线面垂直、面面垂直的性质定理
线面垂直、面面垂直的性质定理
C
例4 , a , a , 判断a与 位置关系
证明:设
l
b
α
a //
a
在α内作直线b⊥l
β l b b 又a a // b
l
线面垂直 性质
bl
面面垂直性质
b a // a
练习
正方体AC1中,O是底面ABCD的中心, 1)求证:B1D⊥面D1AC; 2)求二面角D1-AC-D。 D1
A1
C1
B1 D
C
A
O
B
2.3.3-2.3.4直线与平面、 平面与平面垂直的性质
温故知新 直线与平面垂直定义: 如果直线 l 与平面 内 的任意一条直线都垂直, 我们说直线 l 与平面 互相垂直。
a / /b 符号语言: a
图形语言:
b
a b
O
直线与平面垂直的性质3:
如果两条直线同时垂直于一个平面, 那么这两条直线平行.
a 符号语言: b
图形语言:
a // b
a b
O
简述为:线面垂Leabharlann 线线平行例 1: 如图,已知 l , CA 于点A,CB 于点B, a , a AB, 求证: a // l .
否定结论b’
a b
α
正确推理
o
导出矛盾
肯定结论
直线与平面垂直的性质1:
如果一条直线垂直于一个平面,那么这 条直线垂直于面上任意直线.(定义)
a 符号语言: b
图形语言:
ab
a b
α
简述为:线面垂直 线线垂直
线线垂直、线面垂直、面面垂直的判定和性质
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
线面垂直面面垂直的性质与判定定理课件
学习目标
学习者能够理解面面 垂直的性质与判定定 理的基本概念。
学习者能够通过实际 案例分析,提高解决 实际问题的能力。
学习者能够掌握面面 垂直的性质与判定定 理的应用方法。
02
线面垂直的性质
定义与性质
01
02
03
定义
线面垂直是指一条直线与 某一平面内的任意一条直 线都垂直。
性质1
线面垂直,则该直线与平 面内任意直线都垂直,且 线段与平面所成的角为直 角。
06
实例分析
线面垂直实例
总结词
线面垂直的判定定理
详细描述
若一条直线与平面内两条相交直线都垂直,则该 直线与该平面垂直。
实例
一个长方体,其一条棱与底面垂直,则该棱与底 面所在的平面垂直。
面面垂直实例
总结词
面面垂直的判定定理
详细描述
若两个平面内各有一条相交直线互相垂直,则这两个平面互相垂直 。
实例
证明2
根据判定定理2,如果一个平面$alpha$与另一个平面$beta$的垂线$c$平行,那么可以证明平面$alpha$与平面 $beta$垂直。设过直线$c$作平面$gamma$与$beta$相交于直线$d$,由于$c parallel d$,且$c perp beta$ ,则$d perp beta$。又因为直线$d$在平面$alpha$内,所以平面$alpha perp beta$。
平面与平面垂直的判定定理证明
假设平面β内有一条直线m与平面α垂直,那么可以通过平面的性质证明平面β与平面α 互相垂直。
05
面面垂直的判定定理
判定定理
判定定理1
如果一个平面内的两条相交直线与另一个平面垂直,则这两 个平面垂直。
线面垂直_面面垂直的性质定理
l α 符号表 αβ l β 示:
线线 垂直 线面 垂直
C A
l
B D
面面 垂直
(2)若 PDA 45,求证:MN 面PCD
P E N A M B D
例3 如图,已知 PA 矩形ABCD所在平面,M、 N分别是AB、PC的中点求证: (1)MN CD;
β B பைடு நூலகம் l A a
C
练1. 四边形ABCD中,AD∥BC, AD=AB,∠BCD=450, ∠BAD=900,将△ABD沿BD折起,使平面ABD⊥平面 BCD,构成四面体ABCD. 求证:平面ADC⊥平面ABC A
A
D
D
B
C
B
C
练2.平面四边形ABCD中,AB=BC=CD=a, ∠B=90°,∠DCB=135°,沿对角线AC将 四边形折成直二面角. (1)证明:AB⊥面BCD; (2)求面ABD与面ACD所成的角.
