抛物线经典性质总结
高中抛物线知识点总结

高中抛物线知识点总结抛物线是高中数学中的一个重要概念,它有着广泛的应用和深厚的理论基础。
在高中数学中,我们学习了抛物线的方程、性质、图像以及与二次函数、解析几何等知识的关联。
本文将对高中抛物线的相关知识进行总结和梳理,以帮助我们更好地理解和应用这一概念。
一、抛物线的定义和基本性质抛物线是指平面上到定点距离与到定直线距离相等的动点所形成的轨迹。
其方程通常表示为y=ax^2+bx+c,其中a、b、c为常数,a≠0。
抛物线具有以下基本性质:1. 它的对称轴是与x轴垂直的直线,过顶点。
2. 它的顶点是抛物线的最低点或最高点。
3. 它开口的方向取决于a的值,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
4. 它的图像关于对称轴对称。
二、抛物线的图像与方程通过对抛物线的方程进行分析,我们可以得到一些关于抛物线图像的信息。
1. 抛物线的顶点坐标可以通过求解方程y=ax^2+bx+c的极值点(即导数为0的点)得到。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(x)。
2. 当a>0时,抛物线的图像开口向上,极值点是最低点;当a<0时,抛物线的图像开口向下,极值点是最高点。
3. 当抛物线的方程为y=ax^2+bx+c时,通过对y的值进行分析我们可以得到抛物线的开口大小和位置信息。
三、抛物线与二次函数的关系抛物线是二次函数的特殊图像,二次函数的一般形式为y=ax^2+bx+c。
通过对比抛物线与二次函数的方程,我们可以得到它们之间的关系。
1. 抛物线与二次函数的图像形状相同,二次函数可以表示抛物线的图像;2. 二次函数告诉我们抛物线的方程形式,可以通过方程的系数判断抛物线打开的方向和大小,掌握二次函数的性质有助于理解和研究抛物线。
四、抛物线与解析几何的关系抛物线在解析几何中有重要的应用和意义,特别是在平面直角坐标系中。
抛物线的方程可以表示平面上的曲线,通过解析几何的相关知识我们可以分析抛物线的性质和特点。
抛物线经典性质总结30条

抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
抛物线经典性质总结30条

抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r '''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠=;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为22211221212),(,),2,,2y Q y Q y y y t y y p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AFFB x x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);AB 22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22ppA B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--1tan tan 1AF APAF AP k k FAP PAA k k -∴∠-∠=+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。
抛物线性质

抛物线性质抛物线是一种二次函数,其方程为y=ax²+bx+c,其中a、b、c都是实数,且a≠0。
抛物线有以下几个性质:1. 对称性抛物线有一条对称轴,对称轴垂直于x轴,过抛物线的顶点。
对称轴的方程为x=-b/2a。
抛物线对称于其对称轴。
对于每个点(x,y),如果它在抛物线上,则它关于对称轴的对称点也在抛物线上。
2. 正负性当a>0时,抛物线开口向上,形状像一个U形。
当a<0时,抛物线开口向下,形状像一个倒U形。
3. 零点抛物线与x轴的交点称为抛物线的零点或根。
当抛物线与x轴有两个交点时,抛物线有两个零点。
当抛物线与x轴只有一个交点时,抛物线只有一个零点。
4. 额定值抛物线最高点的y坐标称为抛物线的额定值。
抛物线的额定值等于其顶点的纵坐标。
5. 最大值/最小值如果a<0,则抛物线的最大值等于其额定值,最小值为负无穷。
如果a>0,则抛物线的最小值等于其额定值,最大值为正无穷。
6. 焦点抛物线有一点称为焦点,它是抛物线与其对称轴的交点的一半距离处。
焦点的x坐标为-b/2a,y坐标为(c-b²/4a)。
7. 直线的切线如果抛物线在某一点处存在一条斜率,则这条斜率对应于该点处的切线。
对于抛物线y=ax²+bx+c,其导数为dy/dx=2ax+b。
因此,在x处的切线斜率为2ax+b。
8. 拐点抛物线的拐点是曲线从凸部到凹部或从凹部到凸部的点。
拐点的位置为(-b/2a,c-b²/4a)。
9. 化简抛物线的标准形式抛物线方程y=ax²+bx+c可以化简为y=a(x-h)²+k的标准形式,其中(h,k)为抛物线的顶点。
要将抛物线方程转换为标准形式,可以首先通过完成平方的方法来消除x的一次项:y=a(x²+(b/a)x)+c。
然后,将完全平方的形式应用于括号内的表达式:y=a(x²+(b/a)x+(b/2a)²-(b/2a)²)+c。
抛物线性质和知识点总结

