【2014泰安市一模】山东省泰安市2014届高三第一轮复习质量检测数学(理)试题 Word版含答案

合集下载

山东省2014届理科一轮复习试题选编25:空间几何体的三视图

山东省2014届理科一轮复习试题选编25:空间几何体的三视图

山东省2014届理科数学一轮复习试题选编25:空间几何体的三视图、表面积与体积一、选择题 1 .(山东省临沂市2013届高三第三次模拟考试 理科数学)一个空间几何体的三视图如图,则该几何体的体积为( )A.B.CD【答案】D2 .(2013年山东临沂市高三教学质量检测考试理科数学)具有如图所示的正视图和俯视图的几何体中,体积最大的几何体的表面积为( )A .13B .C .72πD .14【答案】D 由正视图和俯视图可知,该几何体可能是四棱柱或者是水平放置的三棱柱,或水平放置的圆柱.由图象可知四棱柱的体积最大.四棱柱的高为1,底面边长分别为1,3,所以表面积为2(131131)14⨯+⨯+⨯=,选D . 3 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)已知四面体S ABC -的所有棱长都相等,它的俯视图如下图所示,的正方形;则四面体S ABC -外接球的表面积为( )A . 6πB .4πC .8πD .3π【答案】A4 .(山东省临沂市2013届高三5月高考模拟理科数学)某几何体的三视图如图(其中侧视图中的圆弧是半圆),第7题图( )A .9214+πB .8214+πC .9224+πD .8224+π【答案】A 由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半. 长方体的中445EH HG GK ===,,,所以长方体的表面积为(去掉一个上底面)2(4445)45=92⨯+⨯+⨯.半圆柱的两个底面积为22=4ππ⨯,半圆柱的侧面积为25=10ππ⨯⨯,所以整个组合体的表面积为92+410=92+14πππ+,选( )A ..5 .(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积、体积分别是 ( )A .12832,3ππ B .3216,3ππ C .1612,3ππ D .168,3ππ【答案】C 6 .(山东省潍坊市2013届高三第二次模拟考试理科数学)有一平行六面体的三视图如图所示,其中俯视图和左视图均为矩形,则这个平行六面体的表面积为( )A .B .6+C .30+D .42【答案】C 由三视图可知该平行六面体的底面是个矩形,两个侧面和底面垂直.其中侧棱12AA =.底面第7题图边长3AD =,平行六面体的高为3.2BE =,又2222112(3)1AE AA A E =-=-=,所以123AB =+=.所以平行六面体的表面积为2(333332)=3063⨯+⨯+⨯+,选C .7 .(山东省兖州市2013高三9月入学诊断检测数学(理)试题)如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是【答案】 B . 8 .(山东省2013届高三高考模拟卷(一)理科数学)一个几何体的三视图如图所示,其正视图和侧视图都是底边长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .π6B .π12C .π18D .π24【答案】B 【解析】结合三视图可知该几何体是一个圆台,其上,下底面的半径分别为2,1,其直观图如图所示.则该几何的侧面积⨯=2(πS π12)414=⨯+.9 .(山东省泰安市2013届高三上学期期末考试数学理)如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为( )A .13B .12 C .16D .1【答案】A【解析】由三视图可知,该几何体是四棱锥,底面为边长为1的正方形,高为1的四棱锥,所以体积为1111133⨯⨯⨯=,选A . 10.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的( )AB1 CD .外接球的表面积为4π【答案】B11.(山东省济南市2013届高三3月高考模拟理科数学)一个几何体的三视图如右图所示,则它的体积为( )A .203 B .403C .20D .40【答案】B由三视图可知,该几何体是一个放到的四棱锥,其中四棱锥的底面是主视图,为直角梯形,直角梯形的上第11题图图图底为1,下底为4,高为 4.棱锥的高位4,所以四棱锥的体积为1144044323+⨯⨯⨯=,选B .12.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)一个几何体的三视图如图所示,则该几何体的体积为( )A .1B .13 C.12D.32 【答案】B 由三视图可知,该几何体是四棱锥,以俯视图为底,高为1,俯视图的面积为11=1⨯,使用四棱锥的体积为111133⨯⨯=,选 B .13.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)如图所示是以建筑物的三视图,现需将其外壁用油漆刷一遍,若每平方米用漆0.2k g,则共需油漆大约公斤数为(尺寸如图所示,单位:米 π取3)( )A .20B .22.2C .111D .110【答案】B【解析】由三视图可知,该几何体上面是个圆锥,下面是个长方体.长方体的底面是边长为3的正方形,高为4,所以长方体的表面积(去掉上下两个底面)为24(34)=48()m ⨯⨯.圆锥的底面半径为3,母线为5,所以圆锥的侧面积为2351545()m ππ⨯⨯==,底面积(去掉一个正方形)为29339918()m ππ-⨯=-=,所以该几何体的总面积为2484518111()m ++=,所以共需油漆0.211122.2⨯=公斤,选 B .14.(山东省济宁市2013届高三4月联考理科数学)已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为1V ,直径为4的球的体积为2V ,则12:V V =( )A .1:2B .2:1C .1:1D .1:4【答案】A15.(2013届山东省高考压轴卷理科数学)右图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为的矩形.则该几何体的表面积是( )A.20+B.24+C .8D .16【答案】( )A .【解析】由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为由面积4,则1+2=24+2S S S =⨯⨯⨯⨯侧底()2 =2820+. 16.(山东省青岛市2013届高三第一次模拟考试理科数学)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是( )A .16πB .14πC .12πD .8π【答案】A 由三视图可知,该几何体是一挖去12半球的球.其中两个半圆的面积为224ππ⨯=.34个球的表面积为2342124ππ⨯⨯=,所以这个几何体的表面积是12416πππ+=,选A. 17.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)一个几何体的三视图如图所示,其中的长度单位为cm,则该几何体的体积为( )cm 3.( )正视图 俯视图左视图A .18B .48C .45D .54【答案】D由三视图可知,该几何体时底面是矩形的四棱柱,以俯视图为底,底面直角梯形的上底为4,下底为5,高为3.棱柱的高为4,所以四棱柱的体积为34534542cm +⨯⨯=,选 D .18.(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)一个几何体的三视图如图所示,则该几何体的体积为( )A .2B .1C .23D .13【答案】C 19.(2011年高考(山东理))右图是长和宽分别相等的两个矩形.给定下列三个命题:① 存在三棱柱,其正(主)视图、俯视图如右图;② 存在四棱柱,其正(主)视图、俯视图如右图; ③ 存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是 ( ) A .3 B .2 C .1 D .0【答案】解析:①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱, 让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面 是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真, 答案选A . 20.(山东省济南市2013届高三上学期期末考试理科数学)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是【答案】C【 解析】若俯视图为C,则俯视图的宽和左视图的宽长度不同,所以俯视图不可能是C .21.(山东省潍坊市2013届高三上学期期末考试数学理 ( )A .)一个几何体的三视图如图所示,其中主视图和左视图是腰长为4的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是 ( ) A .π12 B .π24 C .π32 D .π48 【答案】D【解析】该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥.其中底面ABCD 是边长为4的正方形,高为CC 1=4,该几何体的所有顶点在同一球面上,则球的直径为12AC R ==,所以球的半径为R =,,所以球的表面积是224448R πππ=⨯=,选D .22.(山东省威海市2013届高三上学期期末考试理科数学)某几何体的三视图如右图所示,则该几何体的体积不可能是( )A .1B .1.5C .2D .3【答案】D 由三视图可知,该几何体时一个侧面和底面垂直的的三棱锥,,其中底面三角形BAC为直径三角形,PA ABC ⊥,2AB =,4PC =,设,04AC x x =<<,则PA ==,所以三棱锥的体积为111168232363x ⨯⨯=≤==,当且仅当x =即28,x x ===,此时体积有最大值82233=,所以该三棱锥的体积不可能是3,选D .23.(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20【答案】C 【解析】由三视图可知,该几何体是一个四棱锥,四棱锥的高为4,底面为俯视图对应的矩形,俯视图的面积为2612⨯=,所以四棱锥的体积为1124163⨯⨯=,选C .24.(山东省烟台市2013届高三上学期期末考试数学(理)试题)一个几何体的三视图如下所示,则该几何体的表面积是 ( )A .6+B .12+C .12+D .18+【答案】C【解析】由三视图可知,该几何体是一个直三棱柱,三棱柱的底面是一个腰长为2,底面上的高是1的等腰三角形,侧棱长是3,所以该几何体的表面积为1213(22122⨯⨯+++=+,选 C . 25.(山东师大附中2013届高三第四次模拟测试1月理科数学)已知某几何体的三视图如图,其中正(主)视图中半圆的半径为1,则该几何体的体积为( )A .3242π-B .243π-C .24π-D .242π-【答案】A 【解析】由三视图可知该几何体是一个长方体去掉一个半圆柱.长方体的长宽高分别为3,2,4.所以长方体的体积为32424⨯⨯=.半圆柱的高为3,所以半圆柱的体积为13322ππ⨯⨯=,所以几何体的体积为3242π-,选 ( )A .26.(山东省泰安市2013届高三第二次模拟考试数学(理)试题)如右图,一个由两个圆锥组合而成的空间几何体的正视图和侧视图都是边长为1、一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的体积为( )A.12B .6ππC.12π D.6【答案】A27.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))如图,正三棱柱ABC -111A B C 的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( )A .22B .4C .3D .32【答案】D【解析】由正视图可知,此三棱柱的侧视图为,高为2,宽为3的矩形,所以面积为32,选 D . 28.(2009高考(山东理))一空间几何体的三视图如图所示,则该几何体的体积为( )A .2ππ D .4π+1,高为2,体积为2π,四棱2=所以该几何体的体积为2π.答案:C29.(山东省日照市2013届高三12月份阶段训练数学(理)试题)如右图,某几何体的主视图与左视图都是边长正(主)视图为1的正方形,且体积为12,则该几何体的俯视图可以是【答案】C 【解析】若俯视图为A,则该几何体为边长为1的正方体,体积为1,不成立.若俯视图为B,则该几何体为圆柱,体积为21()124ππ⨯=,不成立.若俯视图为C,则该几何体为三棱柱,体积为1111122⨯⨯⨯=,成立.若俯视图为D,则该几何体为14圆柱,体积为211144ππ⨯⨯=,不成立.所以只有C 成立,所以选 C .30.(山东省烟台市2013届高三3月诊断性测试数学理试题)如右图,某几何体的三视图均为边长为l 的正方形,则该几何体的体积是( ) A .65 B .32 C .1 D .21 【答案】A 由题意三视图对应的几何体如图所示,所以几何体的体积为正方体的体积减去一个三棱锥的体积,即31151111326-⨯⨯⨯⨯=,选 ( )A .31.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )A .1B .2C .3D .4【答案】B 由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为141122⨯⨯⨯=.由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为13,对角线长为2,故棱锥的高为22(13)293-==.此棱锥的体积为12323⨯⨯=,选B . 32.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)如图所示是一几何体的三视图,则该几何体外接球的表面积为( ) A .3π B .4π C .8π D .9π【答案】D二、填空题33.(山东省凤城高中2013届高三4月模拟检测数学理试题 )已知某几何体的三视图如图所示,其中正视图中半圆的直径为2,则该几何体的体积为____.【答案】3242π- 34.(山东省文登市2013届高三3月二轮模拟考试数学(理))如图,已知球O 的面上有四点,,,A B C D ,DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,则球O 的体积与表面积的比为__________.【答案】35.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)已知矩形ABCD 的顶点都在半径为5的球O 的球面上,且8,AB BC ==则棱锥O ABCD -的体积为______.【答案】球心在矩形的射影为矩形对角线的交点上.所以对角线长为=,所以棱锥的高为=,所以棱锥的体积为183⨯=. 36.(2012年山东理)(14)如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________.【答案】解析:61112113111=⨯⨯⨯⨯==--DE D F EDF D V V . 37.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )从如图所示的长方形区域内任取一个点M(x,y),则点M 取自阴影部分的概率为 ____________;【答案】31 38.(山东省济南市2013届高三4月巩固性训练数学(理)试题)已知某几何体的三视图如图所示,则该几何体的体积为_________.【答案】 4163π+ 39.(山东省德州市2013届高三3月模拟检测理科数学)一空间几何体的三视图如图所示,该几何体的体积为16π,则图中x 的值为_______________.【答案】3由三视图可知,该几何体下面是个圆柱,上面是个四棱锥.圆柱的体积为4416ππ⨯=,四棱锥的底面积为14482⨯⨯=,所以四棱锥的体积为18833h h ⨯⨯=,所以816163h ππ=+,所以四棱锥的高h =所以2222549x h =+=+=,即3x =. 40.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.【答案】π3 41.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)一个几何体的三视图如右图所示,则正视图 侧视图俯视图该几何体的表面积为__________.【答案】242π+ 【解析】由三视图可知,该组合体下部是底面边长为2,高为3的正四棱柱,上部是半径为2的半球,所以它的表面积为224322221224πππ⨯⨯+⨯+⨯=+. 42.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________________3m .【答案】4 【解析】由三视图可知,该组合体是由两个边长分别为2,1,1和1,1,2的两个长方体,所以体积之和为2111124⨯⨯+⨯⨯=。

山东省泰安市2014年春学期高三第一轮复习质量检测考试地理试卷(有答案)

山东省泰安市2014年春学期高三第一轮复习质量检测考试地理试卷(有答案)

山东省泰安市2014年春学期高三年级第一轮复习质量检测考试地理试卷(有答案)2014.3 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至6页。

第II卷7 至10页。

满分为100分。

考试用时90分钟。

第I卷(选择题共50分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、选择题(每小题2分,共50分,四个选项中,只有一个最符合题目要求)。

下表是泰山连续三个月21日的日出时刻(北京时间),据此完成第l一2题。

1.从a月21日到c月21日期间A.泰山昼长夜短且昼逐渐变长B.济南正午太阳高度先增大后减小C.地球公转速度逐渐加快D.太阳直射点位于北半球且向北移动2.下列现象可能出现在b月的是A.江淮地区适逢梅雨季节B.亚洲大陆被高压控制C.华北平原正值小麦播种期D.南非好望角附近炎热干燥读部分陆地沿某方向的自然植被依次分布状况和气候条件关系示意图,完成3—4题。

3.甲植被最可能是A.热带雨林B.常绿阔叶林C.常绿硬叶林D.温带草原4.形成图中自然带地域分异规律的基础是A.地形 B.水分 C.土壤 D.热量读某地地质剖面图和岩石圈物质循环示意图,完成5—6题。

5.图中④岩石类型属于右图中的A.甲 B.乙 C.丙 D.丁6.图中4种岩石或地质作用,按形成年代从早到晚排列正确的是A.①②④③ B.②④①③ C.③④②① D.②①④③下图是为研究某城市功能区而建立的地理信息系统(GIS)图层。

据图完成7—8题。

7.图中M地最适宜布局A.医院 B.学校 C.银行 D.居民住宅8.图中数字信息可以服务的对象最合适的是A.旅游部门 B.住房建设部门 C.消防部门 D.民政部门下图是北美洲部分地区某年1月30日8时海平面等压线图,读图完成9—10题。

