高三数学复习概率2
2018年 高三数学概率复习(2)古典概率
2018年 高三数学概率复习(2)古典概型【知识点】 若是从考查的内容来分析,集中考查一些常见的概率模型,如摸球模型、分配模型、取数模型,从题的难度来看,一般是中低档题,由于随机事件的概率与实际生活密切相关,在高考中自然受到重视. 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P(A)=mn .古典概型的概率公式P(A)=A 包含的基本事件的个数基本事件的总数.例1 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?【解析】 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法. 又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个.故一次摸球摸到的白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型. 【答案】 (1)11种,是古典概型 (2)3个,不是古典概型探究1 古典概型需满足两个条件:①对于每次随机试验来说,只可能出现有限个不同的试验结果;②对于所有不同的试验结果而言,它们出现的可能性是相等的.思考题1 下列问题中是古典概型的是( ) A .种下一粒杨树种子,求其能长成大树的概率 B .掷一颗质地不均匀的骰子,求出现1点的概率 C .在区间[1,4]上任取一数,求这个数大于1.5的概率 D .同时掷两颗骰子,求向上的点数之和是5的概率【解析】 A ,B 两项中的基本事件的发生不是等可能的;C 项中基本事件的个数是无限多个;D 项中基本事件的发生是等可能的,且是有限个.【答案】 D例2 (1)将一颗骰子先后抛掷2次,观察向上的点数,求: ①两数之和为5的概率;②两数中至少有一个奇数的概率.【解析】 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件. ①记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P(A)=436=19.∴两数之和为5的概率为19.②设“两数中至少有一个奇数”为事件B ,则事件B 中含有27个基本事件.所以P(B)=2736=34. ∴两数中至少有一个奇数的概率为34.(2)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.①若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;②若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【解析】 ①甲校两男教师分别用A ,B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F)共9种.从中选出两名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F)共4种,选出的两名教师性别相同的概率为P =49.②从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F)共15种,从中选出两名教师来自同一学校的结果有:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F)共6种,选出的两名教师来自同一学校的概率为P =615=25.探究2 求古典概型的概率可分三步: (1)算出基本事件的总个数n.(2)求出事件A 包含的基本事件个数m. (3)代入公式P(A)=mn,求出P(A).思考题2 (1)(2015·广东文)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1【解析】 设5件产品中合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,则从5件产品中任取2件的所有基本事件为A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2,共10个,其中恰有一件次品的所有基本事件为:A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,共6个.故所求概率为P =610=0.6.【答案】 B (2)(2014·广东理)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.【解析】 利用排列组合知识求出基本事件的总数和事件“七个数的中位数是6”包含的基本事件的个数,再利用古典概型的概率公式求解.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件共有C 107=120(个),记事件“七个数的中位数为6”为事件A ,则事件A 包含的基本事件的个数为C 63C 33=20,故所求概率P(A)=20120=16.例3 (2013·辽宁卷改编)甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少 ? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?【思路】 这是一个古典概型的概率问题,关键是计算出公式中的m ,n ,然后直接应用公式P(A)=事件A 包含的基本事件数试验基本事件总数=m n 进行求解.【解析】 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24.∴P(A)=m n =2490=415.(2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 包含的基本事件数为4×3=12.∴由古典概型概率公式,得P(B)=1290=215.由对立事件的性质可得P(C)=1-P(B)=1-215=1315. 【答案】 (1)415 (2)1315探究3 含有“至多”、“至少”等类型的概率问题,从正面求解比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质P(A)=1-P(A -)进一步求解.思考题3 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意抽取3张,每张卡片被抽出的可能性相等,求:(1)抽出的3张卡片上最大的数字是4的概率; (2)抽出的3张中有2张卡片上的数字是3的概率; (3)抽出的3张卡片上的数字互不相同的概率.【分析】 本题是等可能抽取,且与组合有关,可用等可能性事件的概率公式求解. 【解析】 (1)“抽出的3张卡片上最大的数字是4”的事件记为A ,由题意P(A)=C 21C 62+C 22C 61C 83=914.(2)“抽出的3张中有2张卡片上的数字是3”的事件记为B ,则P(B)=C 22C 61C 83=328.(3)“抽出的3张卡片数字互不相同”的事件记为C ,则P(C)=C 43C 21C 21C 21C 83=47.【答案】 (1)914 (2)328 (3)47例4 有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:(1)其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表.的评委中分别任选1人,求这2人都支持1号歌手的概率.【解析】 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:(2)记从A 组抽到的3个评委为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手,从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果为由以上树状图知所有结果共有18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29.【答案】 (1)3,9,9,3 (2)29探究4 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决.思考题4 (2015·山东文)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3,现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【解析】 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2}, {A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1}, {A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3}, 共15个.3.(2016·武汉调研)同时抛掷两颗均匀的骰子,则向上的点数之差的绝对值为4的概率为( )A.118B.112C.19D.16答案 C解析 同时抛掷两颗骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4种,故P(A)=436=19. 4.(2016·合肥二模)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.712 答案 A解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两个在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1 12种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2 4种情况,则发生概率为P =412=13,故选A.【自主训练】1.(2015·新课标全国Ⅰ文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310 B.15 C.110 D.120答案 C解析 基本事件的总数为10,其中能构成一组勾股数的只有{3,4,5},∴所求概率为110,选C.2.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B.14 C.34 D .0 答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.3.从1,2,…,9这9个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59B.49C.1121D.1021 答案 C解析 基本事件总数为C 93,设抽取3个数,和为偶数为事件A ,则A 事件包括两类:抽取3个数全是偶数,或抽取3个数中2个奇数1个偶数,前者有C 43种,后者有C 41C 52种,所以A 中基本事件数为C 43+C 41C 52,所以符合要求的概率为C 43+C 41C 52C 93=1121.故选C.4.(2015·广东理)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.521 B.1021 C.1121 D .1答案 B解析 由题意得基本事件的总数为C 152,恰有1个白球与1个红球的基本事件个数为C 101C 51,所以所求概率P =C 101C 51C 152=1021.5.(2016·衡水调研卷)一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,若他记得密码的最后一位是偶数,则他不超过2次就按对的概率是( ) A.45 B.35 C.25 D.15答案 C解析 只按一次就按对的概率是15.按两次就按对的概率是4×15×4=15,所以不超过2次就按对的概率是15+15=25,选C.6.(2016·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.若他们依次走出教室,则第2位走出的是男同学的概率是( ) A.12 B.13 C.14 D.15 答案 A解析 已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.7.(2016·甘肃模拟)投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +ni)2为纯虚数的概率为( ) A.13 B.14 C.16 D.112答案 C解析 投掷两颗骰子共有36种结果,因为(m +ni)2=m 2-n 2+2mni ,所以要使复数(m +ni)2为纯虚数,则有m 2-n 2=0,即m =n ,共有6种结果,所以复数为纯虚数的概率为636=16,故选C. 8.(2016·广西南宁测试)某高校要从6名短跑运动员中选出4人参加全省大学生运动会中的4×100 m 接力赛,其中甲不能跑第一棒,乙不能跑第四棒,则甲跑第二棒的概率为( ) A.415 B.215 C.421 D.15 答案 C解析 从6名短跑运动员中任选4人参加4×100 m 接力赛,其中甲不跑第一棒且乙不跑第四棒的方法共有A 64-2A 53+A 42=252种,在这252种方法中甲跑第二棒的方法共有C 41·A 42=48种,因此所求的概率为48252=421,故选C.9.(2016·云南统考)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.59 答案 B解析 分析可知,要满足题意,则抽取的除5以外的四个数字中,有两个比5小,有两个比5大,故所求概率P =C 42·C 32C 85=928.10.(2016·惠州调研)设A ,B 两名学生均从两位数学教师和两位英语教师中选择一位教师给自己来补课,若A ,B 不选同一位教师,则学生A 选择数学教师,学生B 选择英语教师的概率为( )A.13B.512C.12D.712答案 A 解析 设两位数学教师用1,2表示,两位英语教师用3,4表示,不妨让A 先选,B 后选(不重复),则他们所有的选择结果如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情况,其中学生A 选择数学教师,学生B 选择英语教师(数学在前,英语在后)的结果有(1,3),(1,4),(2,3),(2,4),共4种情况,所以所求概率P =13. 11.从集合{a ,b ,c ,d ,e}的所有子集中任取一个,则该子集恰是集合{a ,b ,c}的子集的概率是________.答案 1412.(2014·新课标全国Ⅱ文)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案 13解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13. 13.盒中有3张分别标有1,2,3的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为________.答案 59解析 对立事件为:两次抽的卡片号码中都为奇数,共有2×2=4种抽法.而有放回的两次抽了卡片共有3×3=9种基本事件,因此所求事件概率为1-49=59. 14.如图所示是某市2016年2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率.答案 (1)16 (2)23解析 (1)在2月1日至今2月12日这12天中,只有5日,8日共2天的空气质量优良,所以此人到达当时空气质量优良的概率P =212=16. (2)根据题意,事件“此人在该市停留期间至多有1天空气重度污染”,即“此人到达该市停留期间0天空气重度污染或仅有1天空气重度污染”.“此人在该市停留期间0天空气重度污染”等价于“此人到达该市的日期是4日或8日或9日”,其概率为312=14. “此人在该市停留期间仅有1天空气重度污染”等价于“此人到达该市的日期是3日或5日或6日或7日或10日”,其概率为512. 所以此人停留期间至多有1天空气重度污染的概率为P =14+512=23. 15.