二阶常系数齐次线性微分方程
二阶常系数微分方程

一、二阶常系数齐次线性微分方程
由上面分析可知,要求二阶常系数齐次线性微分方程的通解,关 键是寻找它的两个线性无关的特解.为此,首先找一个函数y,使 y″+py′+qy=0(p,q为常数).而指数函数erx(r为常数)就具备这种性质, 因为erx的一阶、二阶导数都是erx的常数倍,也就是说,只要适当选取 r,就可以使erx满足方程y″+py′+qy=0.于是,设y=erx (r为待定常数) 为方程y″+py′+qy=0的特解,将y=erx,y′=rerx,y″=r2erx代入方程中得 erx(r2+pr+q)=0.
一、二阶常系数齐次线性微分方程
定理6 如果y*是非齐次方程(12-20)的一个特解,而Y是其对应齐 次方程的通解,则y=Y+y*是非齐次方程(12-20)的通解.
证 因y*是非齐次方程(12-20)的一个特解,所以 y*″+py*′+qy*=f(x).又因Y是其对应齐次方程的通解,所以 Y″+pY′+qY=0.于是,对y=y*+Y有
y″+py′+qy=(Y+y*)″+p(Y+y*)′+q(Y+y*) =Y″+pY′+qY+y*″+py*′+qy* =0+f(x)=f(x) 所以,y=Y+y是非齐次方程(12-20)的解.又因为Y中含有两个任意常数, 从而,y=Y+y中也含有两个任意常数,所以y=Y+y是非齐次方程(1220)的通解.
定理5
如果y1与y2是齐次方程y″+py′+qy=0的两个特解,而且y1/y2不等 于常数,则y=C1y1+C2y2是齐次方程的通解,其中C1,C2为任意常数.
10.6二阶常系数齐次线性微分方程

微积分
二阶常系数齐次微分方程
―、特征方程法
二阶常系数齐次线性方程解法
特征方程法
y" + py' + qy = 0
设y = /x,将其代入上方程,
(r2 + pr + q )erx = 0
得
故有 r °+ pr + q = 0
主 ・.・e’x 特征0方, 程
特征根 % =~P2 -4q, 2
微积分
例2求微分方程y" -2y -8y=0
解特征方程为
r2 一 2r 一 8 = (r 一 4)(r + 2) = 0
解得 “=4g=_2
故所求通解为
一 y = c1 e4 x + c 2 e
2x
经济数学
微积分
例 , 3求方程y" + 2y + 5y = 0的通
解. 解 特征方程为r2 + 2r + 5 = 0 ,
3)有一对共轭复根(A< 0)
伊 特征根为 r = a + ip, r2 = a- ,
( 伊 ) y1 = e a+ )% y2 = e(a-ip x,
1
重新组合yi = 2顷1 + y 2) =e" * p,
_i
y2 =
(yi - y2) =e"sin p,
2i
(注:利用欧拉公式eliC = cosx + isinx.)
二阶常系数齐次线性微分 方
第6节二阶常系数齐次线性微分方程 第十章微分方程与差分方程
主讲 韩华
二阶常系数齐次线性微分方程

二阶常系数齐次线性 微分方程
一、定义 二、线性微分方程的解的结构 三、二阶常系数齐次线性方程的解法 四、n阶常系数齐次线性方程解法 阶常系数齐次线性方程解法 五、小结
一、定义
y′′ + py′ + qy = 0
二阶常系数齐次线性方程
y′′ + py′ + qy = f (x) 二阶常系数非齐次线性方程
1
′ ′ 代入原方程并化简, 将 y2 ,y2 ,y2′ 代入原方程并化简,
u′′ + ( 2r1 + p )u′ + ( r + pr1 + q )u = 0,
2 1
知 u′′ = 0,
得齐次方程的通解为
则 y2 = xe r x , 取 u( x) = x, rx rx 1 y = C1e + C2 xe 1
y′′ + py′ + qy = 0
特征根的情况
r 2 + pr + q = 0
通解的表达式
≠ r2 实根 r1 = r2 复根 r = α ± iβ 1, 2
实根 r
1
y = C1e + C 2 e y = (C1 + C 2 x )e r x y = eαx (C1 cos βx + C 2 sin βx )
1
=(C1 + C2 x)er1x;
有两个不相等的实根 (∆ > 0)
r1 = − p+ p 2 − 4q , 2 r2 = − p− p 2 − 4q , 2
两个线性无关的特解
y1 = e ,
r1 x
y2 = e ,
r2 x
二阶常系数齐次线性微分方程.