2014泰安文科数学一模试题

2014泰安文科数学一模试题

泰安市2014届高三教学质量检测考试文 科 数 学本试卷分为选择题和非选择题两部分,共4页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能 使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.设复数()(),2,1zz a bi a b R i P a b i =+∈=-+,若成立,则点在A.第一象限B.第二象限C.第三象限D.第四象限2.如果点()02P y ,在以点F 为焦点的抛物线24y x =上,则PF 等于A.1B.2C.3D.43.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位 老人,结果如表:由()()()()()22n ad bc K a b c d a c b d -=++++算得()2250040270301609.96720030070430K ⨯⨯-⨯=≈⨯⨯⨯ 参照附表,得到的正确结论是A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”D.有99%以上的把握认为“需要志愿者提供帮助与性别无关” 4.给定命题p :函数()()ln 11y x x =-+⎡⎤⎣⎦为偶函数;命题q :函数11x x e y e -=+为偶函数,下列说法正确的是 A.p q ∨是假命题 B.()p q ⌝∧是假命题 C.p q ∧是真命题 D.()p q ⌝∨是真命题 5.已知向量a ,b 的夹角为120°,且1,a b a b ⋅=--则的最小值为D.1 6.执行右面的程序框图,如果输入a=3,那么输出的n 的值为 A.2 B.3 C.4 D.5 7.将函数()2cos 2f x x x =-的图象向左平移m 个单位 2m π⎛⎫>- ⎪⎝⎭,若所得的图象关于直线6x π=对称,则m 的最小值为 A.3π- B.6π- C.0 D.12π 8.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视 图(如图所示)的面积为8,侧视视图的面积为 A.8 B.4C.9.设直线x m =与函数()()24,2ln f x x g x x =+=的图象分别交于点M 、N , 则当MN 达到最小时m 的值为 A.14 B. 12 C.1 D.2 10.已知函数()()()2111f x x x a x a b ⎡⎤=-+++++⎣⎦的三个零点值分别可以 作为抛物线、椭圆、双曲线的离心率,则22a b +的取值范围是A.)+∞B.)+∞C.[)5,+∞D.()5,+∞【附表】泰安市2014届高三教学质量检测考试文 科 数 学第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.等比数列{}n a 的前n 项和为123,4,2,n S a a a 且成等差数列,若141a S ==,则 ▲ .12.在区间[]13-,上随机取一个数x ,则1x ≤的概率为 ▲ .13.已知12F F ,是双曲线E 的两个焦点,以线段12F F 为直径的圆与双曲线的一个公共点是M , 若1230MF F ∠=,则双曲线E 的离心率是 ▲ .14. 若3sin 52πββπ⎛⎫=<< ⎪⎝⎭,()22sin cos ,sin sin cos 2cos αβααααα+=+-则= ▲ .15.定义域为R 的函数()()()(]()2120,1f x f x f x x f x x x +=∈=-满足,且当时,,则当[]()2,1x f x ∈--时,的最小值为 ▲ .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且3cos .5b cC a a =+(I )求sinA ;(II)若10,a b BA BC == 求在上的投影.17.(本小题满分12分)已知四棱锥P-ABCD 中,底面ABCD 为直角梯形,//.=901,2,BC AD BAD PA AB BC AD PA ∠====⊥,且平面ABCD ,E 为AB 的中点.(I )证明:PC CD ⊥;(II )设F 为PA 上一点,且14AF AP =,证明:EF//平面PCD.18.(本小题满分12分) 某河流上的一座水利发电站,每年六月份的发电量Y (单位:万千瓦时)与该河流上游在六月份的降雨量X (单位:毫米)有关.据编译,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年的X 值为 140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160. (I )完成如下的频率分布表: (II )求近20年降雨量的中位数和 平均降雨量; (III )假定2014年六月份的降雨量 与近20年六月份降雨量的分布规律相同,并将频率视为概率,求2014年六月份该水车发电站 的发电量不低于520(万千瓦时)的概率. 19.(本小题满分12分) 已知数列{}1n a a t =中,(t 为非零常数),其前n 项和为12n n n S a S +=,满足. (I )求数列{}n a 的通项公式; (II )若对任意的()*1n n N a n n λ∈>+,都有成立,求实数λ的取值范围. 20.(本小题满分13分) 如图,A 、B 是椭圆()222210y x a b a b +=>>的两个顶点,它的短轴长 为1,其一个焦点与短轴的两个端点构成正三角形. (I )求椭圆方程; (II )若直线()0y kx k =>与椭圆相交于R 、S 两点.求四边形ARBS 的 面积的最大值. 21.(本小题满分14分) 已知函数()ln f x x mx =+,其中m 为常数. (I )当()1m f x =-时,求函数的单调区间; (II )若()(]0f x e 在区间,上的最大值为3m -,求的值; (III )令()()21f x g x f x x +'=-≥,若时,()1k g x x ≥+恒成立,求实数k 的取值范围.。

山东省泰安市2014届高三一模考试英语试题2

山东省泰安市2014届高三一模考试英语试题2

山东省泰安市2014届高三一模考试英语试题2高考英语2014-04-02 1548need both knowledge and reasoning,we need to explore teaching methods that target both.”‘The current education systems and asessment of China and the US do not emphasize on deep understanding of scientific reasoning in the disciplines of science;technology,engineering andmathematics(STEM),the study concluded.Bao explained that reasoning is good skill for everyone topossess-not just scientists andengineers:The general public also need good reasoning skills in order to correctly interpretscientific findings and think rationally.STEM students need to excael at scientific reasoning in order to handle open-ended real-world tasks in their future careers in science and engineering.How to boost scientific reasoning?The study suggests that educators must go beyond teaching science facts if they hope to boost students’reasoning ability.Bao points to inquiry-basedleaming.where students work in groups,question teachers and design their owu investigations.This teaching technique is growing in popularity worldwide.67.According to the research,we know thatA.Chinese students and their US counterparts did poorly in the first two testsB.Chinese students did beaer than their US counterparts in alI the three testsC.Chinese students did beaer than their US counterparts in the first two tests ‘D.US students did beaer than their Chinese counterparts in the third test68.The conventional wisdom holds that .A.the more facts~tudents are taught,the more reasoning skills they will acquireB.the general public also need reasoning skills to interpret scientific findingsC.to boost students’reasoning ability,educators must explore teaching methodsD.the current education Systems are harmful to improvestudents’reason ing ability69.Based on the study,what will be done to improvestudents’reasoning ability?A.To improve teaching techniques. B.To betterstudents’learning conditions.C.To teach students more science facts. D.To offer students more tests.70.The underlined phrase“excel at”in Paragraph 6 probablymeans .A.be worse at B.be beaer at C.be enthusiastic about D.be inferior to71.Which of the following is correct according to the passage?A.Little needs to be done to develop students’reason ing ability in the US.B.Only scientists and engineers need reasoning abilities.C.Two tests were carried out to evaluate students’scientific reasoning.D.Inquiry-based learning is a good way to boost students’reasoning ability.DMarriages improve after children grow up and move out,according to an academic study,which suggests an“empty nest”is not always a bad thing.Popular wisdom has it that parents’relationships may suffer once their young fly the coop,because they feel they have lost their purpose in life.However,a new study by researchers at theUniversity of California,Berkeley,has found that many couples actually feel happier when theirchildren leave home because they are able to enjoy spending time together.In total,123 American mothers born in the 1930s were tracked for 18 years and asked to ratetheir satisfaction levels shortly after marrying,when they were bringing up babies,once theirchildren reached their teenage years and finally at age 61,when almost all had“empty nests”.Although not all said they were happier in general,most claimedtheir marriages had improved since their children had left home.Researchers believe this is not just because the spouses were spending more time together,but because they were able to enjoy each other’s c ompany more.One of the participants in the study,which is published in the jourmal Psychological Science,said:“Once the kids grow up…there’s some of that stress removed…that responsibility removed,so things are a little more relaxed.’’Psychologist Sara Gorchoff,who carried out the investigation,said:“The take-home messagefor couples with young children is‘hang in there’.”Her co-author Oliver John added:“Don’t wait until your kids leave home to schedule quality time with your partner.”However,Dr Dorothy Rowe,from the British Psychological Society,said the effects of livingin an“empty nest'”will depend on the parents’relationship with their children.“If yod’re justwaiting for them to leave home so you Can get on with your life,then of course you’11 be p leased to see them go,”she said,‘‘But if you’ve built your life around your children you’11 be terribly lonely.”For some parents,their world falls apart when their Children leave.’’72.It is commonly believed thatA.marriages improve after children leave homeB.an“empty nest'’is always a happy thingC.parents’relationships may suffer once their young grow up and move outD.parents will be pleased after their children leave home73.When did many couples feel happier according to the study?A.At age 61.when a lmost all had“empty nests”.B.Shortly after marrying.C.Once their children reached their teenage years.D.Whentheywerebringingupbabies.74.Marriages improve after children fly the coop not becauseA.many couples are able to spend time togetherB.many couples arc able to enjoy each other’s companyC.things are a little more relaxedD.many couples needn’t work at all75.The author ofthe passage tends to agree that .A.parents should build their life around their kidsB.parents should schedule quality time with each other before kids leave homeC.parents’relationship with their kids has no effect on marriages at allD.parents should be pleased to see their kids leave home第Ⅱ卷(共45分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上2. 答卷前将密封线内的项目填写清楚。

山东省泰安市2014届下学期高三年级第一轮复习质量检测考试化学试卷

山东省泰安市2014届下学期高三年级第一轮复习质量检测考试化学试卷

山东省泰安市2014届下学期高三年级第一轮复习质量检测考试化学试卷2014.3本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至5页,第Ⅱ卷5 至11页。

满分100分,考试时间90分钟。

相对原子质量:H 1 C 12 O 16 Na 23 S 32 Cl 35.5 Fe 56 Cu 64 I 127第I 卷 (选择题共46分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考号、试卷类型、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

3.考试结束后,监考人员将本试卷和答题卡一并收回。

本卷共18小题。

1—8题每小题2分,9—18题每小题3分,共46分。

每小题只有一个....选项是符合题目要求的。

1.下列说法错误的是A .利用太阳能等清洁能源代替化石燃料,有利于节约资源、保护环境B .水泥厂、冶金厂常用高压电除去工厂烟尘,利用了胶体的性质C .橡胶、纤维、塑料都是高分子化合物D .日常生活中常用无水乙醇进行杀菌消毒 2.有关化学用语表达正确的是A .聚丙烯的结构简式:B.C1的结构示意图:C .1021034646Pd Pd 和互为同位素 D .过氧化氢电子式:3.全世界每年钢铁因锈蚀造成大量的损失。

某城市拟用如图方法保护埋在酸性土壤中的钢质管道,使其免受腐蚀。

关于此方法,下列说法不正确的是A .土壤中的钢铁易被腐蚀是因为在潮湿的土壤中形成了原电池B .金属棒M 的材料应该是比镁活泼的金属C .金属棒M 上发生反应:n M ne M -+-→D .这种方法称为牺牲阳极的阴极保护法4.工业生产中常涉及到一些重要的中学化学反应,以下有关叙述正确的是 A .工业上,用焦炭在高温下还原二氧化硅制得粗硅 B .通常将氯气通入到饱和石灰水中制得大量漂白粉C .工业制硫酸将2SO 氧化成3SO 的条件一般选择高温、高压、催化剂D .钠可把钛、锆、铌、钽等金属从它们的卤化物溶液里还原出来 5.下列各项中所列举的物质与所属类别对应不正确的是 A .酸性氧化物:222271CO SO SiO C O 、、、 B .非电解质:蔗糖、四氯化碳、氨气、氯气 C .同素异形体:石墨与金刚石、单斜硫与斜方硫 D .混合物:铝热剂、纯净矿泉水、水玻璃、焦炉气 6.下列说法正确的是A .2mol 11L KC -⋅溶液与lmol 124L K SO -⋅溶液混合后,()c K +为2mol 1L -⋅B .120gNaC1溶液中溶有20gNaCl ,该温度下NaC1的溶解度为20gC .22.4LHCl 气体溶于水制成1L 溶液,该溶液的物质的量浓度为lmol 1L -⋅ D .把5g 胆矾(425CuSO H O ⋅)溶于45g 水中,所得溶液溶质的质量分数为10% 7.下列解释实验事实的方程式不正确的是 A .明矾的水溶液()()3237:1313pH A H O A OH H ++<++胶体B .将NH 3通入滴有酚酞的水中,溶液变红:32324NH H O NH H O NH OH +-+⋅+C .向3AgNO 溶液中加入NaC1溶液后,再加Na 2S 溶液,白色沉淀转化为黑色沉淀:221AgC S -+=221Ag S C -+D .用醋酸检验牙膏中的摩擦剂碳酸钙:32CaCO H ++=222Ca H O CO +++↑ 8.下列说法正确的是A .葡萄糖与果糖、淀粉与纤维素均互为同分异构体B .油脂在酸的催化作用下可发生水解,工业上利用该反应生产肥皂C .甲烷、苯、乙酸和乙酸乙酯都可发生取代反应D .向蛋白质溶液中加入浓的244Na SO CuSO 或溶液均可使蛋白质盐析而分离提纯 9.A N 代表阿伏加德罗常数,下列说法不正确的是A .标准状况下,11.2L 氯仿(31CHC )中含有1C C -键的数目为1.5A NB .常温常压下,17g 甲基(143CH -)所含的电子数为9A NC .同温同压下,1LNO 和1LO 2充分混合体积小于1.5LD .pH=l 的醋酸溶液100mL 中氢离子数为0.01A N 10.图是元素周期表的一部分,下列关系正确的是A .原子半径:1Se C S >>B .热稳定性:21HC H Se r >>HB C .还原性:221SeS C --->>D .酸性:44241HBrO HC O H SO >> 11.能用图装置制取、收集下述纯净气体的是12.将足量X 气体通入Y 溶液中,实验结果与预测的现象一致的组合是 A .只有①②③ B .只有①②④ C .只有①③④D .①②③④13.下列各组粒子在指定溶液中能大量共存的是 A .pH=l 的溶液中:2344CH COO Na MnO SO -+--、、、 B .加入A1能放出H 2的溶液中:23441C HCO SO NH ---+、、、 C .含有大量SCN -的溶液中:33311Fe A NO C ++--、、、D .由水电离出的()13110c OH --=⨯mol 1L -⋅的溶液中:21Na Ba C Br ++--、、、14.下列有关说法和结论都正确的是A .已知22Cu O H ++=22Cu Cu H O +++,氢气还原氧化铜后所得红色固体能完全溶于稀硝酸,说明红色固体是铜B .用蒸馏水、酚酞、21BaC 溶液和已知浓度盐酸标准溶液作试剂,可测定NaOH 固体(杂质仅为23Na CO )的纯度C .将2SO 气体通入溴水中,溴水颜色逐渐褪去,说明2SO 具有漂白性D .已知()()21024249.010,1 1.810,sp Ksp Ag CrO K AgC Ag CrO --=⨯=⨯说明的溶解度小于1AgC15.2NaNO 是一种食品添加剂,它与酸性4KMnO 溶液的反应方程式为:24232MnO NO X Mn NO H O --+-++→++,下列叙述中正确的是A .生成l mo13NaNO 需消耗0.4mo14KMnOB .反应过程中溶液的pH 减小C .该反应中NO 2-被还原D .X 表示的粒子是OH -16.关于室温下下列溶液的说法不正确的是A .水的电离程度:①=②=③=④B .分别加水稀释10倍,溶液的pH :①>②>③>④C .①、③两溶液等体积混合:()()()()41c C c NH c H c OH --++>>>D .1V L 溶液②与2V L 溶液③混合,若12:9:11V V =,则混合溶液pH=4(忽略溶液体积变化) 17.在某一恒温体积可变的密闭容器中发生如下反应:()()()120A g B g C g H t +∆< 。

山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题(学生版)

山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题(学生版)

