圆心角与圆周角的关系,需求∠AOB 即可,利用AB 弧长与弧长公式即可例.(2021·广东·江东镇初级中学一模)一个钟表的时针长10厘米,在中午12时到下午3时,时针的针尖划过的弧长是( )厘米.A.2.5p B.5p C.25p D.50p变式1.(2022·山西·大同市云州区初级示范中学校二模)如图,菱形ABCD的边长为3,60Ð=°,将BAD菱形ABCD 绕点A 逆时针旋转,使得点B 与点D 重合,点D 和点C 的对应点分别为点E ,F ,则点C 的运动路径弧CF 的长为( )A B .2p C .D .4p Q 菱形ABCD 的边长为3,//AD AB CD\=120ADC \Ð=°60ADO \Ð=°变式2.(2022·河北石家庄·九年级期末)如图,在扇形纸片AOB 中,12OA =,30AOB Ð=°,OB 在桌面内的直线l 上,现将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( )A .12pB .13pC .14pD .105p +-变式3.(2022·上海·八年级专题练习)如图,在ABC D 中,90ACB Ð=°,30ABC Ð=°,1AC =.将ABC D 绕直角顶点C 逆时针旋转60°得△A B C ¢¢;则点B 转过的路径长为( )A .3pB .23pCD .p◎考点题型6 求扇形扫过的面积例.(2022·内蒙古包头·模拟预测)在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,将△ABC 绕点B 逆时针旋转120°至A BC ¢¢△的位置,则边BA 扫过的面积是( )A .3pB .23pC .43pD .83p变式1.(2022·四川·一模)如图,已知»AB 所在圆的半径为4,弦AB 长为C 是»AB 上靠近点B 的四等分点,将»AB 绕点A 逆时针旋转120°后得到¼AB ¢,则在该旋转过程中,线段CB 扫过的面积是( )A.83pB.163pC.πD.323p变式2.(2021·广西柳州·中考真题)如图所示,点A,B,C对应的刻度分别为1,3,5,将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A¢,则此时线段CA扫过的图形的面积为()A .B .6C .43pD .83p变式3.(2021·全国·九年级专题练习)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为»BD,则图中阴影部分的面积为( )A .143π-6B .259πC .338π-3D π【答案】B【分析】对图形进行分析,可得所求阴影面积等于扇形DAB 的面积,从而计算扇形面积即可.【详解】ADE ABCDAB S S S S =+-V V 阴影扇形ADE ABC S S =V V Q ,DAB S S \=阴影扇形,例.(2022·河北唐山·二模)如图,△ABC 内接于⊙O ,若45A Ð=°,⊙O 的半径r =4,则阴影部分的面积为( )A .4pB .2pC .48p -D .416p -变式1.(2022·江苏连云港·中考真题)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23pB .23pC .43p -D .43p∵∠AOB=2×360 12°变式2.(2022·云南·双柏县教师进修学校二模)如图,点A,B,C在⊙O上,若∠BAC=45°,BC=()A.π-8B.16π-8C.4π-8D.16π-4变式3.(2021·山东临沂·模拟预测)如图,点A 、B 、C 在O e 上,若45BAC Ð=°,2OC =,则图中阴影部分的面积是( )A .2p -B .4p -C .213p -D .223p -◎考点题型8 求不规则图形的面积例.(2022·贵州铜仁·中考真题)如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A.9B.6C.3D.12【点睛】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.变式1.(2022·湖北荆州·中考真题)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A 4pB .pCD 2p变式2.(2022·山西·中考真题)如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在»AB 上的点C 处,图中阴影部分的面积为( )A .3π-B .3πC .2π-D .6π【答案】B 【分析】根据折叠,ACB AOB ≌△△,进一步得到四边形OACB 是菱形;进一步由3OC OB BC ===得到OBC V 是等边三角形;最后阴影部分面积=扇形AOB 面积-菱形的面积,即可【详解】依题意:ACB AOB ≌△△,3AO BO ==∵3OC OB ==∴3OC OB BC ===变式3.(2022·山东省实验初级中学模拟预测)如图,正方形ABCD 的边长为4,以BC 为直径的半圆O 交对角线BD 于点E .则图中阴影部分的面积为( )A .8p-B .4p +C .6p -D .3p+Q 四边形ABCD 为正方形,且边长为AB BC CD AD \===◎考点题型9 求圆锥的侧面积母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

部编数学九年级上册24.3正多边形和圆(7大题型)2023考点题型精讲(解析版)含答案

部编数学九年级上册24.3正多边形和圆(7大题型)2023考点题型精讲(解析版)含答案

24.3 正多边形和圆正多边形的概念 各边相等,各角也相等的多边形是正多边形.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.题型1:正多边形的相关概念1.下列关于正多边形的叙述,正确的是( )A.正九边形既是轴对称图形又是中心对称图形B.存在一个正多边形,它的外角和为720°C.任何正多边形都有一个外接圆D.不存在每个外角都是对应每个内角两倍的正多边形【答案】C【解析】【解答】解:正九边形是轴对称图形,不是中心对称图形,故选项A不正确;任何多边形的外角和都为360°,故选项B不正确;【变式1-1】已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )A.45° B.60° C.75° D.90°【答案】A.【解析】如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.【变式1-2】如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )A.30° B.45° C.55° D.60°【答案】连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是.注意:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形题型2:正多边形与圆有关的计算-角度2.如图,正五边形ABCDE内接于⊙O,连接AC,则∠BAC的度数是( )A.45°B.38°C.36°D.30°【答案】C【解析】【解答】解:连接OC、OB,如下图:根据正多边形的性质可得:∠BOC=360°5=72°根据圆周角定理可得:∠BAC=12∠BOC=36°故答案为:C【分析】连接OC、OB,根据正多边形的性质可得∠BOC=360°5=72°,再根据圆周角定理求解即可。

九年级数学上册第二十四章圆24.3正多边形和圆24.3.2正多边形和圆二新版新人教版(含答案)

九年级数学上册第二十四章圆24.3正多边形和圆24.3.2正多边形和圆二新版新人教版(含答案)

九年级数学上册第二十四章圆:24.3.2正多边形和圆(二)1.如果一个正多边形的一个内角为135°,则这个正多边形为( )A .正八边形B .正九边形C .正七边形D .正十边形2.如图,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( )A .16B .8C .4D .23. 若正六边形的边长为2,则此正六边形的边心距为__________.4.如图,菱形花坛ABCD 的边长为6m ,∠B =60°,其中由两个正六边形组成的部分种花,则种花部分的图形周长为____________.5.各边相等的圆内接多边形一定是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么,如果不是,举出反例.6.如图,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形).(1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值;(2)求正六边形1T ,2T 的面积比21:S S 的值.D C答案:1.A2. D3. 34. 22m5.解:各边相等的圆内接多边形一定是正多边形.因为圆内接多边形如果各边相等,则圆的每段弧相等,则多边形的每个内角相等.故一定是正多边形.各角相等的圆内接多边形不一定是正多边形.反例为:矩形是各角相等的圆内接四边形,但它不是正方形.6.解:(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.所以r∶a=1∶1;连接圆心O和T2相邻的两个顶点,得以圆O半径为高的正三角形,所以r∶b=3∶2.(2)T1∶T2的连长比是3∶2,所以S1∶S2=4:3):(2ba.。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

九年级数学上册章节重点复习考点讲义(人教版)正多边形和圆综合题(解析版)

九年级数学上册章节重点复习考点讲义(人教版)正多边形和圆综合题(解析版)

专题12 正多边形和圆(综合题)知识互联网易错点拨知识点01:正多边形的概念各边相等,各角也相等的多边形是正多边形.细节剖析:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).知识点02:正多边形的重要元素1.正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2.正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3.正多边形的有关计算(1)正n边形每一个内角的度数是;(2)正n边形每个中心角的度数是;(3)正n边形每个外角的度数是.细节剖析:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.知识点03:正多边形的性质1.正多边形都只有一个外接圆,圆有无数个内接正多边形.2.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.3.正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n 边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.4.边数相同的正多边形相似。

