【2013版新教材】八年级数学人教大版上册【能力培优】专题训练+状元笔记3
人教版八年级数学上册培优资料
【解法指导】这是本章的一个基本图形,其基本方法为构造三角形或四边形内角和,结合八字形角的关系即 ,∠A+∠B=∠C+∠D.故连结BC有∠A+∠D=∠DBC+∠ACB,∴∠A+∠B+∠C+∠D+∠E=180°
【变式题组】
【变式题组】
01.如图,已知点D、E、F分别是BC、AD、BE的中点,S△ABC=4,则S△EFC=______________.
02.如图,点D是等腰△ABC底边BC上任意一点,DE⊥AB于E,DF⊥AC于F,若一腰上的高为4cm,则DE+DF=______________.
03.如图,已知四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE于F,则DF与AB的数量关系是______________.
09.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段?
10.如图,在△BCD中,BE平分∠DBC交CD于F,延长BC至G,CE平分∠DCG,且EC、DB的延长线交于A点,若∠A=30°,∠DFE=75°.
°,点P、O分别是∠ABC、∠ACB的三等分线的交点,则∠OPC=______________.
03.如图,∠O=140°,∠P=100°,BP、CP分别平分∠ABO、∠ACO,则∠A=______________.
【例6】如图,已知∠B=35°,∠C=47°,AD⊥BC,AE平分∠BAC,则∠EAD=______________.
人教版八年级数学上册三角形全等的证明培优综合训练(含答案)
人教版八年级数学上册三角形全等的证明培优综合训练(含答案)考点1 利用SSS求证三角形全等1.如图,点B,F,C,E在同一条直线上,点A,D在直线BC的异侧,AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)若∠BFD=150°,求∠ACB的度数.2.如图,C是AB的中点,AD=CE,CD=BE.求证:(1)△DCA≌△EBC;(2)AD//CE.3.已知:如图,已知线段AB、CD相交于点O、AD、CB的延长线交于点E、OA=OC、EA=EC,求证:∠A=∠C、考点2 利用SAS求证三角形全等4.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,AB=DE,BF=CE,AB‖DE,求证:△ABC≅△DEF.5.在△ABC中,AD为边BC上的中线,延长AD到点E,使DE=AD,连接BE.△ABC的面积与△ABE的面积相等吗?说明理由6.两组邻边分别相等的四边形我们称它为筝形,如图,在筝形ABCD中,AB=AD,BC =DC,AC,BD相交于点O.(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.考点3 利用AAS 或ASA 求证三角形全等7.已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .(1)证明:BDA AEC ≌;(2)3BD =,4CE =,求DE 的长.8.如图,已知AD 为ABC ∆的中线,延长AD ,分别过点B ,C 作BE AD ⊥,CF AD ⊥.求证:BED CFD ∆≅∆.9.如右图,已知,90AB AC BAC BE CE =∠=︒,⊥于点E ,延长BE CA 、相交于点F ,求证:ADC AFB ≌10.如图,已知E 、F 在AC 上,AD //CB ,且∠D=∠B ,AE=CF .求证:DF=BE .考点4 利用HL 求证三角形全等11.在ABC 中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.(1)求证:ABE CBF ≌;(2)若30CAE ∠=︒,求ACF ∠度数.12.如图,已知AE =DE ,AB ⊥BC ,DC ⊥BC ,且AB =EC .求证:BC =AB +DC .13.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)证明:Rt△BCE≌Rt△DCF;(2)若AB=21,AD=9,求AE的长.14.如图:AD是ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD、求 .证:BE AC考点5 全等三角形综合15.已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,(1)如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM、CN与AC之间的数量关系_______.(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,∠MAN+MPN=180°,若AC:PC=2:1,PC=4,求四边形ANPM的面积.16.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.答案1.解:(1)证明:BF EC =∵,BF FC EC FC ∴+=+,BC EF ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴;(2)150BFD ∠=︒,180BFD DFE ∠+∠=︒, 30DFE ∴∠=︒,由(1)知,ABC DEF ∆≅∆,ACB DFE ∴∠=∠,30ACB ∴∠=︒.2.(1)证明:点C 是AB 的中点,AC BC ∴=;在DCA ∆与EBC ∆中,AD CE CD BE AC BC =⎧⎪=⎨⎪=⎩,()DCA EBC SSS ∴∆≅∆,(2)证明:DCA EBC ∆≅∆,A BCE ∴∠=∠,//AD CE ∴.3.如图,连结OE在、OEA 和、OEC 中OA OC EA EC OE OE =⎧⎪=⎨⎪=⎩、、OEA、、OEC (SSS )、、A =、C (全等三角形的对应角相等)4.∵BF=CE ,∴BF+FC=CE+FC ,即BC=EF .∵AB ∥DE ,∴∠B=∠E .在△ABC 和△DEF 中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS )5.△ABC 与△ABE 的面积相等.理由:∵AD 为边BC 上的中线,∴BD=CD ,在△BDE 和△CAD 中,BD DC BDE CDA DE AD =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CAD、SAS、,BDE ABD CAD ABD S S S S +=+,即△ABC 与△ABE 的面积相等.6.(1)证明:①在△ABC 和△ADC 中,AB=AD ,BC=DC ,AC=AC ,∴△ABC ≌△ADC (SSS ).②∵△ABC ≌△ADC ,∴∠BAO=∠DAO.