山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题一、选择题 1 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知ABC ∆中,三个内角A,B,C 的对边分别为a,b,c,若ABC ∆的面积为S,且()222,tan S a b c C =+-则等于( )A .34B .43C .43-D .34-2 .(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为 ( )A .518 B .34 C D .783 .(山东省潍坊市四县一校2013届高三11月期中联考(数学理))在ABC ∆中,角A,B,C 所对边分别为a,b,c,且4524==B c ,,面积2=S ,则b 等于 ( )A .2113 B .5 C .41 D .254 .(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)在AABC 中,若sinA =2 sinBcosC,222sin sin sin A B C =+,则△ABC 的形状是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D.等腰直角三角形 5 .(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)已知∆ABC 中,a 、b 、c 分别为A,B,C的对边, a=4,b=30∠=A ,则∠B 等于( )A .30B .30 或150C .60D .60 或1206 .(山东师大附中2013届级高三12月第三次模拟检测理科数学)在,,ABC A B C ∆中,的对边分别为,,a b c ,若cos ,cos ,cos a C b B c A 成等差数列则B = ( )A .6π B .4π C .3π D .23π 7 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)在△ABC 中,内角A,B,C 的对边分别是a ,b ,c ,若22245b c b c +=+-且222a b c bc =+-,则△ABC 的面积为( )A B .2 C .2D8 .(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)由下列条件解ABC ∆,其中有两解的是( )A .︒===80,45,20C A b oB . 60,28,30===B c aC . 45,16,14===A c aD . 120,15,12===A c a9 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,内角A . B .C 的对边分别为a 、b 、c,且222222c a b ab =++,则△ABC 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 10.(山东省济南市2013届高三4月巩固性训练数学(理)试题)△ABC 的内角A . B .C 的对边分别为a 、b 、c ,且a sin A +c sin C a sin C =b sinB .则B ∠= ( )A .6πB .4π C.3π D .34π 11.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)在,2ABC AB ∆∠=中,A=60,且ABC∆,则BC 的长为 ( )A B .3C D .7二、填空题 12.(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D,测得015,30BCD BDC ∠=∠=,CD=30,并在点C 测得塔顶A 的仰角为60.则塔高AB=__________.13.(山东省潍坊市2013届高三第二次模拟考试理科数学)在ABC ∆中,角A,B,C 新对的边分别为a,b,c,若cos sin a B b c C +,222b c a +-=,则角B=________.14.(山东省潍坊市2013届高三上学期期末考试数学理(A ))已知三角形的一边长为4,所对角为60°,则另两边长之积的最大值等于.15.(山东师大附中2013届级高三12月第三次模拟检测理科数学)在ABC ∆中,sin ,sin ,sin A B C 依次成等比数列,则B 的取值范围是_____________16.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)2009年北京庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为米,则旗杆的高度为______米.17.(山东省泰安市2013届高三第二次模拟考试数学(理)试题)在ABC ∆中,角A 、B 、C 的对边分别是a,b,c,若223sin 2sin ,2B C a b bc =-=,则角A 等于____. 18.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,角A,B,C 的对边为a,b,c,若45a b B ===︒,则角A=_______.19.(2010年高考(山东理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,若a=2,b=2,sinB+cosB=2,则角A 的大小为______________.三、解答题 20.(山东省德州市2013届高三3月模拟检测理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知角,sin 3sin .3A B C π==(1)求tan C 的值;(2)若a =求△ABC 的面积.21.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))在△ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I)求角C 的大小;(II)cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小22.(山东省2013届高三高考模拟卷(一)理科数学)在△ABC 中,三个内角分别为A,B,C,已知4π=A ,54cos =B . (1)求cosC 的值;(2)若BC=10,D 为AB 的中点,求CD 的长.23.(山东省临沂市2013届高三第三次模拟考试 理科数学)已知2()cossin 22f x x x ωω=-+的图象上两相邻对称轴间的距离为()2ωπ>0. (Ⅰ)求()f x 的单调减区间;(Ⅱ)在△ABC 中,,,a b c 分别是角A,B,C 的对边,若1(),3,2f A c ==△ABC 的面积是求a 的值.24.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知,A B 是ABC ∆的两个内角,向量,sin )22A B A Ba +-= ,且||2a = . (1)证明:tan tan A B 为定值;(2)若,26A AB π==,求边BC 上的高AD 的长度.25.(山东省济南市2013届高三3月高考模拟理科数学)已知)1,sin 32cos 2(x x +=,),(cos y x -=,且m n ⊥.(1)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32A f =,且2=a ,4b c +=,求ABC ∆的面积.26.(2013山东高考数学(理))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.27.(山东威海市2013年5月高三模拟考试数学(理科))ABC ∆中,B ∠是锐角,2BC AB ==,,已知函数2()2cos f x BC BA x =++ .(Ⅰ)若(2)14f B =,求AC 边的长; (Ⅱ)若()12f B π+=,求tan B 的值.28.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))ABC ∆中,内角A 、B 、C 成等差数列,其对边c b a ,,满足ac b 322=,求A.29.(山东省潍坊市2013届高三第一次模拟考试理科数学)已知函数2()cossin (0,0)2222x x x f x ωϕωϕωϕπωϕ+++=+><<.其图象的两个相邻对称中心的距离为2π,且过点(,1)3π.(I) 函数()f x 的达式;(Ⅱ)在△ABC 中.a 、b 、c 分别是角A 、B 、C 的对边,a =,ABC S ∆=,角C 为锐角.且满7()2126C f π-=,求c 的值.30.(山东省烟台市2013届高三上学期期中考试数学试题(理科))已知向量m=)(3,cos 22x ,n=)(x 2sin ,1,函数()f x =m ∙n.(1)求函数()f x 的对称中心;(2)在∆ABC 中,c b a ,,分别是角A,B,C 的对边,且1,3)(==c C f ,32=ab ,且b a >,求b a ,的值.31.(山东省青岛市2013届高三上学期期中考试数学(理)试题)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知bc a c b 23)(3222+=+. (Ⅰ)若C B cos 2sin =,求C tan 的大小;(Ⅱ)若2=a ,ABC ∆的面积22=S ,且c b >,求c b ,.32.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知向量a =(cos ,sin x x ωω),b =(cos x ω,3cos x ω),其中(02ω<<).函数21)(-⋅=x f ,其图象的一条对称轴为6x π=.(I)求函数()f x 的表达式及单调递增区间;(Ⅱ)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,S 为其面积,若()2Af =1,b=l,S △ABC 求a 的值.33.(山东省泰安市2013届高三上学期期末考试数学理)ABC ∆的内角A 、B 、C 所对的边分别为,,a b c ,且sin sin sin sin a A b B c C B +=+(I)求角C;(II)cos 4A B π⎛⎫-+⎪⎝⎭的最大值.34.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)已知向量2,1),(cos ,cos ).444x x x m n == 记()f x m n =⋅ .(Ⅰ)若3()2f α=,求2cos()3πα-的值;(Ⅱ)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2)cos cos a c B b C -=,若1()2f A =,试判断△ABC 的形状.35.(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)在△ABC 中,内角A,B,C 的对边分别为a,b,c,己知cos 2cos 2.cos A C c aB b--=(I)求sin sin CA的值; (II)若cosB=1,2,4b =求△ABC 的面积S.36.(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数()sin f x x ω= (0)ω>在区间[0,]3π上单调递增,在区间2[,]33ππ上单调递减;如图,四边形OACB 中,a ,b ,c 为ABC △的内角A B C ,,的对边,且满足ACB AC B cos cos cos 34sin sin sin --=+ω. (Ⅰ)证明:a c b 2=+;(Ⅱ)若c b =,设θ=∠AOB ,(0)θπ<<,22OA OB ==,求四边形OACB 面积的最大值.37.(山东省曲阜市2013届高三11月月考数学(理)试题)在三角形ABC 中,,,a b c 分别是角,,A B C 的对边,(2,cos ),(,cos ),//m b c C n a A m n =-=且.(1)求角A 的大小;(2) 若4a =,三角形ABC 的面积为S ,求S 的最大值.38.(山东省济宁市2013届高三第一次模拟考试理科数学 )在△ABC 中,已知A=4π,cos B =.(I)求cosC 的值; (Ⅱ)若为AB 的中点,求CD 的长.39.(山东省威海市2013届高三上学期期末考试理科数学)在ABC ∆中,角,,A B C 所对应的边分别为c b a ,,,,A B 为锐角且B A <,sin A =, 3sin 25B =.(Ⅰ)求角C 的值;(Ⅱ)若1b c +=,求c b a ,,的值.40.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足cos 2A =AB AC=3.(1) 求△ABC 的面积; (2) 若c =1,求a 、sin B 的值.41.(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)在ABC ∆中,角C B A ,,所对的边为c b a ,,已知4102sin=C . (Ⅰ)求C cos 的值; (Ⅱ)若ABC ∆的面积为4153,且C B A 222sin 1613sin sin =+,求c b a ,,的值. 42.(2013届山东省高考压轴卷理科数学)(2013济南市一模)已知)1,sin 32cos 2(x x m +=,),(cos y x n -=,且m n ⊥. (1)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32A f =,且2=a ,4b c +=,求ABC ∆的面积.43.(山东省凤城高中2013届高三4月模拟检测数学理试题 )已知(2cos ,1)a x x =+ ,(,cos )b y x =,且//a b .(I)将y 表示成x 的函数()f x ,并求()f x 的最小正周期;(II)记()f x 的最大值为M ,a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 对应的边长,若(),2Af M =且2a =,求bc 的最大值.44.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)如图,角A 为钝角,且sinA=35,点P,Q 分别是在角A的两边上不同于点A 的动点.(1)若5,AP PQ ==求AQ 的长; (2)若∠APQ=α,∠AQP=β,且12cos 13α=,求sin(2)αβ+的值.45.(山东师大附中2013届高三第四次模拟测试1月理科数学)设ABC ∆的内角A B C 、、 的对边分别为a b c 、、,且sin cos b A B =.(1)求角B 的大小;(2)若3,sin 2sin b C A ==,求,a c 的值.46.(2011年高考(山东理))在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .已知c o s 2c o s 2c o s A C c aB b --=. (1)求sin sin C A的值;(2)若1cos ,24B b ==,求ABC ∆的面积S .47.(山东省临沂市2013届高三5月高考模拟理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c ,已知4A =π,sin()sin()44b Cc B a ---=ππ. (Ⅰ)求B 和C ;(Ⅱ)若a =求△ABC 的面积.48.(2013年山东临沂市高三教学质量检测考试理科数学)已知函数22x xf (x )cos=. (I)若[22]x ,ππ∈-,求函数f (x )的单调减区间;(Ⅱ)在△ABC 中,a,b,c 分别为角A,B,C 的对边,若24233f (A ),sin B C,a π-===求△ABC 的面积.49.(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)在∆ABC 中,a,b,c 分别为有A,B,C的对边,向量2(2sin ,2cos 2),(2sin (),1),24π=-=+- B m B B n 且⊥ m n(1)求角B 的大小; (2)若a =,b=1,求c 的值.山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题参考答案一、选择题1. 【答案】C 由()222S a b c =+-得22222S a b ab c =++-,即22212sin 22ab C a b ab c ⨯=++-,所以222sin 2ab C ab a b c -=+-,又222sin 2sin cos 1222a b c ab C ab C C ab ab +--===-,所以s i n c o s 12C C +=,即22cos sin cos 222C C C =,所以tan 22C =,即222tan2242tan 1231tan2C C C ⨯===---,选C.2. 【答案】D【解析】设底边长为x ,则两腰长为2x ,则顶角的余弦值222(2)(2)7cos 2228x x x x x θ+-==⨯⨯.选D.3. B 【解析】因为4524==B c ,,又面积11sin 2222S ac B a =⨯=⨯=,解得1a =,由余弦定理知2222cos b a c ac B =+-,所以21322252b =+-⨯=,所以5b =,选B.4. D5. D 【解析】由正弦定理可知sin sin a bA B=.即sin 1sin 2b A B a ===所以60B = 或120 ,选D.6. C 【解析】因为cos ,cos ,cos a C b B c A 成等差数列,所以cos cos 2cos a C c A b B +=,根据正弦定理可得sin cos sin cos 2sin cos A C C A B B +=,即sin()2sin cos A C B B +=,即sin 2sin cos B B B =,所以1cos 2B =,即3B π=,选C. 7. B8. C 【解析】在C 中,sin 162C A =⨯=且sin C A a c <<,所以有两解.选C. 9. 【答案】A【解析】由222222c a b ab=++得,22212a b c ab+-=-,所以222112cos 0224aba b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选A.10. C11. 【答案】A11sin 6022222S AB AC AC =⨯⋅=⨯⨯= ,所以1AC =,所以2222c o s03B C A B A C A A C=+-⋅ ,,所以BC =,选A. 二、填空题12. 【解析】因为015,30BCD BDC ∠=∠=,所以135CBD ∠=,在三角形BCD 中,根据正弦理可知s i n s i n C D B CC BD B D C =,即030sin135sin 30BC=,解得12BC =,在直角ABC∆中,tan 60ABBC== 所以AB ===13. 【答案】60由222b c a +-=得222cos 2b c a A bc +-===,所以30A = .由正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin sin A B C C C +==,解得sin 1C =,所以90C = ,所以60B = .14. 【答案】16【解析】设另两边为,a b ,则由余弦定理可知22242cos 60a b ab =+- ,即2216a b ab =+-,又22162a b ab ab ab ab =+-≥-=,所以16ab ≤,当且仅当4a b ==时取等号,所以最大值为16.15. (0,]3π【解析】因为sin ,sin ,sin A B C 依次成等比数列,所以2sin sin sin A C B =,即2ac b =,所以22222221cos 2222a c b a c ac a c B ac ac ac +-+-+===-,所以221211cos 22222a c ac B ac ac +=-≥-=,所以03B π<≤,即B 的取值范围是(0,]3π.16. 30 【解析】设旗杆的高度为x 米,如图,可知001806015105ABC ∠=--= ,0301545CAB ∠=+= ,所以1801054530ACB ∠=--= ,根据正弦定理可知sin 45sin 30BC AB = ,即BC =,所以sin 60x BC ==,所以30x ==米.17.23π18. 【答案】60或120【解析】由正弦定理可知sin sin a bA B=,即2==,所以sin A =,因为a b >,所以45A > ,所以60A = 或120A = .19.答案:6π解析:由sin cos B B +=1+2sinBcosB=2,即sin21B =,因为0B π<<,所以45B =︒,又因为2,a b ==,所以在ABC ∆中,由正弦定理得:2sin sin 45A =︒,解得1sin 2A =,又a b <,所以45A B <<︒,所以30A =︒.命题意图:本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了同学们解决三角形问题的能力,属于中档题.三、解答题 20.21.22. 【解析】(1)因为54cos =B ,且),0(π∈B ,=-=B B 2cos 1sin 53,则)cos(cos B A C --=π+=-=B B cos 43cos )43cos(ππB sin 43sin π10253225422-=⨯+⨯-=.(2)由(1)可得=∠-=∠ACB ACB 2cos 1sin 1027)102(12=--=. 由正弦定理得ACB ABA BC ∠=sin sin ,即10272210AB =,解得AB=14. 因为在△BCD 中,721==AB BD ,⋅⋅-+=BD BC BD BC CD 222237541072107cos 22=⨯⨯⨯-+=B ,所以37=CD .23.解:由已知,函数()f x 周期为π.∵21cos ()cos22xx f x x x ωωωω+=-+=-+11cos 22x x ωω=-- 1sin(62x ω=--π),∴2=2ω=ππ, ∴1()sin(2)62f x x =--π.(Ⅰ)由3222,262k x k +-+πππ≤≤ππ 得25222,33k x k ++ππ≤≤ππ∴5()36k x k k ++∈z ππ≤≤ππ∴()f x 的单调减区间是5[,]()36k k k ++∈z ππππ.(Ⅱ)由1(),2f A =得11sin(2)622A --=π,sin(2)16A -=π.∵0<<πA ,∴112666A --ππ<<π,∴262A -=ππ,3A =π.由1sin 2ABC S bc A == 3,c =得4b =,∴22212cos 169243132a b c bc A =+-=+-⨯⨯⨯=,故a = 24.25.解:(1)由m n ⊥ 得0=⋅n m,22cos cos 0x x x y ∴+-=即x x x y cos sin 32cos 22+=1)62sin(212sin 32cos ++=++=πx x x∴222,262k x k k Z πππππ-+≤+≤+∈,∴,36k x k k Z ππππ-+≤≤+∈,即增区间为[,],36k k k Z ππππ-++∈(2)因为3)2(=A f ,所以2sin()136A π++=,sin()16A π+=, ∴Z k k A ∈+=+,226πππ因为π<<A 0,所以3π=A由余弦定理得:2222cos a b c bc A =+-,即224b c bc =+-∴24()3b c bc =+-,因为4b c +=,所以4bc =∴1sin 2ABC S bc A ==26.解:(Ⅰ)由余弦定理2222cos b a c ac B=+-,得()222(1cos )b a c ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,sin 9B ==,由正弦定理得sin sin 3a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin 27A B A B A B -=-=.27.解:(Ⅰ)2()2cos243222cos f x BC BA B B x =++=++⨯+()72cos f x B x =++(2)72cos 214f B B B =++=整理得:24cos 90B B +-=cos 2B =或cos 2B -=(舍)∴2222cos 4312AC BC BA BC BA B =+-⋅=+-= ∴1AC =(Ⅱ)()72sin 12f B B B π+=+-= 整理得:sin 3B B -=将上式平方得:22sin cos 12cos 9B B B B -+=9=,同除2cos B9=整理得:28tan 30B B +-=∴tan B =,∵B ∠是锐角, ∴tan B = 28.解:由C B A 、、成等差数列可得C A B +=2,而π=++C B A ,故33ππ=⇒=B B ,且A C -=32π而由ac b 322=与正弦定理可得C A B sin sin 3sin 22=A A sin )32sin(33sin 22-=⨯⇒ππ所以可得⇒=+⇒-=⨯1sin sin cos 3sin )sin 32cos cos 32(sin 34322A A A A A A ππ 21)62sin(122cos 12sin 23=-⇒=-+πA A A , 由67626320ππππ<-<-⇒<<A A , 故662ππ=-A 或6562ππ=-A ,于是可得到6π=A 或2π=A29.解:(Ⅰ)[]1())1cos()2f x x x w j w j =++-+ π1sin()62x w j =+-+Q 两个相邻对称中心的距离为π2,则πT =,2ππ,>0,=2||w w w \=\Q , 又()f x 过点π(,1)3,2ππ1π1sin 1,sin 36222j j 骣骣鼢珑\-++=+=鼢珑鼢珑桫桫即, 1cos 2j \=,πππ10,,()sin(2)2362f x x j j <<\=\=++Q(Ⅱ)πππ117sin sin 21266226C f C C 骣骣鼢珑-=-++=+=鼢珑鼢珑桫桫, 2sin 3C \=,π0,cos 2C C <<\=Q ,又112sin 223ABC a S ab C b D ===?,6b \=,由余弦定理得2222cos 21c a b ab C =+-=,c \=30.解:(1)22()(2cos ,(1,sin 2)2cos 2f x m n x x x x =⋅=⋅=+ ,cos 2122sin(2)16x x x π=++=++令ππk x =+62得,122ππ-=k x )(Z k ∈,∴函数()f x 的对称中心为)1122(,ππ-k (2)31)62sin(2)(=++=πC C f ,1)62sin(=+∴πC ,C 是三角形内角,∴262ππ=+C 即:.6π=C232cos 222=-+=∴ab c a b C 即:722=+b a 将32=ab 代入可得:71222=+aa ,解之得:32=a 或4,23或=∴a ,32或=∴b 3,2,==∴>b a b a31.32.由余弦定理得22241241cos6013a =+-⨯⨯︒=, 故a = 33.34.解:211()cos cos cos 44422222x x x x x f x =+=++1sin 262x π⎛⎫=++⎪⎝⎭(I) 由已知32f ()α=得13sin 2622απ⎛⎫++= ⎪⎝⎭,于是24,3k k παπ=+∈Z , ∴ 22241333cos()cos k πππαπ⎛⎫-=--= ⎪⎝⎭(Ⅱ) 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵13()f A +=∴ 113sin 2622263A A πππ+⎛⎫++=⇒+= ⎪⎝⎭或23π3A π⇒=或π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形35.36.解:(Ⅰ)由题意知:243ππω=,解得:32ω=,ACB AC B cos cos -cos -2sin sin sin =+ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴ A C A B A sin 2)(sin )(sin =+++∴ a c b A B C 2sin 2sin sin =+⇒∴=+∴(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形213sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+22sin -2cos )OA OB OA OB θθ=++⋅435cos 3-sin +=θθ2sin (-)3πθ=(0)θπ∈ ,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为2+37.解:(1)由//m n,得(2)cos cos 0b c A a C --=,∴(2sin sin )cos sin cos 0,2sin cos sin cos sin cos sin()sin()sin B C A A C B A C A A C A C B Bπ--==+=+=-=在三角形ABC 中,sin 0B >,因此1cos ,23A A π==故 (2)∵3A π=,∴2222cos a b c bc A =+-,即2216b c bc =+-,∴22162()b c bc bc bc bc b c =+-≥-==当且仅当时取等号,∴11sin 1622S bc A =≤⨯= 38.解:(Ⅰ)552cos =B 且(0,180)B ∈,∴55cos 1sin 2=-=B B )43cos()cos(cos B B A C -=--=ππ1010552255222sin 43sin cos 43cos-=⋅+⋅-=+=B B ππ (Ⅱ)由(Ⅰ)可得10103)1010(1cos 1sin 22=--=-=C C由正弦定理得sin sin =BCABA C,即101032252AB =,解得6=AB在∆BCD 中,5252323)52(222⨯⨯⨯-+=CD 5=,所以5=CD39.解:(Ⅰ)∵A 为锐角,sinA =∴cos A ==∵B A <,sin A =<,∴45B <∵3sin 25B =,∴4cos 25B ==∴cosB ==sin B =cos cos()cos cos sin sinC A B A B A B =-+=-+==∴135C =(Ⅱ)由正弦定理sin sin sin a b ck A B C===∴b c k+=+,解得k=∴1,a b c===40. 【答案】解:(1) cos A=2×2-1=35,而||||AB AC AB AC=cos A=35bc=3,∴bc=5又A∈(0,π),∴sin A=45,∴S=12bc sin A=12×5×45=2(2) ∵bc=5,而c=1,∴b=5∴222a b c=+-2bc cos A=20,a=又sin sina bA B=,∴sinB=sinb Aa==41.解:(Ⅰ)41451)410(212sin21cos22-=-=⨯-=-=CC(Ⅱ)∵CBA222sin1613sinsin=+,由正弦定理可得:2221613cba=+由(Ⅰ)可知415cos1sin,0,41cos2=-=∴<<-=CCCCπ.4153sin21==∆CabABCS,得ab=6由余弦定理Cabbac cos2222-+=可得3161322+=cc4,0,162=∴>=ccc由⎩⎨⎧==⎩⎨⎧==⎪⎩⎪⎨⎧==+322361322babaabba或得,42. 【解析】(1)由m n⊥得0=⋅nm,22cos cos0x x x y∴+-=即xxxy cossin32cos22+=1)62sin(212sin32cos++=++=πxxx∴222,262k x k k Zπππππ-+≤+≤+∈,∴,36k x k k Zππππ-+≤≤+∈,即增区间为[,],36k k k Zππππ-++∈(2)因为3)2(=Af,所以2sin()136Aπ++=,sin()16Aπ+=, ∴ZkkA∈+=+,226πππ因为π<<A0,所以3π=A由余弦定理得:2222cosa b c bc A=+-,即224b c bc=+-∴24()3b c bc=+-,因为4b c+=,所以4bc=∴1sin 2ABC S bc A ==43.解:(I)由//a b 得22cos cos 0x x y +-= 2'即22cos cos cos 2212sin(2)16y x x x x x π=+=+=++所以()2sin(2)16f x x π=++ , 4'又222T πππω===所以函数()f x 的最小正周期为.π 6' (II)由(I)易得3M = 7'于是由()3,2A f M ==即2sin()13sin()166A A ππ++=⇒+=,因为A 为三角形的内角,故3A π=9'由余弦定理2222cos a b c bc A =+-得2242b c bc bc bc bc =+-≥-= 11' 解得4bc ≤于是当且仅当2b c ==时,bc 的最大值为4. 12'44.45. 【解析】(1) sin cos b A B =,由正弦定理得sin sin cos B A A B =即得tan B =3B π∴=(2)sin 2sin C A = ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,229422cos 3a a a a π=+-⋅,解得a =2c a ∴== 稿源:konglei46.解:(Ⅰ)在ABC ∆中,由cos 2cos 2cos A C c aB b--=及正弦定理可得 cos 2cos 2sin sin cos sin A C C AB B--=, 即sin sin 2cos sin 2sin cos sin cos A B C B C B A B -=- 则sin sin sin cos 2sin cos 2cos sin A B A B C B C B +=+sin()2sin()A B C B +=+,而A B C π++=,则sin 2sin C A =,即sin 2sin C A=. 另解1:在ABC ∆中,由cos 2cos 2cos A C c a B b--=可得 cos 2cos 2cos cos b A b C c B a B -=- 由余弦定理可得22222222222222b c a a b c a c b a c b c a a c+-+-+-+--=-, 整理可得2c a =,由正弦定理可得sin 2sin C c A a==. 另解2:利用教材习题结论解题,在ABC ∆中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+. 由cos 2cos 2cos A C c a B b--=可得cos 2cos 2cos cos b A b C c B a B -=- 即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =, 由正弦定理可得sin 2sin C c A a==. (Ⅱ)由2c a =及1cos ,24B b ==可得 22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,S 11sin 1222ac B ==⨯⨯=,即S = 47.解:(Ⅰ)由sin()sin(),44ππ---=C b c B a 用正弦定理得 sin sin()sin sin()sin .44ππ---=C C B B A∴sin )sin )-=C C C B B B即sin cos cos sin 1,-=C C B B∴sin() 1.-=C B ∵30,4<<π,C B ∴33,44π<<π--C B ∴2π-=C B . 又4A =π,∴34π+=C B , 解得5,.88ππ==C B (Ⅱ)由(Ⅰ)5,88ππ==C B ,由正弦定理,得sin 54sin .sin 8a B b A ===π∴△ABC的面积115sin 4sin sin 2288ππ==⨯C S ab5sin sin 8888==ππππ2.4==π 48.49.解 22sin 2sin ()(2cos 2)242sin (1cos())2cos 22ππ=+--=-+-+ B mgn Bg B Bg B B 12sin 10,sin 2=-=∴=B B 因为0π<<B ,所以566ππ=B 或 (2)在∆ABC 中,因为b<a,所以6π=B由余弦定理2222cos b a c ac B =+-,得2320c c -+= 所以1c =或2c =。