它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.5.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆细节剖析:(1)各边相等的圆的内接多边形是圆的内接正多边形;(2)各角相等的圆的外切多边形是圆的外切正多边形.知识点04:正多边形的画法1.用量角器等分圆由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以等分圆;根据同圆中相等弧所对的弦相等,依次连接各分点就可画出相应的正n边形.2.用尺规等分圆对于一些特殊的正n边形,可以用圆规和直尺作图.①正四、八边形.在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形. 再逐次平分各边所对的弧(即作∠AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.②正六、三、十二边形的作法.通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.显然,A、E、F(或C、B、D)是⊙O 的3等分点.同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….细节剖析:画正n边形的方法:(1)将一个圆n等份,(2)顺次连结各等分点.易错题专训一.选择题1.(2022•雅安)如图,已知⊙O的周长等于6π,则该圆内接正六边形ABCDEF的边心距OG 为()A.3B.C.D.3【易错思路引导】连接OC,OD,由正六边形ABCDEF可求出∠COD=60°,进而可求出∠COG=30°,根据30°角的锐角三角函数值即可求出边心距OG的长.【规范解答】解:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OG⊥CD,∴∠COG=30°,∵⊙O的周长等于6π,∴OC=3,∴OG=3cos30°=,故选:C.【考察注意点】本题考查了正多边形和圆、正六边形的性质、等腰三角形的判定与性质;熟练掌握正六边形的性质是解决问题的关键.2.(2022•游仙区校级二模)如图,在正六边形ABCDEF中,M,N分别为边CD,BC的中点,AN与BM相交于点P,则∠APM的度数是()A.110°B.120°C.118°D.122°【易错思路引导】根据正六边形的性质可得AB=BC=CD,BN=CM,利用全等三角形的判定与性质可得∠BNP=∠CMB,然后利用三角形的内角和定理可得答案.【规范解答】解:∵六边形ABCDEF是正六边形,∴∠ABC=∠BCD==120°,AB=BC=CD,∵M,N分别为边CD,BC的中点,∴BN=CM,∴△ABN≌△BCM(SAS),∴∠BNP=∠CMB,∵∠CBM=∠PBN,∴∠BPN=∠BCD=120°,∴∠APM=120°,故选:B.【考察注意点】本题考查了正六边形的性质、全等三角形的性质和判定等知识,通过证三角形全等得到∠BNP=∠CMB是解决此题的关键.3.(2022•太原一模)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是()A.7个B.8个C.9个D.10个【易错思路引导】先求出多边形的每一个内角为108°,可得到∠O=36°,即可求解.【规范解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故选:D.【考察注意点】本题主要考查圆的基本性质,多边形内角和问题,熟练掌握相关知识点是解题关键.4.(2022•安国市一模)2019年版一元硬币的直径约为22.25mm,则用它能完全覆盖住的正方形的边长最大不能超过()A.11.125mm B.22.25mm C.mm D.mm【易错思路引导】根据正方形性质得到△AOD为等腰直角三角形,根据正方形和圆的关系得到AC的长度,根据等腰直角三角形的性质求出AD的长度.【规范解答】解:如图所示,∵AC=BD=22.25mm,∴AO=OD==mm.∵四边形ABCD为正方形,∴AC⊥BD,∴△AOD为等腰直角三角形,∴AD=AO=mm.故选:C.【考察注意点】本题考查了正多边形和圆,等腰直角三角形的性质,根据题意画出图形,掌握正多边形和圆的关系,得到△AOD为等腰直角三角形是解题的关键.5.(2022•固安县模拟)如图,两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张保持不动,将上面一张纸片六边形A'B'C'D'E'F'沿水平方向向左平移a个单位长度,则上面正六边形纸片面积与折线A'﹣B'﹣C扫过的面积(阴影部分面积)之比是()A.3:1 B.4:1 C.5:2 D.2:1【易错思路引导】求出正六边形和阴影部分的面积即可解决问题.【规范解答】解:正六边形的面积=6××(2a)2=6a2,阴影部分的面积=a•2a=2a2,∴空白部分与阴影部分面积之比是=6a2:2a2=3:1,故选:A.【考察注意点】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二.填空题6.(2022•雨花台区校级模拟)如图,A、B、C、D、E、F是正n边形的六个连续顶点,AE与CF交于点G,若∠EGF=30°,则n=18 .【易错思路引导】连接CE,用n表示出正n边形的中心角,根据三角形的外角性质列出方程,解方程求出n.【规范解答】解:连接CE,正n边形的中心角的度数为:,则∠ECF=×,∠AEC=,∵∠EGF=30°,∴∠ECF+∠AEC=30°,∴×+=30°,解得:n=18,故答案为:18.【考察注意点】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式、三角形的外角性质是解题的关键.7.(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为54 厘米.【易错思路引导】根据对称性和周长公式进行解答即可.【规范解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.【考察注意点】本题考查等边三角形的性质,正多边形与圆,理解图形的对称性以及等边三角形的判定是解决问题的前提.8.(2022•陈仓区二模)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A 落在正方形BEFG内,则∠ABG的度数为54°.【易错思路引导】根据正五边形的性质可求出角A的度数,再根据等腰三角形以及三角形的内角和可求出∠ABE,再根据正方形的性质求出∠ABG即可.【规范解答】解:∵正五边形ABCDE,∴∠BAE==108°,AB=BC=CD=DE=AE,∴∠ABE=∠AEB=36°,又∵四边形BEFG是正方形,∴∠EBG=90°,∴∠ABG=90°﹣36°=54°,故答案为:54°.【考察注意点】本题考查正五边形,正方形以及等腰三角形,掌握正五边形、正方形、等腰三角形的性质是正确计算的前提.9.(2022•沙湾区模拟)已知图标(如图)是由圆的六个等分点连接而成,若圆的半径为1,则阴影部分的面积等于.【易错思路引导】根据题意得到图中阴影部分的面积=S△ABC+3S△ADE,代入数据即可得到结论.【规范解答】解:如图,过点A作AH⊥BC于点H,交DE于点F.∵如图是由圆的六等分点连接而成,∴△ABC与△ADE是等边三角形,∵圆的半径为1,∴AH=,BC=AB=,∴AE=,AF=,∴图中阴影部分的面积=S△ABC+3S△ADE=××+×××3=,故答案为:.【考察注意点】本题考查了正多边形与圆,等边三角形的性质,熟记正多边形与圆的性质是解题的关键.10.(2022•雁塔区校级模拟)在正六边形ABCDEF中,对角线AC,BD相交于点M,则的值为 2 .【易错思路引导】根据正六边形的性质可得∠BCD=∠ABC=120°,AB=BC=CD,从而利用等腰三角形的性质可得∠CBD=∠BCA=30°,进而求出∠ABM=90°,BM=CM,然后在Rt△ABM中,进行计算即可解答.【规范解答】解:∵六边形ABCDEF是正六边形,∴∠BCD=∠ABC=120°,AB=BC=CD,∴∠CBD=∠BDC=30°,∠BAC=∠BCA=30°,∴∠ABM=∠ABC﹣∠CBD=90°,∠CBD=∠BCA=30°,∴BM=CM,在Rt△ABM中,∠BAC=30°,∴AM=2BM,∴AM=2CM,∴=2,故答案为:2.【考察注意点】本题考查了等腰三角形的判定,正多边形和圆,多边形的内角与外角,含30度角的直角三角形,熟练掌握正六边形的性质是解题的关键.11.(2022•河北二模)如图,将几个全等的正八边形进行拼接,相邻的两个正八边形有一条公共边,围成一图后中间形成一个正方形.设正方形的边长为1,则该图形外轮的周长为20 ;若n个全等的正多边形中间围成的图形是正三角形,且相邻的两个正多边形有一条公共边,设正三角形的边长为1,则该图形外轮廓的周长是27 .【易错思路引导】根据拼图,由“外围”的边长进行计算即可.【规范解答】解:由拼图可知,每个正八边形有5条边在“外围”,因此周长为5×4=20,若n个全等的正多边形中间围成的图形是正三角形,且相邻的两个正多边形有一条公共边,可知这个正多边形为正十二边形,如图,则“外围”的周长为(12﹣3)×3=27,故答案为:20,27.【考察注意点】本题考查正多边形与圆,理解“外围”的意义是正确解答的前提,得出外围正多边形的边数是解决问题的关键.12.(2021秋•西湖区校级月考)如图,⊙O的内接正六边形,点M,N分别为AF,BC边的中点,直线MN与⊙O交于点PQ,若AB=1,则PQ=.【易错思路引导】如图,连接CF,OA,OB,OP,过点O作OJ⊥AB于点J,交PQ于点K.利用勾股定理求出PK,再利用垂径定理,可得结论.【规范解答】解:如图,连接CF,OA,OB,OP,过点O作OJ⊥AB于点J,交PQ于点K.∵六边形ABCDEF是正六边形,∴∠AOB=60°,CF∥AB,CF经过圆心O,∵CN=BN,AM=MF,∴MN∥AB∥CF,∴OK=JK,∵OA=OB=AB=1,∴OJ=,∴OK=,∵AB∥PQ,OJ⊥AB,∴OK⊥PQ,∴PK=QK===,∴PQ=2PK=.故答案为:.【考察注意点】本题考查正多边形与圆,解直角三角形,垂径定理,梯形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.13.(2020秋•海曙区期末)如图,正六边形ABCDEF中,G,H分别是边AF和DE上的点,GF =AB=2,∠GCH=60°,则线段EH长.【易错思路引导】作GP∥AB,交BC于点P,AN∥BC交GP于点N,可得四边形ABPN是平行四边形,根据六边形ABCDEF是正六边形,可得△ANG是等边三角形,然后证明△CPG∽△HDC,对应边成比例即可解决问题.【规范解答】解:如图,作GP∥AB,交BC于点P,AN∥BC交GP于点N,∴四边形ABPN是平行四边形,∴PN=AB=6,∵六边形ABCDEF是正六边形,∴∠BAF=∠B=∠BCD=∠D=120°,AF=AB=BC=CD=6,∴∠BAN=∠NAG=∠AGN=60°,∠CPG=∠D=120°,∴△ANG是等边三角形,∴NG=AN=AG=6﹣2=4,∴PG=NG+PN=4+6=10,∵∠PCG+∠DCH=∠BCD﹣∠GCH=120°﹣60°=60°,∠DHC+∠DCH=180°﹣∠D=180°﹣120°=60°,∴∠PCG=∠DHC,∵∠CPG=∠D,∴△CPG∽△HDC,∴=,∵PC=BC﹣BP=6﹣4=2,PG=10,CD=6,∴DH=,∴EH=ED﹣DH=6﹣=.故答案为:.【考察注意点】本题考查了正多边形和圆,解决本题的关键是综合运用正多边形和圆,平行四边形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质.14.(2017•浦东新区校级自主招生)如图,边长为5的圆内接正方形ABCD中,P为CD的中点,连接AP并延长交圆于点E,则DE的长为.【易错思路引导】连接CE,作出EF⊥CD,运用相似三角形的性质,得出EF,PF的长,再根据勾股定理即可得出结论.【规范解答】解:连接CE,作EF⊥PF.∵∠DAP=∠PCE,∠APD=∠CPE,∴△APD∽△CPE,∴=,∵P为边CD的中点∴PD=PC=,PA==,=,∴PE=,∵FE∥AD∴△APD∽△EPF,∴=,∴=,∴PF=,∴EF==1,∴DE===,故答案为:.【考察注意点】本题考查的是正多边形的圆及相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.三.解答题15.(2021秋•咸宁月考)如图,正五边形ABCDE,连接对角线AC,BD,设AC与BD相交于O.(1)求证:AO=CD;(2)判断四边形AODE的形状,并说明理由.【易错思路引导】(1))根据正五边形的性质可知AB=BC=CD=DE=AE,∠ABC=∠BAE=108°,AE∥BD,所以∠ABO=72°,∠BAO=(180°﹣108°)=36°,因此∠AOB =180°﹣72°﹣36°=72°=∠ABO,推出AB=AO,则CD=AO;(2)根据圆周角定理求出∠BDE、∠E的度数,进而证明DF∥AE;证明AF∥DE,AE=DE,即可解决问题.【规范解答】解:(1)∵五边形是正五边形,∴AB=BC=CD=DE=AE,∠ABC=∠BAE=108°,AE∥BD,∴∠ABO=72°,∠BAO=(180°﹣108°)=36°,∴∠AOB=180°﹣72°﹣36°=72°=∠ABO,∴AB=AO,∴CD=AO;(2)四边形AODE是菱形;理由如下:∵正五边形ABCDE内接于⊙O,∴∠BDE==72°,∠E=×360°=108°,∴∠BDE+∠E=180°,DO∥AE;同理可证:AO∥DE,而AE=DE,∴四边形AODE是菱形.【考察注意点】该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是:深入分析、大胆猜测、合情推理、科学论证.16.(2021•云岩区模拟)如图,正方形ABCD内接于⊙O,P为上的一点,连接DP,CP.(1)求∠CPD的度数;(2)当点P为的中点时,CP是⊙O的内接正n边形的一边,求n的值.【易错思路引导】(1)连接OD,OC,根据正方形ABCD内接于⊙O,结合圆周角定理可得∠CPD;(2)结合正多边形的性质以及圆周角定理得出∠COP的度数,进而得出答案.【规范解答】解:(1)连接OD,OC,∵正方形ABCD内接于⊙O,∴∠DOC=90°.∴;(2)连接PO,OB,∵正方形ABCD内接于⊙O,∴∠COB=90°,∵点P为BC的中点,∴=,∴,∴n=360÷45=8.【考察注意点】此题主要考查了正多边形和圆以及圆周角定理、正方形的性质,正确掌握正方形的性质是解题关键.17.(2019秋•长乐区期中)如图,正方形ABCD内接于⊙O,过O点作边AD的垂线交于E 点,连接BE,求∠ABE的度数.【易错思路引导】求出圆内接正方形的中心角度数∠AOD,再根据垂径定理求出∠AOE,由圆周角定理得出答案.【规范解答】解:如图,连接OA、OD,∵四边形ABCD是圆内接正方形,∴∠AOD==90°,∵OE⊥AD,∴=,∴∠AOE=∠AOD=×90°=45°,∴∠ABE=∠AOE=×45°=22.5°.【考察注意点】本题考查正多边形和圆,圆周角定理以及垂径定理,求出圆内接正方形的中心角度数是解决问题的关键.18.(2021秋•日喀则市月考)如图,正方形ABCD是半径为R的⊙O内接四边形,R=6.求正方形ABCD的边长和边心距.【易错思路引导】过点O作OE⊥BC,垂足为E.解直角三角形求出BC,OE即可.【规范解答】解:过点O作OE⊥BC,垂足为E.∵四边形ABCD为⊙O的内接正方形,∴∠BOC==90°,∠OBC=45°,OB=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得OE=BE=,∴BC=2BE=.即半径为6的圆内接正方形ABCD的边长为,边心距为.【考察注意点】本题考查正多边形与圆,正方形的性质等知识,解题的关键是学会添加常用辅助线构造直角三角形解决问题.19.(2022•包河区校级二模)如图,正方形ABCD是⊙O的内接正方形,E在边AB上,F在DC的延长线上,且∠F=∠BEC,BF交⊙O于点G,连接DG,交BC于点H.(1)求证:四边形BECF是平行四边形;(2)求证:DH=CE.【易错思路引导】(1)证明CF∥BE,BF∥EC可得结论;(2)证明△DCH≌△CBE(ASA),可得结论.【规范解答】证明:(1)∵四边形ABCD是正方形,∴AB∥DF,∴∠DCE=∠CEB,∵∠F=∠BEC,∴∠F=∠DCE,∴BF∥CE,∴四边形BECF是平行四边形;(2)∵BF∥EC,∴∠CBF=∠BCE,∵∠CDH=∠CBG,∴∠CDH=∠BCE,∵四边形ABCD是正方形,∴CD=CB,∠DCH=∠CBE=90°,在△DCH和△CBE中,,∴△DCH≌△CBE(ASA),∴DH=CE.【考察注意点】本题考查正多边形与圆,正方形的性质,平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:作法如图2.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.3.连结AM,MN,NA.(1)求∠ABC的度数.(2)△AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.【易错思路引导】(1)根据正五边形内角和,可以计算出∠ABC的度数;(2)先判断,然后根据题意和图形说明理由即可;(3)根据题意和(2)中的结果,计算出∠NOD的度数,然后即可计算出n的值.【规范解答】解:(1)∵五边形ABCDE是正五边形,∴∠ABC==108°,即∠ABC=108°;(2)△AMN是正三角形,理由:连接ON,NF,如图,由题意可得:FN=ON=OF,∴△FON是等边三角形,∴∠NFA=60°,∴∠NMA=60°,同理可得:∠ANM=60°,∴∠MAN=60°,∴△MAN是正三角形;(3)连接OD,如图,∵∠AMN=60°,∴∠AON=120°,∵∠AOD==144°,∴∠NOD=∠AOD﹣∠AON=144°﹣120°=24°,∵360°÷24°=15,∴n的值是15.【考察注意点】本题考查正多边形和圆、等边三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答。

