梁弯曲正应力实验中遇到的问题和解决方法

合集下载

单一材料梁的弯曲正应力实验指导

单一材料梁的弯曲正应力实验指导

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。

2.初步掌握电测法原理和静态电阻应变仪的使用方法。

二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。

由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。

图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。

当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。

通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。

由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。

弯曲件常见质量问题改善对策

弯曲件常见质量问题改善对策

弯曲件常见质量问题改善对策1、弯曲尺寸不合格在弯曲过程中,弯曲件尺寸不合适的质量问题除了弯曲回弹的影响外,主要是从以下方面进行查找应并相应地采取措施。

(1)检查毛坯定位是否可靠。

模具结构中采用的压料装置和定位装置的可靠性,对弯曲件的形状与尺寸精度有较大的影响。

一般弯曲模采用气垫、橡胶或弹簧产生压紧力,但应在弯曲开始前就把板料压紧。

为达到此目的,压料板或压料杆的顶出高度应做得比凹模平面稍高一些,一般高出一个板料厚度,毛坯的定位形式主要以外形为基准和以孔为基准两种。

外形定位操作方便,但定位准确性较差。

孔定位操作不仅大方便,使用范围较窄,但定位可靠。

在特定条件下,有时先用外形初定位,大致使毛坯控制在一定范围内,最好以孔作最后定位,吸收两者的优点,使之定位既准确又方便操作。

(2)检查弯曲工艺顺序是否正确。

当弯曲工件的工序较多,而工序前后安排顺序不对时,也会对精度有很大影响。

例如,对于有孔的弯曲件,当孔的形状和位置精度要求较高时,就应采用先弯曲后冲孔的加工工艺。

(3)检查所用弯曲材料的厚度是否均匀。

在弯曲工程中,若所使用的材料厚度不均,则由于受挤压变形不均影响,很容易使弯曲的材料移动,产生弯曲件的高度尺寸不定。

解决措施是:将凹模修整成可换式镶块结构,通过调整弯曲模间隙的办法来解决;或更换材料,采用料厚均匀稳定的板料。

(4)检查模具两端的弯曲凹模圆角是否均匀一致。

弯曲模在长期使用过程中,常会使凹模圆角半径发生变化,且左右凹模圆角半径不对称一致,从而在弯曲过程中使弯曲件发生移动造成弯曲尺寸发生变化。

解决措施是:修磨凹模圆角半径合格,且使其左右堆成、大小一致。

(5)检查压力机的吨位、气垫压力是否合乎要求。

压力机的吨位及气垫压力会直接影响到弯曲件的尺寸精度,一般应选用吨位大些且精度较高的压力机,通常取加工力是压力机吨位70%-80%比较合适。

(6)检查并重新校核弯曲展开料是否正确。

弯曲件展开料是否正确直接影响到弯曲件尺寸是否合格。

提高梁弯曲强度的主要措施

提高梁弯曲强度的主要措施

提高梁弯曲强度的主要措施弯曲正应力是控制抗弯强度的主要因素。

因此,讨论提高梁抗弯强度的措施,应以弯曲正应力强度条件为主要依据。

由]σ[σmax max ≤=zW M 可以看出,为了提高梁的强度,可以从以下三方面考虑。

(1) 合理安排梁的支座和载荷从正应力强度条件可以看出,在抗弯截面模量z W 不变的情况下,M max 越小,梁的承载能力越高。

因此,应合理地安排梁的支承及加载方式,以降低最大弯矩值。

例如图1(a)所示简支梁,受均布载荷q 作用,梁的最大弯矩为281ql M max =。

图1 简支梁如果将梁两端的铰支座各向内移动0.2l ,如图1(b)所示,则最大弯矩变为2401ql M max =,仅为前者的1/5。

由此可见,在可能的条件下,适当地调整梁的支座位置,可以降低最大弯矩值,提高梁的承载能力。

例如,门式起重机的大梁图2(a),锅炉筒体图2(b)等,就是采用上述措施,以达到提高强度,节省材料的目的。

图2 合理安排梁的支座和载荷(2) 采用合理的截面形状由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数W Z 。