【解析】山东省泰安市2014届高三下学期3月第一轮复习质量检测 历史试题

【解析】山东省泰安市2014届高三下学期3月第一轮复习质量检测 历史试题

【解析】山东省泰安市2014届高三下学期3月第一轮复习质量检测历史试题2014.3 本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

满分100分,考试时间为90分钟。

答卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用铅笔涂写在答题纸上。

考试结束后,监考人员将本试卷和答题纸一并收回。

第I卷(选择题45分)注意事项:1.第I卷共30小题.每小题1.5分,共45分。

在每小题所列的四个选项中,只有一项符合题目要求。

2.每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。

再选涂其他答案.不能答在试卷上。

1.斯塔夫里阿诺斯在《全球通史》中说:“中国人的姓总是位于个人的名字之前,而不像西方那样,位于个人的名字之后。

”中国人强调姓所反映的实质是A.男尊女卑思想严重 B.家族宗法观念浓厚C.个人观念淡漠D.专制王权强大【答案】B考点:宗法制。

本题考查学生对西周时期宗法制的准确理解,由材料可得出姓氏和血脉、家族相联在一起,中国人将姓置个人名字之前反映出家族宗法观念浓厚,而宗法制度是由氏族社会父系家长制演变而的,是王族贵族按血缘关系分配国家权力,以便建立世袭统治的一种制度。

故B符合题意。

2.右图为《唐书》所载的830名进士的出身分布比例。

由此可见,唐代选官制度A.为选拔士族子弟而设立B.仍然是世卿世禄制度C.缩小了人才选拔的范围D.兼顾多个阶层但不完善【答案】D考点:科举制。

本题主要考查学生准确解读图片信息的能力,从图片中可以看出在唐代科举制选拔出的人才中世族子弟依然占据支配地位,下层民众所占比例较低,说明唐代的科举制尽管较九品中正制有很大的进步,但在人才选拔上依然不够公平、公正,仍然须进一步完善,故D项符合题意,ABC三项表述错误,与科举制本身的史实不符。

3.两千多年前雅典就产生了“三权分立”的国家组织形式:公民大会、五百人议事会、民众法庭。

1787年宪法规定美国行使相应权力的机构是A.总统、国会、最高法院B.议会、首相、上议院C.国会、总统、最高法院D.首相、议会、上议院【答案】C考点:古代雅典城邦公民大会、五百人议事会、民众法庭分别掌握的是立法权、行政权和司法权。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)9.2排列与组合课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)9.2排列与组合课件 新人教A版
1 原理知共有 C5· 2· 3=300(个)满足条件的 6 位数. C5 A3
[答案] B
本例所求的6位数中,有多少个偶数?
解:若个位排0,则有A
5 5
个偶数;若个位排
3 3
1 2,则十位可从3,4,5中任选1个,有C 1 C 3 A 3 个偶 3 3
数;若个位排4,则十位只能排5,有C 1 A 3
2 5
种排法,再排其
余位置有A4种排法,共有A2· 4=480种排法. 4 5 A4
[答案] C
[题后悟道]
解决排列组合问题最基本的方法是位
置分析法和元素分析法,若以位置为主,需首先满足特 殊位置的要求,再处理其他位置;若以元素为主,需先 满足特殊元素的要求,再处理其他元素.
2.捆绑法、插空法
[典例2] (2012· 绥化一模)有5盆各不相同的菊花,其
记为Am. n
二、组合与组合数 1.组合
从n个不同元素中取出m(m≤n)个元素合成一组 ,叫做
从n个不同元素中取出m个元素的一个组合. 2.组合数 从n个不同元素中取出m(m≤n)个元素的 所有不同组合 的个数 _____________
Cm ,叫做从n个不同元素中取出m个元素的组合数, n
用符号
3.(1)某班班会准备从含甲、乙的7名学生中选取4人发
言,要求甲、乙两人至少有一人参加,且若甲、乙同时 参加,则他们发言时顺序不能相邻,那么不同的发言顺 序种类为 A.720 B.520 ( )
C.600
D.360
(2)(2012· 北京海淀区期末)世博会期间,某班有四名学生参
加了志愿者工作.将这四名学生分到A、B、C三个不同的
3 共有C1C2+C4=16(种). 2 4