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

人教版九年级上册数学 第24章《圆》讲义 第讲 正多边形和圆弧长和扇形面积(有答案)

第17讲 正多边形和圆、弧长和扇形面积 第一部分 知识梳理 知识点一:圆与内正多边形的计算1、正三角形 在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;2、正四边形 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =3、正六边形 同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA = 知识点二、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n R l π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱侧面展开图:3、圆锥侧面展开图第二部分 考点精讲精练考点1、正多边形和圆的求解例1、六边形的边长为10cm ,那么它的边心距等于( )A .10cmB .5cmC .cm D .cm 例2、已知正多边形的边心距与边长的比为21,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形例3、如图,在⊙O 内,AB 是内接正六边形的一边,AC 是内接正十边形的一边,BC 是内接正n 边形的一边,那么n= .例4、圆的内接正六边形边长为a,这个圆的周长为.例5、如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.举一反三:1、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形2、已知正方形的边长为a,其内切圆的半径为r,外接圆的半径为R,则r:R:a=()A.1:1:B.1::2 C.1::1 D.:2:43、某工人师傅需要把一个半径为6cm的圆形铁片加工截出边长最大的正六边形的铁片,则此正六边形的边长为 cm.4、如图,正六边形与正十二边形内接于同一圆⊙O中,已知外接圆的半径为2,则阴影部分面积为.5、如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t= s时,四边形PBQE为菱形;②当t= s时,四边形PBQE为矩形.考点2、弧长的计算例1、一条弧所对的圆心角是90°,半径是R,则这条弧长是()A.B.C.D.例2、一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°例3、已知:如图,四边形ABCD内接于⊙O,若∠BOD=120°,OB=1,则∠BAD= 度,∠BCD= 度,弧BCD的长= .例4、如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=cm,将△ABC绕点B旋转至△A′BC′的位置,且使点A、B、C′三点在一条直线上,则点A经过的最短路线的长度是.例5、如图,菱形ABCD的边长为6,∠BAD=60°,AC为对角线.将△ACD绕点A逆时针旋转60°得到△AC′D′,连接DC′.(1)求证:△ADC≌△ADC′;(2)求在旋转过程中点C扫过路径的长.(结果保留π)举一反三:1、弧长为6π的弧所对的圆心角为60°,则弧所在的圆的半径为()A.6 B.6C.12D.182、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路径长为()A.20cm B.20cm C.10πcm D.5πcm3、一段铁路弯道成圆弧形,圆弧的半径是2km.一列火车以每小时28km的速度经过10秒通过弯道.那么弯道所对的圆心角的度数为度.(π取3.14,结果精确到0.1度).4、已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于.5、如图,在一个横截面为Rt△ABC的物体中,∠CAB=30°,BC=1米.工人师傅把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1B1C1的位置(BC1在l上),最后沿BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).(1)请直接写出AB、AC的长;(2)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米).考点3、扇形面积的计算例1、已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,那么阴影部分的面积是()A.B.2π C.D.3π例2、一个商标图案如图中阴影部分,在长方形ABCD中,AB=8cm,BC=4cm,以点A 为圆心,AD为半径作圆与BA的延长线相交于点F,则商标图案的面积是()A.(4π+8)cm2 B.(4π+16)cm2C.(3π+8)cm2 D.(3π+16)cm2例3、如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积.例4、如图,有一直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形,则剩下部分的(阴影部分)的面积是.例5、如图,已知P为正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置.(1)请说出旋转中心及旋转角度;(2)若连接PQ,试判断△PBQ的形状;(3)若∠BPA=135°,试说明点A,P,Q三点在同一直线上;(4)若∠BPA=135°,AP=3,PB=,求正方形的对角线长;(5)在(4)的条件下,求线段AP在旋转过程中所扫过的面积.举一反三:1、若一个扇形的面积是相应圆的41,则它的圆心角为( ) A .150° B .120° C .90° D .60°2、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( )A .π+1B .2πC .4D .63、如图,O 为圆心,半径OA=OB=r ,∠AOB=90°,点M 在OB 上,OM=2MB ,用r 的式子表示阴影部分的面积是 .4、如图,直角△ABC 的直角顶点为C ,且AC=5,BC=12,AB=13,将此三角形绕点A 顺时针旋转90°到直角△AB′C′的位置,在旋转过程中,直角△ABC 扫过的面积是 .(结果中可保留π)5、如图,四边形ABCD 是长方形,AB=a ,BC=b (a >b ),以A 为圆心AD 长为半径的圆与CD 交于D ,与AB 交于E ,若∠CAB=30°,请你用a 、b 表示图中阴影部分的面积.考点4、圆锥侧面积计算例1、如果圆锥的高为3cm ,母线长为5cm ,则圆锥的侧面积是( )A .16πcm 2B .20πcm 2C .28πcm 2D .36πcm 2例2、新疆哈萨克族是一个游牧民族,喜爱居住毡房,毡房的顶部是圆锥形,如图所示,为防雨需要在毡房顶部铺上防雨布.已知圆锥的底面直径是5.7m ,母线长是3.2m ,铺满毡房顶部至少需要防雨布(精确到1m 2)( )A .58 m 2B .29 m 2C .26 m 2D .28 m 2例3、扇形的圆心角为150°,半径为4cm ,用它做一个圆锥,那么这个圆锥的表面积为 cm 2.例4、在十年文革期间的“高帽子”.这种“高帽子”是用如图①所示的扇形硬纸板,做成如图②所示的无底圆锥体.已知接缝的重叠部分的圆心角为30°.(1)求重叠部分的面积.(结果保留π)(2)计算这顶“高帽子”有多高?(结果保留根号)例5、已知:一个圆锥的侧面展开图是半径为20cm,圆心角为120°的扇形,求这圆锥的底面圆的半径和高.举一反三:1、若圆锥的侧面积为12πcm2,它的底面半径为3cm,则此圆锥的母线长为()A.4πcm B.4 cm C.2πcm D.2 cm2、圆锥的轴截面是一个等腰三角形,它的面积是10cm2,底边上的高线是5cm,则圆锥的侧面展开图的弧长等于()A.87πcm B.47πcm C.8 cm D.4 cm3、如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的高为。

九年级数学专题复习正多边形与圆

九年级数学专题复习正多边形与圆

总复习:正多边形与圆【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径.)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点进阶:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.弓形的面积(1)由弦及其所对的劣弧组成的图形,S弓形=S扇形-S△OAB;(2)由弦及其所对的优弧组成的弓形,S弓形=S扇形+S△OAB.·OA B·A BOm·A BOm要点进阶:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算例1.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O,则AD的长为()A.4B.92C.112D.5【变式1】如图,两个相同的正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.求重叠部分面积与阴影部分面积之比.【变式2】已知:正十边形的半径是R,求证:它的边长为101(51) 2a R=-.类型二、正多边形与圆综合运用例2.如图,AG是正八边形ABCDEFGH的一条对角线.(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.举一反三:【变式】如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是( )A.449π- B.849π- C.489π- D.889π-例3.扇形的圆心角为90°,面积为16π.(1)求扇形的弧长.(2)若将此扇形卷成一个无底圆锥形筒,则这个圆锥形筒的高是多少?例4.如图所示,有一圆锥形粮堆,其正视图是边长为6cm的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少?例5.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.【变式】已知:如图所示,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,求O点移动的距离.AB ,AC是⊙O的直径,AC⊥BD于F,∠A=30°.例6.如图,已知在⊙O中,43(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请你出这个圆锥的底面圆的半径.一、选择题1. 将一个底面半径为5 cm ,母线长为12 cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )度.A.60B.90C.120D.150 2.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB 与底面半径OB 的夹角为α,4tan 3α=,则圆锥的底面积是( )平方米.A.9πB.16πC. 25πD.36π3.某花园内有一块五边形的空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m 长为半径的扇形区域内(阴影部分)种上花草,那么种上花草的扇形区域总面积是( )A .6πm 2B .5πm 2C .4πm 2D .3πcm 24.如图所示,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积是( )A .6πB .5πC .4πD .3π5.如图所示,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下的扇形围成一个圆锥,则圆锥的底面圆半径为()A.13B.36C.33D.346.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B.C.D.二、填空题7.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是________.8.如图,已知⊙O是边长为2的等边△ABC的内切圆,则⊙O的面积为________.9.如图是一条水平铺设的直径为2米的通水管道横截面,其水面宽为1.6米,则这条管道中此时水最深为__________米.10.将半径为10cm,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是________.11.如图所示是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm.在母线OF上的点A 处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离为________cm.12.如图一组有规律的正多边形,各正多边形中的阴影部分面积均为a,按此规律,则第n个正多边形的面积为.三、解答题13.如图所示,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.14.如图AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).15.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是AD的中点,连结BD并延长交EC 的延长线于点G,连结AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若3tan4ABC∠=,CF=8,求CQ的长;(3)求证:(FP+PQ)2=FP·FG.16. 如图,圆O的半径为r.(1)在图①中,画出圆O的内接正△ABC,简要写出画法;求出这个正三角形的周长.(2)在图②中,画出圆O的内接矩形ABCD,简要写出画法;若设AB=x,则矩形的周长为.(3)如图③,六边形ABCDEF内接于半径为r(常数)的⊙O,其中AD为直径,且AB=CD=DE=FA.设AB=x,求六边形ABCDEF的周长L关于x的函数关系式,并探究L是否有最大值,若有,请指出x为何值时,L 取得最大值;若没有,请说明理由.。