抛物线性质和知识点总结1. 抛物线的定义和基本形式抛物线是指平面上满足二次方程y=ax^2+bx+c(a≠0)的曲线。
其基本形式是y=ax^2+bx+c,其中a、b、c是常数,称为抛物线的系数。
a决定抛物线的开口方向,当a>0时抛物线开口朝上,当a<0时抛物线开口朝下;b决定抛物线的位置,c决定抛物线与y轴的交点。
2. 抛物线的顶点和对称轴抛物线的顶点是抛物线的最低点(开口向上)或者最高点(开口向下),对于标准形式的抛物线y=ax^2+bx+c,它的顶点坐标为(-b/2a, c-b^2/4a)。
抛物线的对称轴是通过顶点并垂直于x轴的直线,对称轴方程为x=-b/2a。
3. 抛物线的焦点和直线方程抛物线的焦点是到抛物线上所有点的距离到抛物线的对称轴的距离相等的点,焦点的坐标为(-b/2a, 1-1/4a)。
抛物线的直线方程是y=mx+n,其中m和n是常数,直线与抛物线有两个交点。
当直线与抛物线相切时,两个交点重合。
当直线与抛物线没有交点时,这个抛物线不与这条直线相交。
4. 抛物线的焦距和离心率抛物线的焦距是抛物线的顶点到焦点的距离,焦距的大小是2|a|;抛物线的离心率是焦距与顶点到焦点的距离的比值,离心率的大小是1。
5. 抛物线的性质抛物线的性质是抛物线的特征,对于抛物线y=ax^2+bx+c,它的性质包括:a)抛物线的开口方向是由a的符号决定的,a>0时开口向上,a<0时开口向下;b)抛物线的顶点在对称轴上;c)焦点在对称轴上的顶点的上方,离心率等于1;d)与y轴的交点是常数项c;e)抛物线的焦点到直线方程的距离等于抛物线到直线方程的对称轴的距离。
6. 抛物线的知识点抛物线的知识点是在解决抛物线问题时需要掌握的知识,包括:a)抛物线的标准形式、一般形式、顶点形式和焦点形式的相互转化;b)抛物线的顶点、对称轴、焦点和直线方程的求法;c)抛物线与直线的交点和相切点的求法;d)抛物线的焦距和离心率的求法;e)抛物线的方程的实际应用问题。
抛物线的几何性质

一、抛物线的范围: y2=2px y
P(x,y)
•X 0
o
p F ( ,0 ) 2
x
•y取全体实数
二、抛物线的对称性 y2=2px
y
M(x,y)
以-y代y方程不变,所以抛物线 关于x轴对称.我们把抛物线的 对称轴叫做抛物线的轴.
o
F(
p ,0 ) 2
x
M1(x,-y)
三、抛物线的顶点 y2=2px
24cm
o
F
P
x
B
10cm
例3已知点A在平行于y轴的直线L上,且L与x轴的 交点为(4,0)。动点p满足 OA OP y 求P点的轨迹方程,并说明轨迹的形状。 分析:设P( x,y)则A(4,y) OA OP ∴ OA.OP 0
( 。 ∴ x,y) (4,y)=0 L P A
(4,0) x
请具体说出开口方向,焦点坐标,准线方程。
四种抛物线的标准方程的几何性质的对比
好好学习
Y
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点,只有一个顶 点.
四、抛物线的离心率 y2=2px
Y
X
所有的抛物 线的离心率 都是 1
抛物线上的点与焦点的距离和它到准线的距离的 比,叫做抛物线的离心率,由抛物线的定义可知
e 1
五、焦半径
|PF|=x0+p/2
y
P
O
பைடு நூலகம்
F
x
例1:已知抛物线以x轴为轴,顶点式坐标原点且开口 向右,又抛物线经过点M 4,2 3 ,求它的标准方程。
分析:根据已知条件,可以设抛 物线的方程为
Y
抛物线知识点总结

抛物线知识点总结
抛物线是一种常见的二次函数图像,其形状像一个开口朝下的弧形。
在物理学、数学、工程学等领域中都有广泛的应用。
本文将从定义、性质、公式、应用等方面对抛物线进行总结。
一、定义
抛物线是平面内到定点F的距离等于到定直线l的距离的点的轨迹。
其中,定点F称为焦点,定直线l称为准线。
抛物线的形状是一个开口朝下的弧形,其对称轴与准线重合。
二、性质
1. 抛物线的对称轴与准线重合,且垂直于准线。
2. 抛物线的焦点到顶点的距离等于顶点到准线的距离。
3. 抛物线的顶点是其最高点,也是其对称轴与准线的交点。
4. 抛物线的两个分支是无限延伸的,但是它们的开口方向相反。
5. 抛物线的标准方程为y=ax²+bx+c,其中a≠0。
三、公式
1. 抛物线的标准方程为y=ax²+bx+c,其中a≠0。
2. 抛物线的顶点坐标为(-b/2a,c-b²/4a)。
3. 抛物线的焦距为1/4a。
4. 抛物线的准线方程为y=k,其中k为抛物线的顶点纵坐标。
四、应用
1. 物理学中,抛物线可以用来描述自由落体运动、抛体运动等。
2. 工程学中,抛物线可以用来设计拱形桥、抛物线反射器等。
3. 数学中,抛物线是二次函数的一种特殊情况,可以用来研究二次函数的性质。
4. 生活中,抛物线可以用来设计滑道、滑雪道等娱乐设施。
抛物线是一种常见的二次函数图像,具有广泛的应用价值。
通过对抛物线的定义、性质、公式、应用等方面的总结,可以更好地理解和应用抛物线。
超详细抛物线知识点归纳总结