设r1, r2是特征方程的两个根. 2 (1) 当 p 4 q 0 时, 方程有两个相异实根 则微分方程有两个线性无关的特解: 因此方程的通解为 y C1 e
2
r1 x
C2 e
r2 x
(2) 当 p 4 q 0 时, 特征方程有两相等实根
则微分方程有一个特解
设另一特解为
成立, 则称函数y1(x) 与y2(x) 在该区间内线 性相关, 否则称y1(x)与y2(x)线性无关.
思考:
中有一个恒为0, 则 必线性 相关
定理. (二阶齐次线性方程通解的结构) 是二阶线性齐次方程的两个 线性无关的特解, 则 y C1 y1 ( x ) C 2 y2 ( x ) 数) 是该方程的通解. 有特解 例如, 方程
利用解的叠加原理, 得原方程线性无关特解:
y1 ( y1 y2 ) e
1 2
x
cos x
y2 ( y1 y2 ) e
1 2i
x
sin x
因此原方程的通解为
ye
x
(C1 cos x C 2 sin x )
求y+py+qy=0的通解的步骤:
(1) 写出微分方程的特征方程r2+pr+q=0 (2) 求出特征方程的两个根r1, r2
x
容易验证: y1 ( x) e , y2 ( x) 2e 都是它的解. 由2 y2 ( x) C1e 2C2e
x
x
(C1 2C2 )e Ce x
x
也是它的解. 但这个解中只含有一个任意常 数C, 显然它不是所给方程的通解.
问题: 方程的两个特解 y1(x), y2(x) 满足 什么条件时, y C1 y1 ( x) C2 y2 ( x) 才是方程 的通解? 由例7-12的分析可知, 如果方程的两个 特解y1(x), y2(x)之间不是常数倍的关系, 那 么它们线性组合得到的解
4.6 二阶常系数齐次线性微分方程

r1
(二重根) 二重根), 则通解为
r1,2 = α ± iβ ,
则通解为
③根据特征方程的两个根的不同形式,按照下列规则写 出微分方程的通解:
y=e
αx
( C1 cos β x + C2 sin β x ) .
3
例1 求解微分方程 解 特征方程为
y′′ + y′ − 6 y = 0.
例2 求解微分方程 y′′ + 4 y′ + 4 y 解 特征方程为
x
x x 容易验证 y1 =e 和 y2 = 2e
都是方程的解. 但函数
探索一下原因:
x
y = C1e + C2 2e ,
虽是该方程的解, 虽是该方程的解,却不是通解。 却不是通解。因为上面的函数中 虽形式上包含两个任意常数, 虽形式上包含两个任意常数,而由于
函数
ex
和
2e x 是成比例的, 因此它们的线性组合
即
y = ( C1 + C2 x ) er1x .
u′′ + ( 2r1 + p ) u′ + ( r12 + pr1 + q ) u = 0.
r12 + pr1 + q = 0, 且 2 r1 + p = 0,
因r 是特征方程的二重根,故 1 是特征方程的二重根,
㈢ p − 4q < 0. 特征方程有一对共轭复根 特征方程有一对共轭复根 r 1 , r2 ,
αx
( cos β x + i sin β x ) , ( cos β x − i sin β x ) .
y = eα x ( C1 cos β x + C2 sin β x ) .