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析

正多边形与圆的有关的证明和计算知识讲解及典型例题解析【考纲要求】1.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;2.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【考点梳理】考点一、正多边形和圆1、正多边形的有关概念:(1) 正多边形:各边相等,各角也相等的多边形叫做正多边形.(2)正多边形的中心——正多边形的外接圆的圆心.(3)正多边形的半径——正多边形的外接圆的半径.(4)正多边形的边心距——正多边形中心到正多边形各边的距离.(正多边形内切圆的半径)(5)正多边形的中心角——正多边形每一边所对的外接圆的圆心角.2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形.(2)这个圆是这个正多边形的外接圆.(3)把圆分成n(n≥3)等分,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.这个圆叫做正n边形的内切圆.(4)任何正n边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3、正多边形性质:(1)任何正多边形都有一个外接圆.(2) 正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.当边数是偶数时,它又是中心对称图形,它的中心就是对称中心.(3)边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.(4)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.要点诠释:(1)正n边形的有n个相等的外角,而正n边形的外角和为360度,所以正n边形每个外角的度数是360n;所以正n边形的中心角等于它的外角.(2)边数相同的正多边形相似.周长的比等于它们边长(或半径、边心距)的比.面积比等于它们边长(或半径、边心距)平方的比.考点二、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、正多边形有关计算1.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.【思路点拨】(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.【答案与解析】(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.【总结升华】本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.举一反三:【变式1】如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是______米.【答案】31+.解析:如图,以三个圆心为顶点等边三角形O1O2O3的高O1C=3,所以AB=AO1+O1C+BC=1313122++=+.【变式2】同一个圆的内接正三角形、正方形、正六边形的边长的比是__________.32::【变式3】一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为2,则扇形纸板和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【答案】A.【解析】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=2,∵∠AOB=45°,∴OB=AB=2,由勾股定理得:OD==2,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=2,∴MC=MB=,∴⊙M的面积是π×()2=2π,∴扇形和圆形纸板的面积比是π÷(2π)=.故选:A.类型二、正多边形与圆有关面积的计算2.(1)如图(a),扇形OAB 的圆心角为90°,分别以OA ,OB 为直径在扇形内作半圆,P 和Q分别表示阴影部分的面积,那么P 和Q 的大小关系是( ).A .P =QB .P >QC .P <QD .无法确定(2)如图(b),△ABC 为等腰直角三角形,AC =3,以BC 为直径的半圆与斜边AB 交于点D ,则图中阴影部分的面积是________.(3)如图(c),△AOB 中,OA =3cm ,OB =1cm ,将△AOB 绕点O 逆时针旋转90°到△A ′OB ′,求AB 扫过的区域(图中阴影部分)的面积.(结果保留π)【思路点拨】 直接使用公式计算阴影部分面积比较困难时,可采用和差法、转化法、方程法等,有时也需要运用变换的观点来解决问题.【答案与解析】解:(1)阴影部分的面积直接求出十分困难,可利用几个图形面积的和差进行计算:2OAB OCA P S S Q =-+扇形半圆2211()42R R Q Q ππ=-+=; (2)(转化法“凑整”)利用BmD CnD S S =弓形弓形,则阴影部分的面积可转化为△ACD 的面积,等于△ABC 面积的一半,答案为94; (3)(旋转法)将图形ABM 绕点O 逆时针旋转到A ′B ′M ′位置,则A OA MOM S S S ''=-阴影扇形扇形2211244OA OM πππ=-=. 【总结升华】求阴影面积的几种常用方 (1)公式法;(2)割补法;(3)旋转法;(4)拼凑法;(5)等积变形法;(6)构造方程法.举一反三:【变式】如图,在△ABC 中,AB =AC ,AB =8,BC =12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )A .64π127-B .16π32-C .16π247-D .16π127-【答案】解:如图,由AB ,AC 为直径可得AD ⊥BC ,则BD =DC =6.在Rt △ABD 中,228627AD =-=,∴ 211246271612722S ππ⎛⎫=⨯⨯⨯-⨯⨯=-⎪⎝⎭阴影. 答案选D.3.如图所示,A 是半径为2的⊙O 外一点,OA =4,AB 是⊙O 的切线,B 为切点,弦BC ∥OA ,连AC ,求阴影部分的面积.【思路点拨】图中的阴影是不规则图形,不易直接求出,如果连接OB 、OC ,由BC ∥OA ,根据同底等高的三角形面积相等,于是所求阴影可化为扇形OBC 去求解.【答案与解析】解:如图所示,连OB 、OC∵ BC ∥OA .∴ △OBC 和△ABC 同底等高,∴ S △ABC =S △OBC ,∴∵ AB 为⊙O 的切线,∴ OB ⊥AB .∵ OA =4,OB =2,∴ ∠AOB =60°.∵ BC ∥OA ,∴ ∠AOB =∠OBC =60°.∵ OB =OC ,∴ △OBC 为正三角形.∴ ∠COB =60°,∴ 260223603OBC S S ππ⨯===阴影扇形.【总结升华】通过等积替换化不规则图形为规则图形,在等积转化中①可根据平移、旋转或轴对称等图形变换;②可根据同底(等底)同高(等高)的三角形面积相等进行转化.举一反三:【变式】如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【答案】 解:连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===g g 阴影扇形OCD .4.如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E.(1)求弧BE所对的圆心角的度数.(2)求图中阴影部分的面积(结果保留π).【思路点拨】(1)连接OE,由条件可求得∠EAB=45°,利用圆周角定理可知弧BE所对的圆心角∠EOB=2∠E AB=90°;(2)利用条件可求得扇形AOE的面积,进一步求得弓形的面积,利用Rt△ADC的面积减去弓的面积可求得阴影部分的面积.【答案与解析】解:(1)连接OE,∵四边形ABCD为正方形,∴∠EAB=45°,∴∠EOB=2∠EAB=90°;(2)由(1)∠EOB=90°,且AB=4,则OA=2,∴S扇形AOE==π,S△AOE=OA2=2,∴S弓形=S扇形AOE﹣S△AOE=π﹣2,又∵S△ACD=AD•CD=×4×4=8,∴S阴影=8﹣(π﹣2)=10﹣π.【总结升华】本题主要考查扇形面积的计算和正方形的性质,掌握扇形的面积公式是解题的关键,注意弓形面积的计算方法.»AB)对应5.将一块三角板和半圆形量角器按图中方式叠放,重叠部分(阴影)的量角器圆弧(的中心角(∠AOB)为120°,AO的长为4cm,求图中阴影部分的面积.【思路点拨】看是否由“规则的”三角形、四边形、圆、扇形、弓形等可求面积的图形,经过怎样的拼凑、割补、叠合而成,这是解决这类题的关键.【答案与解析】阴影部分的面积可看成是由一个扇形AOB 和一个Rt △BOC 组成,其中扇形AOB 的中心角是120°,AO 的长为4,Rt △BOC 中,OB =OA =4,∠BOC =60°,∴ 可求得BC 长和OC 长,从而可求得面积,阴影部分面积=扇形AOB 面积+△BOC 面积=21623cm 3π⎛⎫+ ⎪⎝⎭. 【总结升华】本题是求简单组合图形的面积问题,解答时,常常是寻找这些“不规则的图形”是由哪些“可求面积的、规则的图形”组合而成.举一反三:【变式】如图,矩形ABCD 中,AB =1,2AD =.以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为________.【答案】1224π--. 解析:连接AE ,易证AB =BE =1,∠BAE =45°,所以∠EAD =45°, 所以21112(2)22824ABE ABCD DAE S S S S ππ=--=--=--△阴影矩形扇形.6.如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C ,连接AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点E .已知AB ﹦8,∠P=30°.(1)求线段PC 的长;(2)求阴影部分的面积.【思路点拨】(1)连接OC,由PC为圆O的切线,根据切线的性质得到OC与PC垂直,可得三角形OCP为直角三角形,同时由直径AB的长求出半径OC的长,根据锐角三角函数定义得到tanP为∠P的对边OC与邻边PC的比值,根据∠P的度数,利用特殊角的三角函数值求出tanP的值,由tanP及OC的值,可得出PC 的长;(2)由直角三角形中∠P的度数,根据直角三角形的两个锐角互余求出∠AOC的度数,进而得出∠BOC的度数,由OD与BC垂直,且OC=OB,利用等腰三角形的三线合一得到OD为∠BOC的平分线,可求出∠COD度数为60°,再根据直角三角形中两锐角互余求出∠OCD度数为30°,根据30°角所对的直角边等于斜边的一半,由斜边OC的长求出OD的长,先由∠COD的度数及半径OC的长,利用扇形的面积公式求出扇形COE的面积,再由OD与CD的长,利用直角三角形两直角边乘积的一半求出直角三角形COD 的面积,用扇形COE的面积减去三角形COD的面积,即可求出阴影部分的面积.【答案与解析】解:(1)连接OC,∵PC切⊙O于点C,∴OC⊥PC,∵AB=8,∴OC=12AB=4,又在直角三角形OCP中,∠P=30°,∴tanP=tan30°=OCPC,即PC=433=43;(2)∵∠OCP=90°,∠P=30°,∴∠COP=60°,∴∠A OC=120°,又AC⊥OE,OA=OC,∴OD为∠AOC的平分线,∴∠COE=12∠AOC=60°,又半径OC=4,∴S扇形OCE=26048=3603ππ⨯,在Rt△OCD中,∠COD=60°,∴∠OCD=30°,∴OD=12OC=2,根据勾股定理得:CD=22OC-OD=23,【总结升华】此题考查了切线的性质,含30°角的直角三角形的性质,等腰三角形的性质,锐角三角函数定义,以及扇形的面积公式,遇到已知切线的类型题时,常常连接圆心与切点,利用切线的性质得出垂直,利用直角三角形的性质来解决问题.。

九年级数学人教版第二十四章圆24.3正多边形和圆(同步课本结合例题精讲)

九年级数学人教版第二十四章圆24.3正多边形和圆(同步课本结合例题精讲)


P
∠OAB=∠OBA=∠OBC=∠OCB. B
∵TP、PQ、QR分别是以A、B、 Q
C为切点的⊙O的切线,
C
∴∠OAP=∠OBP=∠OBQ=∠OCQ.
∴∠PAB=∠PBA=∠QBC=∠QCB.
A
T
E O
S
D R
九年级数学第24章圆
又∵⌒AB=B⌒C ∴AB=BC ∴△PAB与△QBC是全等的等腰三角形. ∴∠P=∠Q,PQ=2PA 同理∠Q=∠R=∠S=∠T
E
D
一个正多边形的外接圆的圆心.
正多边形的半径: 外接圆的半径 正多边形的中心角:
F
. 中心角
O.
半径R
C
边心距r
正多边形的每一条边所对的圆心角.
正多边形的边心距:
A
B
中心到正多边形的一边的距离.
以中心为圆心,边心距为半径的圆为正多边形的内切圆
以中心为圆心,边心距为半径的圆与各边有何位置关系?
九年级数学第24章圆
QR=RS=ST=TP=2PA ∵五边形PQRST的各边都与⊙O相切, ∴五边形PQRST是⊙O的外切正五边形.
九年级数学第24章圆
定理 把圆分成n(n≥3)等份: 依次连结各分点所得的多边形是这个圆的内接正n边形; 经过各分点作圆的切线,以相邻切线的交点为顶点的多 边形是这个圆的外切正n边形. 一个正多边形是否一定有外接圆和内切圆?
1、下列图形中:①正五边形;②等腰三角形;③正八 边形;④正2n(n为自然数)边形;⑤任意的平行四边 形.是轴对称图形的有__①__②__③__④__,是中心对称图形的 有__③__④__⑤___,既是中心对称图形,又是轴对称图形的 有___③__④____. 2、两个正七边形的边心距之比为3:4,则它们的边长比 为_3_:_4__,面积比为_9_:_1_6_,外接圆周长比是__3_:_4__,中 心角度数比是__1_:_1__.

专题24.3 正多边形和圆--九年级数学人教版(上册)

专题24.3 正多边形和圆--九年级数学人教版(上册)