引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
抛物线性质总结

抛物线性质总结一、抛物线的定义和基本性质抛物线,是数学中一种经典的曲线。
它具有许多令人着迷的性质,在几何学和物理学等领域都有广泛的应用。
本文将总结抛物线的一些基本性质。
抛物线可由以下二次方程表示:y = ax² + bx + c。
其中a、b、c为实数,且a不等于0。
根据该方程,我们可以得出以下基本性质。
1. 对称性:抛物线是关于y轴对称的。
也就是说,对于任意点(x, y)在抛物线上,横坐标为-x的点(-x, y)同样也在抛物线上。
2. 顶点和焦点:抛物线的图像上存在一个顶点,其横坐标为-x₁ = -b / (2a),纵坐标为y₁ =c - b² / (4a)。
顶点是抛物线的最低点(对于a>0)或最高点(对于a<0)。
此外,抛物线还有一个重要的性质,就是焦点。
焦点是一个点,它到抛物线上任意一点的距离与该点到抛物线的直线称为“准线”的距离相等。
焦点的横坐标为-x₂ = -b / (2a),纵坐标为y₂ = c - (b² - 1) /(4a)。
3. 对称轴:抛物线的对称轴是过顶点且垂直于x轴的直线。
对称轴的方程为x = -b / (2a)。
对于对称轴上任意一点(x, y),其与顶点的距离等于该点到抛物线的任意一点的距离。
二、抛物线的拓展性质除了上述基本性质外,抛物线还有一些拓展性质,值得进一步探讨。
1. 切线与法线:沿着抛物线上的任意一点(x₀, y₀)绘制一条直线,使其与抛物线相切。
这条直线称为该点的切线。
切线的斜率等于抛物线在该点的导数。
类似地,通过抛物线上一点(x₀, y₀)作一个垂直于切线的直线,该直线称为该点的法线。
法线的斜率等于切线的负倒数。
2. 点到抛物线的距离:给定一个点(x, y)和一个抛物线,我们可以求出该点到抛物线的最短距离。
这个最短距离等于点到抛物线的准线的距离。
要计算点(x, y)到抛物线的最短距离,我们可以使用以下公式:d = |y - (ax² + bx + c)| / √(a² + 1)。
抛物线常用性质总结

结论一:若AB是抛物线y 2pXp 0)的焦点弦(过焦点的弦),且Ax,%), Bx?,y2),则:2P 2X|X2 —, yy2 P。
4结论二:已知直线AB是过抛物线y 2px (p 0)焦点F,求证:1 1 =2|AF p结论三:(1 )若AB是抛物线y2 2pXp 0)的焦点弦,且直线AB的倾斜角为a,则AB 2p(%工0 )。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
sin 2结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线 AB 是过抛物线 y 2px(p 0)焦点F ,求证:11为定值。
|AF| |BF|证明:设A(X i , y i ), B(x ?, 丫2),由抛物线的定义知: AF X"1号,BFX ?号,又2AF + BF = AB ,所以 X " + x 2 = AB -p ,且由结论一知:x-|X 2 —。
4贝y : 1 1 |AF BFABAB=AB2|AF BFAF BF(X 1 即2 舟)住弘 xj E 云卫(AB p)云 p2 2 2 4 4 2 4(常数证明:结论四: • / PFM= / FMP• /AFP= / AFM+ / PFM= / FMA+ / FMP= / PMA=9 0 °,. FP 丄 AB已知AB 是抛物线 2y 2px(p 0)的过焦点F 的弦,求证:(1) 以AB 为直径的圆与抛物线的准线相切。
(2)分别过B 做准线的垂线,垂足为M 、N ,求证:以MN 切。
证明:(1)设AB 的中点为Q,过A 、Q 、 垂足分别为M 、P 、N ,连结AP 、BP 。
B 向准线I 作垂线, 由抛物线定义:AM AF , BN 1 BN) -(AF2•••以AB 为直径为圆与准线I 相切 (2)作图如(1),取MN 中点P,连结BF , • QP|」(AM2••• AM • MPBF2AB,PF 、 MF 、 AF , AM // OF,... / AMF= / AFM ,/ MFO 。
抛物线常用性质总结

