实数与一次函数测试

合集下载

第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册

第四章一次函数 单元测试2024-2025学年北师大版数学八年级上册

O yx O y x x y O O y x 第四章 一次函数单元测试(共120分,100分钟)一、选择题:(每小题3分,共30分)1.一次函数83y x =-+的图象经过的象限是( )A.一、二、三B.二、三、四C.一、二、四D.一、三、四2.若y=(m -2)x+m 2-4是正比例函数,则m 的取值是( )A .2B .-2C .±2D .任意实数3.已知点()14,y -,()22,y 都在直线122y x =-+上,则1y ,2y 大小关系是( ) A.12y y > B.12y y = C.12y y < D.不能比较4.如图,函数y=kx+k 的图象可能是下列图象中( )A B C D5.下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 6.已知3-y 与x 成正比例,且x =2时,y =7,则y 与x 的函数关系式为( )A .32+=x yB .32-=x yC .323+=-x yD .33-=x y7.下列各点,在直线y =x +5上的是( )A . (0,4)B .(-1,2)C .(2,6)D . (-5, 0)8.若将直线23y x =-向下平移3个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+说法正确的是( )A.经过第一、二、四象限B.与x 轴交于()2,0-C.与y 轴交于(0,6)D.y 随x 的增大而增大 9.关于x 的函数()3y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点()1,3-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A.①②④B.①③④C.①②③④D.②③④10.如图,点B 在直线2y x =上,过点B 作BA x ⊥轴于点A ,作//BC x 轴与直线()0y kx k =≠交于点C ,若:1:2AB BC =,则k 的值是( )A.27B.23C.13D.25二、填空题:(每小题4分,共28分)11.一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.直线y = -3x +6与x 轴交点坐标是 .13.一次函数y=kx+b 的图像位于第一、三、四,则y 随x 的增大而_________.14.直线63+=x y 与两坐标轴围成的三角形的面积是15.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________.16.若k x k y )1(-=-7是一次函数,则k = .17.若点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = .三、解答下列各题:(共62分)18.(9分)已知一次函数2(2)312y k x k =--+.(1)k 为何值时,图象经过原点;(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(3)k 为何值时,图象平行于2y x =-的图象;19.(9分)如图是某汽车行驶的路程S (km )与时间t (min)的函数关系图.回答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.20.(10分)直线122y x =-+分别交x 轴,y 轴于A,B 两点,O 是原点,直线y=kx+b 经过AOB △的顶点A 或B,且把AOB △分成面积相等的两部分,求该直线所对应的函数表达式.9 16 30 t /minS /km40 1221.(10分)如图,直线132y x =-+与x,y 轴分别交于A,B 两点.(1)分别求点A 、点B 的坐标.(2)在x 轴上有一点M,线段AB 上有一点N,当OMN △是以ON 为斜边的等腰直角三角形时,求点M 的坐标。

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)

人教版一次函数单元测试题(含答案)人教版一次函数单元测试题(含答案)一、选择题1.已知正比例函数y=kx(k≠0)的图象过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x0时,y随x的增大而减小D.不论x如何变化,y不变2.表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()A。

m=,n=-B。

m=,n=-1C。

m=-1,n=-D。

m=-3,n=-23.若直线y=1x+n与曲线y=x2-2x-3有且仅有一个公共点,则n的取值范围是()A。

n<-3或n>1B。

n>-3且n<1C。

n≥-3且n≤1D。

n=-3或n=14.点A(-5,y1)和B(-2,y2)都在直线y=-1x上,则y1和y2的关系是()A。

y1≤y2B。

y1=y2C。

y1<y2D。

y1>y25.若ab>0,bc<0,则函数y=1(ax-c)的图象不经过第()象限。

A。

一B。

二C。

三D。

四6.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A。

k>0B。

k<0C。

0<k<1D。

k>17.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如下图所示,若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是()A.37.2分钟B.48分钟C.30分钟D.33分钟8.在函数y=3x+2的图像上的点是()A。

(-1,1) B。

(-1,-1) C。

(2,8) D。

(0,-1.5)9.下列函数中,自变量的取值范围选取错误的是()A。

y=x-2中,x取x≥2B。

y=2/(x+1)中,x取x≠-1C。

y=2x中,x取全体实数D。

y=(x+3)/1中,x取x≥-310.如图(1)是饮水机的图片,饮水桶中的水由图(2)的位置下降到图(3)的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图像可能是()ABCD11.如图(1)所示的是实验室中常用的仪器,向以下内均匀注水,最后把注满,在注水过程中,的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个是三棱柱。

第五章 一次函数单元测试卷(标准难度)(含答案)

第五章 一次函数单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。

第19章一次函数测试题(4)

第19章一次函数测试题(4)