∵AB=AD ,∠BAO=∠DAO ,OA=OA ,∴△ABO ≌△ADO (SAS ).∴OB=OD ,AC ⊥BD.(2)筝形ABCD 的面积=△ABC 的面积+△ACD 的面积=12×AC×BO+12×AC×DO=12×AC×(BO+DO)=12×AC×BD=12×6×4=12. 7.(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90ABD BAD ∠+∠=︒,∵AB AC ⊥,∴90BAD CAE ∠+∠=︒,∴ABD CAE ∠=∠,在BDA 和AEC 中,90ADB CEA ABD CAEAB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()BDA AEC AAS ≅;(2)∵BDA AEC ≅△△,∴BD AE =,AD CE =,∴7DE DA AE BD CE =+=+=.8.证明:∵AD 是△ABC 的中线,∴ BD =CD ,∵ BE ⊥AD ,CF ⊥AD ,∴∠E =∠CFD =90°在Rt △BDE 和Rt △CDF 中,90BDE CDF E CFD BD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴ Rt △BDE ≌Rt △CDF (AA S )9.、、BAC=90°,、、BAF=180°-、BAC=90°,、、BAF=、CAD ,、F+、ABF=90°,∵CE ⊥BE ,、、CEF=90°,、、F+、ACD=90°,、、ABF=、ACD ,在、ADC 和、AFB 中,BAF CAD AC ABACD ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩, 、、ADC ≌、AFB (ASA ).10.解:证明:∵AE=CF ,∴AE -EF=CF -EF即AF=CE ,∵AD ∥CB ,∴∠A=∠C ,在△ADF 和△CBE 中,A C AF CE DB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△CBE (ASA ),∴DF=BE .11.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt △ABE 和Rt △CBF 中,AE CF AB BC=⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF (HL );(2)解:∵AB=BC ,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB -∠CAE=45°-30°=15°,由(1)知:Rt △ABE ≌Rt △CBF ,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.12.∵AB ⊥BC ,DC ⊥BC ,∴∠B=∠C=90°,在Rt △AEB 和Rt △EDC 中,AB EC AE DE =⎧⎨=⎩, ∴Rt △AEB ≌Rt △EDC (HL ),∴DC=BE ,∵BC=BE+CE ,∴AB+DC=BC .13.(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠DFC=∠BEC=90°,在Rt △BCE 和Rt △DCF 中,CE CF BC CD =⎧⎨=⎩, ∴Rt △BCE ≌Rt △DCF (HL );(2)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F , ∴CF=CE ,∠CFA=∠CEA=90°,在Rt △AFC 和Rt △AEC 中,CF CE AC AC =⎧⎨=⎩,∴Rt △AFC ≌Rt △AEC (HL ),∴AF=AE ,由(1)知Rt △BCE ≌Rt △DCF ,则BE=DF ,∵AB=21,AD=9,∴AB=AE+EB=AF+EB=AD+DF+ DF =AD+2DF=9+2DF=21, 解得,DF=6,∴AE=AF=AD+DF=9+6=15,即AE 的长是15.14.证明: ∵AD ⊥BC ,∴∠BDF =∠ADC =90°.又∵BF =AC ,FD =CD ,∴△RtADC ≌Rt △BDF (HL ).∴∠EBC =∠DAC .又∵∠DAC +∠ACD =90°,∴∠EBC +∠ACD =90°.∴BE ⊥AC .15.(1)证明:点P 为EAF ∠平分线上一点,PB AE ⊥于B ,PC AF ⊥于C , PB PC ∴=,在Rt PBM ∆和Rt PCN ∆中,PB PC PM PN =⎧⎨=⎩, Rt PBM Rt PCN ∴∆≅∆,BM CN ∴=;(2)AM CN AC +=,理由如下:在Rt PBA ∆和Rt PCA ∆中,PB PC AP AP =⎧⎨=⎩, Rt PBA Rt PCA ∴∆≅∆,AB AC ∴=,AM CN AM BM AB AC ∴+=+==,故答案为:AM CN AC +=;(3):2:1AC PC =,4PC =,8AC ∴=,PB AE ⊥,PC AF ⊥,90ABP ACP ∴∠=∠=︒,180MAN BPC ∴∠+∠=︒,又180MAN MPN ∠+∠=︒, MPB NPC ∴∠=∠,在PBM ∆和PCN ∆中,BPM CPN PB PCPBM PCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, PBM PCN ∴∆≅∆,∴四边形ANPM 的面积=四边形ABPC 的面积1842322=⨯⨯⨯=. 16.解:(1)结论:PM =PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB =OA =6,∠AOB =90°,∵P为AB的中点,∴OP=12AB=PB=P A,OP⊥AB,∠PON=∠P AM=45°,∴∠OP A=90°,在△PON和△P AM中,ON AMPON PAMOP AP=⎧⎪∠=∠⎨⎪=⎩,∴△PON≌△P AM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OP A=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图2中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△P AE和△P AG中,AEP GPAE PAGAP AP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△P AE≌△P AG(AAS),∴AE=AG,∴OD=AE.。