抛物线常用性质总结抛物线是二次方程的图像,其常见形式为y = ax^2 + bx + c,其中a,b,c是实数常数且a不等于零。
抛物线有许多重要的性质和特点,以下是一些常用的总结和解释。
1. 对称性:抛物线具有轴对称性。
如果抛物线的方程是y = ax^2 + bx + c,轴对称线的方程将是x = -b/2a。
这意味着抛物线关于垂直于x 轴、通过x = -b/2a的直线对称。
2.最高点或最低点:如果a大于零,则抛物线开口向上,且没有最大值。
如果a小于零,则抛物线开口向下,且没有最小值。
抛物线的顶点或底点即为其最高或最低点。
3. 判别式:抛物线的判别式可以帮助我们确定它的性质。
判别式D = b^2 - 4ac表示了二次方程的解的性质。
如果D大于零,则抛物线与x 轴有两个交点,说明它有两个实根。
如果D等于零,则抛物线与x轴有一个交点,说明它有一个实根。
如果D小于零,则抛物线与x轴没有交点,说明它没有实根。
4.对于抛物线的每一个点(x,y),其关于轴对称线的对称点为(2p-x,y),其中p为抛物线上任意一点的横坐标。
这一性质可以用来确定抛物线上其他点的坐标。
5.零点:抛物线与x轴的交点称为零点或根。
零点可以通过解二次方程来求得。
如果判别式D大于零,那么二次方程有两个不同的实根;如果判别式D等于零,那么二次方程有一个实根;如果判别式D小于零,那么二次方程没有实根。
6.方向:抛物线的方向由二次项的系数a决定。
如果a大于零,抛物线开口向上;如果a小于零,抛物线开口向下。
7.垂直于x轴的焦点与准线:焦点与准线是抛物线的另外两个重要点。
焦点的坐标为(p,q+1/4a),其中p=-b/2a为抛物线的对称轴上任意一点的横坐标,q=c-b^2/4a为抛物线的对称轴上任意一点的纵坐标。
准线的方程为y=c-1/4a。
8.对称性性质的应用:由于抛物线的对称性,我们可以通过求解对称点的坐标来简化计算。
例如,如果我们已经求得抛物线上一个点(x,y)的坐标,那么我们也可以直接求解它关于对称轴的对称点(2p-x,y)。
抛物线的基本性质

抛物线的基本性质抛物线的概念抛物线是一种二次函数,具有单曲线的形状,它是由焦点到直线的距离相等所形成的曲线。
1.对称性。
抛物线的形状具有二次函数的对称性:它与y轴的对称轴称为抛物线的对称轴,对称轴的方程为x=-p,其中p为抛物线的焦距(focus)。
2.极值。
抛物线的平移和缩放只会影响它的大小,而不会改变它的形状,因此它没有最大值和最小值。
但如果我们要探讨抛物线的局部极值,我们需要把抛物线垂直于x轴的高度视为y值,因为它是抛物线的函数式3.判定方程。
我们可以使用方程y=ax^2+bx+c判定一个二次函数是否为抛物线:a>0,则函数是向上的抛物线a=0,则函数是一条水平直线4.交点。
如果两个抛物线相交,它们在交点上的切线相互垂直。
5.求导。
抛物线的导数是二次函数的一阶导数。
要求抛物线的导数,我们只需要将y=ax^2+bx+c带入虚拟的求导公式即可,就像求其他的导数一样6.焦距和焦点。
焦距是定点和抛物线直线之间的距离。
焦点是定点在抛物线上的投影点,它也是抛物线的对称点7.开口方向。
抛物线可以有向上和向下的方向。
当a为正数时,抛物线是向上的,当a为负数时,抛物线是向下的。
这个方向取决于二次函数的条件限制。
8.极坐标方程。
抛物线的极坐标方程是r=2a/(1+cosθ),其中a是焦距。
极角是一个内部角度,以X轴为起点,并按顺时针方向旋转9.完备方程。
抛物线的完备方程是y=(x-h)^2+k,它是标准方程2ー(x-h)=4a(y-k)的特殊形式。
它们都携带了抛物线的相关信息。
10.光学性质。
抛物线是光的不少经典聚光器的基础,包括新视野太空探测器的天线、著名望远镜哈勃、汽车的头灯等等。
结论抛物线是一种具有很多独特性质的曲线,它的对称性、极值、焦距、光学性质等方面都是其研究的重要方向之一。
无论是物理学、数学、工程学等领域,抛物线都有广泛应用,它的性质和特色使它成为我们理解和解决很多问题的重要工具。
抛物线的简单几何性质(综合)

外切
总结词
当抛物线的焦点在圆外,且圆心在抛物线上 时,抛物线与圆相切于两点,即外切。
详细描述
外切的情况发生在抛物线的焦点位于圆心所 在直线的另一侧时。此时,圆心到抛物线准 线的距离等于圆的半径,因此抛物线与圆相 切于两点。
相交
总结词
当抛物线的焦点在圆内或圆在抛物线上时, 抛物线与圆有两个交点,即相交。
抛物线的简单几何性质(综合)
目 录
• 抛物线的定义与基本性质 • 抛物线的对称性 • 抛物线的几何变换 • 抛物线与直线的交点 • 抛物线与圆的位置关系 • 抛物线的实际应用
01 抛物线的定义与Байду номын сангаас本性质
定义
01
抛物线是一种二次曲线,其方程为 $y = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a neq 0$。
关于原点的对称性
总结词
抛物线关于原点的对称性表现为,将抛物线绕原点旋转180度,其形状和位置 保持不变。
详细描述
当抛物线绕原点旋转180度时,抛物线的开口方向发生改变,顶点的位置也发生 改变,但抛物线的形状和位置保持不变,即关于原点对称。
03 抛物线的几何变换
平移
总结词
平移不改变抛物线的形状和开口方向,只是沿垂直或水平方向移动抛物线。
联立方程法
将抛物线的方程与直线的 方程联立,解出交点的坐 标。
判别式法
利用二次方程的判别式来 判断直线与抛物线是否有 交点,以及交点的个数。
参数方程法
利用抛物线的参数方程, 将参数表示为交点的坐标。
交点与弦长
弦长公式
根据抛物线与直线的交点坐标,利用弦长公式计算弦长。
最全抛物线曲线性质总结