2.已知两个平面垂直,下列命题为真命题的是____ ①一个平面内已知直线必垂直于另一个平面内的任意 一条直线. ②一个平面内的已知直线必垂直于另一个平面的无数 条直线. ③一个平面内的任一条直线必垂直于另一个平面 ④过一个平面 内任意一点作交线的垂线,则此垂线必 垂直于另一个平面.
例1 a
如图已知平面α、β,α⊥β,α∩β = l , 直线a⊥β, α,试判断直线a与平面α的位置关系.
a b
α
直线与平面垂直的性质定理.
垂直于同一个平面的两条直线平行 线面垂直的性质定理: 反证法 已知:a⊥α, b⊥α, 求证:a // b
证明: 假设 a与b不平行. 记直线b和α的交点为o, 则可过o作 b’∥a. ∵a⊥α , ∴b’⊥α. ∴过点o的两条直线 b和 b’都垂直平面α , 这不可能! ∴ a∥ b
线面、面面平行和垂直的八大定理
线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβαα二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβα (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
线面、面面平行和垂直的八大定理
线面、面面平行和垂直的八大定理一、线面平行。
1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平面平行。
符合表示: βββ////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
符号表示:b a b a a a ////⇒⎪⎪⎭⎪⎪⎬⎫=⊂⊄βαβααI 二、面面平行。
1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
符号表示: βα//////⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==N n m M b a a m b n I I 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。
符号表示: d l d l ////⇒⎪⎭⎪⎬⎫==γβγαβαI I (更加实用的性质:一个平面内的任一直线平行另一平面)三、线面垂直。
1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
符号表示: α⊥⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=⊥⊥a M c b b a c a I $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
符号表示:PA a A oA a po oA a ⊥⇒⎪⎪⎭⎪⎪⎬⎫=⊥⊥⊂⊂ααα2、性质定理:垂直同一平面的两条直线互相平行。
(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。
)四、面面垂直。
1、判定定理:经过一个平面的垂线的平面与该平面垂直。
βααβ⊥⇒⊂⊥a a ,2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。
βαβαβα⊥⇒⊥⊂=⋂⊥a b a a b ,,,尽管人智慧有其局限,爱智慧却并不因此就属于徒劳。
智慧果实似乎是否定性:理论上——“我知道我一无所知”;实践上——“我需要我一无所需”。
然而,达到了这个境界,在谦虚和淡泊哲人胸中,智慧痛苦和快乐业已消融为了一种和谐宁静了。
线面垂直面面垂直的判定定理和性质定理
线面垂直面面垂直的判定定理和性质定理
线面垂直面面垂直的判定定理是指两个射线有一定的关系即垂直面是垂直的,其中一个起点在另一个终点上。
简单来说就是两线垂直于一个面,则这两条线的垂直的面也是垂直的。
由线面垂直面面垂直的判定定理可以得出线面垂直面面垂直的性质定理,这是建立在线面垂直面面的判断定理的基础之上的定理。
线面垂直面面垂直的性质定理:若两个射线分别与两个平面成垂直,则它们两个平面所成的平面也是垂直的。
该定理也可以用图形来表示,如下图所示:
从图中可以看出,射线AB和CD都是垂直于两个平面m、n,其中AB与m,CD与n成垂直。
而平面m和n又组成一个新平面mn,根据线面垂直面面垂直的性质定理可以知道AB与mn也是垂直的,同样CD也与mn是垂直的。
线面垂直面面垂直的定理主要应用在几何中,它可以用来证明两个平面的面积计算方法是正确的,也可以用来证明两个球面的夹角是垂直的。
同时,它同样可以应用在工程技术中,例如对于地面上的建筑物,我们可以用它来判断其是否与地面垂直。
由此可以看出,线面垂直面面垂直的判定定理和性质定理对于各类几何计算和工程技术应用具有十分重要的意义。
它能有效地帮助人们判断两面之间是否是垂直的关系,从而实现各种几何计算和工程技术应用。
线线垂直线面垂直面面垂直的判定与性质
线线垂直线面垂直面面垂直的判定与性质Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF 并证明你的结论6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD .求证:AB DE ⊥ 9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PADVDCBA SA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
线面垂直_面面垂直的性质定理
规范认真,步骤严谨,板书整洁;
另一个平面的一条垂线。
B A 思考2:黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?