山东省泰安市泰山中学2014-2015学年高二上学期1月学情检测数学试题

山东省泰安市泰山中学2014-2015学年高二上学期1月学情检测数学试题

山东省泰安市泰山中学2014-2015学年高二上学期1月学情检测数学试题学校姓名:__________班级:__________考号:__________一、单项选择((每一题5分))1、 在△ABC 中,已知8=a ,B=060,A=045,则b 等于( ) A .64 B .54 C .34 D .322 2、已知ABC ∆中,05,3,120a b C ===,则sin A 的值为( ) A 、1433-B 、1435-C 、1433D 、1435 3、已知∆ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,若B=2A, a =1,b=3,则c =( )A .23B .2C .2D .1 4、在等差数列}{a n 中,已知1872=+a a ,则8S 等于( ) A .75 B. 72 C. 81 D. 635、公比不为1等比数列{}n a 的前n 项和为n S ,且1233,,a a a --成等差数列.若11a =,则4S =( )A. 20-B. 0C. 7D. 406、已知等比数列{}n a 的前n 项和为n S ,4178a a -=,339S =,设3log n n b a =,那么数列{}n b 的前10项和为( )A .3log 71B .692C .50D .55 7、已知集合B A x xx B x x x A 则},02|{},034|{2≤-=>+-=等于( )A .}21|{<<x xB .}321|{><<x x x 或C .}10|{<≤x xD .}310|{><≤x x x 或8、已知不等式250ax x b -+>的解集为{11|32x x x <->或},则不等式250bx x a -+>的解集为( )A .{11|32x x -<<}B .{11|32x x x <->或} C .{|32x x -<<} D .{|32x x x <->或}9、设x ,y 满足约束条件则z =x +2y 的最大值为( )A .8B .7C .2D .1 10、对于10<<a ,给出下列四个不等式①()⎪⎭⎫⎝⎛+<+a log a log a a 111②()⎪⎭⎫ ⎝⎛+>+a log a log a a 111③a aaa111++< ④aa aa 111++>其中成立的是( )A 、①与③B 、①与④C 、②与③D 、②与④ 二、填空题(每一题5分)11、命题“2,使≤x N x x ∃∈”的否定形式是 .12、设31:≤≤x α,R m m x m ∈+≤≤+,421:β,若α是β的充分条件,则m 的取值范围是 。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)8.3圆的方程课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)8.3圆的方程课件 新人教A版

1.方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的
充要条件是:
(1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0. 2.求圆的方程时,要注意应用圆的几何性质简化 运算. (1)圆心在过切点且与切线垂直的直线上.
(2)圆心在任一弦的中垂线上.
(3)两圆内切或外切时,切点与两圆圆心三点共 线.
(
)
答案:C
教师备选题(给有能力的学生加餐来自 1.已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上
任意一点,则△ABC面积的最小值是________.
解题训练要高效 见“课时跟踪检 测(五十一)”
3 解析:lAB:x-y+2=0,圆心(1,0)到l的距离d= , 2 3 则AB边上的高的最小值为 -1. 2
(1)求 x+y 的最大值和最小值; (2)求 x2+y2+2x-4y+5的最大值和最小值.
解:(1)设 t=x+y,则 y=-x+t,t 可视为直线 y=-x+t 的纵截距, 所以 x+y 的最大值和最小值就是直线与圆有公 共点时直线纵截距的最大值和最小值,即直线与圆相切时 的纵截距.由直线与圆相切,得圆心到直线的距离等于半 |2+-3-t| 径,即 =1, 2 解得 t= 2-1 或 t=- 2-1, 所以 x+y 的最大值为 2-1,最小值为- 2-1.
[典例]
(2011· 江苏高考)设集合A=

m x,y ≤x-22+y2≤m2,x,y∈R 2
,B={(x,
y)|2m≤x+y≤2m+1,x,y∈R}.若A∩B≠∅,则实数m的 取值范围是________. [解析] 由题意知A≠∅,则
m 2
≤m2,即m≤0或
A.(x-4)2+(y-2)2=1

山东省2014届理科数学一轮复习试题选编38:算法初步(教师版)

山东省2014届理科数学一轮复习试题选编38:算法初步(教师版)

山东省2014届理科数学一轮复习试题选编38:算法初步一、选择题 1 .(山东省潍坊市2013届高三第一次模拟考试理科数学)运行右面框图输出的S 是254,则①应为( )A .n ≤5B .n ≤6C .n ≤7D .n ≤8【答案】C 本程序计算的是212(12)2222212n nn S +-=+++==-- ,由122254n +-=,得12256n +=,解得7n =.此时18n +=,不满足条件,输出,所以①应为7n ≤,选C . 2 .(2013年山东临沂市高三教学质量检测考试理科数学)执行如图所示的程序框图,输出的S 值为( )A .4B .32 C.23D .-1 【答案】 【答案】A 41,124i S ===--;222,2(1)3i S ===--;233,2223i S ===-;24,4322i S ===-;25,124i S ===--;所以S 的取值具有周期性,周期为 4.由12013i +≥时,得2012i ≥,所以当2012i =时,输出S ,此时20124034i ==⨯,所以输出S 的值和4i =时,相同,所以4S =,选 C .3 .(山东省济宁市2013届高三第一次模拟考试理科数学 )如果右边程序框图的输出结果是6,那么在判断框中①表示的“条件”应该是( )A .i≥3B .i≥4C .i≥5D .i≥6 【答案】D【解析】第一次循环,264,6410,2m s i =-+==+==;第二次循环,2262,10212,3m s i =-⨯+==+==;第三次循环,2360,12,4m s i =-⨯+===;第四次循环,2462,12210,5m s i =-⨯+=-=-==;第五次循环,2564,1046,6m s i =-⨯+=-=-==;此时满足条件输出6s =,所以条件应为,6i ≥选D .4 .(山东省泰安市2013届高三第二次模拟考试数学(理)试题)已知数列{}11,1,n n n a a a a n +==+中,若利用如图所示的程序框图计算并输出该数列的第10项,则判断框内的条件可以是( )A .11?n ≤B .10?n ≤C .9?n ≤D .8?n ≤【答案】C 5 .(山东省临沂市2013届高三5月高考模拟理科数学)执行如图所示的程序框图,输出的结果是( )A .11B .12C .13D .14【答案】C 第一次循环,1,2,123x y z ===+=;第二次循环,2,3,235x y z ===+=;第三次循环,3,5,358x y z ===+=;第四次循环,5,8,5813x y z ===+=,此时满足条件,输出13z =,选 C . 6 .(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)若程序框图如图所示,则该程序运行后输出k 的值是( )A .4B .5C .6D .7【答案】B第一次35116,1n k =⨯+==;第二次168,22n k ===;第三次84,32n k ===;第四次42,42n k ===;第五次21,52n k ===此时满足条件输出5k =,选 B . 7 .(山东省济南市2013届高三4月巩固性训练数学(理)试题)定义某种运算⊗,a b ⊗的运算原理如图 所示.设x x f ⊗=1)(.()f x 在区间[2,2]-上的最大值为. ( )A .-2B .-1C .0D .2【答案】D 8 .(山东省济宁市2013届高三4月联考理科数学)左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为1214,,,.A A A 右图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是7.98.6 3 89.3 9 8 8 4 1 5 10.3 1 11.4 ( )A .7B .8C .9D .10【答案】D9 .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)执行如图所示的程序框图,若输出结果为3,则可输入的实数x 值的个数为( )A .1B .2C .3D .4【答案】C 由题意知221,2log ,2x x y x x ⎧-≤=⎨>⎩.当2x ≤时,由213x -=,得24x =,解得2x =±.当2x >时,由2log 3x =,得8x =,所以输入的实数x 值的个数为3个,选 C .10.(山东省德州市2013届高三第二次模拟考试数学(理)试题)执行如图所示的程序框图,若输入n 的值为≤≥16,则输出s 的值为( )A .17B .16C .10D .9【答案】C 11.(山东省2013届高三高考模拟卷(一)理科数学)执行如图所示的程序框图,若输入5=p ,6=q ,则输出a ,i 的值分别为( )A .5,1B .30,3C .15.3D .30.6【答案】D 【解析】执行程序框图可知,当1=i 时,15⨯=a ;当2=i 时,25⨯=a ;;当6=i 时,65⨯=a ,即a 能被q 整除,退出循环,输出i a ,的值分别为30,6. 12.(山东省德州市2013届高三3月模拟检测理科数学)如图所示,程序框图运行后输出k 的值是( )A .4B .5C .6D .7【答案】B 第一次循环,35116,1n k =⨯+==;第二次循环,168,22n k ===; 第三次循环,84,32n k ===;第四次循环,42,42n k ===;第五次循环,21,52n k ===,此时输出5k =,选B . 13.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)阅读程序框图,若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是( )A .i>5?B .i>6?C .i>7?D .i>8?【答案】A14.(山东省兖州市2013高三9月入学诊断检测数学(理)试题)右图给出的是计算111124620++++ 的值的一个框图,其中菱形判断框内应填入的条件是 ( )A .10>iB .10<iC .11>iD .11<i【答案】A15.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )若右边的程序框图输出的S 是254,则条件①可为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤【答案】C16.(山东省枣庄市2013届高三3月模拟考试数学(理)试题)如图是一个算法的流程图,若输出的结果是31,则判断框中整数M 的值是( )A .3B .4C .5D .6【答案】B本程序计算的是21222AS =++++ ,即11122112A A S ++-==--,由121=31A +-得12=32A +,解得4A =,则15A +=时,条件不成立,所以4M =,选B . 17.(山东省莱芜五中2013届高三4月模拟数学(理)试题)执行如图所示的程序框图,则输出的结果为( )A .2B .1C .21 D .1-【答案】C 18.(山东省凤城高中2013届高三4月模拟检测数学理试题 )阅读如图所示的程序框图,运行相应的程序,则输出的结果是( )ABC.D.【答案】A19.(山东省文登市2013届高三3月二轮模拟考试数学(理))右面的程序框图中,若输出S 的值为126,则图中应填上的条件为( ) A .5n ≤ B .6n ≤C .7n ≤D .8n ≤【答案】B 20.(2012年山东理)(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为( )C .4D .5【答案】:312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3.答案应选 B .21.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)右图是某算法的程序框图,则程序运行后输出的结果是( )A .6B .27C .124D .168【答案】B 22.(山东省潍坊市2013届高三第二次模拟考试理科数学)运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为( )A .14t ≥B .18t ≥C .14t ≤D .18t ≤ 【答案】B 第一次循环,2,2,211n x t a ===-=;第二次循环,4,4,413n x t a ===-=;第三次循环,6,8,633n x t a ===-=,此时满足条件输出83x t a =,由题意知833x t a =≥,解得81t ≥,即18t ≥,选B .23.(山东省济南市2013届高三3月高考模拟理科数学)阅读右边的程序框图,运行相应的程序,输出的结果为( )A .1311B .2113C .813D .138【答案】D第7题图第一次循环,112,1,2z x y =+===;第二次循环,123,2,3z x y =+===;第三次循环,235,3,5z x y =+===;第四次循环,358,5,8z x y =+===;第五次循环,5813,8,13z x y =+===;第六次循环,81321z =+=,不满足条件输出138y x =,选 D . 24.(山东省夏津一中2013届高三4月月考数学(理)试题)如图给出的是计算20121614121+⋅⋅⋅+++的值的程序框图,其中判断框内应填入的是( )A .2012i ≤B .i >2012C .1006≤iD .i >1006【答案】A 25.(山东省青岛即墨市2013届高三上学期期末考试数学(理)试题)如果执行下面的程序框图,输出的S=110,则判断框处为( )A .10<k ?B .11≥k ?C .10≤k ?D .11>k ?【答案】C【 解析】由程序可知该程序是计算(22)242(1)2k k S k k k +=+++==+ ,由(1)110S k k =+=得10k =,则当10k =时,110111k k =+=+=不满足条件,所以条件为10k ≤,选 C .26.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)右图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值相等,则这样的x 值有( )A .1个B .2个C .3个D .4个【答案】C27.(山东威海市2013年5月高三模拟考试数学(理科))一算法的程序框图如右图所示,若输出的12y =,则输入的x 可能为 ( )A .1-B .1C .1或5D .1-或1【答案】 B . 二、填空题 28.(2013届山东省高考压轴卷理科数学)执行如右图的程序框图,那么输出S 的值是________.第5题图【答案】1-【解析】由框图知:12,1;1,2;,3;2S k S k S k ===-===2,4;1,5,S k S k ===-=不满足条件,输出S 的值是1-.29.(2013山东高考数学(理))执行右图的程序框图,若输入的ε的值为0.25,则输出的n 的值为_____.,10123,312,2F F n =+==-==,此时1110.253F =≤不成立.第二次循环,10235,523,3F F n =+==-==,此时1110.255F =≤成立,输出3n =. 30.(山东省济南市2013届高三上学期期末考试理科数学)已知程序框图如右图所示,则输出的i =________;【答案】9【 解析】第一次循环,133,5S i =⨯==;第二次循环,3515,7S i =⨯==;第三次循环,157105,9S i =⨯==;第四次循环,满足条件输出9i =. 31.(山东省德州市2013届高三上学期期末校际联考数学(理))执行如图所示程序框图,输出结果S=.【答案】1【解析】第一次循环1(1)2,3,2S T n =--===;第二次循环23(1)21,5,3S T n =--⨯===;第三次循环35(1)6,7,4S T n =--===;第四次循环47(1)61,9,5S T n =--⨯===,第五次循环,满足条件,输出1S =. 32.(2011年高考(山东理))执行右图所示的程序框图,输入2,3,5l m n ===,则输出的y 的值是______.【答案】解析:1406375278,y =++=278105173,17310568y y =-==-=.答案应填:68. 33.(山东省烟台市2013届高三3月诊断性测试数学理试题)执行如右图所示的程序框图,输出的S 值为___________【答案】10第一次循环,1,1,2i S i ==-=;第二次循环,22,123,3i S i ==-+==; 第三次循环,23,336,4i S i ==-=-=;第四次循环,24,6410,5i S i ==-+==,此时不满足条件,输出10S =. 34.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)执行如图所示的程序框图,输出S 的值为__________.【答案】-2 35.(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)执行如图所示的程序框图,若输出的结果是8,则输入的数是______.【答案】2或22- 由a b ≥得23x x ≥,解得1x ≤.所以当1x ≤时,输出2a x =,当1x >时,输出3b x =.所以当1x ≤时,由28a x ==,解得822x =-=-.若1x >,由38b x ==,得2x =,所以输入的数为2或22-. 36.(2010年高考(山东理))执行右图所示的程序框图,若输入10x =,则输出y 的值为_____________.【答案】54-【解析】当x=10时,y=110-1=42⨯,此时|y-x|=6; 当x=4时,y=14-1=12⨯,此时|y-x|=3;当x=1时,y=111-1=-22⨯,此时|y-x|=32;当x=12-时,y=115-1=-224⨯-(),此时|y-x|=3<14,故输出y 的值为54-.【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力.37.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))如果执行右面的程序框图,那么输出的S =______.【答案】 20【解析】第一次循环:2,220==+=k S ;第二次循环:3,642==+=k S ;第三次循环:4,1266==+=k S ;第四次循环:5,20812==+=k S ;第五次循环:输出20=S .38.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)执行如图的程序框图,如果输入的n 是4,则输出的p 是______【答案】3 39.(山东省青岛市2013届高三第一次模拟考试理科数学)某程序框图如右图所示,若3a=,则该程序运行后,输出的x 值为【答案】31 第一次循环,2317,2x n =⨯+==;第二次循环,27115,3x n =⨯+==;第三次循环,215131,4x n =⨯+==.此时不满足条件,输出31x =. 40.(2009高考(山东理))执行右边的程序框图,输入的T= .【答案】【解析】:按照程序框图依次执行为S=5,n=2,T=2; S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30 答案:30。