(2015·天津文)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1, A 2, A 3, A 4, A 5, A 6, 现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.答案 (1)3,1,2 (2)①略 ②35解析 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)=915=3 5.16.(2015·安徽文)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100).(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.答案(1)0.006(2)0.4(3)110解析(1)因为(0.004+a+0.018+0.022+0.022+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以估计该企业的职工对该部门评分不低于80的概率为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B 2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.1.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( )A.45B.35C.25D.15答案 D解析 基本事件的个数有5×3=15,其中满足b>a 的有3种,所以b>a 的概率为315=15. 2.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15 答案 D解析 在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE),共有3种,∴所求概率为315=15.3.甲乙两人一起去某地旅游,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16答案 D解析 甲乙两人任选4个景点共有方法A 64A 64种,而最后一小时他们在同一个景点的情况有C 61A 53A 53种,所求概率为P =C 61A 53A 53A 64A 64=16,故选D.4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49B.13C.29D.19答案 D解析 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 51C 41=20个;若个位数为偶数时,这样的两位数共有C 51C 51=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 51×1=5个.于是,所求概率为545=19. 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,若每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34 答案 A解析 由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种.又两位同学参加同一个兴趣小组的种数为3,故概率为39=13. 6.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.364 答案 D解析 基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364. 7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( ) A.34B.56C.16D.13 答案 B解析 该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是56. 8.(2016·合肥调研)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将这五种不同属性的物质任意排成一排,设事件A 表示“排列中属性相克的两种物质均不相邻”,则事件A 发生的概率为( ) A.16B.112C.512D.124答案 B解析 由题意知,五种不同属性的物质任意排成一列有A 55=120种排法,事件A 表示“排列中属性相克的两种物质均不相邻”可看作五个位置排列五个元素,第一位置有五种排列方法,不妨假设是金,则第二步只能从土与水两者中选一种排放,有两种选择,不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数为5×2×1×1×1=10,所以事件A 发生的概率为P(A)=10120=112,故选B. 9.(2016·洛阳统考)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )A.115B.15C.14D.12 答案 B解析 由题意分析可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 63·A 33=15. 10.(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 从正整数m ,n(m ≤7,n ≤9)中任取两数的所有可能结果有C 71C 91=63个,其中m ,n 都取奇数的结果有C 41C 51=20个,故所求概率为2063. 11.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.答案 35解析 从5个小球中任选两个小球的方法数为C 52=10,其中不同色的方法数为C 31C 21=6,所以所求概率为P =610=35. 12.高三某班有两个数学课外兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生.现在班主任老师要从第一组选2人,从第二组选出1人,请他们在班会上和全班同学分享学习心得.(1)求选出的3人均是男生的概率;(2)求选出的3人中有男生也有女生的概率.解析 (1)记第一组的4人分别为A 1,A 2,a 1,a 2;第二组的5人分别为B 1,B 2,B 3,b 1,b 2.设“从第一组选出2人,从第二组选出1人”组成的基本事件空间为Ω,则Ω={(A 1,A 2,B 1),(A 1,A 2,B 2),(A 1,A 2,B 3),(A 1,A 2,b 1),(A 1,A 2,b 2),(A 1,a 2,B 1),(A 1,a 2,B 2),(A 1,a 2,B 3),(A 1,a 1,b 1),(A 1,a 2,b 2),(A 1,a 2,B 1),(A 1,a 2,B 2),(A 1,a 2,B 3),(A 1,a 2,b 1),(A 1,a 2,b 2),(A 2,a 1,B 1),(A 2,a 1,B 2),(A 2,a 1,B 3),(A 2,a 1,b 1),(A 2,a 1,b 2),(A 2,a 2,B 1),(A 2,a 2,B 2),(A 2,a 2,B 3),(A 2,a 2,b 1),(A 2,a 2,b 2),(a 1,a 2,B 1),(a 1,a 2,B 2),(a 1,a 2,B 3),(a 1,a 2,b 1),(a 1,a 2,b 2)},共有30个. 设“选出的3人均是男生”为事件A ,则事件A 含有3个基本事件.∴P(A)=330=110,∴选出的3人均是男生的概率为110. (2)设“选出的3个人有男生也有女生”为事件B ,则事件B 含有25个基本事件,∴P(B)=2530=56,∴选出的3人中有男生也有女生的概率为56. 13.甲、乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回地摸两次球,即第一次。
高考数学模拟复习试卷试题模拟卷第01节 随机事件的概率 2
高考模拟复习试卷试题模拟卷第01节 随机事件的概率A 基础巩固训练1.(·江西南昌检测)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A .“至少有1个白球”和“都是红球”B .“至少有1个白球”和“至多有1个红球”C .“恰有1个白球”和“恰有2个白球”D .“至多有1个白球”和“都是红球”[答案]C[解析] 该试验有三种结果:“恰有1个白球”“恰有2个白球”“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件且不是对立事件.2.(文)(·滨州模拟)在区间[0,1]上任取两个数a ,b ,则函数f(x)=x2+ax +b2无零点的概率为( )A .12B .23C .34D .14[答案] C3. 甲、乙两人喊拳,每人可以用手出0,5,10三个数字,每人则可喊0,5,10,15,20五个数字,当两人所出数字之和等于某人所喊数字时喊该数字者获胜,若甲喊10,乙喊15时,则 ()A .甲胜的概率大B .乙胜的概率大C .甲、乙胜的概率一样大D .不能确定谁获胜的概率大【答案】A4.(·赤峰模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78【答案】D【解析】至少一次正面朝上的对立事件的概率为18,故P =1-18=78. 5.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是()A .A ∪B 与C 是互斥事件,也是对立事件 B .B ∪C 与D 是互斥事件,也是对立事件C .A ∪C 与B ∪D 是互斥事件,但不是对立事件 D .A 与B ∪C ∪D 是互斥事件,也是对立事件【答案】DB 能力提升训练1.(·济南调研)现釆用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出 0到9之间取整数值的随机数,指定0、1表示没有击中目标,2、3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )A . 0.852B . 0.8192C .0.8D . 0.75[答案] D[解析] 随机模拟产生的20组随机数,表示至少击中3次的组数为15,所以概率为P =1520=0.75. 2.从1,2,3,4,5中随机抽三个不同的数,则其和为奇数的概率为( )A.15B.25C.35D.45【答案】B3. (·浙江台州中学统练)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a 、b ∈{0,1,2,3,4,5},若|a -b|≤1,则称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为( )A .29B .718C .49D .19[答案] C4. (威海市高三3月模拟考试)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量(,)m a b =与向量(1,1)n =-垂直的概率为(A )16(B )13(C )14(D )12【答案】A【解析】由题意可知(,)m a b =有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5).共12个.m n ⊥即0,m n ⋅=所以1(1)0,a b ⨯+⨯-=即a b =,有(3,3),(5,5)共2个满足条件.故所求概率为16. 5. 从一个三棱柱ABC -A1B1C1的六个顶点中任取四点,这四点不共面的概率是( ) A .15 B .25C .35D .45 [答案] D[解析] 从6个顶点中选4个,共有15种选法,其中共面的情况有三个侧面,∴概率P =15-315=45.C 思维扩展训练1.(·安庆一模)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设两条直线l1:ax +by =2与l2:x +2y =2平行的概率为P1,相交的概率为P2,则点P(36P1,36P2)与圆C :x2+y2=1 098的位置关系是()A .点P 在圆C 上B .点P 在圆C 外 C .点P 在圆C 内D .不能确定【答案】C2. 设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P(a ,b),记“点P(a ,b)落在直线x +y =n 上”为事件Cn(2≤n ≤5,n ∈N),若事件Cn 的概率最大,则n 的所有可能值为()A .3B .4C .2和5D .3和4【答案】D【解析】P(a ,b)的个数为6个.落在直线x +y =2上的概率P(C2)=16,若在直线x +y =3上的概率P(C3)=26,落在直线x +y =4上的概率P(C4)=26,落在直线x +y =5上的概率P(C5)=16. 3. 某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________. 【答案】3513154. 已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为__________,________.【答案】0.970.03【解析】断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.5. 【雅安中学高三下期3月月考数学】(本小题满分12分)某产品的三个质量指标分别为x, y, z, 用综合指标S = x + y + z 评价该产品的等级. 若S≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下: 产品编号A1 A2 A3 A4 A5 质量指标(x, y, z)(1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A6 A7 A8 A9 A10 质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅰ) (Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(1) 用产品编号列出所有可能的结果;(2) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率高考模拟复习试卷试题模拟卷第03节 二项式定理一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【“五个一名校联盟” 高三教学质量监测(一)5】在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项2.【宝鸡市高三数学质量检测(一)】若)21(3x x n -的展开式中第四项为常数项,则=n ( ) A . 4 B. 5 C. 6 D. 73.【改编题】6(1)(1)x x +-展开式中3x 项系数为( )A.14 B .15 C .16 D .174.【金丽衢十二校高三第二次联考】二项式2111()x x -的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六和第七项 5.【江西赣州市六校高三上学期期末联考】已知8a x x ⎛⎫- ⎪⎝⎭展开式中常数项为5670,其中a 是常数,则展开式中各项系数的和是( )A .28B .48C .28或48D .1或286.【高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .77.【高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30(D )608.【高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为()A.122 B .112 C .102 D .92 9.【咸阳市高考模拟考试试题(三)】若n x x )2(3+展开式中存在常数项,则n 的值可以是( )A .8B .9C .10D .1210.【潍坊市高三3月模拟考试】设0(sin cos )k x x dx π=-⎰,若8280128(1)...kx a a x a x a x -=++++,则1238...a a a a ++++=( )(A) 1 (B)0 (C)l (D)256 11.