第19章一次函数测试题(4)一.选择题(共10小题)1.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.2.下列函数①y=πx,②y=2x﹣1,③y=,④y=2﹣3x,⑤y=x2﹣1,其中是一次函数的有()A.4 个B.3 个C.2 个D.1 个3.小明从家匀速跑步到附近的超市,在超市买好圆规后,再沿原路匀速步行回家,他离家的距离y与离家时间x的关系图象大致是()A.B.C.D.4.某校七年级数学兴趣小组利用同一块长为1米的光滑木板,测量小车从不同高度沿斜放的木板从顶部滑到底部所用的时间,支撑物的高度h(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物高度h(cm)10203040506070小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格所提供的信息,下列说法中错误的是()A.支撑物的高度为40cm,小车下滑的时间为2.13sB.支撑物的高度h越大,小车下滑时间t越小C.若小车下滑的时间为2s,则支撑物的高度在40cm至50cm之间D.若支撑物的高度每增加10cm,则对应的小车下滑的时间每次至少减少0.5s5.已知直线l1:y=kx+b与直线l2:y=﹣x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,有以下说法:①方程组的解为;②△BCD为直角三角形;③S△ABD =3;④当P A+PC的值最小时,点P的坐标为(0,1).其中正确的说法个数有()A.1个B.2个C.3个D.4个6.直线y=kx+b和y=bx+k在同一平面直角坐标系中的大致图象可能是()A.B.C.D.7.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价y(元)与支数x之间的函数关系式为()A.B.C.y=12x D.y=18x8.如图,直线y=kx+b与y轴交于点(0,4),与x轴交于点(a,0),当a满足﹣2≤a<0时,k的取值范围是()A.﹣2≤k<0B.2≤k≤4C.k≥2D.k≥49.一次函数y=﹣x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,在第一象限作等腰Rt△ABC,则直线BC的解析式为()A.y=x+2B.y=﹣x+2C.y=﹣x+2D.y=x+2或y=x+210.如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.二.填空题(共10小题)11.两名老师带领x名学生到动物园参观,已知成人票每张50元,学生票每张20元,设门票的总费用为y元,则y与x的函数关系式为.12.每张电影票的售价为35元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.13.如果把y=x+1沿y轴向下平移1个单位,那么得到的直线的表达式为.14.函数y=(m﹣3)x|m|﹣2是正比例函数,则m=,y随x的增大而.15.已知正比例函数的图象经过点(1,1),则它的解析式是.16.有下列关于变量x,y的表达式:①y=x;②y=2x2;③|y|=x;④y2=﹣x.其中,表示y是x的函数的是(填序号).17.如图所示,函数y2=ax+b和y1=|x|的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.18.函数y=中,自变量x的取值范围是.19.如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…,直线l n⊥x轴于点(n,0)(其中n为正整数).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…A n;函数y=2x的图象与直线l1,l2,l3,…,l n分别交于点B1,B2,B3,…,B n,如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形A n﹣1A n B n B n﹣1的面积记作S n,那么S2022=.20.如图,在平面直角坐标系中,直线l:y=x+4与x轴、y轴分别交于A、B两点,点P为平面直角坐标系中任意一点,以点A、B、P三点构成的三角形与△AOB全等,则点P的坐标为.三.解答题(共10小题)21.已知一次函数f(x)=kx+bA、若f(x+1)=4x+6,求f(x)的表达式;B、若f(f(x))=4x+6,求f(x)的表达式;C、若f(x)=4x+6,求所有满足f(f(f(x)))=x的x的值.22.已知f(x)=(3k+2)是正比例函数,求函数f(x)的解析式及f().23.根据下表中的数据回答问题:x…﹣4 ﹣3﹣2 ﹣10 1 2 3 4 …y…﹣5﹣4﹣3﹣2﹣10 1 2 3 …(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在同一条直线上?(2)y是否为x的函数?如果是,写出一个符合表中数据的函数解析式;(3)当x=7时,y的值是多少?24.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)本次上学途中,小明一共行驶了米.一共用了分钟.(3)在整个上学的途中最快的速度是米/分.(4)小明当出发分钟离家1200米.25.直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.26.下表记录的是某橘子种植户橘子的销售额(元)随橘子的销量(千克)变化的有关数据.请根据表中数据回答下列问题:销量(千克)123456789销售额(元)24681012141618(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当销量是5千克时,销售额是元;(3)若销量用x(千克)表示,销售额用y(元)表示,则y与x之间的关系式为.27.如图,直线y=﹣2x+5与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)在x轴上存在一点P,使得△ABP的面积为10,求点P的坐标.28.暑假即将来临,某运动馆推出针对学生两种暑期优惠方案:方案一:先办理VIP卡需100元,然后每次按全票价打五折;方案二:学生每次按全票价打九折;已知运动馆全票价为20元/次,回答下面问题:(1)设方案一、方案二的费用分别为y1、y2,直接写出y1、y2与去运动馆次数x的关系式;(2)某同学估计暑假要去运动馆大概30次,请你帮他分析要不要办VIP卡.29.已知y是x的函数,x的取值范围为任意实数,如图是x与y的几组对应值.x…﹣3﹣2﹣10123…y…3210123…小华同学根据研究函数的已有经验探索这个函数的有关性质,并完成下列问题.(1)如图,小华在平面直角坐标系中描出了上述几组值对应的点,请你根据描出的点画出函数的图象;(2)请根据你画出的函数图象,完成:①当x=﹣4时,求y的值;②当2012≤|y|≤2019时,求x的取值范围.30.(1)小青学习了函数后,对画函数的图象很感兴趣,她作函数y=|x|的图象过程如下(请补充完整空格的部分):当x≥0时,得y=x,当x<0时,得y=﹣x,她在坐标系中画出了如图1的图象,所以函数y=|x|的图象由两条构成;同理,她用类似的方法和过程作出函数y=|x﹣1|的图象;(2)请你在图2的坐标系中作出y=|x﹣1|的图象;(3)学习经验拓展:根据上述的过程获得的经验,请你画出函数y=|x﹣1|+|x|的图象.。

初二数学期末第4章实数、第5张平面直角坐标系、第6章一次函数复习

初二数学期末第4章实数、第5张平面直角坐标系、第6章一次函数复习

怀文中学2014—2015学年度第一学期期末复习题初 二 数 学 (第四、五、六章复习)命题:陈秀珍 审核:胡娜 班级 学号 姓名一、选择题(每题2分,共20分)1.如果一个实数的平方根与它的立方根相等,则这个数是 ( )A . 0B . 正整数C . 0和1D . 12.能与数轴上的点一一对应的是( )A 整数B 有理数C 无理数D 实数3. 下列各数中,不是无理数的是 ( ) A.7 B. 0.5 C. 2π D. 0.151151115…)个之间依次多两个115( 4. 下列运算中,错误的是 ( ) ①1251144251=,②4)4(2±=-,③3311-=- ④2095141251161=+=+ A . 1个 B. 2个 C. 3个 D. 4个 5. 若225a =,3b =,则b a +的值为 ( )A .-8B .±8C .±2D .±8或±26. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( )A 、(3,0)B 、(3,0)或(–3,0)C 、(0,3)D 、(0,3)或(0,–3)7. 已知点P 坐标为(2-a ,3a+6),且P 点到两坐标的距离相等,则点P 的坐标是( )A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6)8.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数k x y += 的图象大致是 ( ).A B C D9.在函数 y =kx (k <0)的图象上有A (1,y 1)、B (-1,y 2)、C (-2,y 3)三个点,则下列各式中正确A. y 1<y 2<y B. y 1<y 3<y 2 C. y 3<y 2<y 1 D. y 2<y 3<y 1( )10如图下,直线y=kx+b 与x 轴交于点A (-4,0),则当y>0时x的取值范围是 ( )A .x>-4B .x>0C .x<-4D .x<0二、填空题(每空3分,共45分)11.已知051=-+-b a ,则2)(b a -的平方根是________;12.一个正数x 的平方根是2a -3与5-a ,则x =________;13.已知点M (x ,y )与点N (-2,-3)关于x 轴对称,则______=+y x14.已知线段AB ∥x 轴,A 点的坐标为(3,-1),并且AB =5,则B 的坐标为15.已知a 是整数,点A (2a+1,2+a )在第二象限,则a=_____.16. 已知一次函数k x k y )1(-=+3,则k = .17.一次函数y=-2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .18.点B (0,-4)在直线b x y +-=图象上,则b = .19.若直线3+=x y 和直线b x y +-=的交点坐标为(m ,8).则m = ,b = .20.一次函数y=2x -1一定不经过第 象限. 21. 81的算术平方根是 ___,-27的立方根是 ;94的算术平方根是 。