最全抛物线曲线性质总结抛物线是一种常见的二次曲线,具有很多特性和性质。
本文将总结抛物线的最全性质。
1. 定义抛物线是平面上所有到定点的距离与到定直线的距离相等的点所组成的曲线。
2. 方程抛物线的一般方程为:y = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
3. 性质以下是抛物线的一些重要性质:对称性- 抛物线关于纵轴对称;- 如果a为正数,则抛物线开口朝上;如果a为负数,则抛物线开口朝下。
零点- 抛物线与x轴交点称为抛物线的零点;- 若抛物线有1个零点,则其为切线,即抛物线与x轴相切;- 若抛物线有2个零点,则其开口朝上;- 若抛物线无零点,则其不与x轴相交。
顶点- 抛物线的顶点即为最高点或最低点;- 顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)为抛物线在顶点横坐标处对应的纵坐标。
平行于坐标轴- 若b等于0,则抛物线与y轴平行;- 若a等于0,则抛物线与x轴平行。
开口方向- 由抛物线的系数a来决定;- 若a大于0,则抛物线开口朝上;- 若a小于0,则抛物线开口朝下。
最值- 若a大于0,则抛物线的最小值为顶点的纵坐标;- 若a小于0,则抛物线的最大值为顶点的纵坐标。
弧长- 抛物线弧长可由积分求解,公式为:L = ∫(1 + (dy/dx)^2)^(1/2) dx,其中dy/dx为抛物线方程的导数。
以上是抛物线的一些常见性质和特点。
对于理解和应用抛物线非常有帮助。
希望本文对您有所启发和帮助。
抛物线常用性质总结

抛物线常用性质总结抛物线是数学中的一种曲线形状,其方程一般为y=ax^2+bx+c,其中a、b、c为常数。
抛物线在几何学、物理学、工程学等领域中都具有广泛的应用。
下面将总结抛物线的一些常用性质。
1.抛物线的形状:抛物线是一种开口向上或向下的曲线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2.对称性:抛物线与y轴对称,其顶点坐标为(-b/2a,c-b^2/4a)。
抛物线也可以与x轴对称,其对称轴与x轴垂直,并通过顶点。
3.焦点和准线:抛物线的焦点F的坐标为(-b/2a,c-b^2/4a+1/4a),准线的方程为y=(c-b^2/4a)-1/4a。
4.抛物线的平移:抛物线的平移是通过调整方程中的常数b和c来实现的。
平移后的抛物线与原抛物线具有相同的形状,但位置有所变化。
5. 零点:抛物线的零点即为方程的解,可以通过求解ax^2+bx+c=0来得到。
根据一元二次方程的解的性质,当b^2-4ac>0时,抛物线与x轴有两个交点;当b^2-4ac=0时,抛物线与x轴有一个交点;当b^2-4ac<0时,抛物线与x轴无交点。
6.最值:抛物线的最值即为顶点的纵坐标。
当a>0时,抛物线的最小值为c-b^2/4a;当a<0时,抛物线的最大值为c-b^2/4a。
7.切线和法线:在抛物线上的任意一点,其切线的斜率为抛物线在该点的导数值。
切线与抛物线的切点的坐标可以通过求解方程组来得到。
在抛物线上的任意一点,其法线与切线垂直。
8.弧长:抛物线的弧长表示为y=x^2的积分。
计算抛物线上两点间的弧长可以通过积分计算得到。
9.面积:抛物线与y轴之间的面积可以通过求解抛物线和y轴之间的定积分来计算得到。
抛物线的其中一段与x轴之间的面积可以通过求解抛物线和x轴之间的定积分来计算得到。
10.抛物线的应用:抛物线在现实生活中有很多应用。
例如,在物理学中,抛物线可以描述物体的弹道;在工程学中,抛物线可以描述桥梁、拱门等结构的外形;在经济学中,抛物线可以描述成本、产量等指标的关系。
最全抛物线曲线知识点总结

最全抛物线曲线知识点总结抛物线是高中数学中经常讨论的曲线之一,具有很多重要的性质和应用。
本文将总结抛物线曲线的相关知识点,帮助读者更好地理解和应用抛物线。
1. 抛物线的定义抛物线是由平面上到定点(焦点)和一条直线(准线)的距离相等的点构成的曲线。
它的数学表达式通常为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
2. 抛物线的性质- 抛物线的对称轴:对称轴是准线的垂直平分线,方程为:x = -b/(2a)。
- 抛物线的焦点:焦点是到定点最短距离的点,焦点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的顶点:顶点是抛物线的最高(或最低)点,顶点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线的单调性:当a > 0时,抛物线在对称轴的左侧单调递增,在对称轴的右侧单调递减;当a < 0时,抛物线在对称轴的左侧单调递减,在对称轴的右侧单调递增。
3. 抛物线的应用抛物线在现实生活中有很多应用,例如:- 物体的自由落体运动:自由落体的运动轨迹是一个抛物线。
- 抛射运动:抛掷物体的运动轨迹也是一个抛物线。
- 抛物面反射:光线在抛物面上反射的规律。
4. 抛物线的变形抛物线有一些常见的变形形式,例如:- 平移:在原抛物线的基础上沿 x 轴或 y 轴方向进行平移。
- 缩放:改变抛物线的 a、b、c 的值,实现抛物线的扁平化或拉长。
以上是抛物线曲线的一些基本知识点总结,希望本文能够帮助读者更好地理解和应用抛物线。
如需深入研究,建议参考相关的数学教材和参考资料。
参考文献:。
抛物线性质总结