1.正多边形及有关概念只要把一个圆分成的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的圆.一个正多边形的外接圆的叫作这个正多边形的中心,外接圆的叫作这个正多边形的半径;正多边形每一边所对的叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的. 2.正多边形的有关计算一般地,正n边形的一个内角的度数为,中心角的度数等于;正多边形的中心角与外角的大小.易错点:易把正多边形的内切圆的半径(即边心距)当作正多边形的半径.K知识参考答案:1.相等外接圆心半径圆心角边心距2.(2)180nn-⨯360n相等K—重点正多边形及有关概念K—难点正多边形的相关计算K—易错混淆正多边形和圆的有关概念圆内接正多边形的判断证明一个圆内接多边形是正多边形的两种方法:(1)证明圆内接多边形的每个内角相等,每条边也相等,二者缺一不可.(2)证明圆内接多边形的各边所对的弧相等.技巧:当边数是奇数时,各个内角相等的圆内接多边形是正多边形.已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F,证明:五边形AEBCF是⊙O的内接正五边形.【解析】连接BF,CE,∵AB=AC,∴∠ABC=∠ACB,又∵∠BAC=36°,∴∠ABC=∠ACB=72°.又∵AB、AC的中垂线分别交⊙O于点E、F,∴AF=CF,AE=BE,∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,====,∴AE AF BE BC FC∴AE=AF=BE=BC=FC,∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.∴五边形AEBCF为正五边形.正多边形的有关计算正多边形的相关计算技巧:(1)正n边形的半径、边心距、边的一半构成一个直角三角形.有关正n边形的计算问题都转化为直角三角形的问题,常作半径、边心距构造直角三角形;(2)正六边形的边长等于它的半径,正三角形的边长等于它的半径的3倍,正方形的边长等于它的半径的2倍.若一个正多边形的一个外角为60°,则它的内切圆半径与外接圆半径之比是___________ .【答案】3:2.对正多边形的概念、性质理解模糊判断题(正确的画“√”,错误的画“×”).(1)各边相等的多边形是正多边形;()(2)圆内接菱形是正方形;()(3)各个角相等的圆内接多边形是正多边形;()(4)正多边形都是中心对称图形.()【易错提示】易因不理解正多边形的概念、性质而出错.(1)菱形的各边相等,但它不一定是正方形;(2)圆内接菱形的四个顶点将圆周4等分,所以它是正方形;(3)圆内接矩形的各角都相等,但它不一定是正方形;(4)当正多边形的边数为奇数时,该正多边形不是中心对称图形.【正解】(1)×(2)√(3)×(4)×混淆正多边形和圆的有关概念致错求边长为a的正方形的半径.【易错提示】正多边形有外接圆和内切圆,这两个圆是同心圆.正多边形的半径是指它的外接圆的半径,不要误认为正多边形的半径是它的内切圆半径【正解】作正方形ABCD的外接圆O,连接OA,OB.在△AOB中,AB=a,∠AOB=3604=90°,OA=OB.由勾股定理,得OA2+OB2=a2,∴22OA a,即边长为a的正方形的半径为22a.1.正八边形的中心角是A.45°B.135°C.360°D.1080°2.下列属于正n边形的特征的有①各边相等;②各个内角相等;③各条对角线都相等;④从一个顶点可以引(n-2)条对角线;⑤从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形.A.2个B.3个C.4个D.5个3.正六边形的半径是6,则这个正六边形的面积为A.24 B.54C.93D.5434.边长为的正六边形的边心距等于A.B.C.D.5.一个正n边形的面积是240 cm2,周长是60 cm,则边心距是______ .6.下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为的六边形是正六边形;⑤各边相等的圆外切多边形是正多边形.其中,正确的命题是_____________.7.如图,要拧开一个边长为a=6 cm的正六边形螺帽,扳手张开的开口b至少为多少?8.如图,正六边形ABCDEF内接于⊙O,若⊙O的内接正三角形ACE的面积为48,试求正六边形的周长.9.如图,正方形ABCD的外接圆为⊙O,点P在劣弧CD上(不与C点重合).(1)求∠BPC的度数;(2)若⊙O的半径为8,求正方形ABCD的边长.10.若AB是⊙O内接正五边形的一边,AC是⊙O内接正六边形的一边,则∠BAC等于A.120°B.6°C.114°D.114°或6°11.顺次连接正六边形的三个不相邻的顶点,得到如图的图形,下列说法错误的是A.△ACE是等边三角形B.△ACE既是轴对称图形也是中心对称图形C.连接AD,则AD分别平分∠EAC与∠EDCD.图中一共能画出3条对称轴12.如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED的度数为A.30°B.45°C.50°D.60°13.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为A.1∶2∶3B.3∶2∶1C.3∶2∶1 D.1∶2∶314.如图所示,△ABC为⊙O的内接三角形,AB=1,∠C=30°,则⊙O的内接正六边形的面积为________.15.四边形ABCD为⊙O的内接梯形,如图,AB∥CD,且CD为直径,如果⊙O的半径等于r,∠C=60°,那么图中△OAB的边长AB是______;△ODA的周长是_______;∠BOC的度数是________.16.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.17.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.18.如图,正五边形ABCDE的对角线AC、BE相交于M.求证:四边形CDEM是菱形;19.如图,正△ABC内接于⊙O,⊙O的半径为R,试分别计算△ABC的边长、边心距及面积.20.(浙江省湖州市2018)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连接OG.问:OG的长是多少?大臣给出的正确答案应是A.r B.(1+)rC.(1+)r D.r21.(2018内蒙古呼和浩特市)同一个圆的内接正方形和正三角形的边心距的比为____________.22.(2018贵州省贵阳市)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是____________度.23.(2018河北省)如图1,作∠BPC平分线的反向延长线P A,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90=452是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是_____;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是_____.24.(2018湖南省株洲市)如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.25.(2018陕西省)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为________.26.(2018四川省宜宾市)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,则S=_____.(结果保留根号)27.(2017四川凉山州卷)如图,P、Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=______.得到△ODE,因为∠DOE=360°×16=60°,又因为OD=OE,所以∠ODE=∠OED=(180°-60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=93.正六边形的面积为6×93=543.故选D.4.【答案】A在△OAM中,由勾股定理得:OM==a.故选:A.5.【答案】8 cm【解析】一个正n边形的面积是240 cm2,周长是60 cm,∴设边心距是h cm,则12×60×h=240,解得:h=8(cm),即边心距为8 cm.故答案为:8 cm.6.【答案】②【解析】①错误,反例:矩形各角相等但不是正四边形;②正确,边相等则各边所对的圆心角相等,由半径和圆心角可构成n个全等的等腰三角形,则多边形的各内角也相等;③错误,正奇数边形不是中心对称图形;④错误,在正六边形的基础上作任意一组对边的平行线,仍然截出一个六边形,各内角均为120°,但不是正六边形;⑤错误,只要使切点与圆心的连线不平分多边形的边长即可.故答案为:②.7.【解析】设正六边形的中心是O,其一边是AB,8.【解析】如图,连接OA,作OH⊥AC于点H,则∠OAH=30°.在Rt△OAH中,设OA=R,则OH=R,AH==而△ACE的面积是△OAH面积的6倍,即6××R×R=48,解得R=8,即正六边形的边长为8,所以正六边形的周长为48.9.【解析】(1)连接OB,OC,10.【答案】D【解析】如图,连接OA,OB,OC,∵AB是⊙O内接正五边形的一边,AC是⊙O的内接正六边形的一边,∴∠AOC=,∠AOB==72°,∵OA=OC=OB,∴∠OAB=54°,∠OAC=60°,若AB与AC在OA的同侧,∠BAC=∠OAC-∠OAB=6°,当AB、AC在OA两侧时,则∠BAC=∠OAC+∠OAB=54°+60°=114°.∴∠BAC=6°或114°.故选D.11.【答案】B12.【答案】B【解析】∵正六边形ADHGFE 的内角为120°, 正方形ABCD 的内角为90°, ∴∠BAE =360°-90°-120°=150°, ∵AB =AE , ∴∠BEA =12×(180°-150°)=15°, ∵∠DAE =120°,AD =AE , ∴∠AED =1801202︒-︒=30°,∴∠BED =15°+30°=45°.故选B . 13.【答案】B【解析】设圆的半径为R , 如图(一),连接OB ,过O 作OD ⊥BC 于D , 则∠OBC =30°,2213,22OD R BD OB OD R ==-=∴, 故BC =2BD =3R ; 如图(二),14.【答案】332【解析】连接AO ,BO ,过点O 作OE ⊥AB 于点E , ∵∠C =30°, ∴∠AOB =60°, ∵AO =BO ,∴△AOB 是等边三角形, ∴AO =BO =AB =1, ∴22113,222BE OB EO OB BE ===-=, 12AOB S EO AB ∴=⨯⨯=△34, ∴⊙O 的内接正六边形的面积为:6×34=332.故答案为33 2.15.【答案】r3r60°【解析】∵∠C=60°,OB=OC,∴∠OBC=∠COB=60°,AB∥CD,∠BOC=∠OBA=60°,易得,AOB△,△ODA是等边三角形,所以AB=r,△ODA的周长是3r.16.【解析】(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.17.【解析】(1)∵在正六边形ABCDEF中,AB=BC,∠ABC=∠C=120°,在△ABG与△BCH中AB=BC,∠ABC=∠C=120°,BG=CH,∴△ABG≌△BCH;(2)由(1)知:△ABG≌△BCH,∴∠BAG=∠HBC,∴∠BPG=∠ABG=120°,∴∠APH=∠BPG=120°.18.【解析】∵五边形ABCDE是正五边形,∴∠D=108°,∠DCA=72°,∴∠D+∠DCA=180°,19.【解析】∵AD ⊥BC,BD =CD =12BC,∠OBD =12∠ABC =12×60°=30°, 即边心距OD =12OB =12R , 由勾股定理得:BD =22OB OD =32R , ∴三角形边长为BC =2BD =3R,AD =AO +OD =R +12R =32R , 则△ABC 的面积=12BC ×AD =12×3R ×32R =334R ².20.【答案】D【解析】如图连接CD ,AC ,DG ,AG .∵AD 是⊙O 直径, ∴∠ACD =90°,在Rt △ACD 中,AD =2r ,∠DAC =30°, ∴AC =r ,∵DG =AG =CA ,OD =OA , ∴OG ⊥AD , ∴∠GOA =90°,∴OG=r,故选:D.21.【答案】过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=R,∴OQ:OH=(R):(R)=:1,故答案为::1.22.【答案】7223.【答案】14 21【解析】图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:,以∠APB为内角的正多边形的边数为:,∴图案外轮廓周长是=﹣2+﹣2+﹣2=+﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=﹣6=21,故答案为:14,21.24.【答案】48°25.【答案】72°【解析】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.26.【答案】【解析】依照题意画出图象,如图所示.27.【答案】72°.【解析】连接OA、OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,∵OB=OC,∠OBP=∠OCQ,BP=CQ,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.。

九年级数学专题18 正多边形与圆(知识点串讲)(解析版)

九年级数学专题18 正多边形与圆(知识点串讲)(解析版)

专题18 正多边形与圆【重点突破】知识点一正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)【考查题型】考查题型一求正多边形的中心角典例1.(2019·南京市期末)若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45°B.60°C.72°D.90°【答案】B【提示】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.故选B.【名师点拨】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.变式1-1.(2020·淮安市期末)如图,正六边形ABCDEF内接于圆O,圆O半径为2,则六边形的边心距OM 的长为()A.2 B.3C.4 D3【答案】D【提示】连接OB、OC,证明△OBC是等边三角形,得出3=OM OB即可求解.【详解】解:连接OB、OC,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴333 OM故选:D.【名师点拨】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.变式1-2.(2019·宿迁市期末)正六边形的周长为6,则它的面积为()A.93B.332C3D.33【答案】B【提示】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC 的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=16×360°=60°, ∵OB=OC ,∴△OBC 是等边三角形,∵正六边形ABCDEF 的周长为6, ∴BC=6÷6=1, ∴OB=BC=1, ∴BM=12BC=12, ∴2222131()22OB BM -=-=, ∴S △OBC =12×BC×OM=1331224⨯⨯= , 3336=. 故选:B . 【名师点拨】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.变式1-3.(2020·东台市期末)在一块半径为2cm 的圆形钢板中裁出一个最大的等边三角形,此等边三角形的边长( ) A .1cm B 3cm C .2cm D .3cm【答案】D 【提示】画出图形,作OC AB ⊥于点C ,利用垂径定理和等边三角形的性质求出AC 的长即可得出AB 的长. 【详解】解:依题意得3603120AOB ∠=︒÷=︒, 连接OA ,OB ,作OC AB ⊥于点C , ∵OA OB =,∴2AB AC =,60AOC ∠=︒, ∴sin 603cm AC OA =⋅︒=, ∴223cm AB AC ==. 故选:D .【名师点拨】本题考查了圆的内接多边形,和垂径定理的使用,弄清题意准确计算是关键.变式1-4.(2019·宿迁市期中)如图,已知正六边形ABCDEF ,则∠ADF =_____度.【答案】30 【提示】找到AD 的中点O ,连接OF ,由多边形是正六边形可求出∠AOF 的度数,再根据圆周角定理即可求出∠ADF 的度数. 【详解】解:由题意知:AD 是正六边形的外接圆的直径, 找到AD 的中点O ,连接OF , ∵六边形ABCDEF 是正六边形,∴∠AOF =3606︒=60°, ∴∠ADF =12∠AOF =12×60°=30°.故答案为:30.【名师点拨】此题考查的是圆与正六边形,掌握圆的内接正六边形的性质和同弧所对的圆周角是圆心角的一半是解决此题的关键.变式1-5 (2019·房县期末)若用αn表示正n边形的中心角,则边长为4的正十二边形的中心角是____.【答案】30º【提示】根据正多边形的中心角的定义,可得正十二边形的中心角是:360°÷12=30°.【详解】正十二边形的中心角是:360°÷12=30°.故答案为:30º.【名师点拨】此题考查了正多边形的中心角.此题比较简单,注意准确掌握定义是关键.考查题型二已知正多边形的中心角求边数典例2.(2018·东台市期末)如果一个正多边形的中心角为72,那么这个正多边形的边数是().A.4B.5C.6D.7【答案】B【解析】÷=.试题提示:根据正多边形的中心角与边数的关系,其边数为360725变式2-1.(2020·宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.12【答案】D【提示】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【名师点拨】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.变式2-2.(2019·赣榆区期中)如图,AC是⊙O的内接正六边形的一边,点B在弧AC上,且BC是⊙O的内接正十边形的一边,若AB是⊙O的内接正n边形的一边,则n=____ .【答案】15.【提示】连接OB,先求得∠AOB的度数,然后利用360°除以∠AOB度数,根据所得的结果进行提示即可得. 【详解】连接OB,∵AC是⊙O的内接正六边形的一边,∴∠AOC=360°÷6=60°,∵BC是⊙O的内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOB=60°-36°=24°,即360°÷n=24°,∴n=15,故答案为:15.【名师点拨】本题考查了正多边形和圆,中心角等知识,熟练掌握相关知识是解题的关键.注意把圆周等分,然后顺次连接各个分点就会得到正多边形.考查题型三正多边形和圆典例3.(2020·浔阳区期末)如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是23cm,则这个正六边形的周长是()A.12 B.63C.36 D.123【答案】D【提示】由正六边形的性质证出△AOB是等边三角形,由等边三角形的性质得出AB=OA,即可得出答案【详解】设正六边形的中心为O,连接AO,BO,如图所示:∵O是正六边形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=23cm,∴△AOB是等边三角形,∴AB=OA=23cm,∴正六边形ABCDEF的周长=6AB=123cm.故选D【名师点拨】此题主要考查了正多边形和圆、等边三角形的判定与性质;根据题意得出△AOB是等边三角形是解题关键. 变式3-1.(2018·射阳县期末)正多边形的中心角与该正多边形一个内角的关系是()A.互余B.互补C.互余或互补D.不能确定【答案】B【解析】设正多边形的边数为n,则正多边形的中心角为360n︒,正多边形的一个外角等于360n︒,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.故选B.变式3-2.(2018·合肥市期末)如图,已知⊙O 是正方形ABCD 的外接圆,点E 是弧AD 上任意一点,则∠BEC 的度数为()A.30°B.45°C.60°D.90°【答案】B【提示】首先连接OB,OC,由O是正方形ABCD的外接圆,即可求得∠BOC的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BEC的度数.【详解】连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=12∠BOC=45°.故选B.变式3-3(2020·泉州市期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6 B.7 C.8 D.9【答案】B【提示】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【详解】解:延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.【名师点拨】本题考查了正五边形与圆的有关运算,属于层次较低的题目,解题的关键是正确地构造圆心角.变式3-4.(2020无锡市期中)如图,边长为a的正六边形内有两个三角形(数据如图),则SS阴影空白的值为()A.3 B.4 C.5 D.6 【答案】C【详解】解:因为是正六边形,所以△OAB是边长为a的等边三角形,即两个空白三角形面积为S△OAB,即SS阴影空白=5.故选C.【名师点拨】本题考查正多边形和圆.变式3-5.(2019·临川市期中)如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【提示】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为2,即圆的直径为2,∴大正方形的边长为2,则大正方形的面积为222⨯=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【名师点拨】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.变式3-6.(2020·吴江区期末)若正方形的外接圆半径为2,则其内切圆半径为()A.22B.2C.22D.1【答案】B【解析】试题解析:如图所示,连接OA、OE,∵AB 是小圆的切线,∴OE ⊥AB ,∵四边形ABCD 是正方形,∴AE =OE ,∴△AOE 是等腰直角三角形, 2 2.2OE OA ∴== 故选B. 变式3-7.(2019·徐州市期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43 B .23 C .33 D .322【答案】C【提示】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积. 【详解】解:由题意可得出圆的半径为1,∵△ABC 为正三角形,AO=1,AD BC ⊥,BD=CD ,AO=BO ,∴1DO 2=,32AD =, ∴223BD 2OB OD =-=, ∴BC 3=∴13333224ABC S =⨯=. 故选:C .【名师点拨】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.考查题型四利用尺规作正多边形典例4.(2019·扬州市期中)尺规作图:如图,AD为⊙O的直径。