中考数学常考考点专题之一次函数测试卷

中考数学常考考点专题之一次函数测试卷

中考数学常考考点专题之一次函数测试卷一.选择题(共15小题)1.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB ∥x 轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么平行四边形ABCD 的面积为( )A .4√5B .4C .8√5D .82.一次函数y =mx +m 2(m ≠0)的图象过点(0,4),且y 随x 的增大而增大,则m 的值为( )A .﹣2B .﹣2或2C .1D .23.如图,直线y 1=x +b 与y 2=kx ﹣1相交于点P ,若点P 的横坐标为﹣1,则关于x 的不等式x +b >kx ﹣1的解集是( )A .x ≥﹣1B .x >﹣1C .x ≤﹣1D .x <﹣14.如果直线y =3x +6与y =2x ﹣4交点坐标为(a ,b ),则解为{x =a y =b 的方程组是( )A .{y −3x =62y +x =−4B .{y −3x =62y −x =4C .{3x −y =63x −y =4D .{3x −y =−62x −y =45.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x +b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A2B2为腰作等腰直角三角形A2B2B3;按照这样的规律进行下去,那么A2019的坐标为()A.(22018﹣1,22018)B.(22018﹣2,22018)C.(22019﹣1,22019)D.(22019﹣2,22019))6.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 7.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个9.已知A、B两地相距4千米.上午8:00,甲从A地出发步行到B的,8:20乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A.8:30B.8:35C.8:40D.8:410.“漏壶”是古代一种计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间.在漏壶漏完水之前,漏壶内水的深度与对应的漏水时间满足的函数关系式()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系11.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣3 12.对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=−1 2b13.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.14.若直线BC和直线y=x+3平行,其中点B的坐标为B(﹣2,3),将直线BC向右平移1个单位后为()A.y=﹣x+2B.y=﹣x+4C.y=x+6D.y=x+415.如图,甲从A村匀速骑自行车到B村,乙从B村匀速骑摩托车到A村,两人同时出发,到达目的地后,立即停止运动,甲、乙两人离A村的距离y(km)与他自骑车的时间x (h)之间的函数关系如图所示,则下列说法错误的是()A.A、B两村的距离为120km B.甲的速度为20kmhC.乙的速度为40km/h D.乙运动3.5h到达目的地二.填空题(共5小题)16.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之.问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.17.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.18.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1和l2分别表示两人到小亮家的距离s(km)和时间t(h)的关系,则出发h后两人相遇.19.若函数y=|2x﹣3|﹣2a始终大于y=|x+a|,则a的取值范围为.20.根据图象,可得关于x的不等式kx>﹣x+3的解集是.三.解答题(共5小题)21.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.22.在平面直角坐标系中,点B、E的坐标分别为B(﹣2,√3),E(4,0),过点E作直线l⊥x轴,设直线l上的动点A的坐标为(4,m),连接AB,将线段BA绕点B顺时针方向旋转30°得到线段BA′,在射线BA′上取点C,构造Rt△ABC,使得∠BAC=90°.(1)当m=−√3时,求直线AB的函数表达式.(2)当点C落在坐标轴上时,求△ABC的面积.(3)已知点B关于原点O的对称点是点D,在点A的运动过程中,是否存在某一位置,使以A,C,D为顶点的三角形与△ABC相似?若存在,求出点A的坐标;若不存在,请说明理由.23.在平面直角坐标系中,已知一次函数y1=3x﹣5与y2=2x﹣4.(1)求这两个函数图象的交点坐标;(2)求一次函数y2=2x﹣4的图象与坐标轴所围成三角形的面积.24.在平面直角坐标系xOy中,对于第一象限的P,Q两点,给出如下定义:若y轴正半轴上存在点P',x轴正半轴上存在点Q',使PP'∥QQ',且∠1=∠2=α(如图1),则称点P 与点Q为α﹣关联点.(1)在点Q1(3,1),Q2(5,2)中,与(1,3)为45°﹣关联点的是;(2)如图2,M(6,4),N(8,4),P(m,8)(m>1).若线段MN上存在点Q,使点P与点Q为45°﹣关联点,结合图象,求m的取值范围;(3)已知点A(1,8),B(n,6)(n>1).若线段AB上至少存在一对30°﹣关联点,直接写出n的取值范围.25.近年,净月潭公园将环潭公路改造为东北三省最长的人车分离彩色环保公路,平坦宽敞的路面分橙、黑两色,拓宽了原有的人行步道,成为市民健身的好去处.小明和爸爸参加了此公园举办的“亲子健身赛”,两人的行程y(千米)随时间x(时)变化的图象(全程)如图所示.(1)两人出发后小时相遇,此次“亲子健身赛”的全程是千米.(2)求出AB所在直线的函数关系式.(3)若小明想和爸爸一起到达终点,则需在两人出发 1.5小时后,将速度调整为千米/时.。

一次函数经典提高题(含答案)

一次函数经典提高题(含答案)