二阶常系数线性齐次微分方程

二阶常系数线性齐次微分方程二阶常系数线性齐次微分方程,又称二阶次线性常系统,是数学分析和积分变换中重要的问题,在系统控制、信号处理和信号检测中也得到广泛应用。
一. 二阶常系数线性齐次微分方程的概念1、定义:二阶常系数线性齐次微分方程是指有形式U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,其中,p和q为常数,U是未知函数。
2、求解:若对未知函数U,有形如U′′ + pU′ + qU = 0的二阶常系数齐次线性微分方程,则求解之所有实根解形式有:U(t)=C1eλ1t+C2eλ2t,其中,C1,C2为常数,λ1,λ2为方程的根,则得到方程:λ2+pλ+q=0。
二. 二阶常系数线性齐次微分方程的特点1、齐次:二阶常系数线性齐次微分方程是等号右边完全为零的一次方程的特殊形式,其解实际上也就是方程的根,二阶齐次方程的解可以通过求根公式求出。
2、常系数:二阶常系数线性齐次微分方程所有项都是常系数,不会改变,所以可以用公式进行解法简化,使用求根公式求出二阶常系数线性齐次微分方程的实根解,比一般的常系数线性非齐次微分方程的解法要简单得多;3、线性:二阶常系数线性齐次微分方程里面的未知函数和其倒数的次数有明确的关系,所以它是线性的;4、微分:二阶常系数线性齐次微分方程里面的未知函数不仅要满足一次微分方程,而且要满足特定的二次微分方程;三. 二阶常系数线性齐次微分方程的应用1、系统控制:二阶常系数线性齐次微分方程可以用来描述内外环回路的联系,可以用来优化被控系统的输出;2、信号处理:二阶常系数线性齐次微分方程可以用来对信号进行插值、滤波、离散傅里叶变换等处理;3、信号检测:二阶常系数线性齐次微分方程可以用来检测周期性变化或者噪声等不平凡现象,从而处理信号。
四. 二阶常系数线性齐次微分方程的扩展1、非齐次:不论是一阶常系数线性非齐次微分方程还是二阶非齐次微分方程,都可以通过常系数变换将其转化为齐次方程;2、常数变量:在适当的条件下,可以将二阶常系数线性齐次微分方程中的未知函数转化成一、二阶常数变量方程组;3、转化:二阶常系数线性齐次微分方程可以用Laplace变换、线性变换和积分变换等转化手段将其转化为容易求解的形式;4、衍生:可以从二阶常系数线性齐次微分方程发展出求解波。
二阶常系数齐次线性微分方程

第七章常微分方程7.10 二阶常系数齐次线性微分方程数学与统计学院赵小艳1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法1 二阶常系数齐次线性微分方程的形式 )(1)1(1)(t F x a x a x a x n n n n =++++-- n 阶常系数线性微分方程的标准形式21=++x a x a x 二阶常系数齐次线性方程的标准形式.,,,,121均为实常数其中n n a a a a - )1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- ,2211x C x C x +=则其通解为,,21解是其线性无关的两个特若x x .,21为任意常数其中C C 解的结构1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法,t e x λ=设则 ()0212=++t e a a λλλ得 0212=++a a λλ特征方程 ,2422111a a a -+-=λ,11t e x λ=,22t e x λ=且它们线性无关,通解为 .,)(212121为任意常数其中C C e C e C t x tt ,λλ+=特征根为: ,2422112a a a ---=λ情形1 有两个不相等的实根 )0(>∆,021=++x a x a x 对于对应特解 ,,21解是其线性无关的两个特若x x ,2211x C x C x +=则其通解为.,21为任意常数其中C C 待定系数法2 二阶常系数齐次线性微分方程的解法,11t e x λ=,2121a -==λλ情形2 有两个相等的实根 )0(=∆故一特解为 ,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,)(12t e t u x λ=设另一特解为特征根为 2121,)()('1112t t e t u e t u x λλλ+= ,)()('2)("1112112tt t e t u e t u e t u x λλλλλ++=,11t e x λ=情形2 有两个相等的实根 )0(=∆故一特解为 通解为 (),te t C C t x 121)(λ+=,,,222代入原方程并化简得将x x x ()(),022112111=+++'++''u a a u a u λλλ,0=''u 得(),t t u =取,12t te x λ=则特征根为 2121(),21C t C t u +=,)(12t e t u x λ=设另一特解为0=0=.,21为任意常数其中C C ,2121a -==λλ,1βαλi +=,2βαλi -=,)(1t i e x βα+=t i e x )(2βα-=情形3 有一对共轭复根 )0(<∆由解的性质 ()21121x x x +=,cos t e t βα=()21221x x ix -=.sin t e t βα=通解为 (),sin cos 21t βC t βC e x t α+=特征根为 2121对应特解为 t e i t e t t ββααsin cos -=.,21为任意常数其中C C .,21线性无关且x x.044的通解求方程=++x x x解 特征方程为 ,0442=++λλ,221-==⇒λλ故所求通解为 ().221te t C C x -+=例1 