为提高梁的抗弯强度,应找到一个合理的截面以达到既提高强度,又节省材料的目的。

比值A W z 可作为衡量截面是否合理的尺度,AW z 值越大,截面越趋于合理。

例如图3中所示的尺寸及材料完全相同的两个矩形截面悬臂梁,由于安放位置不同,抗弯能力也不同。

竖放时662h bh bh A W z == 平放时 662b bh hb A W z == 当h>b 时,竖放时的A W z 大于平放时的AW z ,因此,矩形截面梁竖放比平放更为合理。

在房屋建筑中,矩形截面梁几乎都是竖放的,道理就在于此。

图3矩形梁的不同放置在讨论截面的合理形状时,还应考虑材料的特性。

对于抗拉和抗压强度相等的材料,如各种钢材,宜采用对称于中性轴的截面,如圆形、矩形和工字形等。

这种横截面上、下边缘最大拉应力和最大压应力数值相同,可同时达到许用应力值。

实验三 直梁弯曲正应力测定实验指导书

实验三   直梁弯曲正应力测定实验指导书

实验三 直梁弯曲正应力测定实验指导书一、实验目的1、用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。

2、了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。

二、实验设备和器材 1、万能试验机或弯曲试验台 2、加力装置3、电阻应变仪4、预调平衡箱5、游标卡尺6、钢制矩形截面直梁(已贴好电阻应变片)试件(梁)付梁蝶形螺母杠杆砝码砝码托三、实验原理1、试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5—7枚电阻应变片。

2、弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为z I y M ⋅=σ式中,σ的单位为MPa ;M 为梁横截面上的弯矩,单位为N ·mm ;y 为应力σ所在的点到中性轴的距离,单位为mm ;I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。

面积二次矩对于矩形截面按下式计算123bh I z =式中,b 为梁横截面的宽度,单位为mm ;h 为梁横截面的高度,单位为mm 。

令使载荷P 对称地加在矩形截面直梁上(如图所示)。

这时,梁的中段将产生纯弯曲。

若载荷每增加一级p ∆(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε∆,根据虎克定律求出各点实测正应力增量σ实为σ实=E ε∆此值与理论公式计算出的各点正应力的增量即σ理=ZI My∆ 进行比较,就可验证弯曲正应力公式。

这里,弯矩增量2paM ∆=∆。

梁上各点的应变测量,采用半桥接线,各工作应变片共用一个温度补偿块。

四、实验步骤1.准备试样。

如图所示,测量试样的高度h 、宽度b ,以及试样各测量点的坐标y ;。

将试样放在试验机活动台的支座上,布置成纯弯曲梁,测量梁的跨度l 及加载梁的支点到支座的距离a 。

2.准备应变仪。

把梁上各测量点的应变片(工作应变片)按编号逐点接到预调平衡箱A 、B 接线柱上,将温度补偿片接到预调平衡箱上任一工作应变片所在列的B 、C 接线柱上作公共补偿,此时C 排接线柱应用金属连接片或导线连接起来。

工程力学教学实验梁的弯曲正应力实验

工程力学教学实验梁的弯曲正应力实验

梁的弯曲正应力实验一、实验目的1.测定梁承受纯弯曲时横截面上的正应力的大小及分布规律,并与理论计算结果进行比较,以验证梁的弯曲正应力公式。

2.了解电测法,练习电阻应变仪的使用。

二、实验设备和仪器1.万能材料试验机或梁弯曲实验台2.电阻应变仪,预调平衡箱3.游标卡尺,直尺4.矩形截面钢梁(已贴好电阻应变片)三、实验原理图3--16(a)梁弯曲实验台加载及测量图3—16(b) 万能试验机加载及测量试件选用矩形截面梁,加载方法及测量点的布置如图3—16(a)、(b)所示。

图3--16(a)为弯曲实验台装置示意图。

试件选用矩形截面梁,加载方法测量点的布置如图3-16(a)、(b)所示。

图3—16(b)为将梁放在万能试验机上加载实验情况。

梁受集中载荷P作用后使梁的中段为纯弯曲区域,两端为剪切弯曲区域。

载荷作用于纵向对称平面内,而且在弹性极限内进行实验。

故为弹性范围内的平面弯曲问题。

梁纯弯曲时横截面上的正应力计算公式为上式说明在梁的横截面上的正应力是按直线规律分布的。

以此为依据,在梁的纯弯曲区段内某一横截面处按等分高度布置5~7个测点。

各测点将沿着梁的轴向贴上电阻应变片(一般事先贴好)。

当梁承受变形时,各测点将发生伸长或缩短的线应变。

通过应变仪可依次测出各测点懂得线应变值。

从而确定横截面上应变的分布规律。

由于截面上各点处于单向应力状态下,可由虎克定律求出实验应力为式中,E为梁所用材料的拉压弹性模量。

本实验采用“等间隔分级增量法”加载,每增加等量的载荷△P,测定各测点相应的应变增量一次,取各次应变增量的平均值△,求出各测点的应力增量△为把△与理论公式计算出的应力增量△=△M·y /I Z进行比较,从而验证弯曲正应力公式的正确性。