n dg s14一次函数经典练习题过关测试一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6(C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限(B )二象限(C )三象限(D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2(C )y 1<y 2(D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内, 则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四 7.一次函数y=kx+2经过点(1,1),那么这个一次函数( )(A )y 随x 的增大而增大 (B )y 随x 的增大而减小(C )图像经过原点 (D )图像不经过第二象限8.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限9.要得到y=-x-4的图像,可把直线y=-x ( ).3232(A )向左平移4个单位(B )向右平移4个单位(C )向上平移4个单位(D )向下平移4个单位10.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-(B )m>5 (C )m=- (D )m=5141411.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<(B )<k<1 (C )k>1(D )k>1或k<13131312.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5, 这样的直线可以作( )(A )4条(B )3条 (C )2条 (D )1条 13.已知abc≠0,而且=p ,那么直线y=px+p 一定通过( )a b b c c ac a b+++==(A )第一、二象限 (B )第二、三象限(C )第三、四象限 (D )第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a≠0 (D )-4<a<215.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A )1个(B )2个 (C )3个 (D )4个16.一次函数y=ax+b (a 为整数)的图象过点(98,19),交x 轴于(p ,0),交y 轴于( 0,q ),若p 为质数,q 为正整数,那么满足条件的一次函数的个数为( )(A )0 (B )1 (C )2 (D )无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个(B )4个 (C )6个 (D )8个19.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,12时间为t (分),离开点A 的路程为S (米), 那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A 的路程S (米) 之间的函数关系的是( )20.若k 、b 是一元二次方程x 2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y 随x 的增大而减小,则一次函数的图像一定经过( )(A )第1、2、4象限 (B )第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P 到x 轴的距离等于3, 则点P 的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=x 与y=-2x+3的图像的交点在第_________象限.238.某公司规定一个退休职工每年可获得一份退休金, 金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b≠a),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、 q )表示______元.9.若一次函数y=kx+b ,当-3≤x≤1时,对应的y 值为1≤y≤9, 则一次函数的解析式为________.三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的. 小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x (cm ) 37.040.042.045.0桌高y (cm )70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式;(不要求写出x 的取值范围);(2)小明回家后, 测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3) 求小明出发多长时间距家12千米?5.已知一次函数的图象,交x 轴于A (-6,0),交正比例函数的图象于点B ,且点B 在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位, 求正比例函数和一次函数的解析式.he i r8.在直角坐标系x0y 中,一次函数的图象与x 轴,y 轴,分别交于A 、B 两点, 点C 坐标为(1,0),点D 在x 轴上,且∠BCD=∠ABD,求图象经过B 、D 两点的一次函数的解析式.9.已知:如图一次函数y=x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线12交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30 台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A 地 1800元/台 1600元/台B 地1600元/台1200元/台(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元, 说明有多少种分派方案,并将各种方案写出.15.A 市、B 市和C 市有某种机器10台、10台、8台, 现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值.答案:1.B 2.B 3.A 4.A 5.B 提示:由方程组 的解知两直线的交点为(1,a+b ),y bx ay ax b =+⎧⎨=+⎩而图A 中交点横坐标是负数,故图A 不对;图C 中交点横坐标是2≠1,故图C 不对;图D 中交点纵坐标是大于a ,小于b 的数,不等于a+b ,故图D 不对;故选B .6.B 提示:∵直线y=kx+b 经过一、二、四象限,∴ 对于直线y=bx+k ,0,k b <⎧⎨>⎩∵ ∴图像不经过第二象限,故应选B .0,0k b <⎧⎨>⎩7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y 随x 的增大而减小,故B 正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C 错误.∵k<0,b= 2>0,∴其图像经过第二象限,故D 错误.8.C 9.D 提示:根据y=kx+b 的图像之间的关系可知,将y=-x 的图像向下平移4个单位就可得到y=-x-4的图像.323210.C 提示:∵函数y=(m-5)x+(4m+1)x 中的y 与x 成正比例,∴ ∴m=-,故应选C .5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即1411.B 12.C 13.B 提示:∵=p ,a b b c c ac a b+++==∴①若a+b+c≠0,则p==2;()()()a b b c c a a b c+++++++②若a+b+c=0,则p==-1,a b cc c+-=∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q│>0, k·b<0,||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭A A 一次函数y=kx+b 中,y 随x 的增大而减小一次函数的图像一定经过一、二、四000k k b <⎫⇒<⇒⇒⎬>⎭象限,选A .二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(,3)或(,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-31353当y=3时,x=;当y=-3时,x=;∴点P 的坐标为(,3)或(,-3).13531353提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b.将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组 92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩即∴两函数的交点坐标为(,),在第一象限.98348.. 9.y=2x+7或y=-2x+3 10.222()aq bp bp aq --10042009三、1.(1)由题意得: 20244a b a b b +==-⎧⎧⎨⎨==⎩⎩即即∴这个一镒函数的解析式为:y=-2x+4( 函数图象略). (2)∵y=-2x+4,-4≤y≤4, ∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)为常数,则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx ,得 解得k=-2,p=5,2131k p k p +=⎧⎨+=-⎩∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米. (2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 两点的直线解析式为y=k 3x ,∵B(1,15),∴y=15x.(0≤x≤1),分别令y=12,得x=(小时),x=(小时).26545答:小明出发小时或小时距家12千米.265455.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6,∴AO·│y B │=6,12∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得 1062223a ba ab b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩即即∴y=x,y=-x-3即所求.128.∵点A 、B 分别是直线与x 轴和y 轴交点,∴A(-3,0),B (0),∵点C 坐标(1,0)由勾股定理得,设点D 的坐标为(x ,0).(1)当点D 在C 点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴①BC CD AB BD ==∴,∴8x 2-22x+5=0,22321112x x x -+=+∴x 1=,x 2=,经检验:x 1=,x 2=,都是方程①的根,52145214∵x=,不合题意,∴舍去,∴x=,∴D 点坐标为(,0).145252dAl l t he rb 设图象过B 、D 两点的一次函数解析式为y=kx+b ,502b k k b b ⎧⎧==⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为.(2)若点D 在点C 左侧则x<1,可证△ABC∽△ADB,∴ ②AD BD AB CB == ∴8x 2-18x-5=0,∴x 1=-,x 2=,经检验x 1=,x 2=,都是方程②的根.14521452∵x 2=不合题意舍去,∴x 1=-,∴D 点坐标为(-,0),521414∴图象过B 、D (-,0)两点的一次函数解析式为,14综上所述,满足题意的一次函数为或.9.直线y=x-3与x 轴交于点A (6,0),与y 轴交于点B (0,-3),12∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即,OD OAOC OB=∴OD==8.∴点D 的坐标为(0,8),463OC OA OB ⨯=A 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由 2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩即即∴点E 的坐标为(,-).2254511.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.15.(1)由题设知,A 市、B 市、C 市发往D 市的机器台数分x ,x ,18-2x ,发往E 市的机器台数分别为10-x ,10-x ,2x-10.于是W=200x+300x+400(18-2x )+800(10-x )+700(10-x )+500(2x-10)=-800x+17200.又 010,010,01828,59,x x x x ≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x 是整数).由上式可知,W 是随着x 的增加而减少的,所以当x=9时,W 取到最小值10000元; 当x=5时,W 取到最大值13200元.(2)由题设知,A 市、B 市、C 市发往D 市的机器台数分别为x ,y ,18-x-y ,发往E 市的机器台数分别是10-x ,10-y ,x+y-10,于是W=200x+800(10-x )+300y+700(10-y )+ 400(19-x-y )+500(x+y-10)=-500x-300y-17200.又010,010,010,010,0188,1018,x x y y x y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且(x ,y 为整数).010,010,018.x y x y ≤≤⎧⎪≤≤⎨⎪≤+≤⎩W=-200x-300(x+y )+17200≥-200×10-300×18+17200=9800.当x= 10,y=8时,W=9800.所以,W 的最小值为9800.又W=-200x-300(x+y )+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W 的最大值为14200.。

八年级数学上册测试题及答案(1-6章)

八年级数学上册测试题及答案(1-6章)

八年级上册数学评价检测试卷第一章勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

一、选择题1.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .4.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+6.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .58.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)9.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④11.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小二、填空题13.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.14.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.15.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.16.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.17.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.18.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.19.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.20.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.三、解答题21.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长. (2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)25.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】利用图象求出甲的速度为60千米/小时,进而求出乙的速度为90千米/小时,再求出两车相遇的时间,利用两人所用时间相差13小时得出相遇时间是几点及乙车到达A地是几点.【详解】解:∵甲车的速度为601=60(千米/小时),乙车的速度为60113=90(千米/小时),所以①②对;根据题意,甲乙相遇的时间:(240-60×13)÷(90+60)=2215,乙9点20分出发,经过2215小时(88分钟)甲乙相遇,也就是10点48分,所以③错;乙车到达A地的时间:240÷90=83,83+13=3,9+3=12,所以④对故选C.【点睛】本题主要考查了一次函数的综合应用,根据已知利用两车时间差得出代数式是解题的关键.2.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.3.A解析:A根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32,故点C (0,32), 故选:C .【点睛】 本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.9.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.10.D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 11.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.12.A解析:A【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.二、填空题13.1325【分析】从图2的函数图象得知BD=x的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE⊥BC于E利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE⊥BC于E,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C、D重合,对应AC=y=,再由图2中(1,)知,BD=时,AD=,如图:作AE⊥BC于E,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.14.x<-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x<-1故答案为:x<-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x<-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.15.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253.故答案为:y=-23x+253. 【点睛】 本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.16.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:a+b=5c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.17.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2 解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 18.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.19.【分析】根据中点坐标公式求得C 点坐标作点A 关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 20.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.三、解答题21.(1)80m/min ;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解; ()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m .【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)5;(2)1612,55F ⎛⎫- ⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯,即1153422FG ⨯⨯=⨯⨯,125FG =,在Rt OFG △中,由勾股定理得:165OG ==, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.25.(1)34k =;(2)()918804S x x =+-<<;(3)16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭ 【分析】(1)把点E 的坐标()8,0-代入直线6y kx =+,即可求得答案;(2)根据三角形的面积公式列出解析式,根据题意求出自变量x 的取值范围;(3)根据“分得的两个三角形面积之比为1:2”的不确定性,进行分类讨论,再由同高三角形面积之比即为底之比可求得对角线交点的坐标,进而可求得直线HQ 的解析式,进而利用两一次函数解析式求得交点P 的坐标.【详解】解:(1)∵点()8,0E -在直线y kx b =+上∴086k =-+ ∴34k =. (2)∵34k = ∴直线的解析式为:364y x =+ ∵P 点在364y x =+上, ∴设3,4P x x b ⎛⎫+ ⎪⎝⎭∴OPA 以OA 为底的边上的高是364x + ∵点P 在第二象限 ∴336644x x +=+ ∵点A 的坐标为(6,0)-∴6OA = ∴366941824x S x ⎛⎫+ ⎪⎝⎭==+,即9184S x =+∵P 点在第二象限∴自变量x 的取值范围是:80x -<<∴OPA 的面积S 与x 的函数表达式为:()918804S x x =+-<<. (3)根据题意,PQ 是四边形EPOQ 的对角线∵不确定分得的两个三角形的比为1:2还是2:1∴有两种情况①当1121P EQPQO S S =时,1PQ 与x 轴交于1H ,如图:∵8EQ =∴18,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线1H Q 的解析式为324y x =-- ∴324364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴1632x y ⎧=-⎪⎨⎪=⎩ ∴116,23P ⎛⎫-⎪⎝⎭; ②当2212P EQP QO S S =时,2P Q 与x 轴交于2H ,如图:∵8EQ = ∴216,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线2H Q 的解析式为328y x =-- ∴328364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴64923x y ⎧=-⎪⎪⎨⎪=⎪⎩∴2642,93P ⎛⎫- ⎪⎝⎭∴综上所述,当点P 为16,23⎛⎫-⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2.【点睛】 本题考查了一次函数的知识,渗透了分类讨论、数形结合的数学思想,掌握待定系数法求一次函数解析式的一般步骤、根据三角形的面积公式列出解析式、根据三角形的面积关系求得点的坐标是解题的关键.26.(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,则233a b b =+⎧⎨-=⎩,解得:533a b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的表达式为533yx ; (2)在直线3(0)y kx k =-≠中, 令x=0,则y=-3,即直线3(0)y kx k =-≠必经过(0,-3),∵直线3(0)y kx k =-≠与线段AB 没有交点,AC :33y x =--,BC :533y x , 可得k 的取值范围是:-3<k <53且k≠0. 【点睛】本题考查了一次函数表达式,一次函数图象上点的坐标特征,理解直线3(0)y kx k =-≠与线段AB 没有交点是解题的关键.。