解 特征方程为 ,0522=++λλ,2121i ±-=⇒,λ故所求通解为 ().2sin 2cos 21x C x C e y x +=-.052的通解求方程=+'+''y y y 例2 021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为()().00,2004422的解满足初始条件求='==++y y y x y x y d d d d 解 特征方程为 ,01442=++λλ.212,1-=⇒λ故所求通解为 x e x C C y 2121)(-+=例3 ()()得由00,20='=y y ,21=C .12=C 为方程满足初始条件的解.22121x x xe e y --+=021=++x a x a x 0212=++a a λλ特征方程为,)1(21时λλ≠;)(2121t t e C e C t x λλ+=通解为,)2(21时λλλ==;)()(21te t C C t x λ+=通解为,)3(2,1时βαλi ±=().sin cos )(21t βC t βC e t x t α+=通解为1 2 二阶常系数齐次线性微分方程的形式1主要内容二阶常系数齐次线性微分方程的解法3高阶常系数齐次线性微分方程的解法01)1(1)(=+'+++--x a x a xa x n n n n 特征方程为 0111=++++--n n n n a a a λλλ 特征方程的根 相对应的线性无关的特解 重根是若k λt k t t et te e λλλ1,,,- 重是若共轭复根k i βα±.sin ,,sin ,sin ,cos ,,cos ,cos 11t βe t t βte t βe t βe tt βte t βe t αk t αt αt αk t αt α-- 注意: n次代数方程有n 个根, 而特征方程的每个根都对应着一个特解. 3 高阶常系数齐次线性微分方程的解法.2211n n x C x C x C x +++= 通解为特征根为.2,1321-===λλλ故所求通解为 ()t e t C C x 21+=解 ,0233=+-λλ特征方程为 ()(),0212=+-λλ().0233的通解求方程=+-x x x 例4 特征根为 .,,154321i i -====-=λλλλλ故所求通解为 ()()t.t C C t t C C sin cos 5432++++解 ,01222345=+++++λλλλλ特征方程为 ()(),01122=++λλ()()().022345的通解求方程=+++++x x x x x x 例5 .e C t 23-+t e C x -=1。
二阶常系数线性齐次微分方程

二阶常系数线性齐次微分方程在微积分中,二阶常系数线性齐次微分方程是一个非常重要的概念。
它在数学和物理学领域中广泛应用,并且具有丰富的解法和性质。
本文将介绍二阶常系数线性齐次微分方程的基本定义、解法和一些应用。
一、定义二阶常系数线性齐次微分方程是指形如以下形式的微分方程:\[ay''+by'+cy=0\]其中\(a\)、\(b\)、\(c\)为常数,\(y\)是自变量\(x\)的函数。
二、特征方程和特解为了求解上述微分方程,首先需要求解其对应的特征方程。
将\(y=e^{rx}\)代入微分方程可以得到特征方程:\[ar^2+br+c=0\]解特征方程可以得到两个互不相同(或相同)的根\(r_1\)和\(r_2\)。
根据这些根的不同情况,可以得到微分方程的通解。
情况一:\(r_1\)和\(r_2\)为实数且不相等。
此时通解为:\[y=c_1e^{r_1x}+c_2e^{r_2x}\]其中\(c_1\)和\(c_2\)为任意常数。
情况二:\(r_1\)和\(r_2\)为实数且相等。
此时通解为:\[y=(c_1+c_2x)e^{r_1x}\]其中\(c_1\)和\(c_2\)为任意常数。
情况三:\(r_1\)和\(r_2\)为共轭复数。
此时通解为:\[y=e^{ax}(c_1\cos bx+c_2\sin bx)\]其中\(a\)和\(b\)为实数,\(c_1\)和\(c_2\)为任意常数。
三、应用举例二阶常系数线性齐次微分方程在物理学和工程学中有广泛应用。
以下是几个简单的应用举例。
1. 振动方程振动系统通常可以用二阶常系数线性齐次微分方程来描述。
例如自由振动的弹簧质量系统的运动方程可以表示为:\[m\frac{{d^2x}}{{dt^2}}+kx=0\]其中\(m\)为质量,\(k\)为弹性常数,\(x\)为位移。
2. 电路方程电路中的某些电路元件,如电感、电容和电阻,遵循二阶常系数线性齐次微分方程。
二阶常系数齐次线性微分方程

就必定是方程的通解.
定义 设y1(x) 与y2(x)是定义在某区间 内的两个函数, 如果存在不为零的常数k
(或存在不全为零的常数k1, k2), 使得对于 该区间内的一切x, 有
y2(x) k y1 ( x)
(或k1y1(x) k2 y2 (x) 0)
定理.(叠加原理) 若函数 y1( x), y2( x) 是方程
y P( x) y Q( x) y 0
的两个解, 则 y C1 y1( x) C2 y2( x)也是该方程 的解.
证:将 y C1 y1( x) C2 y2( x) 代入方程左边, 得
[C1 y1 C2 y2 ] P( x)[C1 y1 C2 y2 ]
成立, 则称函数y1(x) 与y2(x) 在该区间内线
性相关, 否则称y1(x)与y2(x)线性无关.
思考:
中有一个恒为0, 则
必线性相关
定理. (二阶齐次线性方程通解的结构) 是二阶线性齐次方程的两个
线性无关的特解, 则 y C1 y1( x) C2 y2( x)
数) 是该方程的通解.
例于书上, 1(5), 2(5)交作业.