抛物线性质总结
抛物线是广泛应用在数学中的一条函数曲线,其涉及到诸多的基本性质,常用的有抛物线的根性,关系式,定积分,交点,端点,极值等等。
抛物线的根性:抛物线的轴对称,一般方程通常有两个不同的根,或是称之为把抛物线绳子或扳手弯曲两次;
抛物线的关系式:当方程是幂函数抛物线式时,可以表示成y=ax²+bx+c,a>0,其中a是抛物线下凹,b和c是顶点x和y的坐标,b和c也是抛物线的转折点;
抛物线的定积分:抛物线的定积分可以表示成f(x)=ɑx+1/2∫g(u) du,其中g(u)为定义域内的函数。
抛物线的定积分就是做抛物线上每两个任意点间的积分;
抛物线的交点:抛物线与其他函数交点,只要求解其他函数与抛物线方程的解、公共解得到;
抛物线的端点:抛物线的端点可以通过关系式求出,为左端点x=-b/2a,y=f(-b/2a),右端点x=b/2a,y=f(b/2a)。
抛物线的极值:抛物线的极值可以通过求解关系式x=-b/2a,得出结论,抛物线的极值为y=f(-b/2a)。
以上就是抛物线的总体性质,由此可见抛物线在数学和几何中起着重要作用,由此也可以解决许多学术问题,正如此抛物线总结中所述,受到学术界的广泛认可。
抛物线集合性质