初二数学实数平面直角坐标系一次函数期末试题

初二数学实数平面直角坐标系一次函数期末试题

初二数学考试 济宁学院附属中学李涛一、选择题:1. 在实数,,0,,,﹣1.414,有理数有( )A . 1个B . 2个C . 3个D . 4个2. 9的算术平方根是 A .3B .-3C .81D .-813. 估计的值在( )之间. A . 1与2之间 B . 2与3之间 C . 3与4之间 D . 4与5之间. 4.﹣8的立方根是( ) A . ﹣2B . ±2C . 2D . ﹣5. 点A (1,﹣2)关于x 轴对称的点的坐标是( ) A . (1,﹣2)B . (﹣1,2)C . (﹣1,﹣2)D . (1,2)6. 坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标为何?( ) A .(﹣9,3) B .(﹣3,1) C .(﹣3,9) D .(﹣1,3)7. (2014上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <8. 直线y=﹣x+1经过的象限是( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D . 第一、三、四象限9.(2014•黔南州)二元一次方程组的解是( ) A .B .C .D .10.(2014•温州)一次函数y =2x +4的图象与y 轴交点的坐标是( ) A . (0,﹣4)B . (0,4)C . (2,0)D . (﹣2,0)11.(2014山东济南)若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m12.(2014年福建漳州)如图,在5×4的方格纸中,每个小正方形边长为1,点O ,A ,B 在方格纸的交点(格点)上,在第四象限内的格点上找点C ,使△ABC 的面积为3,则这样的点C 共有( )A .2个B .3个C .4个D .5个第13题二、填空题:13. 已知实数x 、y 满足+|y-2|=0,则x +y14. 若点A (m+2,3)与点B (﹣4,n+5)关于y 轴对称,则m+n= . 15. 如图,一个正比例函数图像与一次函数1+-=x y 的图像相交于点P ,则这个正比例函数的表达式是____________16. 已知是二元一次方程组的解,则m-2n 为 .17. 若一次函数y=kx+1(k 为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 .18. (2014•邵阳)如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是 . 三、解答题: 18.计算: +|﹣5| (﹣)2+|﹣4|×2﹣1﹣(﹣1)0.19.解方程组: (1)(2)20. (2014•湘潭)在边长为1的小正方形网格中,△AOB 的顶点均在格点上, (1)B 点关于y 轴的对称点坐标为 ; (2)A 点关于x 轴的对称点坐标为 ;(3)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,,A 1的坐标为 .21.(2014•湖南怀化)设一次函数y=kx+b (k≠0)的图象经过A (1,3)、B (0,﹣2)两点,试求k ,b 的值.22. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y 与时间t 之间近似满足如图所示曲线: (1)由图像可知,当服药12小时后,每毫升血液中含药量是 (2)求出21t 时,y 与t 之间的函数关系式; (3)据测定:每毫升血液中含药量不少于4微克 时治疗疾病有效,问服药后多长时间治疗疾病有效.23. 如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,AB=3,OB=1, (1)求A 两点的坐标. (2)求△ABO 的面积. (3)求B 两点的坐标.21y(微克)t(小时)8O624. 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6;(1) 求△COP 的面积;(2) 求点A 的坐标及p 的值;(3) 若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。

第四章 一次函数训练题(培 优)

第四章  一次函数训练题(培    优)