(2) 当 p2 4q 0 时, 特征方程有两相等实根 则微分方程有一个特解
设另一特解为 , ( u(x) 待定).
代入原微分方程 y py qy 0得:
er1 x [( u 2r1u r12u ) p(u r1u )q u 0
u ( 2r1 p )u ( r12 p r1 q )u 0
(3) 根据特征方程根的不同情况, 写出微分方 程的通解.
二阶微分方程解法(参考模板)

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法 教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程 y+py +qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx满足二阶常系数齐次线性微分方程, 为此将y =e rx代入方程 y +py +qy =0得(r 2+pr +q )e rx=0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y+py +qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r -±+-= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又xr r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r xr x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y xr xr ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=a ib 时, 函数y =e(a +ib )x、y =e(a ib )x是微分方程的两个线性无关的复数形式的解. 函数y =e axcos bx 、y =e axsin bx 是微分方程的两个线性无关的实数形式的解. 函数y 1e(a +ib )x和y 2e(a ib )x都是方程的解 而由欧拉公式 得y 1e (a +ib )x e x (cos x i sin x )y 2e(aib )xe x (cos x i sin x )y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 22ie x sin x )(21sin 21y y ix e x -=βα故e ax cos bx 、y 2=e axsin bx 也是方程解.可以验证, y 1=e ax cos bx 、y 2=e axsin bx 是方程的线性无关解. 因此方程的通解为y =e ax(C 1cos bx +C 2sin bx ). 求二阶常系数齐次线性微分方程y +py +qy =0的通解的步骤为:第一步 写出微分方程的特征方程 r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解. 例1 求微分方程y-2y -3y =0的通解.解 所给微分方程的特征方程为 r 2-2r -3=0, 即(r 1)(r 3)0其根r 1=-1, r 2=3是两个不相等的实根, 因此所求通解为 y =C 1e -x+C 2e 3x.例2 求方程y+2y+y=0满足初始条件y|x=0=4、y|x=0=-2的特解.解所给方程的特征方程为r2+2r+1=0, 即(r1)20其根r1=r2=1是两个相等的实根, 因此所给微分方程的通解为y=(C1+C2x)e-x.将条件y|x=0=4代入通解, 得C1=4, 从而y=(4+C2x)e-x.将上式对x求导, 得y=(C2-4-C2x)e-x.再把条件y|x=0=-2代入上式, 得C2=2. 于是所求特解为x=(4+2x)e-x.例 3 求微分方程y-2y+5y= 0的通解.解所给方程的特征方程为r2-2r+5=0特征方程的根为r1=12i r2=12i是一对共轭复根因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程: 方程y(n) +p1y(n-1)+p2 y(n-2) + + p n-1y+p n y=0,称为n阶常系数齐次线性微分方程, 其中p1, p2 , , p n-1, p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式, 可推广到n阶常系数齐次线性微分方程上去.引入微分算子D及微分算子的n次多项式L(D)=D n+p1D n-1+p2 D n-2 + + p n-1D+p n则n阶常系数齐次线性微分方程可记作(D n+p1D n-1+p2 D n-2 + + p n-1D+p n)y=0或L(D)y0注 D叫做微分算子D0y y D y y D2y y D3y y D n y y(n)分析令y e rx则L(D)y L(D)e rx(r n+p1r n-1+p2 r n-2 + + p n-1r+p n)e rx=L(r)e rx因此如果r是多项式L(r)的根则y e rx是微分方程L(D)y0的解n阶常系数齐次线性微分方程的特征方程L(r)r n+p1r n-1+p2 r n-2 + + p n-1r+p n0称为微分方程L(D)y0的特征方程特征方程的根与通解中项的对应: 单实根r 对应于一项: Ce rx;一对单复根r 1, 2=a ib 对应于两项: e ax(C 1cos bx +C 2sin bx );k 重实根r 对应于k 项: e rx (C 1+C 2x + +C k x k -1); 一对k 重复根r 1, 2=a ib 对应于2k 项:e ax[(C 1+C 2x + +C k x k -1)cos bx +( D 1+D 2x + +D k x k -1)sin bx ]. 例4 求方程y (4)-2y +5y=0 的通解.解 这里的特征方程为r 4-2r 3+5r 2=0, 即r 2(r 2-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=12i .因此所给微分方程的通解为y =C 1+C 2x +e x(C 3cos2x +C 4sin2x ). 