2014届高考数学(理)第一轮复习学案——等比数列及其前n项和含解析

2014届高考数学(理)第一轮复习学案——等比数列及其前n项和含解析

等比数列及其前n 项和[知识能否忆起]1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列{a n }的常用性质(1)在等比数列{a n }中,若m +n =p +q =2r (m ,n ,p ,q ,r ∈N *),则a m ·a n =a p ·a q =a 2r . 特别地,a 1a n =a 2a n -1=a 3a n -2=….(2)在公比为q 的等比数列{a n }中,数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列,公比为q k ;数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时q ≠-1); a n =a m q n-m.[小题能否全取]1.(教材习题改编)等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32解析:选C a 2·a 6=a 24=16.2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23nC .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 解析:选C (a +1)2=(a -1)(a +4)⇒a =5, a 1=4,q =32,故a n =4·⎝⎛⎭⎫32n -1. 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128D .243解析:选A q =a 2+a 3a 1+a 2=2,故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64.4.(2011·北京高考)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.解析:a 4=a 1q 3,得4=12q 3,解得q =2,a 1+a 2+…+a n =12(1-2n )1-2=2n -1-12.答案:2 2n -1-125.(2012·新课标全国卷)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:∵S 3+3S 2=0,∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0. ∵a 1≠0,∴q =-2. 答案:-2 1.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. (2)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0. 2.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.等比数列的判定与证明典题导入[例1] 已知数列{a n }的前n 项和为S n ,且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{a n }的通项公式.[自主解答] (1)证明:∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12. ∵首项c 1=a 1-1,又a 1+a 1=1, ∴a 1=12,c 1=-12.又c n =a n -1,故{c n }是以-12为首项,12为公比的等比数列.(2)由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =c n +1=1-⎝⎛⎭⎫12n.在本例条件下,若数列{b n }满足b 1=a 1,b n =a n -a n -1(n ≥2),证明{b n }是等比数列. 证明:∵由(2)知a n =1-⎝⎛⎭⎫12n , ∴当n ≥2时,b n =a n -a n -1 =1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12也符合上式,∴b n =⎝⎛⎭⎫12n . ∵b n +1b n =12,∴数列{b n }是等比数列.由题悟法等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a na n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.以题试法1. (2012·沈阳模拟)已知函数f (x )=log a x ,且所有项为正数的无穷数列{a n }满足log a a n +1-log a a n =2,则数列{a n }()A .一定是等比数列B .一定是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 解析:选A 由log a a n +1-log a a n =2,得log aa n +1a n =2=log a a 2,故a n +1a n=a 2.又a >0且a ≠1,所以数列{a n }为等比数列.等比数列的基本运算典题导入[例2] (2011·全国高考)设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n .[自主解答] 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧a 1=2,q =3. 当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n -1);当a 1=2,q =3时,a n =2×3n -1,S n =3n -1.由题悟法1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.以题试法2.(2012·山西适应性训练)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式; (2)求数列{3a n }的前n 项和.解:(1)设等差数列{a n }的公差为d (d ≠0). 因为a 2,a 4,a 8成等比数列, 所以(2+3d )2=(2+d )·(2+7d ), 解得d =2.所以a n =2n (n ∈N *).(2)由(1)知3a n =32n ,设数列{3a n }的前n 项和为S n , 则S n =32+34+ (32)=9(1-9n )1-9=98(9n -1).等比数列的性质典题导入[例3] (1)(2012·威海模拟)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( )A.12 B.32C .1D .-32(2)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( ) A .1∶2 B .2∶3 C .3∶4D .1∶3[自主解答] (1)因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7 =log 3(a 1a 2…a 7)=log 3a 74 =7log 33π3=7π3,故sin(log 3a 1+log 3a 2+…+log 3a 7)=32. (2)由等比数列的性质:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.[答案] (1)B (2)C由题悟法等比数列与等差数列在定义上只有“一字之差”,它们的通项公式和性质有许多相似之处,其中等差数列中的“和”“倍数”可以与等比数列中的“积”“幂”相类比.关注它们之间的异同有助于我们从整体上把握,同时也有利于类比思想的推广.对于等差数列项的和或等比数列项的积的运算,若能关注通项公式a n =f (n )的下标n 的大小关系,可简化题目的运算.以题试法3.(1)(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7(2)(2012·成都模拟)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n )D.323(1-2-n ) 解析:(1)选D 法一:由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, 解得⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.法二:由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.则⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,故a 1+a 10=a 1(1+q 9)=-7.(2)选C ∵a 2=2,a 5=14,∴a 1=4,q =12,a n a n +1=⎝⎛⎭⎫122n -5. 故a 1a 2+a 2a 3+…+a n a n +1=8⎝⎛⎭⎫1-14n 1-14=323(1-4-n ).1.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q 为( )A .-12 B .1C .-12或1D.14解析:选C 当q =1时,满足S 3=3a 1=3a 3. 当q ≠1时,S 3=a 1(1-q 3)1-q =a 1(1+q +q 2)=3a 1q 2,解得q =-12,综上q =-12或q =1.2.(2012·东城模拟)设数列{a n }满足:2a n =a n +1(a n ≠0)(n ∈N *),且前n 项和为S n ,则S 4a 2的值为( )A.152 B.154 C .4D .2解析:选A 由题意知,数列{a n }是以2为公比的等比数列,故S 4a 2=a 1(1-24)1-2a 1×2=152.3.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( )A .4B .5C .6D .7解析:选B ∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数,∴a 7=4. 又∵a 10=a 7q 3=4×23=25,∴log 2a 10=5.4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A 显然,n ∈N *,a n ,a n +1,a n +2成等比数列,则a 2n +1=a n a n +2,反之,则不一定成立,举反例,如数列为1,0,0,0,…5.(2013·太原模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16解析:选B 设S 2n =a ,S 4n =b ,由等比数列的性质知: 2(14-a )=(a -2)2,解得a =6或a =-4(舍去), 同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn =( )A.32 B.32或23C.23D .以上都不对解析:选B 设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.7.已知各项不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:由题意可知,b 6b 8=b 27=a 27=2(a 3+a 11)=4a 7,∵a 7≠0,∴a 7=4,∴b 6b 8=16. 答案:168.(2012·江西高考)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N *,都有a n +2+a n +1-2a n =0,则S 5=________.解析:由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0.由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11.答案:119.(2012·西城期末)已知{a n }是公比为2的等比数列,若a 3-a 1=6,则a 1=________;1a 21+1a 22+…+1a 2n=________. 解析:∵{a n }是公比为2的等比数列,且a 3-a 1=6,∴4a 1-a 1=6,即a 1=2,故a n =a 12n -1=2n ,∴1a n =⎝⎛⎭⎫12n ,1a 2n =⎝⎛⎭⎫14n ,即数列⎩⎨⎧⎭⎬⎫1a 2n 是首项为14,公比为14的等比数列, ∴1a 21+1a 22+…+1a 2n =14⎝⎛⎭⎫1-14n 1-14=13⎝⎛⎭⎫1-14n . 答案:2 13⎝⎛⎭⎫1-14n 10.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n ≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列, ∴a 3+a 5+…+a 2n +1=2(1-4n )1-4=2(4n -1)3.∴a 1+a 3+…+a 2n +1=1+2(4n -1)3=22n +1+13.11.设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问:是否存在a 1,使数列{b n }为等比数列?若存在,求出a 1的值;若不存在,请说明理由.解:(1)依题意,得2S n =a n +1-a 1.当n ≥2时,有⎩⎪⎨⎪⎧2S n =a n +1-a 1,2S n -1=a n -a 1.两式相减,得a n +1=3a n (n ≥2). 又因为a 2=2S 1+a 1=3a 1,a n ≠0,所以数列{a n }是首项为a 1,公比为3的等比数列. 因此,a n =a 1·3n -1(n ∈N *).(2)因为S n =a 1(1-3n )1-3=12a 1·3n -12a 1,b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2.所以存在a 1=-2,使数列{b n }为等比数列.12. (2012·山东高考)已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5, 得⎩⎪⎨⎪⎧5a 1+5×(5-1)2d =105,a 1+9d =2(a 1+4d ),解得a 1=7,d =7.(2)对m ∈N *,若a n =7n ≤72m ,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列, 故S m =b 1(1-q m )1-q =7×(1-49m )1-49=7×(72m -1)48=72m +1-748.1.若数列{a n }满足a 2n +1a 2n=p (p 为正常数,n ∈N *),则称数列{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若a 2n +1a 2n =p ,则a n +1a n =±p ,不是定值;若a n +1a n =q ,则a 2n +1a 2n=q 2,且q 2为正常数,故甲是乙的必要不充分条件.2.(2012·浙江高考)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析:法一:S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得, 3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0, 解得q =32(q =-1不合题意,舍去).法二:设等比数列{a n }的首项为a 1,由S 2=3a 2+2,得 a 1(1+q )=3a 1q +2.①由S 4=3a 4+2,得a 1(1+q )(1+q 2)=3a 1q 3+2.② 由②-①得a 1q 2(1+q )=3a 1q (q 2-1). ∵q >0,∴q =32.答案:323.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:依题意S n =4a n -3(n ∈N *), n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列. (2)因为a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1.1.(2012·大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:选B ∵S n =2a n +1,∴当n ≥2时,S n -1=2a n ,∴a n =S n -S n -1=2a n +1-2a n ,∴3a n =2a n +1,∴a n +1a n =32. 又∵S 1=2a 2,∴a 2=12,∴a 2a 1=12, ∴{a n }从第二项起是以32为公比的等比数列, ∴S n =a 1+a 2+a 3+…+a n =1+12⎣⎡⎦⎤1-⎝⎛⎭⎫32n -11-32=⎝⎛⎭⎫32n -1. ( 也可以先求出n ≥2时,a n =3n -22n -1,再利用S n =2a n +1,求得S n =⎝⎛⎭⎫32n -1 ) 2.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12. (2)由(1)可得a 1-a 1⎝⎛⎭⎫-122=3. 故a 1=4,从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 3.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013. 解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).∵d >0, 故解得d =2.∴a n =1+(n -1)·2=2n -1. 又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c n b n=a n +1得 当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n. 两式相减得:n ≥2时,c n b n=a n +1-a n =2. ∴c n =2b n =2·3n -1(n ≥2). 又当n =1时,c 1b 1=a 2,∴c 1=3. ∴c n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2. ∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.。

山东省2014届理科数学一轮复习试题选编17:等差数列(学生版)

山东省2014届理科数学一轮复习试题选编17:等差数列(学生版)