【推荐】人教版九年级数学上册:24.3正多边形和圆(含答案)

【推荐】人教版九年级数学上册:24.3正多边形和圆(含答案)

24.3 正多边形和圆知识点1.________________相等,______________也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是________________,它的中心角等于______________________________________________.3.一个正多边形的外接圆的____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正n边形的半径为R,边心距为r,边长为a,(1)中心角的度数为:______________.(2)每个内角的度数为:_______________________.(3)每个外角的度数为:____________.(4)周长为:_________,面积为:_________.5.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,并且还是中心对称图形;当边数为奇数时,它只是_______________.(填“轴对称图形”或“中心对称图形”)一、选择题1.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( ) A.6,32B .32,3C.6,3 D.62,324. 如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().A.60°B.45°C.30°D.22.5°第4题5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为()A.1:2:3B.3:2:1C.3:2:1D.1:2:36. 圆内接正五边形ABCDE中,对角线AC和BD相交于点P,第6题则∠APB的度数是().A.36°B.60°C.72°D.108°7.(2013•自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()第7题A.4B.5C.6D. 78.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ的度数是()A.60°B.65°C.72°D.75°第8题二、填空题9.一个正n边形的边长为a,面积为S,则它的边心距为__________.10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中心,则∠MON=_____________.第13题14.边长为a的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要__________cm.16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________.17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.第18题三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________.不同点:(1)____________________________________________________________________;(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R、边心距r6、面积S6.21.如图,⊙O 的半径为2,⊙O的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O和⊙O上的一点A.(1)作⊙O的内接正方形ABCD和内接正六边形AEFCGH;(2)在(1)题的作图中,如果点E在弧AD上,求证:DE是⊙O内接正十二边形的一边.第20题第21题第22题23.如图1、图2、图3、…、图n,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是_________,图3中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案知识点1.各边 各角2.正多边形 正多边形每一边所对的圆心角3.圆心 半径 圆心角 距离4.360(2)180360(1)(2)(3)(4)(5)2n nar na n n n ︒-︒︒g 5.n 轴对称图形一、选择题1.C2.B3.B4.C5.B6.C7.B解:根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .8.D二、填空题 9. 2Sna10.144 11.4cm 12.12 13.45° 14.1:2:3 15. 四 17.2:318.40三、解答题19.相同点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆).不同点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5条,正六边形的对称轴是6条.20.222266266.=606=6,11632263331663354326,33,543.OA,OB.O OG AB G AOB OA OBAOB OA OB R OA OB OG ABAG AB Rt AOG r OG OA AG S R cm r cm S cm ⊥∠︒=∴∆∴===⊥∴==⨯=∴∆==-=-==⨯⨯⨯=∴===Q Q 解:连接过点作于,是等边三角形即在中, 21.解:连结OB∵在Rt △AOC 中,AC=2221OA OC -=-=1∴AC=OC ∴∠AOC=∠OAC=45°∵OA=OB OC ⊥AB∴AB=2AC=2 ∠AOB=2∠OAC=2×45°=90°∴这个内接正多边形是正方形.∴面积为22=4∴中心角为90°,边长为2,面积为4.22. (1)作法:①作直径AC;②作直径BD⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形; ④分别以A 、C 为圆心,以OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD=4360︒=90°,∠AOE=6360︒=60°, ∴∠DOE=∠AOD-∠AOE=90°-60°=30°.∴DE 为⊙O 的内接正十二边形的一边.23.(1)方法一:连结OB 、OC.∵正△ABC 内接于⊙O,∴∠OBM=∠OCN=30°,第22题∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN(SAS).∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON(SAS).∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90° 72°(3)∠MON=n360.。

人教版九年级数学上册圆知识点归纳及练习(含答案)

人教版九年级数学上册圆知识点归纳及练习(含答案)

圆圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点 A 所形成的图形叫作圆。

固定的端点O 叫作圆心,线段OA 叫作半径。

第二种:圆心为O,半径为 r的圆能够当作是全部到定点O 的距离等于定长r的点的会合。

比较圆的两种定义可知:第一种定义是圆的形成进行描绘的,第二种是运用会合的看法下的定义,可是都说明确立了定点与定长,也就确立了圆。

知识点二圆的有关看法( 1)弦:连结圆上随意两点的线段叫做弦,经过圆心的弦叫作直径。

( 2)弧:圆上随意两点间的部分叫做圆弧,简称弧。

圆的随意一条直径的两个端点把圆分红两条弧,每一条弧都叫做半圆。

(3)等圆:等够重合的两个圆叫做等圆。

( 4)等弧:在同圆或等圆中,能够相互重合的弧叫做等弧。

弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完整重合的弧才是等弧,而不是长度相等的弧。

垂直于弦的直径知识点一圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

知识点二垂径定理( 1)垂径定理:垂直于弦的直径均分弦,而且均分弦所对的两条弧。

如下图,直径为CD, AB 是弦,且CD⊥AB,CMA BAM=BM垂足为 M AC =BCAD=BDD垂径定理的推论:均分弦(不是直径)的直径垂直于弦,而且均分弦所对的两条弧如上图所示,直径CD 与非直径弦AB 订交于点M,CD⊥AB AM=BMAC=BC AD=BD注意:由于圆的两条直径一定相互均分,所以垂径定理的推论中,被均分的弦一定不是直径,不然结论不建立。

弧、弦、圆心角知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

( 2)在同圆或等圆中,假如两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。

(3)注意不可以忽视同圆或等圆这个前提条件,假如扔掉这个条件,即便圆心角相等,所对的弧、弦也不必定相等,比方两个齐心圆中,两个圆心角同样,但此时弧、弦不必定相等。

人教版 九年级数学 上册 24.3 正多边形与圆 备课综合(解析版)

人教版 九年级数学 上册 24.3 正多边形与圆 备课综合(解析版)

24.3 正多边形和圆【基础知识梳理】1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n 边形的对称轴有n条。

(3)边数相同的正多边形相似。

【教学重难点】(1)正多边形的有关计算;(2)正多边形与圆的关系。

【经典例题讲解】1.下列说法正确的是()A .平行四边形是正四边形 B.矩形是正四边形C.菱形是正四边形D.正方形是正四边形答案:D解析:各边相等,各角也相等的多边形叫做正多边形。

平行四边形各边各角都不定相等,所以不是正四边形;矩形各角相等,但是各边不一定相等,所以也不是;菱形各边相等,而各角不一定相等,所以菱形不是正四边形;正方形各边各角都相等,所以是正四边形。

故选D 。

2.正五边形一定是( )A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.以上都不对答案:A解析:如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

所以正五边形一定是轴对称图形,不是中心对称图形。

故选A 。

3.边长为a 的正六边形的内切圆的半径为( ) A.2a B.a C.a 23 D.a 21 答案:C解析:如图所示,正六边形的内切圆为⊙O ,则正六边形的三条对角线把内切圆分为六个相等的部分,所以∠AOB=60°,三角形AOB 为正三角形,G 点为AB 边和圆的切点,则OG ⊥AB ,且G 为AB 的中点,在Rt △OGB 中,∠OBG=60°,OB=AB=a ,所以OG=2。

正多边形和圆-九年级数学上册精讲与精练高分突破(人教版)

正多边形和圆-九年级数学上册精讲与精练高分突破(人教版)