【浙江高考第5题】在46)1()1(y x ++的展开式中,记nm y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 21012.【原创题】210(1)x x -+展开式中3x 项的系数为( ).A.210 B .120 C .90 D .210二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【大纲高考第13题】8x y y x ⎛⎫- ⎪ ⎪⎝⎭的展开式中22x y 的系数为. 14.【改编题】对任意实数x ,有423401234(1)(3)(3)(3)(3)x a a x a x a x a a -=+-+-+-+-,则3a 的值为.15.【高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).16.【高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.三、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知在332n x x ⎛- ⎪⎭的展开式中,第6项为常数项. (1)求n ;(2)求含x2的项的系数;(3)求展开式中所有的有理项.18.已知223)n x x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992.求在212nx x ⎛⎫- ⎪⎝⎭的展开式中, (1)二项式系数最大的项;(2)系数的绝对值最大的项.19.设(1-2x)2 013=a0+a1x +a2x2+…+a2 013x2 013 (x ∈R).(1)求a0+a1+a2+…+a2 013的值;(2)求a1+a3+a5+…+a2 013的值;(3)求|a0|+|a1|+|a2|+…+|a2 013|的值.20.【第二次大联考数学江苏版】对于给定的函数()f x ,定义()n f x 如下:()0()C (1)n k k n k n n k k f x f x x n -==-∑,其中2n n ∈*N ≥,. (1)当()1f x =时,求证:()1n f x =;(2)当()f x x =时,比较2014(2013)f 与2013(2014)f 的大小;(3)当2()f x x =时,求()n f x 的不为0的零点.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
高三数学选修2-3(B版)_专题提升:概率与统计
概率与统计高考对本内容的考查主要有:(1)抽样方法的选择、与样本容量相关的计算,尤其是分层抽样中的相关计算,A 级要求.(2)图表中的直方图、茎叶图都可以作为考查点,尤其是直方图更是考查的热点,A级要求.(3)特征数中的方差、标准差计算都是考查的热点,B级要求.(4)随机事件的概率计算,通常以古典概型、几何概型的形式出现,B级要求.重难点:1.概率问题(1)求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件A的对立事件A 的概率,然后利用P(A)=1-P(A)可得解;(2)用列举法把古典概型试验的基本事件一一列出来,然后再求出事件A中的基本事件,利用公式P(A)=mn求出事件A的概率,这是一个形象、直观的好办法,但列举时必须按照某一顺序做到不重复,不遗漏;(3)求几何概型的概率,最关键的一步是求事件A所包含的基本事件所占据区域的测度,这里需要解析几何的知识,而最困难的地方是找出基本事件的约束条件.2.统计问题(1)统计主要是对数据的处理,为了保证统计的客观和公正,抽样是统计的必要和重要环节,抽样的方法有三:简单随机抽样、系统抽样和分层抽样;(2)用样本频率分布来估计总体分布一节的重点是:频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是:频率分布表和频率分布直方图的理解及应用;(3)用茎叶图优点是原有信息不会抹掉,能够展开数据发布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了;(4)两个变量的相关关系中,主要能作出散点图,了解最小二乘法的思想,能根据给出的线性或归方程系数或公式建立线性回归方程.考点1、抽样方法【例1】某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本. 已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.【方法技巧】分层抽样适用于总体由差异明显的几部分组成的情况,按各部分在总体中所占的比实施抽样,据“每层样本数量与每层个体数量的比与所有样本数量与总体容量的比相等”列式计算;在实际中这种有差异的抽样比其他两类抽样要多的多,所以分层抽样有较大的应用空间,应引起我们的高度重视.【变式探究】某校高三年级学生年龄分布在17岁、18岁、19岁的人数分别为500、400、200,现通过分层抽样从上述学生中抽取一个样本容量为m的样本,已知每位学生被抽到的概率都为0.2,则m=________.【解析】(500+400+200)×0.2=220.【答案】220考点2、用样本估计总体【例2】(2013·重庆卷改编)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.【解析】由茎叶图及已知得x=5,又因9+15+10+y+18+245=16.8,所以y=8.【答案】5,8【方法技巧】由于数据过大,直接计算会引起计算错误,故要学会像解析中介绍的两种方法那样尽量简化计算;同时要理解茎叶图的特点,能够从茎叶图获取原始数据.【变式探究】某校共有400名学生参加了一次数学竞赛,竞赛成绩的频率分布直方图如图所示(成绩分组为[0,10),[10,20),…,[80,90),[90,100]).则在本次竞赛中,得分不低于80分以上的人数为______ .【例3】袋中有红、黄、白3种颜色的球各1只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.解(1)记“3只全是红球”为事件A.从袋中有放回地抽取3次,每次取1只,共会出现3×3×3=27种等可能的结果,其中3只全是红球的结果只有一种,故事件A的概率为P(A)=1 27.(2)“3只颜色全相同”只可能是这样三种情况:“3只全是红球”(事件A);“3只全是黄球”(设为事件B);“3只全是白球”(设为事件C).故“3只颜色全相同”这个事件为A+B+C,由于事件A、B、C不可能同时发生,因此它们是互斥事件.再由红、黄、白球个数一样,故不难得P(B)=P(C)=P(A)=127,所以P(A+B+C)=P(A)+P(B)+P(C)=1 9.(3) 3只颜色不全相同的情况较多,如是两只球同色而另一只球不同色,可以两只同红色或同黄色或同白色等等;或三只球颜色全不相同等.考虑起来比较麻烦,现在记“3只颜色不全相同”为事件D,则事件D为“3只颜色全相同”,显然事件D与D是对立事件.∴P(D)=1-P(D)=1-19=89.【方法技巧】在求某些稍复杂的事件的概率时,通常有两种方法:一是将所求事件的概率化成一些彼此互斥事件的概率的和;二是先去求此事件的对立事件的概率.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解;对于“至少”,“至多”等问题往往用这种方法求解.【训练3】(2013·陕西卷改编)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是________.考点预测:1.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为________.2.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为________.3.某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为________.【解析】分层抽样应按各层所占的比例从总体中抽取.4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为________.5.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为________.6.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.【解析】平均数x =14+17+18+18+20+216=18,故方差s 2=16[(-4)2+(-1)2+02+02+22+32)]=5.【答案】58.袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是________.【解析】总的取法是4组,能构成等差数列的有{2,3,4},{2,4,6} 2组;故所求概率为P =24=12.【答案】129.设f (x )=x 2-2x -3(x ∈R ),则在区间[-π,π]上随机取一个数x ,使f (x )<0的概率为________.10.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.12.从一副没有大小王的52张扑克牌中随机抽取1张,事件A 为“抽得红桃8”,事件B 为“抽得为黑桃”,则事件“A +B ”的概率值是________(结果用最简分数表示).13.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【解析】由题意得到的P (m ,n )有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共计6个;在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.【答案】13 14.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则x y 为整数的概率是________.。
2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2
第十一章概率第二讲古典概型与几何概型1。
[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。
张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。
50%C。
60%D。
90%2。
[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。
12B.13C。
14D.233。
[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。
35D。
7104。
[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。
35D 。
145。
[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。
58C 。
38D 。
126。
[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。
[数学]高三文科数学概率复习课
1. “一个骰子掷一次得到6的概率是
1 6
,这说明一个骰子掷6次会出现一
1
次6”,这种说法对吗?请说明你的理由. 解析:这种说法是不对的.虽然每次掷骰子出现6点的概率是 6,但连续
掷6次骰子不一定会1,2,3,4,5,6各出现一次,可能出现某个数的次数多
一些,其他的数少一些,这正好体现了随机事件发生的随机性.但随着试 验次数的增加,出现1,2,3,4,5,6各数的频率大约相等,即都为试验次数 的
1
女孩 P
2
2002
2003 2004 2005 2006 5年总计
0.516
0.518 0.515 0.518 0.516 0.517
0.484
0.482 0.485 0.482 0.484 0.483
2. 某批乒乓球产品质量检查结果如下表所示: 抽取球数n 50 100 200 500 1000 2000
题型二
随机事件的概率问题
例2某地区近5年出生婴儿的调查表如下:
出生数 出生年份 2002 男孩 m
1
共计n=
2
出生频率 男孩 P
1
女孩 m
m m
1
2
女孩 P
2
52807
49473
102280
2003
2004 2005 2006 5年总计
51365
49698 49654 48243 251767
47733
概率复习课
第三章
第1课时
基础梳理
1. 事件 (1)必然事件:
概率
随机事件的概率
在条件S下, 一定会发生的事件,叫做相对于条件S的必然事件. (2) 不可能事件: 在条件S下, 一定不会发生 的事件,叫做相对于条件S的不可能事件. (3) 确定事件: 必然事件与不可能事件 统称为相对于条件S的确定事件. (4) 随机事件 在条件S下, 可能发生也可能不发生 的事件,叫做相对于条件S的随机事件.
高考数学二轮复习 第一部分 保分专题四 概率与统计 第2讲 概率及应用课件 文
8分
包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2},{A1,
B3},共 2 个,则所求事件的概率为 P=29.
12 分
[规范解释] 列举事件空间. 找出所研究的事件,求概率. 列举总的事件. 找出所研究事件,求概率.
求古典概型概率的方法 正确列举出基本事件的总数和待求事件包含的基本事件数. (1)对于较复杂的题目,列出事件数时要正确分类,分类时应不 重不漏. (2)当直接求解有困难时,可考虑求出所求事件的对立事件的概 率.
其中数学成绩优秀的人数比及格的人数少的有: (10,21),(11,20),(12,19),(13,18),(14,17),(15,16)共 6 组. ∴数学成绩为优秀的人数比及格的人数少的概率为164=37.
考点考查题型 已知两个变量的某些数据,求频率、求概率
考点应用方法 利用频率求概率,利用古典概型求概率
个适花合坛题中意,的则只红有色2和种紫,色其的概花率不P在=同23. 一花坛的概率是( C )
A.13
B.12
2
5
C.3
D.6
技法:无限元素用几何.一个变量为长度.二个变量是平 行人在红灯亮起的 25 秒内到达该路口,即满足至少需要等待 面.变量之比为概率. 15 秒才出现绿灯,根据几何概型的概率公式知所求事件的概 (1)(2016·高考全国卷Ⅱ改编)某路口人行横道的信号灯为红灯 和率绿P灯=交2450替=出58. 现,红灯持续时间为 40 秒.若一名行人来到该
解析:(1)当 X=8 时,由茎叶图可知,乙组四名同学的植树棵 数分别是 8,8,9,10,故 x =8+8+49+10=345,s2=14× 8-3452×2+9-3452+10-3452=1116.
人教A版高考数学(文)二轮复习 专题 概率与统计课件第2讲
[微题型 3] 茎叶图与古典概型交汇 【例 2-3】 某中学高三年级从甲、乙两个班级各选出 7 名学生
参加数学竞赛,他们取得的成绩(满分 100 分)的茎叶图如图所 示,其中甲班学生成绩的平均分是 85,乙班学生成绩的中位 数是 83.
(1)求 x 和 y 的值; (2)计算甲班 7 位学生成绩的方差 s2;
(3)从成绩在 90 分以上的学生中随机抽取 2 名学生,求甲班至 少有 1 名学生的概率.
解 (1) 因 为 甲 班 学 生 成 绩 的 平 均 分 是 85 , 所 以 92+96+80+807+x+85+79+78=85.所以 x=5. 因为乙班学生成绩的中位数是 83, 所以 y=3.
(2)甲班 7 位学生成绩的方差为 s2=17[(79-85)2+(78-85)2+(80-85)2+(85-85)2+(85-85)2 +(92-85)2+(96-85)2]=40. (3)设“甲班至少有 1 名学生”为事件 M,则 M 为“抽取的两 名学生都是乙班的”. 甲班成绩在 90 分以上的学生有 2 名,分别记为 A,B, 乙班成绩在 90 分以上的学生有 3 名,分别记为 C,D,E. 从这 5 名学生中任取 2 名学生有(A,B),(A,C),(A,D),(A, E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共 10 种不同的结果.