山东省2014届理科数学一轮复习试题选编17:等差数列一、选择题 1 .(山东省青岛市2013届高三第一次模拟考试理科数学)设n S 是等差数列{}n a 的前n 项和,1532,3a a a ==,则9S = ( )A .90B .54C .54-D .72- 2 .(山东省实验中学2013届高三第三次诊断性测试理科数学)在等差数列{}n a 中,20131-=a ,其前n 项和为n S ,若210121012=-S S ,则2013S 的值等于 ( )A .-2012B .-2013C .2012D .20133 .(山东省淄博市2013届高三上学期期末考试数学(理))如果等差数列{}n a 中,15765=++a a a ,那么943...a a a +++等于( )A .21B .30C .35D .404 .(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)已知{}n a 为等差数列,若34899,a a a S ++==则( )A .24B .27C .15D .545 .(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)等差数列{}n a 前n 项和为n S ,已知310061006(1)2013(1)1,a a -+-= 310081008(1)2013(1)1,a a -+-=-则( )A .2013100810062013,S a a =>B .2013100810062013,S a a =<C .2013100810062013,S a a =->D .2013100810062013,S a a =-<6 .(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知正项组成的等差数列{}n a 的前20项的和100,那么615a a ⋅最大值是 ( )A .25B .50C .100D .不存在 7 .(山东省威海市2013届高三上学期期末考试理科数学){}n a 为等差数列,n S 为其前n 项和,77521a S ==,,则10S =( )A .40B .35C .30D .288 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知等差数列{}n a 的前n 项和为n S ,满足1313113a S a ===,则 ( )A .14-B .13-C .12-D .11-9 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))在等差数列}{na 中,1a =-2 012 ,其前n 项和为n S ,若10121210S S -=2,则 2 012S 的值等于 ( )A .-2 011B .-2 012C .-2 010D .-2 01310.(山东省日照市2013届高三12月份阶段训练数学(理)试题)已知数列{}n a ,若点()()*,n n a n N∈在经过点()8,4的定直线l 上,则数列{}n a 的前15项和15S = ( )A .12B .32C .60D .12011.(山东省济南市2013届高三4月巩固性训练数学(理)试题)等差数列{}n a 中,已知112a =-,130S =,使得0n a >的最小正整数n 为( )A .7B .8C .9D .10 12.(山东师大附中2013届级高三12月第三次模拟检测理科数学)等差数列{}n a 的前n 项的和为n S ,且A .2012B .-2012C .2011D .-201113.(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)设数列{}n a 是等差数列,且23415a a a ++=,则这个数列的前5项和5S( )A .10B .15C .20D .25 14.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)如果等差数列{}n a 中,35712a a a ++=,那么129...a a a +++的值为( )A .18B .27C .36D .54二、填空题15.(山东省烟台市2013届高三上学期期末考试数学(理)试题)设直线(1)2(*)nx n y n N ++=∈与两坐标轴围成的三角形的面积为S n ,则S 1+S 2++S 2012的值为 16.(山东省泰安市2013届高三上学期期末考试数学理)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第n 个图形中小正方形的个数是___________.17.(山东省潍坊市2013届高三第一次模拟考试理科数学)现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为 10cm,最下面的三节长度之和为114cm,第6节的长度是首节与末节长度的等比中 项,则n=___________.三、解答题18.(山东省泰安市2013届高三上学期期末考试数学理)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,.S b S q b +==(I)求n a 与n b ; (II)设1121,n n n n T a b a b a b n N +-=++⋅⋅⋅+∈,求n T 的值.19.(山东省文登市2013届高三3月二轮模拟考试数学(理))已知数列{}n a 为公差不为0的等差数列,n S 为前n 项和,5a 和7a 的等差中项为11,且25114a a a a ⋅=⋅.令11,n n n b a a +=⋅数列{}n b 的前n 项和为n T .(Ⅰ)求n a 及n T ;(Ⅱ)是否存在正整数1,(1),,,m n m n m n T T T <<使得成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由.20.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)已知数列{}n a 是等差数列,()*+∈-=N n a a c n n n 212(1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值.若存在,求出k 的取值范围;若不存在,说明理由.21.(2013届山东省高考压轴卷理科数学)设数列{}n a 的前.n 项积..为n T ,且n na T 22-= ()n N *∈.(Ⅰ)求证数列1n T ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)设)1)(1(1+--=n n n a a b ,求数列{}n b 的前n 项和n S .22.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)已知等差数列{}n a 的首项11a =,公差0d >,且2514,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)设*121(),(3)n n n n b n N S b b b n a =∈=++++ ,是否存在最大的整数t,使得对任意的n 均有36n tS >总成立?若存在,求出t;若不存在,请说明理由,23.(山东省青岛市2013届高三上学期期中考试数学(理)试题)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n b 是以函数214sin ()12y x π=+-的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .24.(山东省德州市2013届高三3月模拟检测理科数学)已知各项均不相等的等差数列{}n a 的前5项和为513235,1,1,1S a a a =+++成等比数列. (1)求数列{}n a 的通项公式;(2)设n T 为数列1n S ⎧⎫⎨⎬⎭⎩的前n 项和,问是否存在常数m,使12(2)n n n T n n n ⎡⎤=+⎢⎥++⎣⎦,若存在,求m 的值;若不存在,说明理由.25.(山东省威海市2013届高三上学期期末考试理科数学)已知数列{}n a ,15a =-,22a =-,记()A n =12n a a a +++ ,23()B n a a =+1n a +++ ,()C n =342+n a a a +++ (*N n ∈),若对于任意*N n ∈,()A n ,()B n ,()C n 成等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 求数列{}||n a 的前n 项和.26.(2010年高考(山东理))已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .山东省2014届理科数学一轮复习试题选编17:等差数列参考答案一、选择题1. 【答案】 C 由1532,3a a a ==得1143(2)a d a d +=+,即12d a =-=-,所以919899298542S a d ⨯=+=⨯-⨯=-,选C. 2.B【解析】1211211122S a d ⨯=+,101109102S a d ⨯=+,所以112112111211212122a dS a d ⨯+==+,1019102S a d =+,所以101221210S S d -==,所以201312013201220132013(20132012)2012S a d ⨯=+=-+=-,选B 3. C【 解析】由15765=++a a a 得663155a a ==,.所以3496...77535a a a a +++==⨯=,选C.4. 【答案】B 在等差数列中,由3489a a a ++=得13129a d +=,即1543a d a +==,所以19599()9292327222a a a S +⨯⨯⨯====,选B. 5. B 6. A7. 【答案】A 设公差为d ,则由77521a S ==,得1777()2a a S +=,即17(5)212a +=,解得11a =,所以716a a d =+,所以23d =.所以1011091092101040223S a d ⨯⨯=+=+⨯=,选A. 8. 【答案】D 在等差数列中,1131313()132a a S +==,所以1132a a +=,即113221311a a =-=-=-,选D.9. 【答案】B【解析】设公差为d,则2)1(1dn n na S n -+=,2)1(1d n a n S n -+=,由ddd S S =---=-2)110(2)112(10121012,所以2=d ,所以)2013(-=n n S n ,2012)20132012(20122012-=-=S ,选B10. C 【解析】可设定直线为4(8)y k x -=-,知4(8),(8)4nn a k n a k n -=-=-+得,则{}n a 是等差数列84a =,所以11515815()15154602a a S a ⋅+==⋅=⨯=,选C.11. B12. D 【解析】在等差数列中,1201320132013()20132a a S +==,所以120132a a+=,所以120132220132011a a=-=-=-,选D.13. D 【解析】在等差数列中2343315a a a a ++==,所以35a =,所以选D.14. C 二、填空题 15. 【答案】20122013【解析】当0x =时,y =.当0y =时,y =,所以三角形的面积11112(1)1n S n n n n ===-++,所以1220121111112012112232012201320132013S S S +++=-+-++-=-= . 16. 【答案】(1)2n n +【解析】12341,3,6,10a a a a ====,所以2132432,3,4a a a a a a -=-=-=, 1n n a a n --=,等式两边同时累加得123n a a n -=+++ ,即(1)122n n n a n +=+++= ,所以第n 个图形中小正方形的个数是(1)2n n +.17. 【答案】16 设对应的数列为{}n a ,公差为,(0)d d >.由题意知110a =,12114n n n a a a --++=,261n a a a =.由12114n n n a a a --++=得13114n a -=,解得138n a -=,即2111(5)()n a d a a d -+=+,即2(105)10(38)d d +=+,解得2d =,所以11(2)38n a a n d -=+-=,即102(2)38n +-=,解得16n =.三、解答题 18.19.解:(Ⅰ)因为{}n a 为等差数列,设公差为d ,整理得111511212a d d a d a +==⎧⎧⇒⎨⎨==⎩⎩ 所以1(1)221n a n n =+-⨯=-由111111()(21)(21)22121n n n b a a n n n n +===-⋅-+-+所以111111(1)2335212121n nT n n n =-+-++-=-++ (Ⅱ)假设存在 由(Ⅰ)知,21n n T n =+,所以11,,32121m n m nT T T m n ===++ 若1,,m n T T T 成等比,则有222121()2132144163m n m n m nT T T m n m m n =⋅⇒=⋅⇒=+++++ 2222441633412m m n m m m n n m ++++-⇒=⇒=,.....(1) 因为0n >,所以2412011m m m +->⇒<<, 因为,1,2,m N m m *∈>∴=,当2m =时,带入(1)式,得12n =; 综上,当2,12m n ==可以使1,,m n T T T 成等比数列20.解:(1)设{}n a 的公差为d ,则22221121()()n n n n n n c c a a a a ++++-=---2221112()()n n n aa d a d +++=---+22d =-∴数列{}n c 是以22d -为公差的等差数列3 (2)1325130a a a +++=242614313a a a k+++=-∴两式相减:131313d k =- 1d k ∴=-113(131)1321302a d -∴+⨯=k a 1221+-=)313()1()1(1-+-=-+=∴k n k d n a a n22111()()n n n n n n n c a a a a a a +++∴=-=+-22)1)(12(63226k n k k -+-+-=53025)1(222+-+--=k k n k 8(3)因为当且仅当12n =时nS 最大12130,0c c ∴><有即2222224(1)2530501819036(1)25305022210k k k k k k k k k k ⎧⎧--+-+>+->⎪⎪⇒⎨⎨--+-+<-+>⎪⎪⎩⎩ 1191921k k k k ><-⎧⇒⇒<->或或21.【解析】(Ⅰ)1132T = 由题意可得:122n n n TT T -=-⇒1122n n n n T T T T --⋅=-(2)n ≥,所以11112n n T T --=(Ⅱ)数列1n T ⎧⎫⎨⎬⎩⎭为等差数列,122n n T +=,12nn a n +=+, 1(2)(3)n b n n =++,1113445(2)(3)n S n n =+++⨯⨯+⨯+ 111111()()()344523n n =-+-++-++113339nn n =-=++ 22.23.24.25.解:(Ⅰ)根据题意()A n ,()B n ,()C n 成等差数列∴()+()2()A n C n B n =整理得2121253n n a a a a ++-=-=-+= ∴数列{}n a 是首项为5-,公差为3的等差数列 ∴53(1)38n a n n =-+-=-(Ⅱ)38,2||38,3n n n a n n -+≤⎧=⎨-≥⎩记数列{}||a 的前n 项和为S .当2n ≤时,2(583)313222n n n n S n +-==-+当3n ≥时,2(2)(138)313714222n n n n S n -+-=+=-+综上,2231322231314322n n n n S n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩ 26. 【解析】(Ⅰ)设等差数列{}n a 的公差为d,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n .(Ⅱ)由(Ⅰ)知2n+1n a =,所以b n =211n a -=21=2n+1)1-(114n(n+1)⋅=111(-)4n n+1⋅,所以n T =111111(1-+++-)4223n n+1⋅- =11(1-)=4n+1⋅n 4(n+1), 即数列{}n b 的前n 项和n T =n4(n+1).【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键.。

山东省2014届理科一轮复习试题选编28:直线与圆(含解析)

山东省2014届理科一轮复习试题选编28:直线与圆(含解析)

山东省2014届理科数学一轮复习试题选编28:直线与圆一、选择题1 .(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)直线()2110x a y +++=的倾斜角的取值范围是 ( )A .0,4π⎡⎤⎢⎥⎣⎦B .3[,)4ππ C .0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭D .3,,424ππππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】B直线的斜截式方程为221111y x a a =--++,所以斜率为211k a =-+,即21tan 1a α=-+,所以1tan 0α-≤<,解得34παπ≤<,即倾斜角的取值范围是3[,)4ππ,选 B . 2 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)在平面直角坐标系xoy 中,圆C的方程为228150x y x +-+=,若直线2y kx =+上至少存在一点,使得以该点为圆心,半径为1的圆与圆C 有公共点,则k 的最小值是 ( )A .43-B .54-C .35-D .53-【答案】A 因为圆C 的方程可化为:()2241x y -+=,所以圆C 的圆心为(4,0),半径为1.因为由题意,直线2y kx =+上至少存在一点00(,2)A x kx +,以该点为圆心,1为半径的圆与圆C 有公共点;所以存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤. 因为min AC 即为点C 到直线2y kx =+,所以2≤,解得403k -≤≤.所以k 的最小值是43-,选A . 3 .(山东省文登市2013届高三3月二轮模拟考试数学(理))在平面直角坐标系xoy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,为半径的圆与圆C 有公共点,则k 的最大值为 ( )A .2B .43C .23D .3【答案】B4 .(山东省威海市2013届高三上学期期末考试理科数学)若直线y kx =与圆22(2)1x y -+=的两个交点关于直线20x y b ++=对称,则,k b 的值分别为 ( )A .1,42k b ==- B .1,42k b =-= C .1,42k b == D .1,42k b =-=- 【答案】A 因为直线y kx =与圆22(2)1x y -+=的两个交点关于直线20x y b ++=对称,则y kx =与直线20x y b ++=垂直,且20x y b ++=过圆心,所以解得1,42k b ==-,选A .5 .(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)在圆x y x 522=+内,过点(25,23)有n条弦的长度成等差数列,最小弦长为数列的首项1a ,最大弦长为n a ,若公差为d∈[61,31],那么n 的取值集合为( )A .{4,5,6,7}B .{4,5,6}C .{3,4,5,6}D .{ 3.4.5,6,7}【答案】A【解析】圆的标准方程为22525()24x y -+=,所以圆心为5(,0)2,半径52r =,则最大的弦为直径,即5n a =,当圆心到弦的距离为32时,即点(25,23)为垂足时,弦长最小为4,即14a =,所以由1(1)n a a n d =+-得,1541111n a a d n n n --===---,因为1163d ≤≤,所以111613n ≤≤-,即316n ≤-≤,所以47n ≤≤,即4,5,6,7n =,选A . 6 .(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)若直线2x y -=被圆22()4x a y -+=所截得的弦长为,则实数a 的值为( )A .0或4B .1或3C .-2或6D .-1【答案】A 【解析】由圆的方程可知圆心坐标为(,0)a ,半径为2,因为弦AB的长为,所以圆心到直线的距离d ==.即圆心到直线20x y --=的距离d ,所以22a -=,解得4a =或0a =,选A .7 .(山东省济南市2013届高三3月高考模拟理科数学)已知直线0=++c by ax 与圆1:22=+y x O 相交于,A B 两点,且,3=AB 则OB OA ⋅ 的值是( )A .12-B .12C .34-D .0【答案】A在三角形OAB 中,1cos 2OAB ∠==-,所以23OAB π∠=,所以11cos 11()22OA OB OA OB OAB ⋅=⋅∠=⨯⨯-=- ,选A .8 .(山东省德州市2013届高三上学期期末校际联考数学(理))已知P 是直线:34110l x y -+=上的动点,P( )A .PB是圆222210x y x y+--+=的两条切线,C 是圆心,那么四边形PACB 面积的最小值是( )A B .CD .【答案】C【解析】圆的标准方程为22(1)(1)1x y -+-=,圆心为(1,1)C ,半径为1r =.根据对称性可知四边形PACB 面积等于1222APC S PA r PA ∆=⨯==要使四边形PACB 面积的最小值,则只需PC最小,此时最小值为圆心到直线:34110l x y -+=的距离1025d =,所以四边形PACB 面积的最小值为2APC S ∆===,选C,9 .(山东省兖州市2013高三9月入学诊断检测数学(理)试题)若函数21m y x x n n =-+的图象在点1(0,)M n处的切线l 与圆22:1C x y +=相交,则点(,)P m n 与圆C 的位置关系是( )A .圆内B .圆内或圆外C .圆上D .圆外【答案】D10.(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)在直角坐标系中,30y +-=的倾斜角是 ( )A .6πB .3πC .65πD .32π 【答案】D【解析】直线的斜截式方程为3y =+,即直线的斜率tan k α==,所以23πα=,选 D . 11.(2013山东高考数学(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB的方程为 ( ) A .230x y +-= B .230x y --= C .430x y --= D .430x y +-=【答案】A 【解析】由图象可知,(1,1)A 是一个切点,所以代入选项知,,B D 不成立,排除.又AB 直线的斜率为负,所以排除C,选A 12.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)若直线x-y=2被圆(x-a)2+y 2=4所截得的弦长为22,则实数a 的值为 ( ) A .-1或3 B .1或3 C .-2或6 D .0或4 【答案】D 13.(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)若直线1x ya b+=通过点(cos sin )M αα,,则( )A .221a b +≤B .221a b +≥C .22111a b +≤ D .22111a b+≥ 【答案】解: D .由题意知直线1x ya b+=与圆221x y +=有交点,则22111a b +1,≥.另解:设向量11(cos ,sin ),(,)a b ααm =n =,由题意知cos sin 1a bαα+=由⋅≤m n m n可得cos sin 1a b αα=+ 14.(2013届山东省高考压轴卷理科数学)若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,l ]D .(-∞,-3] ⋃ [1.+∞)【答案】C 【解析】因为直线10x y -+=与圆22()2x a y -+=有公共点,所以圆心(,0)a 到直线10x y -+=的距离+12d a ≤≤≤即,所以-3a 1.15.(山东省夏津一中2013届高三4月月考数学(理)试题)若点()n m ,在直线01034=-+y x 上,则22n m +的最小值是 ( )A .2B .22C .4D .32 【答案】C 16.(山东省烟台市2013届高三上学期期末考试数学(理)试题)若与向量(1,1)v =平行的直线l 与圆221x y +=交于( ) A .B 两点,则A B 最大值为( )A .2B .C .4D .【答案】A【解析】因为直线l 与向量(1,1)v =平行,所以直线的斜率为1,当直线与圆相交时,A B 最大值为直径2,所以选A . 17.(山东省实验中学2013届高三第三次诊断性测试理科数学)已知两条直线2-=ax y 和01)2(3=++-y a x 互相平行,则a 等于( ) A .1或-3 B .-1或3 C .1或3 D .-1或3 【答案】A 【解析】因为直线2-=ax y 的斜率存在且为a ,所以(2)0a -+≠,所以01)2(3=++-y a x 的斜截式方程为3122y x a a =+++,因为两直线平行,所以32a a =+且122a ≠-+,解得1a =-或3a =,选A .18.(山东省实验中学2013届高三第三次诊断性测试理科数学)已知P(x,y)是直线)0(04>=++k y kx 上一动点,PA,PB 是圆C:0222=-+y y x 的两条切线, ( ) A .B 是切点,若四边形PACB 的最小面积是2,则k 的值为 ( )A .3B .212 C .22D .2【答案】D 【解析】由圆的方程得22(1)1x y +-=,所以圆心为(0,1),半径为1r =,四边形的面积2S S PBC ∆=,所以若四边形PACB 的最小面积是2,所以S PBC ∆的最小值为1,而12S PBC r PB ∆=,即PB 的最小值为2,此时PC 最小为圆心到直线的距离,此时d ===,即24k =,因为0k >,所以2k =19.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)点()2,1P -为圆()22125x y -+=内弦AB 的中点,则直线AB 的方程为 ( )A .10x y +-=B .230x y +-=C .30x y --=D .250x y --= 【答案】C 20.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))直线1l :kx +(1-k )y -3=0和2l :(k -1)x +(2k +3)y -2=0互相垂直,则k =( )A .-3或-1B .3或1C .-3或1D .-1或3【答案】C【解析】若1=k ,直线3:1=x l ,52:2=y l ,满足两直线垂直.若1≠k ,直线21l l ,的效率分别为321,121+-=-=k k k k k k ,由121-=⋅k k 得,3-=k ,综上1=k 或3-=k ,选 C .二、填空题21.(2013年山东临沂市高三教学质量检测考试理科数学)直线y=x 的任意点P 与圆22102240x y x y +--+=的任意点Q 间距离的最小值为_______.【答案】2 圆的标准方程为22(5)(1)2x y -+-=,所以圆心为(5,1),半径为2r =.圆心到直线y x =的距离为51222d -==,所以PQ 的最小值为2222d r -=-=.22.(2010年高考(山东理))已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l:1y x =-被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线方程为_______________.【答案】x+y-3=0【解析】由题意,设所求的直线方程为x+y+m=0,设圆心坐标为(a,0),则由题意知:22()+2=(a-1)2,解得a=3或-1,又因为圆心在x 轴的正半轴上,所以a=3,故圆心坐标为 (3,0),因为圆心(3,0)在所求的直线上,所以有3+0+m=0,即m=-3,故所求的直线方程为 x+y-3=0. 【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力. 23.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +的最小值为_________【答案】15.24.(山东省2013届高三高考模拟卷(一)理科数学)如图放置的边长为2的正方形PABC 沿x 轴滚动.设顶点),(y x P 的轨迹方程是)(x f y =,则)(x f y =在其两个相邻零点间的图象与x 轴所围成的区域的面积为______.【答案】44π+【解析】由于本题是求两个相邻零点问的图象与x 轴所围成的区域的面积,所以为了简便,可以直接将P 点移到原点,开始运动,如图所示,当P 点第一次回到x 轴时经过的曲线是三段相连的圆弧,它与x 轴围成的区域面积为2221112[2222]244444ππππ⨯⨯+⨯⨯+⨯+⨯⨯=+().。