《一次函数》测试题一、相信你一定能填对!1.下列函数中,自变量x的取值范围是x≥2的是( )A.y= B.y= C.y= D.y=·2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)3.下列函数中,y是x的正比例函数的是( )A.y=2x-1 B.y= C.y=2x2 D.y=-2x+14.一次函数y=-5x+3的图象经过的象限是()A一、二、三B.二、三、四C.一、二、四6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2 B.y=-x-6C.y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为( ) A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=x-3二、你能填得又快又对吗?11.已知函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.16.若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.18.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.19.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.20.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!21.根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?23.如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象(1)写出y与t之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?24.已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?一次函数培优训练题一.选择题1.如果在一次函数中,当自变量的取值范围是-1<<3时,函数y的取值范围是-2<<6,那么此函数解析式为( )A. B. C.或 D.或2.无论为何实数,直线与直线的交点不可能在( )A.第三象限 B.第四象限 C.第一象限 D.第二象限3.已知一次函数,若随着的增大而减小,则该函数的图象经过( )23第5题图yxOA.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限4.已知一次函数的图象经过原点,则( )A、k=±2B、k=2C、k= -2D、无法确定5.一次函数的图象如图所示,当时,的取值范围是( )A.B.C.D.6.已知一次函数的图象如图1所示,那么的取值范围是( )图1A. B. C. D.7.如果一次函数的图象经过第一象限,且与轴负半轴相交,那么( )A.,B.,C.,D.,8.(2007陕西)如图2,一次函数图象经过点,且与正比例函数的OxyAB2图象交于点,则该一次函数的表达式为( )A. B.C. D.9.已知一次函数的图象如下图(6)所示,当时,的取值范围是( )A. B. C. D.10.一次函数与的图象如图,则下列结论①;②;③当时,中,正确的个数是( )A.0 B.1 C.2 D.311.在平面直角坐标系中,已知直线y=-x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )A.(0,)B.(0,)C.(0,3)D.(0,4)12.如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,∠a=75°,则b的值为( )A.3 B. C.4 D.图(6)2-4xyxyO3第11题13. 与的图象交于轴上一点,则为( )A.2 B. C. D.二.填空题14.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a、b 的大小关系是a____b.15.已知直线y=(k–2)x+k不经过第三象限,则k的取值范围是 .16.直线向上平移3个单位,再向左平移2个单位后的解析式为________.17.从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数的系数,,则一次函数的图象不经过第四象限的概率是________.18. 若一次函数的图象经过点(2,-1),且与直线y=2x+1平行,则其表达式为 .三.解答题19.已知函数y=(2m–2)x+m+1① m为何值时,图象过原点.②已知y随x增大而增大,求m的取值范围.③ 函数图象与y轴交点在x轴上方,求m取值范围.④ 图象过二、一、四象限,求m的取值范围.20.已知点Q与P(2,3)关于x轴对称,一个一次函数的图象经过点Q,且与y轴的交点M与原点距离为5,求这个一次函数的解析式.21.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求直线的解析表达式;(2)求的面积;(3)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.l1l2xyDO3BCA(4,0)22.某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w元,求w与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?23.如图1,在长方形ABCD中,点P从B点出发沿着四边按B→C→D→A方向运动,开始以每秒m个单位匀速运动,a秒后变为每秒2个单位匀速运动,b秒后又恢复为每秒m个单位匀速运动.在运动过程中,△ABP的面积S与运动时间t的函数关系如图2所示.(1) 求长方形ABCD的长和宽; (2)求m、a、b的值.24.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.一元一次不等式及不等式组的知识总结一.不等式及其基本性质1.定义凡用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.2.性质性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质2 不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质3 不等式两边都乘以(或除以)同一个负数,不等号的方向改变.二.不等式的解集1.不等式的解集一般地说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集.2.解不等式求不等式的解集的过程,叫做解不等式.不等式的解集可在数轴上直观地表示出来,如5x≥15的解集为x≥3,即在数轴上(图1-1)用表示3的点及其右边部分来表示,这里的黑点表示包括3这一点.如果不等式的解集为-1≤x <4(图1-2),则用数轴上表示-1的点和点4的左边之间的部分来表示,这里的黑点表示包括-1这一点在内,而右边的圆圈表示不包括4这一点在内.三.一元一次不等式和它的解法1.一元一次不等式左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式.叫做一元一次不等式.2.一元一次不等式标准形式ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).3.同解不等式如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.4.不等式的同解原理原理l 不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式;原理2 不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式;原理3 不等式的两边都乘以(或除以)同一个负数,并且把不等号改变方向后,所得的不等式与原不等式是同解不等式.5. 一元一次不等式的解法一元一次不等式的解法步骤和解的情况与一元一次方程对比如表1-1所示.表1-1解一元一次方程解一元一次不等式解法步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化成1。

(完整版)一次函数期末复习练习题初中数学

(完整版)一次函数期末复习练习题初中数学

一次函数一、填空题(每小题3分,共18分)1.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1____________y 2.(填“>”“<”或“=”)2.当x =____________时,函数y =2x -1与y =3x +2有相同的函数值.3.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是____________. 4.表格描述的是y 与x 之间的函数关系:x … -2 0 2 4 … y =kx +b…3-1mn…则m 与n 的大小关系是____________.5.直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则k= ,b=6.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油____________升.二、选择题(每小题3分,共30分) 7.下列函数是一次函数的是( )A .-32x 2+y =0B .y =4x 2-1C .y =2xD .y=3x8.下列函数中,自变量x 的取值范围是x ≥3的是( )A .y =1x -3B .y =1x -3 C .y =x -3 D .y =x -39.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2) 10.(阜新中考)对于一次函数y =kx +k -1(k ≠0),下列叙述正确的是( )A .当0<k <1时,函数图象经过第一、二、三象限B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)11.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( )A .x =2B .x =0C .x =-1D .x =-3 12汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )13.要使直线y =(2m -3)x +(3n +1)的图象经过第一、二、四象限,则m 与n 的取值范围分别为( )A .m >32,n >-13B .m >3,n >-3C .m <32,n <-13D .m <32,n >-1314.(阜新中考)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm ,9只饭碗摞起来的高度为20 cm ,那么11只饭碗摞起来的高度更接近( ) A .21 cm B .22 cm C .23 cm D .24 cm16.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时,点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)三、解答题(共52分)17.(8分)已知:y 与x +2成正比例,且当x =1时,y =-6. (1)求y 与x 之间的函数解析式;(2)若点M(m ,4)在这个函数的图象上,求m 的值.18.(10分)直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(2,2),求△BOC 的面积.19.(10分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积20.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图1所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图2所示.(1)直接写出y与x之间的函数解析式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?r21.(12分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____________km/h,H点坐标为____________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?。

实数经典测试题及解析

实数经典测试题及解析

实数经典测试题及解析一、选择题1.下列式子中,计算正确的是( )A .- 3.6=-0.6B .2(13)-=-13C .36=±6D .-9=-3【答案】D【解析】A 选项中,因为2(0.6)0.36-=,所以0.60.36-=-,故A 中计算错误;B 选项中,因为2(13)16913-==,所以B 中计算错误;C 选项中,因为366=,所以C 中计算错误;D 选项中,因为93-=-,所以D 中计算正确;故选D.2.如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示15﹣1的点是( )A .点MB .点NC .点PD .点Q【答案】D【解析】【分析】先求出15的范围,再求出151-的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<-<,∴表示151-的点是Q 点,故选D .【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.-2的绝对值是2-.故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.4.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.5.下列各式中,正确的是( )A ()233-=-B 42=±C 164=D 393=【答案】C【解析】【分析】对每个选项进行计算,即可得出答案.A. ()233-=,原选项错误,不符合题意;B. 42=,原选项错误,不符合题意;C. 164=,原选项正确,符合题意;D. 393≠,原选项错误,不符合题意.故选:C【点睛】本题考查平方根、算术平方根、立方根的计算,重点是掌握平方根、算术平方根、立方根的性质.6.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B 【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-7.在实数范围内,下列判断正确的是( )A .若212L t ,则m=nB .若22a b >,则a >bC 22()a b =,则a=bD 33a b =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是()A2-1 B2+1 C2D2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.【详解】22+=-1和A2.112∴点A2.故选A.【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.964)A.±2 B.±4 C.4 D.2【答案】D【解析】【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.10.下列说法正确的是()A.任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3 【答案】D【解析】【分析】【详解】 设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.12.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.已知443y x x =-+-+,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,③段上.故选C考点:实数与数轴的关系17.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.18.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .或1B .1或﹣1C .1或1D .或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =(1<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为1+2或﹣1, 故选:D . 【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.19.14的算术平方根为( ) A .116 B .12± C .12- D .12 【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12, 故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .3B .3C .3D .3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-13OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,33,∴3C 点在原点左侧,∴C表示的数为:故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.。