思考4:一般地, , CD , C D , A B , A B C D ,
AB ,AB CD ,垂足为B,那么直
线AB与平面 的位置关系如何?为
A1ADD1内,且都与交线AD垂直,这两 线面垂直_面面垂直的性质定理
2、熟练掌握定理的运用,完善步骤,总结做题方法. 线面垂直_面面垂直的性质定理 2、熟练掌握定理的运用,完善步骤,总结做题方法.
条直线与平面ABCD垂直吗? 问题1:广场上垂直于地面的几根旗杆,它们之间具有什么位置关系?
垂直于同一个平面的两条
要求:
1、组长负责协调好小组讨论,可先一对一讨论然后组内 共同讨论,做到全员积极参与,高效讨论。 2、讨论时,随时记录,争取在讨论时能将问题解决,未 能解决的组长记录好,准备展示质疑.
高效展示(5分钟)
展示问 题 自测1 自测2 达标1
展示小 组
2组 8组 4组
目标与要求
1. 规范认真,步骤严谨,板书整洁; 2. 不但要展示解题过程,更重要的 是展示规律、数学思想方法,以及 注意的问题、拓展等。
αl β
αl β
α
l βBiblioteka 知识探究(一)平面与平面垂直的性质定理
思考2:黑板所在平面与地面所在平 面垂直,在黑板上是否存在直线与 地面垂直?若存在,怎样画线?
α
β
思考3:如图,长方体ABCD—A B C D 垂直于同一个平面的两条
直线与平面垂直判定定理:
1111
中,平面A ADD 与平面ABCD垂直,其 规范认真,步骤严谨,板书整洁;
线面垂直、面面垂直的性质定理
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直 ?若存在,怎样画线?
α
β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
β
符号语言:
a
l
A α
a
l
a
2020 9:22:46 AM09:22:462020/12/13
• 11、自己要先看得起自己,别人才会看得起你。12/13/
谢 谢 大 家 2020 9:22 AM12/13/2020 9:22 AM20.12.1320.12.13
• 12、这一秒不放弃,下一秒就会有希望。13-Dec-2013 December 202020.12.13
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 9时22 分46秒0 9:22:46 20.12.1 3
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 9时22 分20.12. 1309:2 2December 13, 2020
•
3、越是没有本领的就越加自命不凡。 20.12.1 309:22: 4609:2 2Dec-20 13-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 09:22:4 609:22: 4609:2 2Sunda y, December 13, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1309:2 2:4609: 22:46D ecembe r 13, 2020
2.3.3-2.3.4线面垂直,面面垂直的性质定理-悠
已知正方形ABCD和矩形 和矩形ACEF所在的平面互相垂 练 已知正方形 和矩形 所在的平面互相垂 直,AB= 2 ,AF=1,M是线段 的中点。 , 是线段EF的中点。 是线段 的中点 平面BDE; (1)求证 )求证AM//平面 平面 ; 的大小; (2)求二面角 −DF−B的大小; )求二面角A− − 的大小 上确定一点P,使得PF与 所成的 (3)试在线段 上确定一点 ,使得 与BC所成的 )试在线段AC上确定一点 E 角是60° 角是 °。
注1:① α :
⊥ β ,α I β = l, a ⊂ α , a ⊥ b ⇒ a ⊥ β
证明: 在平面 内过B点作 ⊥ l, 证明: 在平面β内过 点作 内过 点作BE⊥ , 又∵AB⊥ l, ⊥ , ∴∠ABE就是二面角 -l -β的平面角 就是二面角α∴∠ 就是二面角 的平面角 ∴∠ABE=90 ,即AB⊥BE ∴∠ ⊥ 又∵l∩BE=B, , ∴AB⊥β ⊥
如图, 于点A, 于点B, 例 如图,已知 α I β = l, CA ⊥ α于点 ,CB ⊥ β于点 , 求证: a ⊂ α, a ⊥ AB, 求证:a // l .
注意:空间内,垂直于同一条直线的两直线平行的结论不成立 注意:空间内,垂直于同一条直线的两直线平行的结论不成立.