四、实验方法和步骤1.测量梁的横截面尺寸及各测点距中性轴的距离。

2.正确安装已贴好应变片的钢梁,保证平面弯曲,检查两边力到作用点到支点的距离(即图3—16中的a值)是否相等。

实验七 纯弯曲梁的正应力实验(doc)

实验七 纯弯曲梁的正应力实验(doc)

实验七纯弯曲梁的正应力实验
(doc)
实验七纯弯曲梁的正应力实验:
目的: 1、利用纯弯曲梁的正应力实验,测量出梁材的断面系数和位移系数。

2、通过观察变形情况,了解梁材的本构关系。

原理:纯弯曲梁的正应力实验是一种测定梁材的断面系数和位移系数的实验方法。

在梁材处于纯弯曲状态时,其纵向挠度受支承限制,梁材只能在竖直方向变形,而水平方向处于不变形状态,因此,该实验就是利用纯弯曲梁的竖直变形进行测量。

实验步骤: 1、将梁材设置在实验装置上,并确定梁材的长度和断面尺寸; 2、将梁材中部悬空,并用负载支撑梁材的两端; 3、将负载按照实验要求的步进单位,逐步增加; 4、在每种负载状态下,记录梁材竖直变形的量值; 5、用记录的数据,计算梁材的断面系数和位移系数。

单一材料梁的弯曲正应力实验技术文件.doc

单一材料梁的弯曲正应力实验技术文件.doc

单一材料梁的弯曲正应力实验一、实验目的1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。2.初步掌握电测法原理和静态电阻应变仪的使用方法。二、预习思考要点1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的?2.梁处于纯弯曲状态时其内力分布有何特征?3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向?三、实验装置和仪器1.纯弯曲实验装置本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0,弯矩为一常量M=2aF ,即梁的CD段处于纯弯曲状态。图1-26 弯曲正应力实验装置及试样贴片位置图2.静态电阻应变仪3.游标卡尺、钢直尺四、实验原理由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b)所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε∆,依次求出各点的应力增量Δσ实。Δσ实=E·实ε∆ (1-43)把Δσ实与理论公式计算的应力增量Δσ理=zI yM ⋅∆ (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即%100⨯∆∆-∆=理理实σσση(1-45)从而验证梁的弯曲正应力公式的正确性。 五、实验步骤1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h,载荷作用点到梁支点的距离a 。2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻应变仪的灵敏系数。4.依照静态电阻应变仪的操作规程对应变仪进行检验并调平衡,然后再对各测点预调平衡,反复几次以确保各测点的电桥处于初始平衡状态。5.按照所拟定的加载方案逐级加载,每加一级载荷,相应测读一次各点的应变值εi,并随时算出各点的应变增量Δεi,观察其线性程度,直至加到预计的最终载荷为止。然后全部卸载,应变仪回到初始平衡状态,对于应变增量线性程度不好的测点可分析其原因,重复上述测试步骤几次取其实测值的应变增量的算术平均值。6.实验结束,卸载。关闭应变仪,清理现场。六、实验数据处理1.将梁材料的弹性模量,梁的尺寸及测点位置,应变计的灵敏系数,实验荷载及其相应测点的应变值填入表1-15中并将计算的应变增量的平均值,应力的实验值和理论值,相对误差等也列入该表中表1-15梁的弯曲正应力实验测量记录表2.将各点的σ实和σ理描绘在同一个σ-y坐标系中,并运用数理统计的知识分别作出σ实-y和σ理-y分布曲线,以便进行比较,从而检验梁的弯曲正应力理论公式的正确性。七、思考与分析1.实验为何采用“等增量法”加载?为何取各测点应变增量的算术平均值作为实验值?2.电阻应变计是布设在梁的表面上,为什么把测得的表面上的应变看作是梁横截面上的应变?其依据是什么?3.如果梁采用的是拉压不等强度材料(E拉≠E压),其弯曲正应力在整个横截面上的分布曲线较之拉压等强度材料梁将会有何变化?。