探究1 过焦点的直线具有上述性质, 反之,若直线AB与抛物线 y2 2 px 的两个交点A,B的纵坐标为 y1, y2 , 且 y1 y2 p2 ,那么直线AB是否经 过焦点F 呢?
探究2 既然过抛物线焦点的直线与 其相交,交点的纵坐标的乘积是一 个定值,那么过抛物线对称轴上其 他任意一定点,是否也有这个性质 呢?
轨迹方程.
探究5 设抛物线 y2 2 px 上两动点
A( x1, y1 ), B( x2 , y2 ) ,O为坐标原点,
OA⊥OB,则直线AB是否过定点? 求AB中点P的轨迹方程.
探究6 设抛物线 y2 2 px 上两动点
A( x1, y1 ), B( x2 , y2 ),M为该抛物线
上一定点,且MA⊥MB,则直线AB 是否过定点?
设计意图:培养学生研究数学问题 的一般思想方法,一是考虑原命题 的逆命题是否成立;二是考虑能否 把原命题进行一般推广;三是考虑 从原命题条件中还能推出什么结论? 四是考虑把原命题进行适当变式进 行拓展。
问题 (2004年北京卷理)
过抛物线 y2 2 px( p 0上) 一定点 P(x0, y0 )(y0 0,) 作两条直线分别 交抛物线于A(x1, y1), B(x2, y2.)当PA与
PA与PB的倾斜角互补.y0
变式2 设动直线AB:y=-x+b与抛物
线 y2 8x相交于两点A( x1, y1 ), B( x2 ,,y2 ) 问在直线MN:x=2上能否找到一定
点P(坐标与b 的值无关),使得直
线PA与PB的倾斜角互补?
变式3 如图,抛物线 y2 2 px( p 0), 过点P(1,0)作斜率为k的直线l交抛物 线于A、B两点,A关于x轴的对称点 为C,直线BC交x轴于Q点,当k变化 时,探究点Q是否为定点?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线焦点弦长AB12()x x p ++12()x x p -++12()y y p ++12()y y p -++焦点弦AB 的几条性质11(,)A x y 22(,)B x y以AB 为直径的圆必与准线l 相切假设AB 的倾斜角为α,则22sin pAB α= 假设AB 的倾斜角为α,则22cos pAB α= 2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 切线 方程00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+1. 直线与抛物线的位置关系 直线,抛物线,,消y 得:〔1〕当k=0时,直线l 与抛物线的对称轴平行,有一个交点; 〔2〕当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)假设直线与抛物线只有一个公共点,则直线与抛物线必相切吗?〔不一定〕 (4)2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线,)0( p① 联立方程法:ox ()22,B x y Fy ()11,A x y⎩⎨⎧=+=pxy bkx y 22⇒0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出bx x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比方 a. 相交弦AB 的弦长2122122124)(11x x x x k x x k AB -++=-+=ak ∆+=21 或 2122122124)(1111y y y y k y y k AB -++=-+=ak ∆+=21 b. 中点),(00y x M , 2210x x x +=, 2210y y y += ② 点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得1212px y = 2222px y =将两式相减,可得)(2))((212121x x p y y y y -=+-2121212y y px x y y +=--a. 在涉及斜率问题时,212y y pk AB +=b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,021*******y py p y y p x x y y ==+=--, 即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,假设直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有px p x p x x k AB 0021222==+=〔注意能用这个公式的条件:1〕直线与抛物线有两个不同的交点,2〕直线的斜率存在,且不等于零〕一、抛物线的定义及其应用例1、设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)假设B (3,2),求|PB |+|PF |的最小值.例2、(2011·山东高考)设M (x 0,y 0)为抛物线C :x 2=8y 上一 点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)二、抛物线的标准方程和几何性质例3、抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,假设|BC |=2|BF |,且|AF |=4,则△AKF 的面积是 ( ) A .4 B .3 3 C .4 3D .8例4、过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A 、B ,交其准线l于点C ,假设|BC |=2|BF |,且|AF |=3则此抛物线的方程为 ( ) A .y 2=32x B .y 2=9x C .y 2=92x D .y 2=3x三、抛物线的综合问题例5、(2011·江西高考)已知过抛物线y2=2px(p>0)的焦点,斜率为22的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,假设OC=OA+λOB,求λ的值.例6、(2011·湖南高考)(13分)已知平面内一动点P到点F(1,0)的距离与点P 到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l 1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求AD·EB的最小值例7、已知点M(1,y)在抛物线C:y2=2px(p>0)上,M点到抛物线C的焦点F的距离为2,直线l:y=-12x+b与抛物线C交于A,B两点.(1)求抛物线C的方程;(2)假设以AB为直径的圆与x轴相切,求该圆的方程.练习题1.已知抛物线x2=ay的焦点恰好为双曲线y2-x2=2的上焦点,则a等于( )A.1 B.4 C.8 D.162.抛物线y=-4x2上的一点M到焦点的距离为1,则点M的纵坐标是 ( )A.-1716B.-1516C.716D.15163.(2011·辽宁高考)已知F是拋物线y2=x的焦点,A,B是该拋物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为 ( )A.34B.1 C.54D.744.已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A.相离B.相交 C.相切D.不确定5.(2012·宜宾检测)已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于A、B两点,则||FA|-|FB||的值等于( ) A.4 2 B.8 C.8 2 D.166.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是 ( ) A.(-2,1) B.(1,2) C.(2,1) D.(-1,2) 7.(2011·陕西高考)设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是 ( )A.y2=-8x B.y2=8x C.y2=-4x D.y2=4x 8.(2012·永州模拟)以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为________.9.已知抛物线的顶点在原点,对称轴为y轴,抛物线上一点Q(-3,m)到焦点的距离是5,则抛物线的方程为________.10.已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|FA| +|FB| =________.11.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2, y2)两点,假设x1+x2=6,那么 |AB|等于________12.根据以下条件求抛物线的标准方程:(1)抛物线的焦点是双曲线 16x2-9y2=144的左顶点;(2)过点P(2,-4).13.