解 (1)社区总数为 12+18+6=36,样本容量与总体中的个体 数比为366=16. 所以从 A,B,C 三个行政区中应分别抽取的社区个数为 2,3,1. (2)设 A1,A2 为在 A 行政区中抽得的 2 个社区,B1,B2,B3 为 在 B 行政区中抽得的 3 个社区,C 为在 C 行政区中抽得的社 区,在这 6 个社区中随机抽取 2 个,全部可能的结果有
湖北省荆州市沙市第五中学高三数学二轮总复习第二讲概率、随机变量及其分布列学案
第二讲概率、随机变量及其分布列主干考点梳理1.概率加法公式的应用1.若事件A与事件B互斥,则P(A∪B)=____________.2.若事件A与事件B互为对立事件,则P(A∪B)=________,即P(A)=________.2.古典概型与几何概型问题1.古典概型的概率公式.对于古典概型,任何事件的概率为:P(A)=________________.2.几何概型的概率公式.在几何概型中,事件A的概率计算公式为:P(A)=_________________________________.3.条件概率一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=________为在事件A发生的条件下,事件B发生的条件概率.特别地,对于古典概型,由于组成事件A的各个基本事件发生的概率相等,因此其条件概率也可表示为:4.独立事件与独立重复实验1.事件A与事件B相互独立.设A,B为两个事件,如果P(AB)=________,则称事件A与事件B相互独立,如果事件A 与B相互独立,那么A与与与B也都相互独立.2.独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=_________________,k=0,1,2,…,n.5.离散型随机变量及其分布与二项分布一、离散型随机变量及其分布列1.离散型随机变量的分布列.设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则随机变量X的分布列为:有时为了表达简单,也用等式________________________表示X的分布列.2.离散型随机变量X的分布列的性质.(1)p i____0,i=1,2,…,n;(2) i =1npi =________.二、二项分布在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p .那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=____________,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作_____________. 三、离散型随机变量的均值与方差 1.均值. (1)均值的定义.若离散型随机变量X 的分布列为:则随机变量X 的均值EX =__________________________. (2)几个常见的均值. ①E (aX +b )=aEX +b ;②若X 服从两点分布,则EX =______; ③若X ~B (n ,p ),则EX =_________. 2.方差. (1)方差的定义.若离散型随机变量X 的分布列为:则随机变量X 的方差DX =__________. (2)几个常见的方差. ①D (aX +b )=a 2DX ;②若X 服从两点分布,则DX =________; ③若X ~B (n ,p ),则DX =________. 考点自测1.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A.5216B.25216C.31216D.91216 解析:由于至少出现一次6点的对立事件是:三次均不出现6点,由对立事件公式易求得.选D.答案:D2.(2013年福建卷)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1>0”发生的概率为________.3.某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的动物,问:它能活到25岁的概率是多少?4.某战士射击中靶的概率为0.99.若连续射击两次(精确到0.000 1),求: (1)至多有一次中靶的概率; (2)两次都中靶的概率; (3)至少有一次中靶的概率.(1)0.019 9 (2)0.980 1 (3)0.999 9 5.已知离散型随机变量X 的分布列如下表:若EX =0,DX =1,则a =________,b =________.解析:选择区间长度为测度求解几何概型.由题意知0≤a ≤1.事件“3a -1>0”发生时,a >13且a ≤1,取区间长度为测度,由几何概型的概率公式得其概率P =1-131=23. 答案:23解析:由题知a +b +c =1112,-a +c +16=0,12×a +12×c +22×112=1,解得a =512,b =14.答案:512 14高考热点突破突破点1 古典概型的概率例1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )思路点拨:(1)本题可以用直接法求解:和为奇数,则两个数为1奇1偶,有 种取法.(2)本题也可以用间接法求解,和为偶数的情况只有两种1和3,2和4.解析:解法一:设A 表示“2张卡片上的数字之和为奇数”,则基本事件的总数为24C ,事件A 包含的基本事件数为1122CC,故P (A )=C 12C 12 C 24=23.解法二:设A 表示“2张卡片的数字之和为奇数”,则A 表示“2张卡片的数字之和为偶数”,事件A 包含的基本事件数为2,则P (A )=2 C 24=13,∴P (A )=1-P (A )=23.答案:C规律方法:(1)有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件个数,这常常用到排列、组合的有关知识. (2)对于较复杂的题目要注意正确分类,分类时应不重不漏. 跟踪训练1. 现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为______.解析:从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3 m 的事件数为2,分别是:2.5和2.8,2.6和2.9,则所求概率为0.2.答案:0.2例2. 在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.思路点拨:本题是几何概型问题,可以先计算出试验的全部结果构成的区域面积和所求事件构成的区域面积,然后根据几何概型的概率公式求解.解析:如下图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,用M 表示“向D 中随机投一点,则落入E 中”这一事件,则P (M )=π×124×4=π16.答案:π16规律方法:(1)当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑利用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域. 跟踪训练2.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如下页图可设AB =1,则AB ′=1,根据几何概率可知其整体事件是其周长3,则其概率是23.答案 :23例3. 已知:男人中有5%患色盲,女人中有0.25%患色盲.从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.思路点拨:(1)此人患色盲即为此人是男人且患色盲或此人是女人且患色盲. (2)利用条件概率求解第(2)问解析:(1)此人患色盲的概率为P =100200×5100+100200×0.25100=5.25200=21800. (2)设事件A 表示“从100个男人和100个女人中任选一人,此人患色盲”;事件B 表示“从100个男人和100个女人中任选一人,此人是男人”.则P (A )=21800,P (AB )=5200,故P (B |A )=P AB P A =2021.规律方法:(1)利用公式P (B |A )=P ABP A是求条件概率最基本的方法.这种方法的关键是分别求出P (A )和P (AB ),其中P (AB )是指事件A 和B 同时发生的概率.(2)在求P (AB )时,要判断事件A 与事件B 之间的关系,以便采用不同的方法求P (AB ).其中,若B ⊂A ,则P (AB )=P (B ),从而P (B |A )=P BP A. 跟踪训练3.一个盒子里装有4件产品,其中有3件一等品,1件二等品.从中取产品两次,每次任取1件,作不放回抽样.试求在第一次取到一等品的条件下第二次又取到一等品的概率.解析:设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则所求概率为P (B |A ).由于P (A )=34,P (AB )=A23A24=12,所以由条件概率计算公式得P (B |A )=P ABP A =1234=23,即在第一次取到一等品的条件下第二次又取到一等品的概率是23.突破点4相互独立事件和独立重复实验问题例4.甲、乙两人各射击一次,击中目标的概率分别是 假设两人射击是否击中目标,相互之间没有影响,每人各次射击是否击中目标,相互之间也没有影响. (1)求甲射击3次,至少1次未击中目标的概率.(2)假设某人连续2次未击中目标,则停止射击,问:乙恰好射击4次后,被停止射击的概率是多少?(3)设甲连续射击3次,用ξ表示甲击中目标时射击的次数,求ξ的数学期望.解析:(1)记“甲连续射击3次,至少1次未击中目标”为事件A 1,由题意,射击3次,相当于3次独立重复试验,故P (A 1)=1- P (A 1)=1-⎝ ⎛⎭⎪⎫233=1927. (2) 记“乙恰好射击4次后,被停止射击”为事件A 2,由于各事件相互独立, 故P (A 2)=34×34×14×14+14×34×14×14=364.(3)解法一:根据题意ξ服从二项分布,E ξ=3×23=2.解法二:P (ξ=0)=C 03·⎝ ⎛⎭⎪⎫133=127,P (ξ=1)=C 13·⎝ ⎛⎭⎪⎫231·⎝ ⎛⎭⎪⎫132=627, P (ξ=2)=C 23·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫131=1227,P (ξ=3)=C 33·⎝ ⎛⎭⎪⎫233·⎝ ⎛⎭⎪⎫130=827.∴ξ的分布列为:E ξ=0×127+1×627+2×1227+3×827=2. 规律方法:(1)注意区分互斥事件和相互独立事件.互斥事件是在同一试验中不可能同时发生的情况;相互独立事件是指几个事件的发生与否互不影响,当然可以同时发生.(2)一个事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”、“至多”等问题往往用这种方法求解.) 跟踪训练4.某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:(1)该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率.解析:(1)设A 表示资助总额为零这个事件,则P (A )=⎝ ⎛⎭⎪⎫126=164.(2)设B 表示资助总额超过15万元这个事件,则P (B )=C 26×⎝ ⎛⎭⎪⎫126+C 16×⎝ ⎛⎭⎪⎫126+⎝ ⎛⎭⎪⎫126=1132. 突破点5 随机变量的分布列及有关问题例5.一个盒子里装有4张大小形状完全相同的卡片,分别标有数字2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数字3,4,5,6.现从一个盒子中任取一张卡片,其上面的数记为x ;再从另一盒子里任取一张卡片,其上面的数记为y ,记随机变量η=x +y ,求η的分布列和数学期望.解析:依题意,可分别取η=5,6,…,11,则有P (η=5)=14×4=116,P (η=6)=216,P (η=7)=316,P (η=8)=416,P (η=9)=316,P (η=10)=216,P (η=11)=116.∴η的分布列为:规律方法:(1)求分布列的关键是正确求得随机变量的每一个取值和取每个值的概率. (2)求随机变量的均值和方差的关键是正确求出随机变量的分布列. 跟踪训练5.下届奥运会乒乓球比赛将产生男子单打、女子单打、男子团体、女子团体共四块金牌,保守估计中国乒乓球男队获得每块金牌的概率均为 ,中国乒乓球女队获得每块金牌的概率均为 .(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一块金牌的概率;(2)记中国乒乓球队获得金牌数为ξ,求按此估计ξ的分布列和数学期望E ξ(结果均用分数表示).解析:(1)记“中国乒乓球男队获0块金牌,女队获1块金牌”为事件A ,“中国乒乓球男队获1块金牌,女队获2块金牌”为事件B ,那么P (A +B )=P (A )+P (B )=C 12⎝⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫45·⎝⎛⎭⎪⎫1-45+ C 12⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫452=1350. 故估计中国乒乓球女队比男队多获一块金牌的概率为1350. (2)根据题意,中国乒乓球队获得金牌数ξ的所有可能取值为0,1,2,3,4.则P (ξ=0)=⎝ ⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫1-452=1400; P (ξ=1)=C 12⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-452+C 12⎝⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫45·⎝ ⎛⎭⎪⎫1-45=7200; P (ξ=2)=C 12C 12⎝⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝⎛⎭⎪⎫1-45·⎝ ⎛⎭⎪⎫45+⎝ ⎛⎭⎪⎫1-342·⎝ ⎛⎭⎪⎫452+ ⎝ ⎛⎭⎪⎫342·⎝⎛⎭⎪⎫1-452=73400; P (ξ=3)=C 12⎝ ⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫34·⎝ ⎛⎭⎪⎫452+C 12⎝ ⎛⎭⎪⎫342·⎝ ⎛⎭⎪⎫45·⎝ ⎛⎭⎪⎫1-45=2150; P (ξ=4)=⎝ ⎛⎭⎪⎫342·⎝ ⎛⎭⎪⎫452=925.Eη=5×116+6×216+7×316+8×416+9×316+10×216+11×116=8.则概率分布列为:则所获金牌数的数学期望E ξ=0×1400+1×7200+2×73400+3×2150+4×925=3110. 故中国乒乓球队获得金牌数的数学期望为3110块.小结反思1.在使用概率公式运算时,要写明使用的条件.如:使用概率加法公式求概率时,要判断并写明事件是互斥事件;用乘法公式求事件概率时,要先判断并写明事件是相互独立事件等. 2.对二项分布、独立重复实验等重要知识点要熟练掌握,相关公式与结论要应用自如. 3.要准确计算离散型随机变量的均值与方差,要记清公式,要在会推导的基础上记忆结论,避免解题时耽误时间.。
高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册
第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。
高三数学冲刺专题练习—排列组合概率(含答案详解) (2)