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案

工程力学中的弯曲应力和弯曲变形问题的探究与解决方案引言:工程力学是研究物体受力和变形规律的学科,其中弯曲应力和弯曲变形问题是工程力学中的重要内容。

本文将探讨弯曲应力和弯曲变形问题的原因、计算方法以及解决方案,旨在帮助读者更好地理解和应对这一问题。

一、弯曲应力的原因在工程实践中,当梁、梁柱等结构承受外力作用时,由于结构的几何形状和材料的力学性质不同,会导致结构发生弯曲变形。

弯曲应力的产生主要有以下几个原因:1. 外力作用:外力作用是导致结构弯曲的主要原因之一。

例如,悬臂梁受到集中力的作用,会导致梁的一侧拉伸,另一侧压缩,从而产生弯曲应力。

2. 结构几何形状:结构的几何形状对弯曲应力有直接影响。

例如,梁的截面形状不均匀或不对称,会导致弯曲应力的分布不均匀,从而引起结构的弯曲变形。

3. 材料力学性质:材料的力学性质也是导致弯曲应力的重要因素。

不同材料的弹性模量、屈服强度等参数不同,会导致结构在受力时产生不同的弯曲应力。

二、弯曲应力的计算方法为了准确计算弯曲应力,工程力学中提出了一系列的计算方法。

其中最常用的方法是梁的弯曲方程和梁的截面应力分析。

1. 梁的弯曲方程:梁的弯曲方程是描述梁在弯曲过程中受力和变形的重要方程。

根据梁的几何形状和受力情况,可以得到梁的弯曲方程,并通过求解该方程,计算出梁在不同位置的弯曲应力。

2. 梁的截面应力分析:梁的截面应力分析是通过分析梁截面上的应力分布情况,计算出梁在不同位置的弯曲应力。

该方法根据梁的几何形状和材料的力学性质,采用静力学平衡和弹性力学理论,计算出梁截面上的应力分布,并进一步得到梁的弯曲应力。

三、弯曲变形问题的解决方案针对弯曲变形问题,工程力学提出了一系列的解决方案,包括结构改进、材料选择和加固措施等。

1. 结构改进:对于存在弯曲变形问题的结构,可以通过改进结构的几何形状,增加结构的刚度,从而减小结构的弯曲变形。

例如,在梁的设计中,可以增加梁的截面尺寸或改变梁的截面形状,以增加梁的抗弯刚度。

实验五 纯弯曲梁的正应力实验

实验五 纯弯曲梁的正应力实验

实验五 纯弯曲梁的正应力实验一、实验目的1、测定梁在纯弯曲时横截面上正应力大小和分布规律。

2、验证纯弯曲梁的正应力计算公式。

3、测定泊松比μ。

4、测量矩形截面梁在纯弯曲时最大应变值,比较和掌握运用不同组桥方式时提高测量灵敏度的方法。

二、实验设备1、材料力学组合实验台;2、电阻应变测力仪;三、实验原理和方法1、测定弯曲正应力 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力计算公式为M =y zI σ (1)式中:M 为弯矩;I z 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。

由上式可知,在弹性范围内,沿横截面高度,正应力按线性规律变化,其最大正应力产生在上下边缘,为max zMW σ=(2) W z 称为抗弯截面系数。

实验采用1/4桥公共补偿测量方法,加载采用增量法,载荷从100N 开始,每次增加700 N ,测出各点的应变增量ε∆,然后分别取各点应变增量的平均值ε∆实i ,依次求出各点的应力增量σ∆实i =E ε∆实i (3)四、实验步骤1.设计好本实验所需的数据表格;2.测量矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a 及各应变片到中性层的距离y i.3.拟定加载方案。

根据实验要求适当选取初载0100F N =,然后按照步长700N 分级加载,加到最大的载荷max 3600F N =。

4.根据加载方案,调整好实验加载装置。

5.按照实验要求接线(1/4桥),调整好电阻应变仪,检查整个系统是否处于正常工作状态;5.加载。

用均匀慢速加载至初载荷0100F N =,记下各点电阻应变仪得初读数,然后按照步长700F N ∆=分级加载,依次记录各点电阻应变片的应变度数,直到3600N 为止;6.完成全部试验内容后,卸掉载荷,关闭电源,整理所用仪器、设备,清理实验现场,将所有仪器设备复原。