24.3 正多边形和圆考点一:正多边形及有关概念只要把一个圆分成 相等 的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的 外接 圆. 一个正多边形的外接圆的 圆心 叫作这个正多边形的中心,外接圆的 半径 叫作这个正多边形的半径;正多边形每一边所对的 圆心角 叫作正多边形的中心角;中心到正多边形的一边的距离叫做正多边形的 边心距 .考点二:正多边形的有关计算一般地,正n 边形的一个内角的度数为 (2)180n n -⨯ ,中心角的度数等于 360n ;正多边形的中心角与外角的大小 相等 .题型一:正多边形的中心角1.在圆内接正六边形ABCDEF 中,正六边形的边长为2,则这个正六边形的中心角和边心距分别是( ) A .30°,1 B .45°,2 C .60°,3 D .120°,42.如图,正六边形ABCDEF 内接于O ,点M 在AB 上,则CME ∠的度数为( )A .30B .36︒C .45︒D .60︒3.如图,正六边形与正方形有两个顶点重合,且中心都是点O .若∠AOB 是某正n 边形的一个外角,则n 的值为( )A .16B .12C .10D .8题型二:求正多边形的边数4.如图,边AB 是⊙O 内接正六边形的一边,点C 在AB 上,且BC 是⊙O 内接正八边形的一边,若AC 是⊙O 内接正n边形的一边,则n的值是()A.6 B.12 C.24 D.485.如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n 边形的一边,则n的值为()A.6 B.8 C.10 D.126.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.弦AB的长等于圆内接正六边形的边长B.弦AC的长等于圆内接正十二边形的边长C.AC=BC D.∠BAC=30°题型三:正多边形和圆7.如图,在圆内接正六边形ABCDEF中,BD,EC交于点G,已知半径为3,则EG的长为()A.3B.3 C.23D.68.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则边心距OM的长为________.A.3B.32C.12D.239.如图,O的外切正六边形ABCDEF的边心距的长度为3,那么正六边形ABCDEF的周长为()A.2 B.6 C.12 D.3题型四:正多边形的尺规作图10.已知:如图,A为⊙O上一点;求作:⊙O的内接正方形ABCD.11.已如:⊙O 与⊙O 上的一点A(1)求作:⊙O 的内接正六边形ABCDEF ;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE ,BF ,判断四边形BCEF 是否为矩形,并说明理由.12.仅用无刻度的直尺........,按要求画图(保留画图痕迹,不写作法) (1)如图①,画出O 的一个内接矩形.(2)如图②,AB 是O 的直径,CD 是弦,且//AB CD ,画出O 的内接正方形.题型五:正多边形和圆的综合问题13.已知等腰ABC 中,AB =AC .(1)如图1,若O 为ABC 的外接圆,求证:AO BC ⊥;(2)如图2,若10AB AC ==,12BC =,I 为ABC 的内心,连接IC ,过点I 作ID BC ∥交AC 于点D ,求ID 的长.14.如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度中⊙O上逆时针运动.(1)求图①中∠APB的度数;(2)图②中,∠APB的度数是90°,图③中∠APB的度数是72°;(3)根据前面探索,你能否将本题推广到一般的正n边形情况?若能,写出推广问题和结论;若不能,请说明理由.15.如图所示,正三角形ABC、正方形ABCD、正五边形ABCDE分别是O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度在O上逆时针运动.(1)求图①中APB∠的度数(2)图②中APB∠的度数是______;∠的度数是______,图③中APB(3)若推广到一般的正n边形情况,请写出APB∠的度数是______.一、单选题16.如图,点O是正六边形ABCDEF的中心,边心距OH=3,则AB的长为()A.1 B3C.2 D.317.⊙O半径为4,以⊙O的内接正三角形、正方形、正六边形的边心距为边作一个三角形,则所得三角形的面积是()A2B3C.2D.3∠的度数是()18.如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOMA.36︒B.45︒C.48︒D.60︒19.如图,正五边形ABCDE内接于⊙O,连接AC,则∠ACD的度数是()A.72°B.70°C.60°D.45°20.如图,是由边长为1的正六边形和六角星镶嵌而成的图案,则图中阴影部分的面积是()A.183B.213C.243D.48321.如图,已知⊙O内接正六边形ABCDEF的边长为6cm,求这个正六边形的边心距r6、面积S6.一:选择题∠的度数.22.如图,正五边形ABCDE内接于O,点F在AB上,求CFD23.下列命题中,真命题是( )A .正六边形是轴对称图形但不是中心对称图形B .正六边形的每一个外角都等于中心角C .正六边形每条对角线都相等D .正六边形的边心距等于边长的一半24.如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .()3,1- B .(1,3-- C .()3,1-- D .(325.如图,六边形ABCDEF 是正六边形,点P 是边AF 的中点,PC ,PD 分别与BE 交于点M ,N ,则:PMN PBM S S △△的值为( )A.12B.13C.14D.2326.已知四个正六边形如图摆放在图中,顶点A,B,C,D,E,F在圆上.若两个大正六边形的边长均为2,则小正六边形的边长是()A.33-B.2312-C.312+D.1312-27.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.CEH△是等边三角形28.如图,圆内接正八边形的边长为1,以正八边形的一边AB作正方形ABCD,将正方形ABCD绕点B顺时针旋转,使AB与正八边形的另一边BC'重合,则正方形ABCD与正方形A BC D'''重叠部分的面积为()A.21-B.212+C.313-D.313+29.如图,点O是边长为4的正六边形ABCDEF的中心,对角线CE,DF相交于点G,则GEF△的面积为()A.23B.33C.833D.103330.如图所示,放置正六边形ABCDEF与正六边形DGHMNF,若五边形ABCDF的面积为5,则多边形EDGHMNF 的面积是()A.12 B.3C.17 D.17331.如图,已知边长为2的正六边形ABCDEF内接于O,则阴影部分的面积为()A.33B.23C.123D.43二、填空题32.第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图这个图案绕着它的中心旋转后能够与它本身重合,则旋转角α最小可以为_____度.33.如图,正八边形ABCDEFGH内接于⊙O,若AC=4,则点O到AC的距离为____.34.如图,正六边形ABCDEF的周长为24cm,则它的外接圆⊙O的半径为________cm.35.如图,在正五边形ABCDE中,连结AC,以点A为圆心,AB为半径画圆弧交AC于点F,连接DF.则∠FDC 的度数是_____.36.如图,由六块相同的含30°角的直角三角尺拼成一个大的正六边形,内部留下一个小的正六边形空隙,如果该直角三角尺的较短直角边的长是1分米,那么这个小的正六边形的面积是_____平方分米.37.跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三AB 厘米,则这个正六边形的周长为_________厘米.角形DEF组合而成,它们重叠部分的图形为正六边形.若2738.如图,已知点G是正六边形ABCDEF对角线FB上的一点,满足3,联结FC,如果EFG的面积为1,BG FG那么FBC的面积等于_______.39.在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是__.三、解答题40.如图,正方形ABCD内接于O,P为BC上的一点,连接DP,CP.(1)求CPD ∠的度数;(2)当点P 为BC 的中点时,CP 是O 的内接正n 边形的一边,求n 的值.41.如图M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDEFG…的边AB 、BC 上的点,且BM =CN ,连接OM 、ON(1)求图1中∠MON 的度数(2)图2中∠MON 的度数是 ,图3中∠MON 的度数是(3)试探究∠MON 的度数与正n 边形边数n 的关系是____42.如图,正方形ABCD 内接于O ,E 为CD 任意一点,连接DE 、AE .(1)求AED ∠的度数.(2)如图2,过点B 作//BF DE 交O 于点F ,连接AF ,1AF =,4AE =,求DE 的长度.43.如图1,边长为2的正方形ABCD中,点E在AB边上(不与点A、B重合),点F在BC边上(不与点B、C重合)·第一次操作:将线段EF绕点顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为_______,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为________,此时AE与BF的数量关系是_________.②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请求出其边长;如果不是,请说明理由.44.正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在AB上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:2.请说明理由;(3)如图②,若点E在AB上.连接DE,CE,已知BC=5,BE=1,求DE及CE的长.45.如图,已知A、B、C、D四点都在⊙O上.(1)若∠ABC=120°,求∠AOC的度数;(2)在(1)的条件下,若点B是弧AC的中点,求证:四边形OABC为菱形.46.已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转a(0°<a<360°),得到矩形AEFG,如图1,M是线段BF的中点,点O是AB的中点,连接OM.(1)将矩形AEFG绕点A顺时针旋转一周,求点M的路径长;(2)旋转过程中,当点M落在AD上时.①求△AMF的面积;②如图2,连接BE,ED,求证:B,E,D共线;(3)如图3,连接MG,在将矩形AEFG绕点A顺时针旋转一周的过程中,直接写出MG的最大值_____________.1.C【分析】根据中心角的定义可得这个正六边形的中心角,如图(见解析),过圆心O 作OP AB ⊥于点P ,先根据等边三角形的判定可得AOB 是等边三角形,根据等边三角形的性质可得2,1OA AB AP ===,再利用勾股定理即可得. 【详解】解:这个正六边形的中心角为360606︒=︒, 如图,过圆心O 作OP AB ⊥于点P ,,60OA OB AOB =∠=︒,AOB ∴是等边三角形,12,12OA AB AP AB ∴====, 223OP OA AP ∴=-=,即这个正六边形的边心距为3,故选:C .【点睛】本题考查了正多边形的中心角和边心距、等边三角形的判定与性质、勾股定理,熟练掌握正多边形的中心角和边心距的概念是解题关键.2.D【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC 、OD 、OE ,如图所示:∵正六边形ABCDEF 内接于O ,∴∠COD = 3606=60°,则∠COE =120°,∴∠CME= 12∠COE=60°,故选:D.【点睛】本题考查正多边形的中心角、圆周角定理,熟练掌握正n多边形的中心角为360n是解答的关键.3.B【分析】连接OC,先求出∠AOB的度数,然后利用正多边形外角和等于360°,即可求出答案.【详解】解:连接OC,如图:根据题意,正六边形和正方形的中心都是点O,∴∠BOC=90°,∠AOC=60°,∴∠AOB=90°-60°=30°;∵∠AOB是某正n边形的一个外角,∴3601230n︒==︒;故选:B.【点睛】本题考查了正多边形的性质,正多边形的外角和定理,解题的关键是掌握正多边形的性质,正确求出∠AOB 的度数.4.C【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,可得∠AOC=15°,然后根据边数n=360°÷中心角即可求得答案.【详解】解:连接OC,∵AB是⊙O内接正六边形的一边,∴∠AOB=360°÷6=60°,∵BC是⊙O内接正八边形的一边,∴∠BOC=360°÷8=45°,∴∠AOC =∠AOB -∠BOC =60°-45°=15°∴n =360°÷15°=24.故选:C .【点睛】本题考查了正多边形和圆、正六边形的性质、正八边形、正二十四边形的性质;根据题意求出中心角的度数是解题的关键.5.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒,DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.6.D【详解】在△QAB 即,OA =OB ,OA =AB ,∴△OAB 为等边之扇形,∴∠AOB =60°,∴弦AB 的长等于园内接正方形的边长,故A 对;∵OC ⊥AB ,△OAB 为等边之扇形,∴OC 平分∠AOB ,∴∠AOC =∠BOC =30°,∴AC 的长为园内接正十二边形的边长,故B 对;∵∠AOC =∠BOC ,∴ 弧AC = 弧BC , 故C 对;∵∠BAC = 12∠BOC = 12×30°=150°,故D 错;故选D.点睛:本题考查了圆周角定理,及多边形内角的关系,要注意的知识结构即掌握能够根据选项所给的内容进行判断是解题的关键.7.C【分析】连接BO 、GO ,则三角形EOG 为直角三角形,利用勾股定理即可求解.【详解】解:连接BE 、GO ,则BE 经过O 点,且O 是BE 的中点,∵六边形ABCDEF 是正六边形, ∴1902EOG EOB ∠=∠=︒, ()621801206EDC -⨯︒∠==︒, ∵DE =EC ,∴30DEC ∠=︒,∵360606EOD ︒∠==︒, ∴60OED ∠=︒,∴30GEO ∠=︒,设EG 的长为x ,则OG 的长为2x , ∴22232x x ⎛⎫+= ⎪⎝⎭, 解得:23x =.故选:C .【点睛】本题考查了圆内接正六边形的性质、勾股定理的应用,解题的关键是掌握各知识点,并能结合图形熟练运用各知识点.8.B【分析】连接OA 、OB ,证明△OAB 是等边三角形,得出AB =OA =1,由垂径定理求出AM ,再由勾股定理求出OM 即可.【详解】解:连接OA 、OB ,如图所示:∵六边形ABCDEF 为正六边形,360606AOB ︒∠==︒, ∵OA =OB ,∴△OAB 是等边三角形,∴AB =OA =1,∵OM ⊥AB ,∴AM =BM =12AB =12, ∴221312OM ⎛⎫=-= ⎪⎝⎭ 故选:B .