高三数学冲刺专题练习——排列组合概率1. 概率1.已知某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2125,则该队员每次罚球的命中率p 为 .【分析】根据题意,分析可得两次罚球中两次都名中的概率为21412525-=,由相互独立事件的概率公式可得关于p 的方程,解可得答案.【解答】解:根据题意,该队员在两次罚球中至多命中一次的概率为2125, 则两次罚球中两次都名中的概率为21412525-=, 则有2425p =,解可得25P =. 【点评】本题考查相互独立事件概率乘法公式和互斥事件概率加法公式,注意分析事件之间的关系,属于基础题.2.某市在创建“全国文明城市”活动中大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”、“可回收垃圾”、“其它垃圾”、“有害垃圾”四种不同的垃圾桶.一天,居民小陈提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有两袋垃圾投对的概率为 . 【分析】根据古典概率模型的概率公式即可求解.【解答】解:4袋不同垃圾投4个不同的垃圾桶有4424A =种不同投法, 而恰好有两袋垃圾投对的投法数为246C =, ∴恰好有两袋垃圾投对的概率61244P ==. 【点评】本题考查古典概率模型的概率公式,属基础题.3.某校为落实“双减”政策.在课后服务时间开展了丰富多彩的体育兴趣小组活动,现有甲、乙、丙、丁四名同学拟参加篮球、足球、乒乓球、羽毛球四项活动,由于受个人精力和时间限制,每人只能等可能的选择参加其中一项活动,则恰有两人参加同一项活动的概率为 .【分析】首先分析得到四名同学总共的选择为44个选择,然后分析恰有两人参加同一项活动的情况为2144C C ,则剩下两名同学不能再选择同一项活动,他们的选择情况为23A ,然后进行计算即可. 【解答】解:每人只能等可能的选择参加其中一项活动,且可以参加相同的项目,∴四名同学总共的选择为44个选择,恰有两人参加同一项活动的情况为2144C C ,剩下两名同学的选择有23A 种,∴恰有两人参加同一项活动的概率为21244349416C C A ⋅⋅=. 【点评】本题考查了古典概型及其概率的计算公式,解题的关键是能用排列组合的知识将满足条件的选择方案数计算出来.4.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,则甲、乙分在同一组的概率是 . 【分析】本题是一道平均分组问题,将7个人(含甲、乙)分成三个组,一组3人,另两组2人,有两个组都是两个人,而这两个组又没有区别,所以分组数容易重复,甲、乙分到同一组的概率要分类计算【解答】解:不同的分组数为3227421052!C C C a ==甲、乙分在同一组的方法种数有(1)若甲、乙分在3人组,有122542152!C C C =种(2)若甲、乙分在2人组,有3510C =种,故共有25种, 所以25510521P ==. 【点评】平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的5.从1到10这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是 .【分析】所有的取法有310120C =种,其中一个数是另两个数之和的取法用力矩发求得共计20种,由此求得一个数是另两个数之和的概率.【解答】解:所有的取法有310120C =种,其中一个数是另两个数之和的取法有(1,2,3)、(1,3,4)、(1,4,5)、(1,5,6)、(1,6,7)、(1,7,8)、(1,9,10)、(2,3,5)、(2,4,6)、(2,5,7)、(2,6,8)、(2,7,9)、(2,8,10)、(3,4,7)、(3,5,8)、(3,6,9)、(3,7,10)、(4,5,9)、(4,6,10),共计20种,故其中一个数是另两个数之和的概率是2011206=. 【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.6.把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚,且他们拿到的硬币数量互不相同,则甲同学恰好拿到两枚硬币的概率为.【分析】利用插空法和古典概型可解决此题.【解答】解:根据插空法得把12枚相同的硬币分给甲、乙、丙三位同学,每位同学至少分到1枚的情况共2 1155C=种,其中甲、乙、丙三位同学拿到硬币有相同情况有(1,1,10),(1,10,1),(10,1,1),(2,2,8),(2,8,2),(8,2,2),(3,3,6),(3,6,3),(6,3,3),(4,4,4),(5,5,2),(5,2,5),(2,5,5)共计13种,故他们拿到的硬币数量互不相同的情况共有551342-=(种),甲同学恰好拿到两枚硬币的情况共有1936C-=(种),∴甲同学恰好拿到两枚硬币的概率为61 427=.【点评】本题考查插空法和古典概型,考查数学运算能力及抽象能力,属于中档题.7.2021年7月,我国河南省多地遭受千年一遇的暴雨,为指导防汛救灾工作,某部门安排甲,乙,丙,丁,戊五名专家赴郑州,洛阳两地工作,每地至少安排一名专家,则甲,乙被安排在不同地点工作的概率为.【分析】分郑州安排1名专家,洛阳安排4名专家,郑州安排2名专家,洛阳安排3名专家,郑州安排3名专家,洛阳安排2名专家,郑州安排4名专家,洛阳安排1名专家,四类分别求出每地至少安排一名专家和甲,乙被安排在不同地点工作的排法种数,从而得出答案.【解答】解:当郑州安排1名专家,洛阳安排4名专家,则有155C=种排法;郑州安排2名专家,洛阳安排3名专家,则有2510C=种排法;郑州安排3名专家,洛阳安排2名专家,则有3510C=种排法;郑州安排4名专家,洛阳安排1名专家,则有455C=种排法;所以每地至少安排一名专家共有51010530+++=种不同的排法,若甲,乙被安排在不同地点工作,当郑州安排1名专家,洛阳安排4名专家,则有122C=种排法;郑州安排2名专家,洛阳安排3名专家,则有11236C C⋅=种排法;郑州安排3名专家,洛阳安排2名专家,则有12236C C⋅=种排法;郑州安排4名专家,洛阳安排1名专家,则有13232C C ⋅=种排法; 所以甲,乙被安排在不同地点工作,共有266216+++=种不同的排法, 所以甲,乙被安排在不同地点工作的概率为1683015=. 【点评】本题考查古典概型及其计算公式,考查学生的分析解决问题的能力,属于中档题.8.为了实施“科技下乡,精准脱贫”战略,某县科技特派员带着A ,B ,C 三个农业扶贫项目进驻某村,对仅有的四个贫困户进行产业帮扶.经过前期走访得知,这四个贫困户甲、乙、丙、丁选择A ,B ,C 三个项目的意向如表:扶贫项目 ABC选择意向贫困户甲、乙、丙、丁甲、乙、丙丙、丁若每个贫困户只能从自己登记的选择意向中随机选取一项,且每个项目至多有两户选择,则甲乙两户选择同一个扶贫项目的概率为 .【分析】由题意可知,甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以.所以分成三类将所有情况计算出来,套用概率公式计算即可.【解答】解:由题意:甲乙只能选A ,B 项目,丁只能选A ,C 项目,丙则都可以. 由题意基本事件可分以下三类:(1)甲乙都选A ,则丁只能选C ,丙则可以选B ,C 任一个,故共有2种方法;(2)甲乙都选B ,则丁可以选A 或C ,丙也可选A 或C ,故共有11224C C =种方法. (3)甲乙分别选AB 之一,然后丁选A 时,丙只能选B 或C ;丁选C 时,丙则A ,B ,C 都可以选.故有211223()10A C C +=种方法.故基本事件共有241016++=种. 甲乙选同一种项目的共有246+=种. 故甲乙选同一项目的概率63168P ==. 【点评】本题考查了古典概型概率的计算方法,分类求基本事件时有一定难度.属于中档题, 9.在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为 .【分析】分类计算游客甲去梵净山包含的基本事件的个数,代入古典概型的概率计算公式即可.【解答】解:设{A=游客甲去梵净山},则基本事件的总数为112321431236C CC AA⨯=个.事件A发生时①若甲单独去梵净山,有22326C A⨯个基本事件,②去梵净山的游客除甲外还有1人,则有12326C A⨯=个基本事件.P∴(A)661363+==.【点评】本题考查了古典概型的概率计算,在求事件A包含的基本事件个数时,牵扯到了平均分组问题,容易出错,本题为中档题.10.年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数2101-60岁至79岁的人数120133341380岁及以上的人数918149其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,1-代表“生活不能自理”.按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.则被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率是35(用分数作答).【分析】由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.列举出从这五人中抽取3人的选法,列举出恰有1位老龄人的健康指数不大于0的选法,代入古典概型概率公式求出.【解答】解;该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人共有70人,由分层抽样可知,被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为1,2,3,4,健康指数不大于0的老龄人为B.从这五人中抽取3人,结果有10种:(1,2,3),(1,2,4),(1,2,)B,(1,3,4),(1,3,)B,(1,4,)B,(2,3,4),(2,3,)B,(2,4,)B,(3,4,B,),其中恰有一位老龄人健康指数不大于0的有6种:(1,2,)B ,(1,3,)B ,(1,4,)B ,(2,3,)B ,(2,4,)B ,(3,4,B ,),∴被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为63105= 故答案为:35【点评】本题考查概率的计算,考查学生利用数学知识解决实际问题,考查学生的计算能力,属于中档题. 11.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是 .【分析】根据等差数列前n 项和公式得出首项与公差m 的关系,列举得出所有的分配方案,从而得出结论. 【解答】解:由题意可知等级从低到高的5个诸侯所分的橘子个数组成等差为m 的等差数列, 设“男”分的橘子个数为1a ,其前n 项和为n S ,则51545802S a m ⨯=+⨯=, 即1216a m +=,且1a ,m 均为正整数, 若12a =,则7m =,此时530a =, 若14a =,6m =,此时528a =, 若16a =,5m =,此时526a =, 若18a =,4m =,此时524a =, 若110a =,3m =,此时522a =, 若112a =,2m =,此时520a =, 若114a =,1m =,此时518a =, ∴ “公”恰好分得30个橘子的概率为17. 【点评】本题考查了等差数列的性质,古典概型的概率计算,属于中档题.12.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为 .【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有42214-=种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有224⨯=种,42147P ∴==. 【点评】本题考查了古典概型的概率计算,是基础题.13.2022年2月4日第24届冬季奥林匹克运动会在北京盛大开幕,中国冬奥健儿在赛场上摘金夺银,在国内掀起一波冬奥热的同时,带动了奥运会周边产品的热销,其中奥运吉祥物冰墩墩盲盒倍受欢迎,已知冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个,买到隐藏款的概率为 . 【分析】利用古典概型、排列组合直接求解.【解答】解:冰墩墩盲盒共有7个,6个是基础款,1个是隐藏款,随机购买两个, 基本事件总数2721n C ==,买到隐藏款包含的基本事件个数11166m C C ==, ∴买到隐藏款的概率62217m P n ===. 【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题. 14.抛挪一枚硬币,每次正面出现得1分,反面出现得2分,则恰好得到10分的概率是 6831024. 【分析】分类讨论,依据独立重复试验公式即可求得恰好得10分的概率. 【解答】解:抛掷一枚硬币,得1分的概率为12,得2分的概率为12, 恰好得到10分可分为6种情况:5个2分,共抛掷5次,概率为55511()232C ⨯=; 4个2分,2个1分,共抛掷6次,概率为466115()264C ⨯=; 3个2分,4个1分,共抛掷7次,概率为377135()2128C ⨯=; 2个2分,6个1分,共抛掷8次,概率为28817()264C ⨯=;1个2分,8个1分,共抛掷9次,概率为19919()2512C ⨯=; 10个1分,共抛掷10次,概率为1011()21024=;故恰好得到10分的概率是1153579168332641286451210241024+++++=,故答案为:6831024. 【点评】本题考查了独立重复试验的应用及分类讨论的思想方法应用,属于中档题.15.六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是120. 【分析】本题是一个等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66A 种结果,满足条件的事件是后排每人均比其前排的同学身材要高,则身高高的三个同学在后排排列,其余三个同学在前排排列,据概率公式得到结果.【解答】解:由题意知,本题是等可能事件的概率,试验发生包含的事件是6个人进行全排列,共有66720A =种结果, 满足条件的事件是后排每人均比其前排的同学身材要高, 则身高高的三个同学在后排排列,其余三个同学在前排排列,共有3333A A 种结果, ∴后排每人均比前排同学高的概率是36172020=, 故答案为:120【点评】本题考查等可能事件的概率,站队问题是排列组合中的典型问题,解题时要先排限制条件多的元素,把限制条件比较多的元素排列后,再排没有限制条件的元素.2. 排列组合1.五声音阶是中国古乐基本音阶,故有成语“五音不全“,中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上.排成一个五个音阶的音序.且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成 32 种不同的音序.【分析】根据角所在的位置,分两类,根据分类计数原理可得.【解答】解:若角排在一或五,有12A 种方法,再排商、徵,有22A 种方法,排宫、羽用插空法,有23A 种方法,利用乘法原理可得:12222324A A A =种, 若角排在二或四,同理可得:有222228A A =, 根据分类计数原理可得,共有24832+=种,故答案为:32.【点评】本题考查排列排列组合及简单计数问题,本题较抽象,计数时要考虑周详,本题以实际问题为背景,有着实际背景的题在现在的高考试卷上有逐步增多的趋势.2.从0,1,2,3,4,5中选出三个不同数字组成四位数(其中的一个数字用两次),如5224,则这样的四位数共有600个.【分析】根据题意,分当0被选用,且用两次;当0被选用,但用一次;当0没被选用三种情况讨论求解即可.【解答】解:当0被选用,且用两次,则先在个位,十位,百位这3个位置上选2个位置放0,再从剩下的5个数中选2个数字排在其他两个位置上,故有223560C A=个;当0被选用,但用一次,则先在个位,十位,百位这3个位置上选1个位置放0,再从剩下的5个数字中选2个数字,进而从选出的两个数字中选一个为出现两次的数字,最后在剩下的三个位置上选一个位置放置选出的2个数字中出现1次的数字,进而完成任务,故有12113523180C C C C=个;当0没被选用,则从1,2,3,4,5选3个数字,再从中选一个出现两次的数字,最后将其他两个数字选2个位置排序,故有312534360C C A=个所以,一共有60180360600++=个.