五、实验结果处理1、 基本参数L=670 a=160 y 1=12.5 y 2=25 k=2.18 b=20 h=50 E=206Gpa2、原始数据在不同载荷作用下,六个应变片输出应变读数如表(a )所示。

梁的纯弯曲实验报告

梁的纯弯曲实验报告

竭诚为您提供优质文档/双击可除梁的纯弯曲实验报告篇一:纯弯曲实验报告page1of10page2of10page3of10page4of10page5of10篇二:弯曲实验报告弯曲实验报告材成1105班3111605529张香陈一、实验目的测试和了解材料的弯曲角度、机械性能、相对弯曲半径及校正弯曲时的单位压力等因素对弯曲角的影响及规律。

二、实验原理坯料在模具内进行弯曲时,靠近凸模的内层金属和远离凸模的外层金属产生了弹—塑性变。

但板料中性层附近的一定范围内,却处于纯弹性变形阶段。

因此,弯曲变形一结束,弯曲件由模中取出的同时伴随着一定的内外层纤维的弹性恢复。

这一弹性恢复使它的弯曲角与弯曲半径发生了改变。

因此弯曲件的形状的尺寸和弯曲模的形状尺寸存在差异。

二者形状尺寸上的差异用回弹角来表示。

本实验主要研究影响回弹角大小的各因素。

三、实验设备及模具(1)工具:弯曲角为90度的压弯模一套,配有r=0.1、0.4、0.8、2、4五种不同半径的凸模各一个。

刚字头,万能角度尺,半径样板和尺卡。

(2)设备:曲柄压力机(3)试件:08钢板(不同厚度),铝板(不同厚度),尺寸规格为52x14mm,纤维方向不同四、实验步骤1.研究弯曲件材料的机械性能,弯曲角度和相对弯曲半径等回弹角度的影响。

实验时利用90度弯曲角度分别配有五种不同的弯曲半径的弯模,对尺寸规格相同的试件进行弯曲,并和不同的弯曲半径各压制多件。

对不同弯曲半径的试件压成后需要打上字头0.1、0.4、0.8、2、4等,以示区别。

最后,按下表要求测量和计算。

填写好各项内容。

五、数据处理(t/mm)试件尺寸:52x14mm弯曲后的试样如下图所示δθ=f(r凸/t)曲线如下图所示分析讨论:分析相对弯曲半径,弯曲角度及材料机械性能对回弹角的影响。

答:相对弯曲半径越小,弯曲的变形程度越大,塑性变形在总变形中所占比重越大,因此卸载后回弹随相对弯曲半径的减小而减小,因而回弹越小。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名:(一) 班级: 学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:zM yI σ⋅=为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。

贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。

采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量:σ实i =E △ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。

四、原始数据:五、实验步骤:1. 打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。

3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。

按清零键,使测力计显示零。

4.应变仪调零。

按下“自动平衡”键,使应变仪显示为零。

5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。

用应变仪右下角的通道切换键来显示第5测点的读数。

以后,加力每次500N,到3000N 为止。

6.读完3000N应变读数后,卸下载荷,关闭电源。

六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P = 500N弯矩增量△M = △P/2×L P应力理论值计算(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。