例5 求方程y (4)+b 4y =0的通解, 其中b 0.解 这里的特征方程为 r 4+b 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±-=β.因此所给微分方程的通解为 )2sin2cos(212x C x C ey xβββ+=)2sin2cos(432x C x C exβββ++-.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y +py +qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数. 二阶常系数非齐次线性微分方程的通解是对应的齐次方程 的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法: 一、 f (x )=P m (x )e lx型当f (x )=P m (x )e lx时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e lx , 将其代入方程, 得等式 Q(x )+(2l +p )Q(x )+(l 2+pl +q )Q (x )=P m (x ).(1)如果l 不是特征方程r 2+pr +q =0 的根, 则l 2+pl +q 0. 要使上式成立, Q (x )应设为m 次多项式:Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=Q m(x)e lx.(2)如果l是特征方程r2+pr+q=0 的单根, 则l2+pl+q=0, 但2l+p0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+1 次多项式:Q(x)=xQ m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=xQ m(x)e lx.(3)如果l是特征方程r2+pr+q=0的二重根, 则l2+pl+q=0, 2l+p=0, 要使等式Q(x)+(2l+p)Q(x)+(l2+pl+q)Q(x)=P m(x).成立, Q(x)应设为m+2次多项式:Q(x)=x2Q m(x),Q m(x)=b0x m+b1x m-1+ +b m-1x+b m,通过比较等式两边同次项系数, 可确定b0, b1, , b m, 并得所求特解y*=x2Q m(x)e lx.综上所述, 我们有如下结论: 如果f(x)=P m(x)e lx, 则二阶常系数非齐次线性微分方程y+py+qy =f(x)有形如y*=x k Q m(x)e lx的特解, 其中Q m(x)是与P m(x)同次的多项式, 而k按l不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y-2y-3y=3x+1的一个特解.解这是二阶常系数非齐次线性微分方程, 且函数f(x)是P m(x)e lx型(其中P m(x)=3x+1, l=0).与所给方程对应的齐次方程为y-2y-3y=0,它的特征方程为r2-2r-3=0.由于这里l=0不是特征方程的根, 所以应设特解为y*=b0x+b1.把它代入所给方程, 得-3b0x-2b0-3b1=3x+1,比较两端x同次幂的系数, 得⎩⎨⎧=--=-13233100b b b -3b 0=3, -2b 0-3b 1=1.由此求得b 0=-1, 311=b . 于是求得所给方程的一个特解为 31*+-=x y . 例2 求微分方程y-5y +6y =xe 2x的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e lx型(其中P m (x )=x , l =2). 与所给方程对应的齐次方程为y -5y +6y =0,它的特征方程为r 2-5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为Y =C 1e 2x +C 2e 3x .由于l =2是特征方程的单根, 所以应设方程的特解为y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得 ⎩⎨⎧=-=-0212100b b b -2b 0=1, 2b 0-b 1=0.由此求得210-=b , b 1=-1. 于是求得所给方程的一个特解为 x e x x y 2)121(*--=. 从而所给方程的通解为x x x e x x e C e C y 223221)2(21+-+=. 提示y *=x (b 0x +b 1)e 2x (b 0x 2+b 1x )e 2x[(b 0x 2+b 1x )e 2x][(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2xy *5y *6y *[(b 0x 2+b 1x )e 2x]5[(b 0x 2+b 1x )e 2x]6[(b 0x 2+b 1x )e 2x][2b 02(2b 0x b 1)×2(b 0x 2+b 1x )×22]e 2x5[(2b 0x +b 1)(b 0x 2+b 1x )×2]e2x6(b 0x 2+b 1x )e 2x[2b 04(2b 0x b 1)5(2b 0x +b 1)]e 2x[2b 0x +2b 0b 1]e 2x方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解形式应用欧拉公式可得e lx [P l (x )cos wx +P n (x )sin wx ]]2)(2)([ ie e x P e e x P e x i x i nx i xi l x ωωωωλ---++=x i nl x i n l e x iP x P e x iP x P )()()]()([21)]()([21ωλωλ-+++-=x i x i e x P e x P )()()()(ωλωλ-++=,其中)(21)(i P P x P n l -=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y+py+qy =P (x )e(l +iw )x的特解为y 1*=x k Q m (x )e(l +iw )x,则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解, 其中k 按l iw 不是特征方程的根或是特征方程的根依次取0或1. 