故答案为:600.【点评】本题考查排列组合,考查学生推理能力,属于中档题.3.某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法数有36种(用数字作答).【分析】根据题意,分3步进行分析:①,先在4个社团中任选2个,有学生报名,②、将3名学生分为2组,③,进而将2组全排列,对应2个社团,分别求出每一步的情况数列,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①,根据题意,4个社团中恰有2个社团,即只有2个社团有人报名,则先在4个社团中任选2个,有学生报名,有246C=种选法,②、将3名学生分为2组,有233C=种分法,③,进而将2组全排列,对应2个社团,有222A=种情况,则恰有2个社团没有同学选报的报法数有63236⨯⨯=种; 故恰有2个社团没有同学选报的报法数有36种; 故答案为:36【点评】本题考查排列、组合的应用,涉及分步计数原理的应用,关键是正确进行分步分析.4.设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},1i =,2,3,4,5},则集合A 中满足条件“123451||||||||||3x x x x x ++++”元素个数为 130 .【分析】从条件“123451||||||||||3x x x x x ++++”入手,讨论i x 所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由{1i x ∈-,0,1},1i =,2,3,4,5},集合A 中满足条件“123451||||||||||3x x x x x ++++”, 由于||i x 只能取0或1,因此5个数值中有2个是0,3个是0和4个是0三种情况: ①i x 中有2个取值为0,另外3个从1-,1中取,共有方法数:2352⨯; ②i x 中有3个取值为0,另外2个从1-,1中取,共有方法数:3252⨯; ③i x 中有4个取值为0,另外1个从1-,1中取,共有方法数:452⨯.∴总共方法数是:23324555222130⨯+⨯+⨯=.故答案为:130.【点评】本题考查了组合数的计算公式及其思想、集合的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.5.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,则使a b c d e +为奇数的不同排列方法有 180 种.【分析】按照分类讨论,先选后排的步骤,求出结果. 【解答】解:(分类讨论:先选后排)若a b c 为奇数,d e 为偶数时,有323336A A ⨯= 种; 若a b c 为偶数,d e 为奇数时,有2334144A A ⨯= 种; 故a b c d e +为奇数的不同排列方法有共36144180+=种, 故答案为:180.【点评】本题主要考查排列组合的应用,属于中档题.6.现有一排10个位置的空停车场,甲、乙、丙三辆不同的车去停放,要求每辆车左右两边都有空车位且甲车在乙、丙两车之间的停放方式共有 40 种.【分析】根据题意,先排好7个空车位,注意空车位是相同的,其中有6个空位符合条件,考虑顺序,将3车插入6个空位中,注意甲必须在乙、丙两车之间,由倍分法分析可得答案.【解答】解:先排7个空车位,由于空车位是相同的,则只有1种情况,其中有6个空位符合条件,考虑三车的顺序,将3辆车插入6个空位中,则共有361120A ⨯=种情况, 由于甲车在乙、丙两车之间,则有符合要求的坐法有1120403⨯=种;故答案为:40.【点评】本题考查排列、组合的应用,对于不相邻的问题采用插空法.7.某翻译处有8名翻译,其中有小张等3名英语翻译,小李等3名日语翻译,另外2名既能翻译英语又能翻译日语,现需选取5名翻译参加翻译工作,3名翻译英语,2名翻译日语,且小张与小李恰有1人选中,则有 29 种不同选取方法【分析】据题意,对选出的3名英语教师分5种情况讨论:①若从只会英语的3人中选3人翻译英语,②若从只会英语的3人中选2人翻译英语,(包含小张),③若从只会英语的3人选小张翻译英语,④、若从只会英语的3人中选2人翻译英语,(不包含小张),⑤、若从只会英语的3人中选1人翻译英语,(不包含小张),每种情况中先分析其余教师的选择方法,由分步计数原理计算每种情况的安排方法数目,进而由分类计数原理,将其相加计算可得答案. 【解答】解:根据题意,分5种情况讨论: ①、若从只会英语的3人中选3人翻译英语,则需要从剩余的4人(不含小李)中选出2人翻译日语即可,则不同的安排方案有246C =种, ②、若从只会英语的3人中选2人翻译英语,(包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的3人(不含小李)中选出2人翻译日语即可,则不同的安排方案有11222312C C C ⨯⨯=种, ③、若从只会英语的3人选小张翻译英语,则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的2人(不含小李)中选出2人翻译日语即可,则不同的安排方案有22221C C⨯=种,④、若从只会英语的3人中选2人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出1人翻译英语,再从剩余的4人(小李必选)中选出2人翻译日语即可,则不同的安排方案有2112236C C C⨯⨯=种,⑤、若从只会英语的3人中选1人翻译英语,(不包含小张)则先在既会英语又会日语的2人中选出2人翻译英语,再从剩余的3人(小李必选)中选出2人翻译日语即可,则不同的安排方案有1212224C C C⨯⨯=种,则不同的安排方法有61216429++++=种.故答案为:29.【点评】本题考查排列、组合的运用,注意根据题意对“既会英语又会日语”的教师的分析以及小张与小李恰有1人选中,是本题的难点所在.8.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是34.(用数字作答)【分析】根据题意,按取出3张的卡片中写有1的卡片的张数分4种情况讨论,求出每种情况下排出不同的三位数的个数,由加法原理计算可得答案.【解答】解:根据题意,分4种情况讨论:①、取出3张的卡片全部是写有数字1的,有1种情况,②,取出3张的卡片有2张写有数字1的,有11339C C=种情况,③,取出3张的卡片有1张写有数字1的,有223318C A=种情况,④,取出3张的卡片没有写有数字1的,有336A=种情况,则一共有1918634+++=种情况,即可以排出34个不同的三位数;故答案为:34.【点评】本题考查排列、组合的应用,注意6张卡片中相同的情况.9.分配4名水暖工去3个不同的民居家里检查暖气管道,要求4名水暖工部分配出去,并每名水暖工只能去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有36种(用数字作答).【分析】根据题意,分2步分析:①,将4名水暖工分成3组,②,将分好的三组全排列,对应3个不同的居民家,由分步计数原理计算可得答案.【解答】解:根据题意,分2步分析:①,将4名水暖工分成3组,有246C=种分组方法,②,将分好的三组全排列,对应3个不同的居民家,有336A=种分配方法,则有6636⨯=种不同的分配方案;故答案为:36.【点评】本题考查排列、组合的应用,注意要先分组,再进行排列.10.3名男生和3名女生站成一排,要求男生互不相邻,女生也互不相邻且男生甲和女生乙必须相邻,则这样的不同站法有40种(用数字作答).【分析】根据题意,分2种情况讨论:①,六名学生按男女男女男女排列,②,六名学生按女男女男女男排列,分析每种情况的安排方法数,由加法原理计算可得答案.【解答】解:根据题意,要求3名男生和3名女站成一排,男生、女生各不相邻,则有2种情况;①,六名学生按男女男女男女排列,若男生甲在最左边的位置时,女生乙只能在其右侧,有1种情况,剩下的2名男生和女生都有222A=种情况,此时有1224⨯⨯=种安排方法,若男生甲不在最左边的位置时,女生乙可以在其左侧与右侧,有2种情况,剩下的2名男生和女生都有222A=种情况,此时有222216⨯⨯⨯=种安排方法;则此时有41620+=种安排方法;②,六名学生按女男女男女男排列,同理①,也有20种安排方法,则符合条件的安排方法有202040+=种;故答案为:40【点评】本题考查排列组合的应用,注意优先分析受到限制的元素.11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.【分析】不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法,由此可得结论. 【解答】解:由题意,不考虑特殊情况,共有316C 种取法,其中每一种卡片各取三张,有344C 种取法,两种红色卡片,共有21412C C 种取法, 故所求的取法共有332116441245601672472C C C C --=--= 故选:C .【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.12.因演出需要,身高互不相等的8名演员要排成一排成一个“波浪形”,即演员们的身高从最左边数起:第一个到第三个依次递增,第三个到第六个依次递减,第六、七、八个依次递增,则不同的排列方式有 .种【分析】依题意,重点要先排好3号位和6号位,余下的分类讨论分析即可. 【解答】解:上面的数字表示排列的位置,必须按照上图的方式排列,其中3号位必须比12456要高,1,6两处是排列里最低的,3,8两处是最高点,设8个演员按照从矮到高的顺序依次编号为1,2,3,4,5,6,7,8, 则 3号位最少是6,最大是8,下面分类讨论:①第3个位置选6号:先从1,2,3,4,5号中选两个放入前两个位置,余下的3个号中放入4,5,6号顺序是确定的只有一种情况,然后7,8号放入最后两个位置也是确定的,此时共2510C =种情况;②第3个位置选7号:先从1,2,3,4,5,6号中选两个放入前两个位置, 余下的4个号中最小的放入6号位置,剩下3个选2个放入4,5两个位置, 余下的号和8号放入最后两个位置,此时共226345C C =种情况;。
【高三数学】二轮复习:专题五 第2讲 概率、随机变量及其分布
1
感染的,于是假定他受 A 和 B 感染的概率都是2.同样也假定 D 受 A,B 和 C
1
感染的概率都是3.在这种假定下,B,C,D 中恰有两人直接受 A 感染的概率是
(
)
1
A.6
1
B.3
1
C.2
2
D.3
(2)(2021·河北张家口一模)某大学进行“羽毛球”“美术”“音乐”三个社团选拔.
三局.若甲抽到的三张扑克牌分别是A1,A2,A3,乙抽到的三张扑克牌分别是
B1,B2,B3,且这六张扑克牌的大小顺序为A1>B1>B2>A2>A3>B3,则三局比赛
结束后甲得4分的概率为(
1
6
A.
1
3
B.
)
1
2
C.
2
3
D.
(2)(2021·山东泰安三模)已知大于3的素数只分布在{6n-1}和{6n+1}两数
[例2-4](2021·江苏苏州中学园区校月考)甲、乙两队进行篮球决赛,采取七
场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,
甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,
客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概
率是
.
1
次的概率为2,现有一个该型号的充电宝已经循环充电超过 500 次,则其能够
循环充电超过 1 000 次的概率是(
3
A.4
2
B.3
)
1
C.2
1
D.3
数学二轮复习专题限时集训2统计与统计案例随机事件的概率古典概型几何概型含解析文
专题限时集训(二) 统计与统计案例随机事件的概率、古典概型、几何概型1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数B[评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.]2.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0。
5 B.0。
6 C.0.7 D.0。
8C[由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.]3.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0。
4 C.0.6 D.0.7B[设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0。
15=0。
4。
故选B.]4.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.错误!B.错误!C.错误!D.错误!B[如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为错误!=错误!,故选B.]5.(2020·全国卷Ⅲ)设一组样本数据x1,x2,…,x n的方差为0。
2017届高三数学(文)二轮复习课件(全国通用)专题突破 专题7 概率与统计 第2讲 统计及统计案例
x乙 =
s 乙= 1 28 302 29 302 30 302 31 302 32 302 = 2 . 所以 x甲 < x乙 ,s 甲>s 乙,故选 B.
︱高中总复习︱二轮·文数
(2)(2016· 北京卷,文17)某市居民用水拟实行阶梯水价,每人月用水量中不超 过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收 费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得 到如下频率分布直方图: ①如果w为整数,那么根据此次调查,为使80%以上居 民在该月的用水价格为4元/立方米,w至少定为多少? (2)解:①由用水量的频率分布直方图知, 该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],
4.(2015· 全国Ⅱ卷,文18)某公司为了解用户对其产品的满意度,从A,B两地 区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用
户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频数分布表
满意度评 分分组 频数 [50,60) 2 [60,70) 8 [70,80) 14 [80,90) 10 [90,100] 6
x
46.6
y 563
w 6.8
x x
8 i 1 i
2
w w
8 i 1 i
2
x x y y
8 i 1 i i
w w y y
8 i 1 i i
289.8
1.6
1469
108.8
1 8 表中 wi= xi , w = wi . 8 i 1
高考数学一轮总复习第十一章计数原理和概率2排列与组合课件理
A.60 种
B.63 种
C.65 种 答案 D
D.66 种
解析 共有 4 个不同的偶数和 5 个不同的奇数,要使和为偶数,
则 4 个数全为奇数,或全为偶数,或 2 个奇数 2 个偶数,故不同的
取法有 C54+C44+C52C42=66 种.
第十一页,共55页。
6.(2018·上海春季高考题)某校组队参加辩论赛,从 6 名学 生中选出 4 人分别担任一、二、三、四辩,若其中学生甲必须参 赛且不担任四辩,则不同的安排方法种数为________(结果用数值 表示).
第2课时(kèshí) 排列与组合
第一页,共55页。
…2018 考纲下载… 1.理解排列、组合的概念. 2.能利用计数原理推导排列数公式、组合数公式. 3.能解决简单的实际问题. 请注意 1.排列、组合问题每年必考. 2.以实际问题为背景,考查排列数、组合数,同时考查分 类讨论的思想及解决问题的能力. 3.以选择、填空的形式考查,或在解答题中和概率相结合 进行考查.