关于梁的纯弯曲正应力实验

关于梁的纯弯曲正应力实验

梁的纯弯曲正应力实验电测法是应力应变测量最常用的方法,其方法简便,技术成熟,已经成为工程中不可缺少的测量手段。

纯弯曲时正应力在横截面上线性分布,是弯曲中最简单的应力情况。

用电测法测定纯弯曲梁上的正应力,不仅可以验证材料力学理论,也可以熟悉电测法测量的原理、操作方法和注意的问题,为复杂的实验应力分析打下基础。

一、预习要求1、YJ—5电阻应变仪测量前如何进行预调平衡?2、采用半桥接法进行弯曲正应力测量时,如何进行温度补偿?说明原理。

二、实验目的1、初步掌握电测应力分析方法,学习电测接线方法、仪器调试使用方法。

2、测定梁在纯弯曲下的弯曲正应力及分布规律,验证理论公式。

三、实验设备1、纯弯曲正应力试验台。

2、电阻应变仪及预调平衡箱。

3、矩形截面钢梁。

四、实验原理及方法纯弯曲梁如图1a所示。

在载荷P作用下,梁的CD段为纯弯曲变形。

沿梁横截面的高度方向每隔4h高度粘贴平行于轴线的测量应变片,共五片,其中第三片在中性层上。

另外在梁外安置温度补偿块,其上贴一公共温度补偿应变片。

每一测量应变片与公共温度补偿片按图1b接法接为半桥测量系统。

梁受到P力作用后,产生弯曲变形。

通过电阻应变仪测出载荷作用下五个点处的应变,由于是单向拉压变形,由虎克定律εσE=即可算出各点的应力值。

另一方面,由弯曲正应力理论公式zIMy=σ,可算出各点的应力理论值。

于是可将实测值和理论值进行比较,验证理论公式的正确性。

实验时,载荷由砝码经过20倍杠杆放大施加。

加载分四级,每增加一个砝码,产生P图1 纯弯曲实验装置示意图力的增量ΔP。

每加一级后测出五个点的应变,最后取力和应变的增量平均值计算理论值和实验值。

该实验也可用万能试验机加载进行测量。

五、实验步骤1、检查调整纯弯曲梁、电阻应变仪,使各部件和旋钮在正确位置,并打开应变仪进行预热。

2、接桥练习。

参照表1组桥,每种方式下按应变仪的使用方法进行预调平衡,平衡后加一个砝码读取应变。

读数方法为,当加载后应变仪的指针发生偏转,根据应变的大小选择并调节微调、中调、粗调读数盘使电表指针回零,这时各读数盘所指读数的代数和即是所测点的应变值。

梁弯曲正应力电测实验报告

梁弯曲正应力电测实验报告
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε
式中E是梁所用材料的弹性模量。

图3-16
为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε
hhhh
y1?=15mm;y2?=;y3=0cm;y4????;y5????15mm;E=210Gpa。
2442
23
抗弯曲截面模量WZ=bh/6惯性矩JZ=bh/12
(2)应变?记录:
(3)取各测点?值并计算各点应力:
??1=16×10;??2=7×10;??3= 0;??4=8×10;??5=15×10;??1=E?1=;??2=E??2=;??3=0;
二、实验仪器和设备
1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。4、温度补偿块一块。三、实验原理和方法
弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:
×10-6=
??2=
×10=
-6
??3=
×10=
-6
??4=
×10-6=
??5=
×10-6=
六、计算结果
1.各点正应力增量??i实,理论值??i理及相对误差填入表4-4表4-4
2.实验所得横截面上正应力分布图
七、思考题
1.两个几何尺寸及受载情况完全相同的梁,但材料不同,试问在同一位置处测得的应变是否相同?应力呢?

材料弯曲实验报告doc

材料弯曲实验报告doc
?s
FsA0
?
2XX
??10/4
60000
2
?280.11MPa铸铁压缩强度极限?
?b
FbA0
?
??10/4
2
?763.94MPa
五、思考题
1.分析铸铁破坏的原因,并与其拉伸作比较。
22.5?1078.54?35?1078.54
3
?286.48MPa
3低碳钢强度极限?
FbA0
b
?445.63MPa低碳钢断面收缩率??
A0?A1
A0
L1?L0
L0?100%?
78.54?28.27
78.54
?64%低碳钢延伸率??
125?100
100
?25%
铸铁强度极限?
b
?
FbA0
?
10.8?1078.54
载荷Fs=22.5kN。其越压越扁,压到一定程度(F=40KN)即可停止试验。 对于铸铁试件,应压到破坏为止,记下最大 载荷
Fb =35kN。 打印压缩曲线。
5. 取下试件, 观察低碳钢试件形状:鼓状;铸铁试件,
沿45?
~55
方向破坏。
F图2-1低碳钢和铸铁压缩曲线
四、试验结果及数据处理 表2-1压缩实验结果 低碳钢压缩屈服点?
二、实验设备、材料 万能材料试验机、游标卡尺、低碳钢和铸铁压缩试件。
三、实验方法
1. 用游标卡尺量出试件的直径d和高度h。
2. 把试件放好,调整试验机,使上压头处于适当的位
置,空隙小于10mm。3. 运行试验程序,加载,实时显 示外力和变形的关系曲线。
4. 对低碳钢试件应注意观察屈服现象,并记录下屈服
(1)用画线器在低碳钢试件上画标距及10等分刻线,