于是方程y+py +qy =e lx[P l (x )cos wx +P n (x )sin wx ]的特解为x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k e lx[R(1)m(x )cos wx +R(2)m(x )sin wx ].综上所述, 我们有如下结论:如果f (x )=e lx[P l (x )cos wx +P n (x )sin wx ], 则二阶常系数非齐次线性微分方程y+py +qy =f (x )的特解可设为y *=x k e lx [R (1)m (x )cos wx +R (2)m (x )sin wx ],其中R(1)m(x )、R(2)m(x )是m 次多项式, m =max{l , n }, 而k 按l +i w (或l -iw )不是特征方程的根或是特征方程的单根依次取0或1. 例3 求微分方程y+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且f (x )属于e lx[P l (x )cos wx +P n (x )sin wx ]型(其中l =0, w =2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y +y =0,它的特征方程为r 2+1=0.由于这里l +iw =2i 不是特征方程的根, 所以应设特解为y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31-=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+-=. 提示y *=(ax +b )cos2x +(cx +d )sin2x .y *=a cos2x 2(ax +b )sin2x +c sin2x +2(cx +d )cos2x(2cx +a2d )cos2x +(2ax 2b c )sin2xy *=2c cos2x 2(2cx +a 2d )sin2x 2a sin2x +2(2ax 2b c )cos2x(4ax4b4c )cos2x(4cx 4a 4d )sin2xy *y *(3ax 3b 4c )cos2x (3cx 4a 3d )sin2x由⎪⎩⎪⎨⎧=--=-=+-=-0340304313d a c c b a 得31-=a , b =0, c =0, 94=d .(注:文档可能无法思考全面,请浏览后下载,供参考。
大学数学_6_6 二阶常系数齐次线性微分方程

当系数 P( x), Q( x) 分别为常数 p , q 时,方程 y py qy 0 (3) 称为二阶常系数齐次线性微分方程. 类似的,方程 y py qy f ( x) ( f ( x) 0) (4) 称为二阶常系数非齐次线性微分方程. 为了求解二阶常系数齐次线性微分方程, 我们先对二 阶齐次线性微分方程解的性质和通解结构作一些讨论.
1 x
1 x
1 x
所以 y2 e 2 x , y3 e1 x 也是原微分方程的解.
由定理 1 可得,C1 y1 C2 y2 (C1 , C2 是任意常数)是原 方程的解.又因两个任意常数C1 , C2 不可能合并为一个任意 常 数 , 而 所 给 方 程 是 二 阶 的 , 因 此 C1 y1 C2 y2 是 y y 2 y 0 的通解. 而 C1 y1 C3 y3 e x (C1 C3e) Cy1 ( 其中C C1 C3e) 实 质上只含有一个任意常数 , 故C1 y1 C3 y3 是原微分方程的 解,但不是原微分方程的通解. y1 e x 由例 1 可见, 2 x e 3 x 常数 (称 y1 e x , y2 e 2 x y2 e 是线性无关的) ,所以 C1 y1 C2 y2 是 y y 2 y 0 的通解. y3 e1 x 而 x e 常数(称 y1 e x , y3 e1 x 是线性相关的) , y1 e 这就使得 C1 y1 C3 y3 中的常数可以合并成一个常数,从而 它不能构成原方程的通解.
ds 满足初始条件 s t 0 1, t 0 3 的特解. dt 2 2 解 特征方程 4r 4r 1 0 ,即 2r 1 0 , 1 特征根为 r1 r2 ,因此,所给方程的通解为 2
二阶常系数齐次线性微分方程

因r 是特征方程(2)的二重根 故 1 是特征方程( )的二重根,
r + pr + q = 0, 且 2r + p = 0, 1 1
2 1
′ 于是有 u′ = 0. 故取
即得方程( ) u = x, 即得方程(1)的另一根 rx y2 = xe .
1
从而得到方程( ) 从而得到方程(1)的通解为
y = ( C1 + C2 x) e .
y = (C1 + C 2 x )e 2 x . 故所求通解为
内容小结
y′′ + p y′ + q y = 0 ( p, q 为 数) 常 特征根: 特征根 r1 , r2
(1) 当 r1 ≠ r2 时, 通解为 y = C1 e
r1 x
+ C2 e
r2 x
(2) 当 r1 = r2 时, 通解为 y = (C1 + C 2 x ) e (3) 当 r1,2 = α ± β i 时, 通解为
y = C1 y1 + C2 y2
也是方程( )的解. 也是方程(1)的解
是方程( )的解, 证 因 y1, y2 是方程(1)的解 即有 及 从而
′′ ′ y1 + py1 + qy1 = 0,
′′ ′ y2 + py2 + qy2 = 0,
( C1 y1 + C2 y2 )′′ + p( C1 y1 + C2 y2 )′ + q( C1 y1 + C2 y2 )
为此令 y2 = u( x) er1x , 对 y2 求导得
( u′′ + 2ru′ + r2u) + p( u′ + ru) + qu = 0, e 1 1 1 即 u′′ + ( 2r + p) u′ + ( r2 + pr + q) u = 0. 1 1 1
二阶常系数线性齐次微分方程

称一元二次方程(5)为二阶常系数线性齐次微分方程
(3)的特征方程.