C β B α l A a
。
α
a
A
l
B E
β
面面垂直⇒ 面垂直” ②该定理作用:“面面垂直⇒线面垂直”,是判定线面垂 该定理作用: 面面垂直 直的依据,可以帮助我们快速找到面的垂线——平面内垂 直的依据,可以帮助我们快速找到面的垂线 平面内垂 直于两平面的交线的直线. 直于两平面的交线的直线
例 判断下列命题的真假 1.若α⊥β,那么 内的所有直线都垂直于 内的所有直线都垂直于β. 若 ⊥ ,那么α内的所有直线都垂直于
线面垂直、面面垂直的性质与判定定理
垂直体系
判定
判定
线线垂
线面垂直 面面垂直
直
定义
性质
问题2 ,a ,a ,判 断 a 与 位 置 关 系
α
a
a //
l
问题3: β
思考:已 , 知 ,平 直 a,且 面 线 ,A,B
a//,aA,B 试判断 a与 直 平 线 的 面位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
∵BC 平面SBC
A
C
∴AD⊥BC
∵SA⊥平面ABC,BC 平面ABC
B
∴SA⊥BC
“从已知想性质,从求证
∵SA∩AD=A,
想判定”这是证明几何问
∴BC⊥平面SAB
题的基本思维方法.
∵AB 平面ABC ∴AB⊥BC
课堂小结
1、证题原则 注从已意知想辅性助质,线从求的证作想判用定
: 2、会利用“转化思想”解决垂直问题
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
符号语言:
β
a
l
A α
a
l
a
a l
作用: 面面垂直线面垂直
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
线线垂直、线面垂直、面面垂直的判定和性质
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点(Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB是圆O的直径,C是圆周上一点,PA 平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.5、如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1中点.(1)求证C1D⊥平面A1B;(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF并证明你的结论6、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.B7、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD证明:AB⊥平面VAD8、如图,平行四边形ABCD中,60DAB︒∠=,2,4AB AD==,将CBD∆沿BD折起到EBD∆的位置,使平面EDB⊥平面ABD.求证:AB DE⊥9、如图,在四棱锥ABCDP-中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PADVD CBA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22:26:06
自主探究:
探究3:校庆,学校决定重建升旗台
假如你是工程师,
你有什么办法 保证各旗杆 相互平行?
22:26:06
自主探究:
探究4:请拿出一张长方形的纸 ①折成两个平面 a ^ ②画出它们的交线 l ③ 在平面a内作AB^ l 观察AB与平面 β 的位置关系.
b
为什么?
a ^ b , a b =l AB Ì a , AB ⊥l
创设情境:
问题1:如果直线 a , b 都垂直于同一条直线 l,
那么直线 a , b 的位置关系如何?
问题2:如果直线 a , b 都垂直于同一个平面, 那么直线 a , b 的位置关系如何?
22:26:06
创设情境:
特殊模型:
棱AA' , BB' , CC ',DD' 所在直线都垂直于
平面ABCD,它们之
合作探究:
解:
a
b
a^ b 设a b =l , b ⊂α ,作b ^ l
面面垂直 β
l
作交线的垂线
线面垂直 线线平行 线面平行
∴ b⊥ β
又α ⊥β
Þ a / /b
又a 颂 α, b a
\ a / /a
22:26:06
面 面 垂 直 成 直 角 ,
线 面 垂 直 记 心 间
.
当堂训练:
1.判断下列命题正误 × ①垂直于同一条直线的两条直线互相平行;
线线平行 线面平行
22:26:06
巩固作业: ①课本P73 习题2.3 A组 1、3 ②设直线a,b分别在正方体ABCD-A1B1C1D1
中两个不同的平面内,欲使a∥b , a ,b
应满足什么条件? ③ 平面α ⊥ 平面β,点P在平面α内,
过点P作平面β的垂线a, 直线a与平面α具有什么位置关系?
b ^ g, 设b g =n, 在平面g 作b ^ n, 轣 b
b
轣b l ② 由 ① ② 又a与b相交 轣 l g
22:26:06
分析提示:
l^ g
线面垂直
l^? l^?
线线垂直
a
m
a
l
b
b
b
n a g
a ^ g ,b ^ g
面面垂直
平面g
在一个平面内,
作交线的垂直
平面a 和b
22:26:06
小结:
22:26:06
AB ⊥ β
合作探究:
β
E
a ^ b , a b =l AB Ì a , AB ⊥l AB ⊥ β
A
探究: 在面β上
α
AB ⊥ β
l
B
线面垂直? 线线垂直
AB ⊥ l AB ⊥?