山东省泰安市2014高三一模(语文)

山东省泰安市2014高三一模(语文)

山东省泰安市2014高三一模(语文)高考语文2014-04-01 1943()泰安市高三第一轮复习质量检测语文试题注意事项:1.本试题分为选择题和非选择题两部分,共8页。

满分150分,答题时间150分钟。

2.答题前。

考生务必先将密封线内的项目填写清楚。

答第Ⅰ卷前先将自己的学校、姓名、考号、考试科目用铅笔涂写在答题卡上。

3.选择题的每小题选出答案后。

用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试题纸或答题纸上。

4.非选择题写在答题纸对应区域内,严禁在试题纸或草稿纸上答题。

5.考试结束后,将试题纸、答题卡和答题纸一并交回。

第Ⅰ卷(选择题共36分)一、(15分,每小题3分)1.下列加点词语中每对读音都相同的一组是A.铺展/逮捕然诺/糯米潸然泪下/姗姗来迟B.坍塌/踏实阿谀/须臾逸兴遄飞/如椽巨笔C.凌驾/聆教分娩/婉约蹁跹起舞/骈拇枝指D.歃血/煞白摭谈/踯躅膘肥体壮/粗犷剽悍2.下列各组词语中没有错别字的一项是A.丹清构架晴空丽日虚无缥缈B.蓄志讲座危如垒卵添枝加叶C.静穆缱绻蓬头垢面了如指掌D.荧屏陨落不明就里押卷之作3.依次填入下列各句横线处的词语,最恰当的一组是①《孔子》与《刺陵》有如此票房奇迹,不单因为有好莱坞“灾难片大师”罗兰·艾默里奇作招牌,也受《独立日》影像印记影响,还有人们对“世界末日”的猎奇……②人们甚至觉得,《潜伏》中的两个虚构的人物应当续写情缘,实现他们自己那些在现实面前显得无奈的理想。

让如今的青年人意识到还有时间不能够的纯真感情。

③“毒豆角事件”本质上是利益的,导致公共利益虚置与错位。

因此,发现了“毒豆角”就查豆角,在海南发现的就追查海南的做法,都还只是治标不治本。

A.不止侵蚀纠葛 B.不只腐蚀瓜葛C.不止腐蚀瓜葛 D.不只侵蚀纠葛4.下列各句中,加点的成语使用恰当的一项是A.在东亚四强赛上,国足气冲斗牛,以30大比分大胜韩国足球队,打破了32年来逢韩必败的怪圈,令国人瞬间点燃对足球的热望。

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学(理)一轮复习单元测试第十一章算法框图s 及推理与证明一、选择题(本大题共12小题,每小题5分,共60分.) 1、, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .612.(2013年高考某某卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+3.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n 与(x +y )n 类比,则有(x +y )n =x n +y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz ) 4、(2013高考某某理)设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈5、古希腊人常用小石子在沙滩上摆成各种形状来研究数。

比如:输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)2.5函数的图象课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)2.5函数的图象课件 新人教A版

[答案]
(0,1)∪(1,4)
[题后悟道]
所谓数形结合思想,包含“以形助数”和
“以数辅形”两个方面,其应用大致可以分为两种情形:一是 借助形的生动性和直观性来阐明数之间的联系,即以形作为手 段,数作为目的,比如应用函数的图象来直观地说明函数的性 质;二是借助于数的精确性和规范严密性来阐明形的某些属 性,即以数作为手段,形作为目的,如应用曲线的方程来精确 地阐明曲线的几何性质.解答本题利用了数形结合思想,本题 |x2-1| 首先作出y= 的图象,然后利用图象直观确定直线y=kx x-1 -2的位置.作图时应注意不包括B、C两点,而函数y=kx-2 的图象恒过定点A(0,-2),直线绕A点可以转动,直线过B、 C两点是关键点.
答案:(1)2
(2)D
[例3]
(2011· 新课标全国卷)已知函数y=f(x)的周
期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图 象与函数y=|lg x|的图象的交点共有 ( )
A.10个
C.8个
B.9个
D.1个
[自主解答]
根据f(x)的性质及f(x)在[-1,1]上的解析
法二:当x=0时,-f(2-x)=-f(2)=-1;当x=1时, -f(2-x)=-f(1)=-1.观察各选项,可知应选B. [答案] B
“看图说话”常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而 得出图象的上升(或下降)的趋势,利用这一特征分析解决 问题. (2)定量计算法:通过定量的计算来分析解决问题.
[知识能否忆起]
一、利用描点法作函数图象 其基本步骤是列表、描点、连线,首先:①确定函数 的定义域;②化简函数解析式;③讨论函数的性质(奇偶 性、单调性、周期性);其次:列表(尤其注意特殊点、零 点、最大值点、最小值点、与坐标轴的交点);最后:描 点,连线.

2014届高三数学(理)一轮专题复习课件 函数y=Asin(ωx+φ)的图像及应用

2014届高三数学(理)一轮专题复习课件  函数y=Asin(ωx+φ)的图像及应用

1 答案: □ A φ 7 - □ ω 12 □0
2 □
2π ω
3 □
1 T
4 □
ω 2π
5 6 □ ωx+φ □ φ 2π-φ 11 □ ω
φ π 8 - + □ ω 2ω 3π 15 □2
π-φ 9 □ ω 16 □2π
3π φ 10 □ 2ω - ω
π 13 14 □2 □π
名 师 微 博 ●一种方法 在由图像求三角函数解析式时,若最大值为M,最小值 M-m M+m 2π 为m,则A= 2 ,k= 2 ,ω由周期T确定,即由 ω =T 求出,φ由特殊点确定.
0
A
0
-A
0
3.函数y=sinx的图像经变换得到y=Asin(ωx+φ)的图像 的步骤如下
4.三角函数模型的应用 (1)根据图像建立解析式或根据解析式作出图像. (2)将实际问题抽象为与三角函数有关的简单函数模型. (3)利用收集到的数据作出散点图,并根据散点图进行函 数拟合,从而得到函数模型.
π 2x-3 x f(x)
π -3 0 1 2
0 π 6 1
π 2 5 12π 0
π 2 3π -1
3 2π 11 12π 0
5 3π π 1 2
图像如图:
方法点睛
①“五点法”作图的关键是正确确定五个
点,而后列表、描点、连线即可.②变换法作图像的关键看 x轴上是先平移后伸缩还是先伸缩后平移,对于后者可利用
2π 解析:(1)由最低点为M 3 ,-2,得A=2.
π T π 由x轴上相邻的两个交点之间的距离为 2 ,得 2 = 2 ,即T
2π 2π 2π =π,所以ω= T = π =2.由点M 3 ,-2 在图像上,得 4π 2π 2sin2× 3 +φ=-2,即sin 3 +φ=-1.

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)8.8曲线与方程课件 新人教A版

2014届高三数学一轮复习 (基础知识+小题全取+考点通关+课时检测)8.8曲线与方程课件 新人教A版
4x2 4y2 A. - =1 21 25 4x2 4y2 C. - =1 25 21 4x2 4y2 B. + =1 21 25 4x2 4y2 D. + =1 25 21
(
)
解析: ∵M 为 AQ 垂直平分线上一点, 则|AM|=|MQ|,∴|MC|+|MA|=|MC|+ |MQ|=|CQ|=5,故 M 的轨迹为椭圆, 5 21 2 2 2 ∴a= ,c=1,则 b =a -c = , 2 4 4x2 4y2 ∴椭圆的标准方程为 + =1. 25 21
1 2 x +4 4 2 0 1 2 x +4+ 所以 d= 2 = 0 ≥2, 2 2 x0+4 x0+4 当 x0=0 时取等号,所以 O 点到 l 距离的最小值为 2.
直接法求曲线方程的一般步骤 (1)建立合理的直角坐标系;
(2)设出所求曲线上点的坐标,把几何条件或等量关
[解]
设动点为 M,其坐标为(x,y),
y y 当 x≠± 时,由条件可得 kMA1· a kMA2= · = x+a x-a y2 2 2 2 a), 2 2=m,即 mx -y =ma (x≠± x -a 又 A1(-a,0),A2(a,0)的坐标满足 mx2-y2=ma2, 故依题意,曲线 C 的方程为 mx2-y2=ma2. x2 y2 当 m<-1 时,曲线 C 的方程为 2+ =1,C 是 a -ma2 焦点在 y 轴上的椭圆;
定义法求轨迹方程
[例2]
(2012· 海淀模拟)点P到图形C上每一个点的距
离的最小值称为点P到图形C的距离,那么平面内到定圆 的距离与到定点A的距离相等的点的轨迹不可能是( )
A.圆
C.双曲线的一支
B.椭圆
D.直线
[自主解答]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰安市2014届高三下学期3月第一轮复习质量检测
数学(理)试题
2014.3
一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设复数()(),2,1z z a bi a b R i P a b i =+∈=-+,若
成立,则点在 A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.如果点()02P y ,在以点F 为焦点的抛物线24y x =上,则PF 等于
A.1
B.2
C.3
D.4
3.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表:
由()()()()()2
2n ad bc K a b c d a c b d -=++++算得, ()2
250040270301609.96720030070430
K ⨯⨯-⨯=≈⨯⨯⨯ 附表:
参照附表,得到的正确结论是
A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”
C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”
D.有99%以上的把握认为“需要志愿者提供帮助与性别无关” 4.给定命题p :函数()()ln 11y x x =-+⎡⎤⎣⎦为偶函数;命题q :函数11x x e y e -=+为偶函数,下
列说法正确的是
A.p q ∨是假命题
B.()p q ⌝∧是假命题
C.p q ∧是真命题
D.()p q ⌝∨是真命题
5.已知平面向量a,b 的夹角为120°,且1,a b a b ⋅=--则的最小值为
D.1
6.执行右面的程序框图,如果输入a=3,那么输出的n 的值为
A.2
B.3
C.4
D.5
7.将函数()2cos 2f x x x =-的图象向左平移m 个单位2m π⎛⎫>-
⎪⎝⎭,若所得的图象关于直线6x π=对称,则m 的最小值为 A.3π
- B.6π
- C.0 D.12
π 8.如图矩形OABC 内的阴影部分是由曲线()()
sin ,0,f x x x π=∈
及直线(),0,x a a x π=∈与轴围成,向矩形OABC 内随机投掷一点,若落在阴影部分的概率为14
,则a 的值是 A.712
π B.
23π C.34π D.56π
9.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形,
则该几何体的表面积为
A.6+
B. 16+
C.6+
D.16+10.已知函数()()()2111f x x x a x a b ⎡⎤=-+++++⎣⎦的三个零点值分别可以作为抛物线、椭圆、双曲
线的离心率,则22a b +的取值范围是
A.)+∞
B.)+∞
C.[)5,+∞
D.()5,+∞
二、填空题:本大题共5个小题,每小题5分,共25分.请把答案填在答题纸的相应位置.
11.等比数列{}n a 的前n 项和为123,4,2,n S a a a 且成等差数列,若141a S ==,则 ▲ .
12.从0,1,2,3,4,5,6,7,8,9,这10个数字中同时取4个不同的数,其和为偶数,则不同的取法为 ▲ (用数字作答).
13.已知12F F ,是双曲线E 的两个焦点,以线段12F F 为直径的圆与双曲线的一个公共点是M ,若1230MF F ∠=,则双曲线E 的离心率是 ▲ .
14.已知3s i n 52πββπ⎛⎫=<< ⎪⎝⎭
,且()22sin cos ,sin sin cos 2cos αβααααα+=+-则等于 ▲ . 15.定义域为R 的函数()()()(]()2120,1f x f x f x x f x x x +=∈=-满足,且当时,,则
当[]()2,1x f x ∈--时,的最小值为 ▲ .
三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)
在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,且3cos .5b c C a a
=
+ (I )求sinA ;
(II )若10,a b BA BC ==求在上的投影.
17.(本小题满分12分)
某班50位学生体育成绩的频率分布表如下:
(I )估计成绩不低于80分的概率;
(II )从成绩不低于80分的学生中随机选取3人,该3人中成绩在90分以上(含90分)的人数记为ξξ,求的数学期望.
18.(本小题满分12分)
已知数列{}1n a a t =中,(t 为非零常数),其前n 项和为12n n n S a S +=,满足. (I )求数列{}n a 的通项公式;
(II )若对任意的()*
1n n N a n n λ∈>+,都有成立,求实数λ的取值范围.
19.(本小题满分12分)
已知四棱锥P-ABCD 中,底面ABCD 为直角梯形,//.=901,2,BC AD BAD PA AB BC AD PA ∠====⊥
,且平面ABCD ,E 为AB 的中点.
(I )证明:PC CD ⊥;
(II )求二面角A-PD-C 的正切值;
(III )设F 为PA 上一点,且14
AF AP =
,证明:EF//平面PCD.
20.(本小题满分12分)
已知椭圆2241,x y O +=是坐标原点.
(I )设椭圆在第一象限的部分曲线为C ,动点P 在C 上,C 在点P 处的切线与x 轴、y 轴的
交点分别为G 、H ,以OG 、OH 为邻边作 ,求点M 的轨迹方程;
(II )若椭圆与x 轴y 轴正半轴交于A 、B 两点,直线()0y kx k =>与椭圆交于R 、S 两点,求四边形ARBS 面积的最大值.
21.(本小题满分14分)
已知函数()ln f x x mx =+,其中m 为常数.
(I )当()1m f x =-时,求函数的单调区间;
(II )若()(]0f x e 在区间,上的最大值为3m -,求的值;
(III )令()()2()1f x g x f x x x
+'=-≥,若时,有不等式()1k g x x ≥+恒成立,求实数k 的取值范围.。

相关文档
最新文档