特征方程(5)的根为 r1, 2
p p 4q . 2
2
2
(1) p 2 4q 0, r1与r2 是两不相等的实根 p p 4q p p 4q r1 , r2 , 2 2
2
rx rx y e 与 y e 都是方程(3)的解,且 于是 1 2
例1 对于二阶常系数线性齐次微分方程
y'' 2 y' y 0,
容易验证: y1 ( x) e x , y2 ( x) 2e x 都是它的解. 由定理11.1 知
y C1 y1 ( x) C2 y2 ( x)
C1e x 2C 2 e x (C1 2C 2 )e x Ce x
对y1 ( x) e x 及y 2 ( x) e 2 x 分别求导,得 y'1 ( x) e x , y''1 ( x) e x 及 y' 2 ( x) 2e 2 x , y'' 2 ( x) 4e 2 x,
把它们分别代入所给方程左端,得 e x e x 2e x 0, 4e 2 x 2e 2 x 2e 2 x 0,
成立,则称函数y1(x) 与y2(x) 在该区间内线性相关,
否则称y1(x) 与y2(x) 线性无关. 例如,例1中 y1 ( x) e x与y2 ( x) 2e x是线性相关的, 是线性无关的 y3 ( x) xe .x与y1 ( x) e x
定理6.2 如果函数y1(x) 与y2(x)是二阶常系数线性齐 次微分方程(3)的两个线性无关的特解,则
二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程在微积分的学习中,我们经常接触到二阶常系数齐次线性微分方程,那么什么是二阶常系数齐次线性微分方程呢?简单来说,二阶常系数齐次线性微分方程是指形如$y''+ay'+by=0$ 的微分方程,其中 $a$ 和 $b$ 都是常数,齐次指方程右边恒等于 $0$。
从这个微分方程的形式中我们可以看出,它是一个二阶微分方程,即方程中含有 $y''$ 这一项,同时它是一个常系数微分方程,因为$a$ 和$b$ 都是常数,不会随着自变量的变化而改变。
而且,由于 $y''+ay'+by=0$,方程右边恒等于 $0$,可以说是一次条件齐次线性微分方程。
那么为什么我们要学习二阶常系数齐次线性微分方程呢?这是因为它们在物理、工程、自然科学和社会科学等领域中都具有非常广泛的应用。
例如,在物理学中,可以用二阶常系数齐次线性微分方程来描述运动学问题、振动问题和电磁学问题等;在经济、生态和环境科学等领域中,也会出现这样的微分方程。
不过,对于二阶常系数齐次线性微分方程,我们不仅需要掌握它的基本概念和性质,还需要学习如何解这类微分方程。
对于 $y''+ay'+by=0$ 这样的常系数齐次线性微分方程,我们可以通过求解其特征方程 $\lambda^2+a\lambda+b=0$ 来确定其通解的形式。
关于特征方程,它的形式为$r^2+ar+b=0$,其中$r$ 是特征根,$\lambda$ 是 $r$ 的一种更广泛的表示形式,在解这类微分方程的时候常常用到。
特征方程的根决定了通解的形式,当特征方程的两个根不相等时,通解可以表示为 $y=c_1 e^{\lambda_1 x}+c_2e^{\lambda_2 x}$ 的形式;当特征方程仅有一个根时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambda x}$ 的形式;当特征方程的两个根为实数且相等时,通解可以表示为 $y=(c_1+c_2 x)e^{\lambdax}$ 的形式;当特征方程的两个根为纯虚数时,通解可以表示为$y=e^{\alpha x}(c_1 \cos{\beta x}+c_2 \sin{\beta x})$ 的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二阶常系数齐次线性微分方程
二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。
自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。
标准形式y″+py′+qy=0。
特征方程r^2+pr+q=0。
通解:
1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。
2、两根相等的实根:y=(C1+C2x)e^(r1x)。
3、共轭复根r=α+iβ:y=e^(αx)*(C1cosβx+C2sinβx),标准形式
y''+p(x)y'+q(x)y=f(x)。
二阶线性微分方程的求解方式分为两类
一是二阶线性齐次微分方程,二是线性非齐次微分方程。
前者主要是采用特征方程求解,后者在对应的齐次方程的通解上加上特解即为非齐次方程的通解。
齐次和非齐次的微分方程的通解都包含一切的解。