高层建筑主材弯曲检查的常见缺陷分析与处理

高层建筑主材弯曲检查的常见缺陷分析与处理

高层建筑主材弯曲检查的常见缺陷分析与处理在高层建筑的设计与施工过程中,主材的质量和稳定性至关重要。

其中,弯曲检查是确保主材质量的重要环节。

然而,由于种种原因,高层建筑主材的弯曲缺陷时有发生。

本文将分析高层建筑主材弯曲检查的常见缺陷,并提供处理方案,以确保建筑质量与安全。

一、常见缺陷分析1. 弯曲度超过标准要求高层建筑主材的弯曲度超出标准要求是常见的缺陷之一。

主要原因是在生产过程中,工艺操作不当或设备失调,导致主材在弯曲过程中出现偏差。

另外,质量监督也可能存在问题,未及时发现和处理。

2. 强度减弱当高层建筑主材弯曲时,可能会引起其强度的减弱。

这种缺陷可能是由于主材本身的材料问题,比如原材料选择不当或者加工过程中形成的缺陷等。

同时,在弯曲过程中,主材的内部结构也会发生变化,导致强度下降。

3. 焊接质量不达标在高层建筑主材的弯曲过程中,需要进行焊接操作以确保主材的连接稳固。

然而,焊接质量不达标是常见的缺陷之一。

包括焊缝的质量不合格、焊接温度不适宜等问题,都可能导致弯曲后的主材出现缺陷。

4. 表面缺陷高层建筑主材弯曲过程中,可能会出现表面缺陷,比如划痕、凹陷等。

这种缺陷可能是由于不当操作引起的,比如使用不合适的工具或者处理方式。

此外,运输过程中的挤压、摩擦等也可能导致表面缺陷的发生。

二、缺陷处理方案1. 强度评估与材料选择当发现高层建筑主材出现弯曲缺陷时,首先应进行强度评估。

通过相关测试和计算方法,确定主材的承载能力,以判断是否达到安全标准。

如果强度不足,需要重新考虑材料选择,以满足设计要求和建筑需要。

2. 工艺改进与设备调整在生产过程中,应加强质量控制与监督,确保工艺操作的准确性和设备的正常运行。

定期维护和校准设备,提高弯曲操作的精确度。

同时,根据实际情况进行工艺改进,提高主材生产过程中的稳定性和一致性。

3. 焊接质量控制针对焊接质量问题,应加强焊接工艺的培训与管理,提高焊工的技术水平和认识。

建立焊接工艺规范,确保焊接过程中的温度、时间、焊缝质量等达到标准要求。

纯弯曲梁正应力分布规律实验报告

纯弯曲梁正应力分布规律实验报告

纯弯曲梁正应力分布规律实验报告纯弯曲正应力分布规律实验纯弯曲正应力分布规律实验一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。

二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。

4、温度补偿块一块。

三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=0.28。

用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。

根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:My Ix为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了5片应变片(其中:b=15 mm,h=25 mm,C=124mm,梁长372mm),各应变片的分布为:1#在二分之一h处,2#、3#在上下对称于1#的四分之一h处,4#、5#在弯曲梁的上下表面。

如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。

将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。

四、实验步骤1、对齐弯曲梁的下支座白色记号。

2、将力值调零,实验中取P0=100N,ΔP=350N,Pmax=1500N,分四次加载,在P0处将应变仪调零,实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。

3、每个测点求出应变增量的平均值??m?4i(m=1,2,···,5),算出相应的应力增量实测值??m测?E??m (MPa)。

其中,E取2.1?105MPa。

4、纯弯曲段(CD段)内的弯矩增量为:?M?bh3Iz?12。

求出各测点的理论值,式中1?MPc,由公式??m理?y 2Iz5、对每个测点列表比较??m测和??m理,并计算相对误差m测m理m理100%在梁的中性层(第1点),因??1理?0,故只需计算绝对误差。