一次函数练习题20道

一次函数练习题20道

一次函数练习题20道一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为y=8x y=2x+6y=8x+6y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过一象限二象限三象限四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是 164.若甲、乙两弹簧的长度y与所挂物体质量x 之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为y1>y y1=y2y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过第象限.一二三四7.一次函数y=kx+2经过点,那么这个一次函数y随x的增大而增大y随x的增大而减小图像经过原点图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第一象限第二象限第三象限第四象限9.要得到y=-33x-4的图像,可把直线y=-x.2 向左平移4个单位向右平移4个单位向上平移4个单位向下平移4个单位10.若函数y=x+x2中的y与x成正比例,则m的值为m>-11 m>m=- m=4411.若直线y=3x-1与y=x-k的交点在第四象限,则k 的取值范围是.k1 k>1或k 12.过点P直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作4条条条 1条13.已知abc≠0,而且a?bb?cc?a=p,那么直线y=px+p 一定通过 ??cab第一、二象限第二、三象限第三、四象限第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y -4 -4 15.在直角坐标系中,已知A,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有1个个个个16.一次函数y=ax+b的图象过点,交x轴于,交y轴于,若p为质数,q为正整数,那么满足条件的一次函数的个数为01 无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,;乙上山的速度是1a米/分,下山的速度是2b米/分.如2 果甲、乙二人同时从点A出发,时间为t,离开点A的路程为S,?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t与离开点A的路程S?之间的函数关系的是220.若k、b是一元二次方程x+px-│q│=0的两个实根,在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过第1、2、4象限第1、2、3象限第2、3、4象限第1、3、4象限一次函数测试题1. 函数y=中,自变量x的取值范围是 x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1. 已知正比例函数y=-2x,当x=-1时,函数y的值是A. B.- C.-0. D.0.5. 一次函数y=-2x-3的图像不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y与所用时间x 之间的函数关系,则以下判断错误的是A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。

八年级数学上学期期中模拟考试(北师大版1~4章,测试范围:勾股定理、实数、位置与坐标、一次函数)

八年级数学上学期期中模拟考试(北师大版1~4章,测试范围:勾股定理、实数、位置与坐标、一次函数)

2023-2024学年八年级数学上学期期中模拟考试(考试时间:100分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:北师大版八上第一章~第四章。

5.考试结束后,将本试卷和答题卡一并交回。

一.选择题(共10小题,每小题3分,满分30分)A .4645.下列计算正确的是(A .()2236-=.B .C .D .A.1B.28.如图,一次函数132y x =+的一点,且OP将AOB分为面积相等的两部分,则点A.()3,1-B.(-9.如图,某天下午2时,两艘船只分别从港口海里/时的速度行驶,慢船沿北偏西船只分别到达A,B两点,则此时两船之间的距离等于(A.5海里10.动点H以每秒x厘米的速度沿图A B C D E F-----的路径匀速运动,相应的如图2,已知8cmAF=A .2个B .3个C .4个二.填空题(共8小题,每小题3分,满分24分)11.已知x 满足()31270x -+=,则x =.12.一艘轮船和一艘快艇沿相同路线从甲港出发匀速行驶至乙港,象如图,则快艇比轮船每小时多行千米.13.若直线3y kx =-经过点14.等腰三角形的两条边长分别为15.如图,长方形ABCD 16.如果,,a b c 是整数,且9)=2,根据以上规定,求17.为庆祝“党的二十大阶梯形站台上铺设红色地毯,已知这种地毯每平方米售价为(1)这个梯子的顶端A (2)如果梯子的顶端下滑了23.(10分)如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,设第列问题:第1个图形第2个图形第3个图形(1)直接写出y 与n 之间的函数表达式;(2)当图案中有2021个阴影小正方形时,该图案是第多少个图形?24.(10分)如图,直线1y kx =-与x 轴,y 轴分别交于B ,C 两点,且OB =(1)求B 点的坐标和k 的值;(2)若点(),A x y 是直线1y kx =-第一象限部分上的一个动点,试写出AOB 函数关系式;(3)点D 在直线1y kx =-运动,当点D 运动到什么位置时,DOB 的面积是D 点坐标.25.(12分)综合与实践.积累经验我们在第十二章《全等三角形》以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在ABC ∆中,90ACB ∠=︒,AC BC =,线段DE 经过点C ,且AD DE ⊥于点D ,BE DE ⊥于点E .求证:AD CE =,CD BE =”这个问题时,只要证明ADC CEB ∆∆≌,即可得到解决,(1)请写出证明过程;类比应用(2)如图2,在平面直角坐标系中,ABC ∆中,90ACB ∠=︒,AC BC =,点A 的坐标为()0,2,点C 的坐标为()1,0,求点B 的坐标.拓展提升(3)如图3,ABC ∆在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()2,1,点C 的坐标为()4,2,则点B 的坐标为____________.。