第二十四页,共55页。
(6)(捆绑法)把甲、乙及中间 3 人看作一个整体,第一步先排 甲乙两人,有 A22 种方法;第二步从余下 5 人中选 3 人排在甲乙 中间,有 A53 种;第三步把这个整体与余下 2 人进行全排列,有 A33 种方法.故共有 A22·A53·A33=720 种.
(7)(消序法)A277=2 520. (8)(间接法)A77-2A66+A55=3 720. 位置分析法:分甲在排尾与不在排尾两类.
【解析】 甲、乙两同学必须相邻,而且丙不能站在排头和排 尾的排法有:
方法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时 一共有 6 个元素,因为丙不能站在排头和排尾,所以可以从其余的 5 个元素中选取 2 个元素放在排头和排尾,有 A52 种方法;将剩下的 4 个元素进行全排列有 A44 种方法;最后将甲、乙两个同学“松绑” 进行排列有 A22 种方法,所以这样的排法一共有 A52A44A22=960 种 方法.
高三数学专题复习-概率中的相遇问题
数学专题复习概率中相遇问题的处理方法在高考中有一类概率题型使许多考生感到吃力,那就是“相遇问题” 其实这类问题就是新课标中的新增内容一一几何概型的应用,下面用几个例子来说明这类问题的处理方法。
例1男女两人约定晚上7点至8点在某商场约会,如果女的不等男的,那么两人如期相会的概率是多
少?
分析:设男的到达时刻为x,女的到达时
刻为y,则x<y。
如图容易得出相会概率
为p -
2
例2男女两人约定晚上7点至8点在某商场约会,并约好先到的必须等候,男的要等30分钟,女的只等20分钟,那么两人如期相会的概率是
多少?
y x 30
为y ,则0 y 。
如图容易得出相会概率
1 1 60 60 — 30 30 — 40 40 为p 2
— 60 60 例3 某同学到公交车站等车上学,可乘 116路和
128路,116路公
交车8分钟一班,128路公交车10分钟一班,
求这位同学等车不超过 6 分钟的概率。
分析:设116路公交车到达时刻为x ,128路公交车到达时刻为y ,构 建面积几何概型,如图:记“ 6分钟内乘客128路或116路车”为事件A, 则A 所占区域面积为6 10 2 6 72,整个区域的面积为10 8 80。
由几何概 型概率公式得P(A) 72 -,即该同学等等车不超过6分钟的概率为0.9.
80 10
I y
分析:设男的到达时刻为x ,女的到达时刻
0 y 60
47 72。
2021高考数学一轮复习统考第11章概率第2讲古典概型课时作业含解析北师大版
古典概型课时作业1.(2019·新疆乌鲁木齐第三次质检)从1,2,3,4,5,6中任意取出两个不同的数,其和为7的概率为( )A.215B.15C.415D.13答案 B解析 从1,2,3,4,5,6中任意取出两个不同的数,共有15种不同的取法,它们分别是{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15种.从1,2,3,4,5,6中任意取出两个不同的数,它们的和为7,则不同的取法为{1,6},{2,5},{3,4},共3种,故所求的概率为15,故选B.2.(2019·安徽江淮十校最后一卷)《易经》是我国古代预测未来的著作.其中有同时抛掷三枚古钱币观察正反面来预测未知,则抛掷一次时出现两枚正面一枚反面的概率为( )A.18B.14C.38D.12答案 C解析 抛掷三枚古钱币出现的基本事件共有{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},共8种,其中出现两正一反的基本事件共3种,故概率为38.故选C.3.(2019·山东潍坊三模)五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成.如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A.12B.13C.14D.15答案 A解析 从金、木、水、火、土中任取2类,包含的基本事件为金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共10种,其中2类元素相生的基本事件包含木火、火土、水木、金水、土金,共5种,所以2类元素相生的概率为510=12,故选A.4.(2019·湖南六校联考)某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )A.23B.12C.14D.16答案 B解析 从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共6种.其中包含白色的基本事件有3种,所以选中的颜色中含有白色的概率为12,故选B.5.(2019·湖南雅礼中学模拟二)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( )A.12B.13C.14D.15 答案 C解析 甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,包含(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁).其中甲、乙将贺年卡都送给丁的情况只有一种,其概率是14,故选C.6.(2019·辽宁大连二模)一个口袋中装有5个球,其中有3个红球,其余为白球,这些球除颜色外完全相同,若一次从中摸出2个球,则至少有1个红球的概率为( )A.910B.35C.310D.110 答案 A解析 由题意知白球有5-3=2个,记三个红球为A ,B ,C ,两个白球为a ,b .一次摸出2个球所有可能的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,共10种,至少有一个红球的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,共9种.∴所求概率P =910.7.(2019·江西景德镇第二次质检)袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件A ,用随机模拟的方法估计事件A 发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:A.19B.29C.518D.718答案 C解析 事件A 包含“瓷”“都”两字,即包含数字0和1,随机产生的18组数中,包含0,1的有021,001,130,031,103,共5组,故所求概率为P =518,故选C.8.(2019·湖北4月联考)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,若抽得的第一张卡片上的数小于第二张卡片上的数的概率为p 1,抽得的第一张卡片上的数大于第二张卡片上的数的概率为p 2,抽得的第一张卡片上的数等于第二张卡片上的数的概率为p 3,则( )A.p 1+p 2=1 B .p 2<p 1,C.p 1>p 3D .p 1=p 2=答案 C解析 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n =25,抽得的第一张卡片上的数小于第二张卡片上的数包含的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个,抽得的第一张卡片上的数等于第二张卡片上的数包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),共5个,∴p 1=p 2=1025=25,p 3=525=15,故选C.9.(2019·四川宜宾二检)一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为( )A.45B.710C.35D.12答案 B解析 记3张红桃,1张黑桃,1张梅花分别为红1,红2,红3,黑1,梅1.所有可能情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(红1,红2),(红1,红3),(红2,红3),(黑1,梅1),共10种.其中符合花色不同的情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(黑1,梅1),共7种,根据古典概型的概率公式得P =710,故选B.10.(2019·甘肃兰州模拟)双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58答案 B解析 直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,总基本事件数为16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38. 11.(2019·新疆阿克苏三诊)将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是( )A.29B.827C.49D.1627答案 C解析 由题可得大正方体的最上层、中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4×3=12,所以从这些小正方体中任取一个,恰好是两面涂色的概率是P =1227=49,故选C.12.(2019·湖南长郡中学第六次月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A.13B.23C.14D.34答案 B解析 此人从小区A 前往小区H 的所有最短路径有A →G →O →H ,A →E →O →H ,A →E →D →H ,共3条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件有A →G →O →H ,A →E→O →H ,共2条.所以他经过市中心的概率为P (M )=23,故选B.13.(2019·合肥模拟)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排1名男生、星期日安排1名女生的概率为________.答案 13解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动的情况有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,共12种,而星期六安排1名男生、星期日安排1名女生的情况有A 1B 1,A 1B 2,A 2B 1,A 2B 2,共4种,则所求的概率为P =412=13.14.(2019·四川绵阳模拟)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.答案 16解析 从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.15.某人在微信群中发了一个7元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是________.答案 25解析 由题意,得基本事件有(1,1,5),(1,5,1),(5,1,1),(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1),(1,3,3),(3,1,3),(3,3,1),(2,2,3),(2,3,2),(3,2,2),共15种,其中甲领取的钱数不少于其他任何人的基本事件有(5,1,1),(4,1,2),(4,2,1),(3,1,3),(3,3,1),(3,2,2),共6种,所以所求概率为615=25.16.(2019·黑龙江哈尔滨六中二模)从装有3双不同鞋子的柜子里,随机取出2只鞋子,则取出的2只鞋子不成对的概率为________.答案 45解析 设3双鞋子分别为A 1,A 2、B 1,B 2、C 1,C 2,则取出2只鞋子的情况有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(C 1,C 2)共15种,其中,不成对的情况有(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),共12种,由古典概型的公式得,所求概率为1215=45.17.(2019·成都市高三一诊)某部门为了解某企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,89,从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.解 (1)∵3+6+m =12,∴m =3,∴n =312=14,p =m 12=312=14,,∴m =3,n =p =14.(2)从这6个数据中随机抽取2个数据的情况有{83,85},{83,86},{83,87},{83,88},{83,89},{85,86},{85,87},{85,88},{85,89},{86,87},{86,88},{86,89},{87,88},{87,89},{88,89},共15种.其中2个数据都小于或等于86的情况有{83,85},{83,86},{85,86},共3种. 故抽取的2个数据中至少有一个大于86的概率P =1-315=45.18.(2019·西安模拟)某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表:他们各自在每个站下车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车的方案共有多少种? (2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.解 (1)由题意,得甲、乙两人乘坐地铁均不超过3站,前3站设为A 1,B 1,C 1.,甲、乙两人下车方案有(A 1,A 1),(A 1,B 1),(A 1,C 1),(B 1,A 1),(B 1,B 1),(B 1,C 1),(C 1,A 1),(C 1,B 1),(C 1,C 1),共9种.(2)设9站分别为A 1,B 1,C 1,A 2,B 2,C 2,A 3,B 3,C 3.因为甲、乙两人共付费4元,所以可能有甲付1元,乙付3元;甲付3元,乙付1元;甲付2元,乙付2元,共三类情况.由(1)可知每类情况中有9种方案,所以甲、乙两人共付费4元共有27种方案.而甲比乙先到达目的地的方案有(A 1,A 3),(A 1,B 3),(A 1,C 3),(B 1,A 3),(B 1,B 3),(B 1,C 3),(C 1,A 3),(C 1,B 3),(C 1,C 3),(A 2,B 2),(A 2,C 2),(B 2,C 2),共12种,故所求概率为1227=49.所以甲比乙先到达目的地的概率为49.19.(2019·河南八市重点高中联盟压轴)某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:(1)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A ,B 两类:A 类员工在处罚金不超过100元时就会改正行为;B 类是其他员工.现对A 类与B 类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B 类员工的概率是多少?解 (1)∵当处罚金定为100元时,员工迟到的概率为40200=15,不处罚时,迟到的概率为80200=25.∴当处罚金定为100元时,比不制定处罚,员工迟到的概率会降低15.(2)由题意知,A 类员工和B 类员工各有40人,分别从A 类员工和B 类员工中各抽出两人,从A 类员工中抽出的两人分别记为A 1,A 2,从B 类员工中抽出的两人分别记为B 1,B 2,设“从A 类与B 类员工中按分层抽样的方法抽取4人依次进行深度问卷”为事件M ,则事件M 中首先抽出A 1的事件有(A 1,A 2,B 1,B 2),(A 1,A 2,B 2,B 1),(A 1,B 1,A 2,B 2),(A 1,B 1,B 2,A 2),(A 1,B 2,A 2,B 1),(A 1,B 2,B 1,A 2),共6种,,同理首先抽出A 2,B 1,B 2的事件也各有6种,故事件M 共有4×6=24种,设“抽取4人中前两位均为B 类员工”为事件N ,则事件N 有(B 1,B 2,A 1,A 2),(B 1,B 2,A 2,A 1),(B 2,B 1,A 1,A 2),(B 2,B 1,A 2,A 1),共4种,∴P (N )=424=16,∴抽取4人中前两位均为B 类员工的概率是16.20.(2019·山东淄博模拟)为响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男、女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.解 (1)根据阅读用时频数分布表知,该市市民每天阅读用时的平均值为0+0.52×10200+0.5+12×20200+1+1.52×50200+1.5+22×60200+2+2.52×40200+2.5+32×20200=1.65,故该市市民每天阅读用时的平均值为1.65.(2)设参加交流会的男代表为A 1,A 2,a ,其中A 1,A 2喜欢古典文学,则男代表参加交流会的方式有A 1A 2,A 1a ,A 2a ,共3种.参加交流会的女代表为B ,b 1,b 2,其中B 喜欢古典文学,则女代表参加交流会的方式有Bb 1,Bb 2,b 1b 2,共3种,所以参加交流会代表的组成方式有{Bb 1,A 1A 2},{Bb 1,A 1a },{Bb 1,A 2a },{Bb 2,A 1A 2},{Bb 2,A 1a },{Bb 2,A 2a },{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共9种,其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是{Bb 1,A 1A 2},{Bb 2,A 1A 2},{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共5种,所以喜欢古典文学的男代表多于喜欢古典文学的女代表的概率是P =59.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2018-2019届高三数学(文)一轮复习课件:第9章 统计、统计案例、概率 第2节
(3)平均数是频率分布直方图的“重心”,等于频率分布直
方图中每个小长方形的面积乘以小长方形底边中点的横坐标之 和.