纯弯曲梁的正应力实验报告

纯弯曲梁的正应力实验报告

姓名: 班级: 学号:实验陈述 纯曲折梁的正应力实验一.实验目标:1.测定梁在纯曲折时横截面上正应力大小和散布纪律2.验证纯曲折梁的正应力公式 二.实验装备及对象:1.材料力学多功效实验台中的纯曲折梁实验装配2.数字测力仪.电阻应变仪 三.实验道理及办法:在纯曲折前提下,依据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上随意率性一点的正应力,盘算公式:zM yI σ⋅=为测量梁横截面上的正应力散布纪律,在梁的曲折段沿梁正面不合高度,平行于轴线贴有应变片.贴法:中性层一片,中性层高低1/4梁高处各一片,梁高低两侧各一片,共计五片.采取增量法加载,每增长等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量:σ实i =E △ε实i将实验应力值与理论应力值进行比较,已验证曲折正应力公式. 四.原始数据:五.实验步调:1. 打开应变仪.测力仪电源开关2.连策应变仪上电桥的连线,肯定第一测点到第五测点在电桥通道上的序号.3. 检讨测力仪,选择力值加载单位N或kg,按动按键直至显示N 上的红灯亮起.按清零键,使测力计显示零.4.应变仪调零.按下“主动均衡”键,使应变仪显示为零.5.转着手轮,按铭牌指导加载,加力的学生要迟缓匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(留意记载下正.负号).用应变仪右下角的通道切换键来显示第5测点的读数.今后,加力每次500N,到3000N为止.6.读完3000N应变读数后,卸下载荷,封闭电源.六.实验成果及处理:1.各点实验应力值盘算依据上表数据求得应变增量平均值△εPi,带入胡克定律盘算各点实验值:σ实i=E△εPi×10-62.各点理论应力值盘算载荷增量△P = 500N弯矩增量△M = △P/2×L P应力理论值盘算(验证的就是它)3.绘出实验应力值和理论应力值的散布图以横坐标暗示各测点的应力σ实和σ理,以纵坐标暗示各测点距梁中性层的地位.将各点用直线衔接,实测用实线,理论用虚线.σy4.实验值与理论值比较,验证纯曲折梁的正应力公式。

纯弯曲梁正应力实验报告-纯弯曲实验报告思考题

纯弯曲梁正应力实验报告-纯弯曲实验报告思考题

纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。

F为荷载增量的平均值。

1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题1.试件尺寸和形式对测定弹性模量E有无影响2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量111082.0G Pa 弹性模量11101.2E Pa 泊松比28.0 电阻片号kNPo1.0 kNPn1.1 两次读数平均值两次读数平均值1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题1.求出实测主应力、主方向与理论主应力、主方向的相对误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

梁弯曲正应力实验中遇到的问题和解决方法
梁弯曲正应力实验是一种常见的力学实验,用于研究材料在受弯曲负载时的应力分布情况。

在进行这种实验时,有可能会遇到一些问题,下面是一些常见问题及其解决方法:
1. 梁的变形较大:当梁弯曲变形较大时,可能会导致实验结果不准确。

这可能是由于使用的材料强度不够或梁的截面形状不合适所引起的。

解决方法可以是使用更强度更高的材料或调整梁的截面形状以增加刚度。

2. 不均匀的载荷分布:在实验中,均匀的载荷分布对于获得准确的应力分布至关重要。

然而,由于实际操作中的误差或载荷施加不均匀,可能会导致载荷分布不均。

为了解决这个问题,可以使用适当的装置来均匀施加载荷,例如调整载荷点的位置或使用辅助支撑装置。

3. 测量误差:在实验测量过程中,可能会存在测量误差,例如测量长度或载荷的误差。

为了减小测量误差,可以使用更精确的测量仪器,例如数字测量仪或压力传感器,并进行多次重复测量以取得平均值。

4. 材料非线性行为:某些材料在受到较大应力时可能会出现非线性行为,例如弹性极限的超越或塑性变形。

这可能会影响到实验结果的准确性。

在这种情况下,可以选择更适合材料特性的实验方法,或者
进行更详细的材料力学性质测试。

5. 温度变化:温度的变化可能会导致材料的线膨胀或收缩,从而影响实验结果。

为了解决这个问题,可以进行温度补偿,即在实验过程中测量和控制温度变化,并根据材料的热膨胀系数进行修正。

总之,梁弯曲正应力实验是一种常见且有用的实验,但在实验过程中可能会遇到各种问题。

通过合适的措施和方法,可以克服这些问题,并获得准确可靠的实验结果。

相关文档
最新文档