浙教版2022-2023学年八上数学第5章 一次函数 尖子生测试卷

浙教版2022-2023学年八上数学第5章 一次函数 尖子生测试卷

浙教版2022-2023学年八上数学第5章 一次函数 尖子生测试卷考试时间:120分钟 满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列各图能表示 y 是 x 的函数的是( )A .B .C .D .2.在直角坐标系中,点 A(2,−3) 、 B(4,3) 、 C(5,a) 在同一条直线上,则a 的值是( ) A .-6 B .6 C .6或3 D .6或-63.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时) 变化的关系用图表示正确的是( )A .B .C .D .4.已知实数m <1,则一次函数y =(m ﹣1)x+3﹣m 图象经过的象限是( )A .一、二、三B .二、三、四C .一、三、四D .一、二、四 5.如图,直线l 1:y =x+2与直线l 2:y =kx+b 相交于点P (m ,4),则方程组{y =x +2y =kx +b 的解是( ) A .{x =2y =0 B .{x =0y =4 C .{x =4y =2 D .{x =2y =4(第5题) (第6题) (第7题) (第8题) (第9题) 6.如图,在平面直角坐标系中,点P (-0.5,a )在直线y=2x+2与直线y=2x+4之间,则a 的取值范围是( )A .2<a <4B .1<a <3C .1<a <2D .0<a <27.EF 是BC 的垂直平分线,交BC 于点D ,点A 是直线EF 上一动点,它从点D 出发沿射线DE 方向运动,当∠BAC 减少x°时,∠ABC 增加y°,则y 与x 的函数表达式是( )A .y =xB .y =12xC .y =90−xD .y =90−12x 8.如图,直线y =−43x +4与x 轴交于点B ,与y 轴交于点C ,点E(1,0),D 为线段BC 的中点,P 为y 轴上的一个动点,连接PD 、PE ,当△PED 的周长最小时,点P 的坐标为( )A .(0,45)B .(0,1)C .(1,0)D .(0,32) 9.如图,平面直角坐标系中,已知直线y =x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ,直线AB 与直线y =x 交于点A ,且BD =2AD ,连接CD ,直线CD 与直线y =x 交于点Q ,则点Q 的坐标为( )A .( 52 , 52) B .(3,3) C .( 74 , 74 ) D .( 94 , 94 ) 10.如图,在平面直角坐标系中,一次函数 y =2x −2 的图象分别交 x 、y 轴于点 A,B ,直线 BC 与 x 轴交于点 C ,若 ∠ABC =45° ,则直线 BC 的函数表达式是( )A .y =3x −2B .y =13x −2C .y =12x −2D .y =−23x −2(第10题) (第12题) (第13题) (第14题) (第16题)二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一次函数y =(k+5)x ﹣2中y 随x 的增大而减小,则k 的取值范围是 .12.在平面直角坐标系中,一次函数 y 1=kx ( k 是常数, k ≠0 )与 y 2=mx +n (m 、n 是常数, m ≠0 )的图象如图所示,则关于x 的不等式 kx >mx +n 的解集为 .13.如图,在平面直角坐标系中,一次函数y =-2x +4的图象与x 轴、y 轴分别交于点A 、B ,将直线AB 绕点B 顺时针旋转45°,交x 轴于点C ,则直线BC 的函数表达式为 .14.如图放置的⊥OAB 1,⊥B 1A 1B 2,OB 2A 2B 3都是边长为2的等边三角形,边0A 在y 轴上,点B 1,B 2,B 3,……都在直线y =√33x 上,则点A 2022的坐标是 15.已知直线y =﹣x+2与直线y =2x+4相交于点A ,与x 轴分别交于B ,C 两点,若点D (m ,﹣2m+1)落在⊥ABC 内部(不含边界),则m 的取值范围是 .16.如图,在平面直角坐标系中,点 A(6,0) ,点 B(0,2) ,点 P 是直线 y =−x −1 上一点,且 ∠ABP =45° ,则点 P 的坐标为 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.已知y 是x 的一次函数,且当 x =−4 时, y =9 ;当 x =6 时, y =−1 .(1)求这个一次函数的解析式;(2)当 x =12 时,求函数y 的值; (3)当 −3<y ⩽2 时,求自变量x 的取值范围.18.已知函数y =(2m +1)x +m −3(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行于直线y =3x −3,求m 的值(3)若这个函数是一次函数,且y 随着x 的增大而增大,且不经过第二象限,求m 的取值范围.19.在平面直角坐标系中,一次函数y =kx+b (k≠0)的图象由函数y =12x 的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)求一次函数与x轴,y轴的交点坐标.20.小明同学骑自行车去郊外春游,骑行1个小时后,自行车出现损坏,维修好后继续骑行,如图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的图象.(1)根据图象回答:小明到达离家最远的地方用了几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?21.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?22.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P是直线AB上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当⊥ABP的面积与⊥ABO的面积相等时,求点P的坐标;(3)当⊥ABP为等腰直角三角形时,请直接写出点P的坐标.23.如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.(3)若P是x轴上的一个动点,求出当△POC是等腰三角形时P的坐标.24.如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为,点B的坐标为;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:⊥BPE=2⊥OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,⊥APQ =2⊥OAB.连接OQ.①则图中(不添加其他辅助线)与⊥EPA相等的角有;(都写出来)②试求线段OQ长的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
总复习测试
一.选择题(每题3分,共36分)
1. 在3125,0,5
2.3,3
,311,
414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个
2. 下列说法不正确的是 ( ) A .5
1251; B .3273-=- C .()21.0-的平方根是±0.1 ; D . 的算术平方根是819
3. 一个正数的平方根为m -2与12+m ,则m 的值为 ( )
A . 31
B . 3
1 或3- C . 3- D . 3 4.对于二次根式
92+x ,以下说法不正确的是 ( ) A .它是一个正数 B .是一个无理数
C .是最简二次根式
D .它的最小值是3
5. 若9,422==b a ,且0 ab ,则b a -的值为 ( )
A .5±
B . 1±
C . 5
D . 1-
6.下列函数中,自变量的取值范围选取错误的是( )
A .y=2x 2中,x 取全体实数
B .y=11
x +中,x 取x ≠-1的实数 C .
x 取x ≥2的实数 D .
中,x 取x ≥-3的实数
7. 李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
8.点A (2,m)和点B (-4,n)都在直线y =32
1+-x 上,则m 与n 的大小关系应是( ) A .m > n B.m < n C.m = n D.条件不够,无法确定
9.已知一次函数y=kx+b(k ≠0)的草图如右所示,则下列结论正确的是( )
A .k>0,b>0
B .k>0,b<0
C .k<0,b>0
D .k<0,b<0
10.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,•则汽车距天津的路程S (千米)与行驶时间t (时)的函数关系及自变量的取值范围是( • )
A .S=120-30t (0≤t ≤4)
B .S=30t (0≤t ≤4)
C .S=120-30t (t>0)
D .S=30t (t=4)
11.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为( ).
A. A. 6±
B. -5
C. 6
D. 5
12.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )
A .m>12
B .m=12
C .m<12
D .m=-12
二、填空题(每题3分,共24分) 13. 16的算术平方根是 ;25-的相反数 ;=-32 .
14. 比较大小,填>或<号: 32;
15. 函数x x
y -=2 自变量x的取值范围是 .
16.已知y与x-3成正比例,当x=4时,y=—3。

y与x之间的
函数关系式为 。

17.点(21,y1 ),(2,y2 )是一次函数y=2
1x-3图像上的两点, 则y1 y2 。

(填“>”、“=”或“<”)
18. 已知函数y=1-3x ,则函数y 随x 的增大而 .
19. 一次函数y= -2x+4的图象与x 轴交点坐标是 .
20、设a 是倒数等于本身的数,b 是最大的负整数,c 是平方根等于本身的数,则=++c b a .
三. 计算(每题6分,共36分) 21.(1). 44.18
125+- (2).已知010222=-++b b a ,求b a +.
22. 正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),
求:(1)k的值。

(2)两条直线与y 轴围成的三角形的面积。

23. 求下列各式中的x .
(1) 02783=+x (2)
()333
12=-x
(1)观察表中数据,你能求出y 与x 的函数表达式吗?,若能并确定自变量的取值范围。

(2)这根蜡烛原来多长?,全部点燃需多少分钟?
四.综合题
25. (10分) 王勤准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订合同,设汽车每月行驶x
千米,应付给甲公司的月租费1y 元,应付给乙公司的月租费是2y 元, 1y 、2y 与x 之间的函数关系的图象如图所示,请根据图象回答下列问题:
(1)分别求出1y 、2y 与x 之间的函数关系式
(2)若王勤估计每月行驶的路程为2300千米/时,租哪家合算?
26. (14分)已知羊角塘服装厂有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产甲、乙两种型号的时装共80套,已知做一套甲型号的时装需用A 种布料0.6m ,B 种布料0.9m ,可获利润45元;做一套乙型号的时装需用A 种布料
1.1m ,B 种布料0.4m ,可获利润50元,若生产乙型号的时装x 套,用这批布料生产这两种型号的时装所获的总利润为y 元。

(1)求y(元)与x(套)之间的函数关系式,并求自变量x 的取值范围;
(2) 羊角塘服装厂在生产这批时装时,当乙型号的时装为多少套时,所获总利润最大?最大总利润是多少?
八年级上册数学期中试卷答案 1.B 2.A 3.D 4.B 5.A 6.D 7.C 8.B 9.C 10.A 11.A 12.D 13. 23,52,2--
14. 15. 40x ≠≥x 且 16. Y=-3x+9 17.
18. 减小 19. (2,0) 120. 0或-2
21.(1)5.7 (2) 105105--+-或
22. (1) k=5 (2) 2.5
23. (1)x=-1.5 (2) x=6或x=0
24. y=-2.2x+30.6 (2) 30.6cm, 约13.9min 25. 12505.0,34y 121+==x y x )( (2) 租用乙公司的车合算。

26. (1)y=45(80-x)+50x 即y=5x+3600
(2) 0.6(80-x)+1.1x ≤70○1 0.9(80-x)+0.4x ≤52○2由○1得x ≤44,由○2得x ≥40.
所以44x 40≤≤ ,取x=44(套) . 所以 (元)38203600445)44(=+⨯==f y。

相关文档
最新文档