[质疑探究3] 征?
平均数、标准差与方差反映了数据的哪些特
提示:平均数反映了数据取值的平均水平,标准差、方差
反映了数据对平均数的波动情况,即标准差、方差越大,数据
的离散程度越大,越不稳定;反之离散程度越小,越稳定.
[ 答案] A
4. 一个容量为 20 的样本, 数据的分组及各组的频数如下: [10,20),2;[20,30),3;[30,40),x;[40,50),5;[50,60),4; [60,70),2;则 x=________;根据样本的频率分布估计,数据 落在[10,50)的概率约为________.
[ 答案] B
2.某雷达测速区规定:凡车速大 于或等于 70 km/h 的汽车视为“超 速”,并将受到处罚,如图是某路段 的一个检测点对 200 辆汽车的车速进 行检测所得结果的频率分布直方图, 则从图中可以看出被处罚的汽车大约有( A.30 辆 C.60 辆 B.40 辆 D.80 辆 )
[ 解析]
由题图可知, 车速大于或等于 70 km/h 的汽车的频
率为 0.02×10 = 0.2 ,则将被处罚的汽车大约有 200×0.2 = 40(辆).故选 B.
[ 答案] B
3. (2016· 广州模拟)对某商店一个月内每天的顾客人数进行 了统计,得到样本的茎叶图(如图所示),则该样本的中位数、 众数、极差分别是( )
A.46,45,56 C.47,45,56
B.46,45,53 D.45,47,53
[ 解析]
茎叶图中共有 30 个数据,所以中位数是第 15 个
1 和第 16 个数字的平均数,即2(45+47)=46,排除 C,D;再计 算极差,最小数据是 12,最大数据是 68,所以 68-12=56, 故选 A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 互斥事件有一个发生的概率一、基本知识概要:1、互斥事件:如果事件A 与B 不能同时发生(即A 发生B 必不发生或者B 发生A 必不发生),那么称事件A ,B 为互斥事件(或称互不相容事件)。
如果事件A 1,A 2,…n A 中任何两个都是互斥事件,那么称事件A 1,A 2,…A n 彼此互斥。
互斥事件的概率加法公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A 1,A 2,…n A 彼此互斥,则P (A 1+A 2+…+n A )=P (A 1)+P (A 2)+…+P (n A ); 2、对立事件:如果事件A 与B 不能同时发生,且事件A 与B 必有一个发生,则称事件A 与B 互为对立事件,事件A 的对立事件通常记作A 。
对立事件A 与A 的概率和等于1,即:P (A )+P (A )=P (A+A )=1;注:对立事件是针对两个事件来说的,一般地说,两个事件对立是这两个事件互斥的充分条件,但不是必要条件。
3、事件的和事件:对于事件A 与B ,如果事件 A 发生或事件B 发生,也即A ,B 中有一个发生称为事件A 与B 的和事件。
记作:A+B , 此时P (A+B )=P (A )+P (B )()B A P ⋂-;4、从集合的角度来理解互斥事件,对立事件及互斥事件的概率加法公式:设事件A 与B 它们所含的结果组成的集合分别是A ,B 。
若事件A 与B 互斥,即集合Φ=⋂B A ,若事件A 与B 对立,即集合Φ=⋂B A 且U B A =⋃,也即:B C A U =或A C B U =,对互斥事件A+B (即事件A 发生或事件B 发生)即可理解为集合B A ⋃。
有等可能事件的概率公式知:)()()()()()()()(U card B card A card U card B A card U card B A card B A P +=⋃=+=+=)()(U card A card +)()(U card B card =P (A )+P (B )二、重点难点: 互斥事件的概念和互斥事件的概率加法公式是重点;互斥事件、对立事件的概念及二者的联系与区别及应用是难点。
三、思维方式: 在求某些稍复杂的事件的概率时通常有两种方法:一是将所求事件的概率分化成一些彼此互斥的事件的概率的和;二是先求出此事件的对立事件的概率,即用逆向思维法。
正难则反的思想。
四、特别注意:互斥事件、对立事件的区别。
五、例题:例1: ①从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( C )A.至少有1个白球,都是白球 B 至少有1个白球,至少有1个红球, C 恰有1个白球,恰有2个白球, D 至少有1个白球,都是红球。
②在所有的两未数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( C )A65 B 54 C 32 D 21 ③从编号为1,2,3,4,5,6,7,8,9,10的十个球中,任取5个球,则这5个球的编号之和为奇数的概率是 (21)④8个篮球队中有2个强队,先任意将这8个队分成两个组(每组4个队)进行比赛,则这两个强队被分在一个组内的概率是 ;解法一:2个强队分在同一组,包括互斥的两种情况:2个强队都分在A 组和都分在B 组。
2个强队都分在A 组,可看成“从8个队中抽取4个队,里面包括2个强队”这一事件,其概率为4826C C ;2个强队都分在B 组,可看成“从8个队中抽取4个队,里面没有强队”这一事件,其概率为4846C C ;因此2个强队分在同一个组的概率为7348464826=+=C C C C P 。
解法二:“2个强队分在同一个组”这一事件的对立事件“2个组中各有一个强队”,而两个组中各有一个强队,可看成“从8个队中抽取4个队,里面恰有一个强队”,这一事件,其概率为483612C C C ,因此2个强队分在同一个组的概率为:737411483612=-=-=C C C P 。
思维点拨:正确理解互斥事件 、对立事件的概念。
例2:(1)今有标号为1,2,3,4,5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封,每个信封装入一封信,试求至少有两封信配对的概率 。
解:设恰有2封信配对为事件A ,恰有3封信配对为事件B ,恰有4封信(也即5封信配对)为事件C ,则“至少有2封信配对”事件等于A+B+C 且A 、B 、C 两两互斥。
55553555251)(,)(,2)(A C P A C B P A C A P ==⋅= , ∴所求概率为12031)()()(=++C P B P A P 答:至少有两封信配对的概率是12031。
(2)有三个人,每个人都以相同的概率被分配到四个房间中的每一间,求①三个人都被分配到同一个房间的概率; ②至少有二人分配到同一房间的概率。
解:①1614444)(=⨯⨯=A P 。
②8541)(1)(334=-=-=A B P B P思维点拨:运用互斥事件的概率加法公式解题时, 首先要分清事件是否互斥,同时要学会把一个事件分拆为几个互斥事件,做到不重不漏。
例3:(2004年合肥模拟试题)在袋中装20个小球,其中彩球有n 个红色、5个蓝色、10个黄色,其余为白球。
求:(1)如果从袋中取出3个都是相同颜色彩球(无白色)的概率是2,11413≥n 且,那么,袋中的红球共有几个?(2)根据(1)中的结论,计算从袋中任取3个小球至少有一个是红球的概率。
解:(1)取3个球的种数为.1140320=C设“3个球全为红色”为事件A ,“3个球全为蓝色”为事件B ,“3个球全为黄色”为事件C1140120)(,114010)(32031032035====C C C P C C B P A 、B 、C 为互斥事件,),()()()(C P B P A P C B A P ++=++∴即230)(1140120114010)(11413≤⇒=⇒++=个球全为红球的个数取A P A P 。
.2,2=≥n n 故又(2)记“3个球中至少有一个是红球”为事件D ,则-D 为“3个球中没有红球”。
9527C C C C C D P 95271)(1)(3201182221812320318=+)=(或=-=-=-C CD P D P 。
思维点拨:在求用“至少”表达的事件的概率时,先求其对立事件的概率往往比较简便。
练习:变式:袋中有5个白球,3个黑球,从中任意摸出4个,求下列事件发生的概率: (1) 摸出2个或3个白球; (2)至少摸出1个白球;(3)至少摸出1个黑球。
解:从8个球中任意摸出4个共有48C 种不同的结果。
记从8个球中任取4个,其中恰有1个白球为事件A 1,恰有2个白球为事件A 2,3个白球为事件A 3,4个白球为事件A 4,恰有i 个黑球为事件i B ,则(10摸出2个或3个白球的概率:76)()()(48133548232532321=+=+=+=C C C C C C A P A P A A P P ; (2)至少摸出1个白球的概率: 101)(142=-=-=B P P ;(3)至少摸出1个黑球的概率:14131)(1484543=-=-=C C A P P例4:9个国家乒乓球队中有3个亚洲国家队,抽签分成甲、乙、丙三组(每组3队)进行比赛,试求:(1)三个组各有一个亚洲队的概率;(2)至少有两个亚洲队分在同一组的概率。
解:9个队分成甲、乙、丙三组有333639C C C 种等可能的结果(1) 三个亚洲国家队分给甲、乙、丙三组,每组一个队有33A 种分法,其余6个队平分给甲、乙、丙三组有222426C C C 种分法。
故三个组各有一个亚洲国家队的结果有33A 222426C C C 种,所求概率.289)(33363922242633==C C C C C C A A P 答:三个组各有一个亚洲国家队的概率是.289(2) 事件“至少有两个亚洲国家队分在同一组”是事件“三个组各有一个亚洲国家队”的对立事件,∴所求概率为1-2819289=。
答:至少有两个亚洲国家队分在同一组的概率是2819。
思维点拨:要能正确熟练地掌握排列、组合的有关计算。
例5、从一副52张的扑克牌中任取4张,求其中至少有两张牌的花色相同的概率。
解法一:任取四张牌,设至少有两张牌的花色相同为事件A ;四张牌是同一花色为事件B 1;有3张牌是同一花色,;另一张牌是其他花色为事件B 2;每两张牌为同一花色为事件B 3;只有两张牌为同有花色,另两张牌为不同花色为事件B 4。
可见B 1、B 2、B 3、B 4彼此互斥,且A= B 1+B 2+B 3+B 4。
45211313313142452413141)(,)(C C C C C B P C C C B P == 452211323213144452213213243)()()(C C C C C B P C C C C B P == 8945.0)()()()()(4321=+++=∴B P B P B P B P A P 。
解法二:由解法一知,A 为取出的四张牌的花色各不相同,,)()(4524113C C A P = 8945.0)(1)(1)(4524113=-=-=∴C C A P A P 。
答:至少有两张牌的花色相同的概率是0.8945。
思维点拨:直接计算符合条件的事件个数较繁时,可间接地先计算对立事件的个数,求得对立事件的概率,再求出符合条件的事件的概率。
三、课堂小结1. 互斥事件不一定是对立事件、对立事件一定是互斥事件。
在求用“至少”表达的事件的概率时,先求其对立事件的概率往往比较简便。
2. 把一个复杂事件分解成几个彼此互斥的事件时,要做到不重复不遗漏。
3. 互斥事件的概率加法公式利用互斥事件的概率加法公式来求概率,首先要确定事件彼此互斥,然后求出事件分别发生的概率,再求其和。
在具体计算中,利用)(1)(A P A P -=或)(1)(A P A P -=常可使概率的计算简化。
四.作业布置:教材P186页闯关训练。