已知点A(-1,0),B(1,-1),抛物线C:y2=4x,O为坐标原点,过点A 的动直线l交抛物线C于M,P两点,直线MB交抛物线C于另一点Q.假设向量OM与OP的夹角为π4,求△POM的面积.参考答案:一、抛物线的定义及其应用例1、(1)如图,易知抛物线的焦点为F (1,0),准线是x =-1.由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离. 于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连结AF 交曲线于P 点,则所求的最小值为|AF |,即为 5.(2)如图,自点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4.例2、解析:圆心到抛物线准线的距离为p ,即p =4,根据已 知只要|FM |>4即可.根据抛物线定|FM |=y 0+2由y 0+2>4,解得y 0>2,故y 0的取值范围是(2,+∞).二、抛物线的标准方程和几何性质例3、设点A (x 1,y 1),其中y 1>0.由点B 作抛物线的准线的垂线,垂足为B 1.则有 |BF |=|BB 1|;又|CB |=2|FB |,因此有|CB |=2|BB 1|,cos ∠CBB 1=|BB 1||BC |=12,∠CBB 1=π3.即直线AB 与x 轴的夹角为π3.又|AF |=|AK |=x 1+p2=4,因此y 1=4sin π3=23,因此△AKF 的面积等于12|AK |·y 1=12×4×23=4 3.例4.分别过点A 、B 作AA 1、BB 1垂直于l ,且垂足分别为A 1、B 1,由已知条件|BC |=2|BF |得|BC |=2|BB 1|,∴∠BCB 1=30°,又|AA 1|=|AF |=3,∴|AC |=2|AA 1|=6,∴|CF |=|AC |-|AF |=6-3=3,∴F 为线段AC 的中点.故点F 到准线的距离为p =12|AA 1|=32,故抛物线的方程为y 2=3x .三、抛物线的综合问题例5、(1)直线AB 的方程是y =22(x -p2),与y 2=2px 联立,从而有4x 2-5px+p 2=0,所以:x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42);设 OC =(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22). 又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1). 即(2λ-1)2=4λ+1.解得λ=0,或λ=2. 例6、 (1)设动点P 的坐标为(x ,y ),由题意有x -12+y 2-|x |=1.化简得y 2=2x +2|x |. 当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0). (2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎨⎧y =k x -1y 2=4x,得k 2x 2-(2k 2+4)x +k 2=0. (7分)设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k2,x 1x 2=1. (8分)因为l 1⊥l 2,所以l 2的斜率为-1k. 设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1. =(x 1+1)(x 2+1)+(x 3+1)·(x 4+1)= x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1 (11分) =1+(2+4k2)+1+1+(2+4k 2)+1=8+4(k 2+1k2)≥8+4×2k 2·1k2=16.当且仅当k 2=1k2,即k =±1时, AD ·EB 取最小值16.例7 、(1)抛物线y 2=2px (p >0)的准线为x =-p2,由抛物线定义和已知条件可知|MF |=1-(-p 2)=1+p2=2,解得p =2, 故所求抛物线C 的方程为y 2=4x .(2)联立⎩⎨⎧y =-12x +b ,y 2=4x消去x 并化简整理得y 2+8y -8b =0.依题意应有Δ=64+32b >0,解得b >-2.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-8,y 1y 2=-8b ,设圆心Q (x 0,y 0),则应用x 0=x 1+x 22,y 0=y 1+y 22=-4.因为以AB 为直径的圆与x 轴相切,所以圆的半径为r =|y 0|=4. 又|AB |=x 1-x 22+y 1-y 22=1+4y 1-y 22=5[y 1+y 22-4y 1y 2]=564+32b所以|AB |=2r =564+32b=8,解得b =-85.所以x 1+x 2=2b -2y 1+2b -2y 2=4b +16=485, 则圆心Q 的坐标为(245,-4).故所求圆的方程为(x -245)2+(y +4)2=16. 练习题:1.C .解析:根据抛物线方程可得其焦点坐标为(0,a4),双曲线的上焦点为(0,2),依题意则有a4=2解得a =8.2.B .解析:抛物线方程可化为x 2=-y 4,其准线方程为y =116.设M (x 0,y 0),则由抛物线的定义,可知116-y 0=1⇒y 0=-1516. 3.C .解析:根据拋物线定义与梯形中位线定理,得线段AB 中点到y 轴的距离为:12(|AF |+|BF |)-14=32-14=54.4.C .解析:设抛物线焦点弦为AB ,中点为M ,准线l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |=半径,故相切.5.C .解析:依题意F (2,0),所以直线方程为y =x -2由⎩⎨⎧y =x -2,y 2=8x,消去y 得x 2-12x +4=0.设A (x 1,y 1),B (x 2,y 2),则||FA |-|FB ||=|(x 1+2)-(x 2+2)|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=144-16=8 2.6.B .解析:如下图,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,当且仅当A 、P 、N 三点共线时取等号.∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A 、C 、D.答案:B7.B .解析:由准线方程x =-2,可知抛物线为焦点在x 轴正 ,半轴上的标准方程,同时得p =4,所以标准方程为 y 2=2px =8x8.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8. 所以,圆的方程为x 2+(y -4)2=64.9.解析:设抛物线方程为x 2=ay (a ≠0),则准线为y =-a 4.∵Q (-3,m )在抛物线上,∴9=am .而点Q 到焦点的距离等于点Q 到准线的距离,∴|m -(-a 4)|=5.将m =9a 代入,得|9a +a 4|=5,解得,a =±2,或a =±18,∴所求抛物线的方程为x 2=±2y ,或x 2=±18y .10.解析:由⎩⎨⎧ y 2=4x 2x +y -4=0,消去y ,得x 2-5x +4=0(*),方程(*)的两根为A 、B 两点的横坐标,故x 1+x 2=5,因为抛物线y 2=4x 的焦点为F (1,0),所以| FA | +| FB | =(x 1+1)+(x 2+1)=711.解析:因线段AB 过焦点F ,则|AB |=|AF |+|BF |.又由抛物线的定义知|AF |=x 1+1,|BF |=x 2+1,故|AB |=x 1+x 2+2=8.12.解析:双曲线方程化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为 y 2=-2px (p >0),则-p 2=-3,∴p =6,∴抛物线方程为y 2=-12x . (2)由于P (2,-4)在第四象限且抛物线对称轴为坐标轴,可设抛物线方程为y 2=mx 或x 2=ny ,代入P 点坐标求得m =8,n =-1,∴所求抛物线方程为y 2=8x 或x 2=-y .13.解:设点M (y 214,y 1),P (y 224,y 2),∵P ,M ,A 三点共线,∴k AM =k PM ,即y 1y 214+1=y 1-y 2y 214-y 224,即y 1y 21+4=1y 1+y 2,∴y 1y 2=4. ∴ OM · OP =y 214·y 224+y 1y 2=5.∵向量 OM 与 OP 的夹角为π4, ∴| OM |·|OP |·cos π4=5.∴S △POM =12| OM | ·| OP | ·sin π4=52.。