作BE ⊥ l 又AB ⊥l
a^ b
22:26:06
则∠ABE= 90
0
合作探究:
β
E
AB ⊥BE
又 AB A
已知面面垂直,怎么做?
22:26:06
分析提示:
l
b
g
l^ g
线面垂直
l^? l^?
线线垂直
a
a ^ g ,b ^ g
面面垂直
在一个平面内,
作交线的垂直
22:26:06
思路:
l^ g
证明:
l^? l^?
l
b
b
a
m
n a g
a ^ g, 设a g =m, 在平面g 作a ^ m, 轣 a a
轣a l ①
⊥l
α
AB ⊥ β
l
B
BE l = B
AB ⊥ β
线面垂直? 线线垂直
AB ⊥ l AB ⊥?
a^ b
22:26:06
β
自主探究:
α
l B A
探究5:如何记忆面面垂直的性质定理?
a^ b
AB Ì a
,a ,
b =l
AB ⊥l
AB ⊥ β
线面垂直
面面垂直 作交线的垂线
面面垂直
22:26:06
线面垂直
AB ⊥l
α
记忆:
l
B
AB ⊥ β
线面垂直
面面垂直
22:26:06
小结:
(2)一个证明方法:
反证法:
①否定结论 ②从假设出发, 推理,得出矛盾 ③结论成立
22:26:06
小结:
(3)一个转化思想: 线 线 位 置 关 系 线 面 位 置 关 系 面 面 位 置 关 系
面面垂直 作交线的垂线
线面垂直
②垂直于同一个平面的两条直线互相平行. √
③平行于同一个平面的两条直线互相平行; ×
22:26:06
当堂训练:
2.如图,平面 a , b , g 满足 a
^ g ,b ^ g ,
l
a
b =l , 求证: l ^ g . l ^ g.
分析提示:
b
g
a
要证线面垂直,怎么办?
a ^ g ,b ^ g ,
22:26:06
22:26:06
2, 1, 1 工程
两 个 性 质 定 理 一 个 证 明 方 法
一 个 转 化 思 想
22:26:06
①线面垂直性质定理:
符号语言 图形语言
a ^ a,b ^ a
a
b
a / /b
记忆:
线面垂直
22:26:06
线线平行
②面面垂直性质定理: 图形语言 符号语言
β
E
a^ b
AB Ì a
A
,a ,
b =l
合作探究:
如图,已知平面a ,b ,a ^ b ,直线a 满足 a ^ b ,a a , 试判断直线a与平面a 的位置关系.
解:a
^ b 设a b =l , b Ì a , 作b ^ l
α
Байду номын сангаас
b
β
a
l
a \ a / /a
β ∴ b⊥ Þ a / /b 又a 颂 α, b 又α ⊥β
22:26:06
α
a
b
a / /b
α
22:26:06
证明: 假设a与b 不平行.
a
b
b
'
b a =O
过o作 b’∥a
α
o
又a ^ a ' \ b^a 又b ^ a
显然不可能.
22:26:06
经过同一点O有两条直线
b, b 与面 a 垂直
'
∴ a // b
证明: 假设a与b 不平行.
反证法:
①否定结论 ②从假设出发, 推理
间具有什么位置关
系?
22:26:06
创设情境
问题2:如果直线 a , b 都垂直于同一个平面α, 那么直线 a , b 的位置关系如何?
数学实验,验证猜想
a
b
α
22:26:06
合作探究:
如果直线 a , b 都垂直于同一个平面 , 探究1: 那么直线 a / / b
符号语言 图形语言
a
a ^ a,b ^ a
b a =O
经过同一点O有两条直线 b, b 与面 a 垂直
'
a 过o 作 又a ^ a ' \ b^a 又b ^ a
b’∥
22:26:06
得出矛盾
显然不可能. ∴
a // b
③结论成立
自主探究:
探究2:如何记忆直线与平面垂直的性质定理?
a ^ a,b ^ a
a
b 线面垂直
a / /b
线线平行
两线垂直同一面,相互平行共伸展