【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM 是解决问题的关键.9.C【分析】过点O 作OG ⊥AB ,垂足为G ,根据边心距得到OG 3△OAB 是等边三角形,利用勾股定理求出AB ,从而可得周长.【详解】解:如图,过点O 作OG ⊥AB ,垂足为G ,由题意可得:OG 3在正六边形ABCDEF 中,∠AOB =3606=60°,OA =OB , ∴△OAB 是等边三角形,∴AB =OA 23=2, ∴正六边形ABCDEF 的周长为2×6=12,故选:C .【点睛】本题考查的是正多边形和圆,根据正六边形的性质求出△OAB是等边三角形是解答此题的关键.10.见解析【分析】先作直径AC,再过O点作AC的垂线交⊙O于D、B,然后连接AB、AD、CD、CB即可.【详解】解:如图,四边形ABCD为所作.【点睛】本题考查了作图——复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.11.(1)答案见解析;(2)证明见解析.【分析】(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的性质得AB=BC=CD=DE=EF=FA,AB BC CD DE EF AF=====,则判断BE为直径,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判断四边形BCEF为矩形.【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形.理由如下:连接BE,如图,∵六边形ABCDEF为正六边形,∴AB=BC=CD=DE=EF=FA,∴AB BC CD DE EF AF=====,∴BC CD DE EF AF AB++=++,∴BAE BCE=,∴BE为直径,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四边形BCEF为矩形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定与正六边形的性质.12.(1)答案见详解;(2)答案见详解.【分析】(1)根据对角线相等且互相平分的四边形是矩形,画出圆的两条直径,即可得到⊙O的一个内接矩形;(2)根据对角线相等且互相垂直平分的四边形是正方形,画出圆的一条直径,使其与AB互相垂直,即可得到⊙O 的内接正方形.【详解】解:(1)如图所示,过O作⊙O的直径AC与BD,连接AB,BC,CD,DA,则四边形ABCD即为所求;(2)如图所示,延长AC,BD交于点E,连接AD,BC交于点F,连接EF并延长交⊙O于G,H,连接AH,HB,BG,GA,则四边形AHBG即为所求.【点睛】本题主要考查了复杂作图以及圆的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.13.(1)见解析;(2)15 4【分析】(1) 连接OB、OC,可得AB=AC,利用垂直平分线的判定可得AO BC⊥;(2) 连接AI 并延长交BC 于点F ,过点I 分别作IG AC ⊥于点G ,IH AB ⊥于点H, 通过AB AC =,I 为ABC 的内心,可知AF BC ⊥,利用勾股定理可求8AF =,设IH IF IG r ===,由ABC ABI BCI ACI S S S S ,可得: 3r =,再设CF CG a ==,则10AH AG a ==-,12BF BH a ==-再求解6a = 证明123∠=∠=∠,所以设ID DC x ==,6DG x =-,利用勾股定理可得答案.【详解】(1)证明:连接OB 、OC ,∵AB =AC ,∴A 在BC 的垂直平分线上又∵OB =OC ,∴O 也在BC 的垂直平分线上∴AO BC ⊥(2)连接AI 并延长交BC 于点F ,过点I 分别作IG AC ⊥于点G ,IH AB ⊥于点H∵AB AC =,I 为ABC 的内心,∴AF BC ⊥,6BF CF ==, ∴228AF AB BF =-设IH IF IG r ===,由ABC ABI BCI ACI SS S S 可得:()1110101212822r ++⋅=⨯⨯ ∴3r =设CF CG a ==,则10AH AG a ==-,12BF BH a ==-∴101210a a -+-=解得:6a = 即6CG =∵ID BC ∥,CI 平分,ACB ∠∴123∠=∠=∠∴设ID DC x ==,6DG x =-在Rt IGD △中,222IG GD ID +=∴()22236x x +-=解得:154x =∴154ID = 【点睛】本题考查了平行线的性质,圆的内心和外心,以及勾股定理,掌握圆的内心和外心的性质是解题的关键.14.(1)120°;(2)=,=;(3)能,∠APB =360n︒【分析】(1)由题意可得BM CN =,根据同弧或等弧所对的圆周角相等可得BMA CNB ∠=∠,在利用三角形外角的性质即可求解(2)根据(1)的求解过程,即可求解(3)结合(1),(2)的推理过程,即可得出结论【详解】(1)∠APB =120°(如图①)∵点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动,∴∠BAM =∠CBN ,又∵∠APN =∠BPM ,∴∠APN =∠BPM =∠ABN +∠BAM =∠ABN +∠CBN =∠ABC =60°,∴∠APB =120°;(2)同理可得:图②中∠APB =90°;图③中∠APB =72°.(3)由(1),(2)可知,∠APB =所在多边形的外角度数,故在图n 中,∠APB =360n︒. 【点睛】本题考查了正多边形和圆,熟练掌握同弧或等弧所对的圆周角相等,以及正多边形外角的求法,三角形外角的性质是解题关键.15.(1)120°;(2)90°,72°;(3)360n︒ 【分析】(1)根据等边三角形的性质、旋转的性质,求出60APN ABC ∠=∠=︒,即可求出答案;(2)与(1)同理,可求APN ABC ∠=∠,根据正方形和正五边形的内角度数,即可求出答案;(3)与(1)(2)同理,∠APB 为所在多边形的外角度数,即可得到答案.【详解】解:(1)∵ABC 是正三角形,∴60ABC ∠=︒,∵点M 、N 分别从点B 、C 开始以相同的速度在O 上逆时针运动,∴BAM CBN ∠=∠,∴60APN ABN BAM ABN CBN ABC ∠=∠+∠=∠+∠=∠=︒,∴180********APB APN ∠=︒-∠=︒-︒=︒;(2)由图②,四边形ABCD 是正方形,则与(1)同理,90APN ABC ∠=∠=︒,∴18090APB APN ∠=︒-∠=︒;由图③,正五边形ABCDE 中,与(1)同理,∴108APN ABC ∠=∠=︒,∴18072APB APN ∠=︒-∠=︒;故答案为:90°;72°;(3)由(1)可知,∠APB 为所在正多边形的外角度数,故在图n 中,有∠APB=360n ︒; 故答案为:360n ︒; 【点睛】此题是一道规律探索题,体现了探索发现的一般规律:通过计算得出特殊多边形中的角∠APN 的度数,然后得出n 边形的∠APN 的度数.16.C【分析】连接OB 、OA ,根据正六边形的性质得到∠BOA =60°,OB =OA ,根据等腰三角形的性质得到AH =BH ,∠AOH =12∠AOB =30°,根据直角三角形的性质得到结论.【详解】解:如下图,连接OB 、OA ,∵六边形ABCDEF 是正六边形,∴∠BOA =60°,OB =OA ,∵OH ⊥AB ,∴AH =BH ,∠AOH =12∠AOB =30°,∵OH 3∴AH 3=1, ∴AB =2,故选:C .【点睛】本题考查正多边形与圆、等边三角形的判定与性质、勾股定理等知识,熟练掌握正六边形的性质和等腰三角形的判定与性质是解题的关键.17.C【分析】分别画出对应的图形计算出三条边心距,利用勾股定理的逆定理可证明它们构建的三角形为直角三角形,然后根据三角形面积公式计算此三角形的面积.【详解】解:如图1,△ABC 为⊙O 的内接正三角形,作OM ⊥BC 于M ,连接OB ,∵∠OBC =12∠ABC =30°, ∴OM =12OB =2;如图2,四边形ABCD 为⊙O 的内接正方形,作ON ⊥DC 于N ,连接OD ,∵∠ODC =12∠ADC =45°,∴ON =DN =22OD =22; 如图3,六边形ABCDEF 为⊙O 的内接正六边形,作OH ⊥DE 于H ,连接OE ,∵∠OED =12∠FED =60°,∴EH =12OE =2,OH =3EH =23,∴半径为4的圆的内接正三角形、正方形、正六边形的边心距分别为2,22,23,∵22+(22)2=(23)2,∴以三条边心距所作的三角形为直角三角形,∴该三角形的面积=12×2×22=22.故选:C .【点睛】本题考查了正多边形与圆:熟练掌握正多边形的有关概念和正多边的性质,会利用勾股定理解直角三角形是解题的关键.18.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形, 360725AOB ∠︒∴==︒, 1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.19.A【分析】由正五边形的性质可知△ABC 是等腰三角形,求出∠B ,ACB ∠的度数即可解决问题.【详解】解:在正五边形ABCDE 中,∠B =∠BCD =15×(5-2)×180=108°,AB =BC , ∴∠BCA =∠BAC =12(180°-108°)=36°,∴∠ACD =∠BCD -∠ACB =108°-36°=72°.故选:A .【点睛】本题主要考查了正多边形与圆,多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.20.C【分析】计算出1个正六边形的面积,利用矩形的面积减去图中未涂色部分的面积即可.【详解】解:如图所示,∵正六边形的中心角为60°,∴每个边长为1的正六边形由六个全等的等边三角形组成,∴1AO OB AB ===,12AD =,223OD AO AD =-= 因此每个正六边形的面积为:1133366122AB OD ⨯⋅=⨯⨯=图中未涂色部分面积等于16个正六边形的面积:33162432⨯=.整个图形是一个矩形,长为12,宽为43,矩形的面积为:1243483⨯=,因此图中阴影部分的面积是:483243243-=,故选C.【点睛】本题考查等边三角形相关计算,利用等边三角形计算出每个正六边形的面积是解题的关键.21.543【分析】连接OB,OG⊥CB于G,证明△COB是等边三角形,继而可得正六边形的外接圆半径R,然后由勾股定理求得边心距,又由S正六边形=6S△OBC求得答案.【详解】解:如下图所示,连接OB,设OG⊥CB于G,∵六边形ABCDEF是⊙O的内接正六边形,∴∠COB=60°,OC=OB,∴△COB是等边三角形,∴OC=OB=6cm,即⊙O的半径R=6cm,∵OC=OB=6,OG⊥CB,∴116322CG BG CB cm ===⨯=,在Rt△COG中,22633r OG OC CG=-=cm),∴61666335432OBCS S==⨯⨯⨯cm2).【点睛】本题考查了正六边形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是掌握正六边形的相关知识.22.36︒【分析】如图所示,连接OC、OD,由正五边形的性质可得COD∠的度数,由圆周角与圆心角的关系:在同圆或等圆中同弧所对的圆周角是圆心角的一半,即可得出答案.【详解】如图所示,连接OC 、OD ,五边形ABCDE 是正五边形, 360725COD , 1362CFD COD ∴∠=∠=︒. 【点睛】本题考查正多边形和圆以及圆周角定理,解题关键是构造弧CD 所对的圆心角.23.B【分析】根据正六边形的性质判定即可.【详解】解:A 、正六边形是轴对称图形但不是中心对称图形,假命题,故此选项不符合题意;B 、正六边形的每一个外角都等于中心角,真命题,故此选项符合题意;C 、正六边形每条对角线都相等,假命题,故此选项不符合题意;D 、正六边形的边心距等于边长的一半,假命题,故此选项不符合题意;故选:B .【点睛】本题考查判定命题真假,熟练掌握正多边形的性质是解题的关键.24.B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OP A =90°,∴OP 22AO AP -3∴A (13,第1次旋转结束时,点A 3-1);第2次旋转结束时,点A 的坐标为(-1,3-;第3次旋转结束时,点A 的坐标为(3-1);第4次旋转结束时,点A 的坐标为(13;∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.25.D【分析】设正六边形的边长为a .想办法求出△PMN ,△PBM 的面积即可.【详解】解:设正六边形的边长为a .则S △PCD 22,S 四边形BCDE 2a 2, 由题意MN 是△PCD 的中位线,∴S △PMN =14S △PCD 2,∴S 四边形MNDC 222,∴S △BMC =S △DNE =1222)a 2, ∵PM =CM ,∴S △PBM =S △BMC a 2,∴S △PMN :S △PBM 2a 2=2:3=23, 故选:D .【点睛】本题考查正多边形与圆,三角形的面积,三角形的中位线定理,等腰三角形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.D【分析】在边长为2的大正六边形中,根据正六边形和圆的性质可求出ON 和半径OD ,进而得出小正六边形MF 的长,再根据正六边形的性质求出半径GF ,即边长FH 即可.【详解】解:如图,连接AD 交PM 于O ,则点O 是圆心,过点O 作ON ⊥DE 于N ,连接MF ,取MF 的中点G ,连接GH ,GQ ,由对称性可知,OM =OP =EN =DN =1,由正六边形的性质可得ON =∴OD=OF ,∴MF =1,由正六边形的性质可知,△GFH、△GHQ、△GQM都是正三角形,∴FH12=MF1312-=,故选:D.【点睛】本题考查正多边形和圆,掌握正六边形和圆的性质是解决问题的关键.27.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360=45 8︒︒∵OE=OH∴∠OEH=∠OHE=12∠DOE=22.5°∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=12(180°-∠CHE)=67.5°∴CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.28.A【分析】先计算出正八边形的内角∠ABC′=135°,再利用旋转的性质得∠ABC=∠A′BC′=90°,∠BA′D′=∠BAD=90°,所以∠ABA′=135°-90°=45°,则延长BA′过点D,然后利用正方形ABCD与正方形A′BC′D′重叠部分的面积=S△BDC-S△DA′E进行计算.【详解】解:正八边形的一个内角为:(82)1801358ABC︒'︒-⨯∠==,∵正方形ABCD绕点B顺时针旋转,使BC与正八边形的另一边BC'重合,90ABC A BC∴∠=∠''=︒,90BA D BAD∠''=∠=︒,1359045ABA∴∠'=︒-︒=︒,延长BA'至点D,DC与A D''相交于点E,如图所示:1AB=,1A B AB∴'==,2BD=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档