部编数学八年级上册【能力培优】15.2分式的运算(含答案)含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!15.2分式的运算专题一 分式的混合运算1.化简221111x x æö-¸ç÷+-èø的结果是( ) A . ()21x 1+ B .()21x 1- C .()21x + D .()21x -2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x+3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn,则的值等于( ) A .BC D . 35.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222(1121x x x x x x x x --¸---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.22m n mn -状元笔记【知识要点】乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【温馨提示】1.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a bc c++=这样的错误.3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+¸+-+x x x x x x x x x .故选D .2.原式221(1)(1)11111x x x x x x x x +-+-=-==---.3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x +3 =x -x +3=3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵ ∴,, ∴,选择A .5.解:原式====, 当=,时,原式=.6.解:原式=22221(11x x x x x x x x-+-⋅--- =22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+ =1x x +. ∵x ≠-1,0,1 ∴当x =2时,原式=22213=+.224m n mn +=2226m n mn mn ++=2222m n mn mn +-=()()m n m n mn +-===b a b b a b a b a ++-+-))(()(2b a b b a b a +++-ba b b a ++-b a a +a 2-1=b 2122=+--。
人教版八年级数学上册培优辅导笔记 奥数升级(人教版)
1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角. 【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图:⑴经过点A 画直线l 2的垂线.⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ R A B CE F OE A ACD O (第1题图)1 4 32 (第2题图)ABOl 2l 1202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 2404.如图,已知∠ABC =∠ACB ,BE 平分∠ABC ,CD 平分∠ACB ,∠EBF =∠EFB ,求证:CD ∥EF .【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a 1,a 2,…,a 2010,如果a 1⊥a 2,a 2∥a 3,a 3⊥a 4,a 4∥a 5……那么a 1与a 2010的位置关系是 . 03.已知n (n >2)个点P 1,P 2,P 3…Pn .在同一平面内没有任何三点在同一直线上,设S n 表示过这几个点中的任意两个点所作的所有直线的条数,显然:S 2=1,S 3=3,S 4=6,∴S 5=10…则Sn = . 演练巩固·反馈提高01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( )A .∠AMFB .∠BMFC .∠ENCD .∠END03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( )①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD>BDA .0B . 2C .4D .6A B C D E Fl 1l 2 l 3 l 4 l 5 l 6图⑴ l 1l 2l 3l 4 l 5l 6 图⑵ A EB C F D A BC DFEMN α第1题图 第2题图A B D C第4题图505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = .08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CD EBABC DEF12A BCDEF第14题图6培优升级·奥赛检测01.平面图上互不重合的三条直线的交点的个数是( )A .1,3B .0,1,3C .0,2,3D .0,1,2,302.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .5504.如图,图上有6个点,作两两连线时,圆内最多有__________________交点.05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性.06.平面上三条直线相互间的交点的个数是( )A .3B .1或3C .1或2或3D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法?08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( )A .60°B . 75°C .90°D .135°10.在同一平面内有9条直线如何安排才能满足下面的两个条件? A BCD EFa b AB C7CB A D⑴任意两条直线都有交点; ⑵总共有29个交点.第13讲 平行线的性质及其应用考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系;2.初步了解命题,命题的构成,真假命题、定理;3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用. 经典·考题·赏析【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD ,∠A =38°,求∠C 的度数.【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等; 两条直线平行,同旁内角互补.平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60°D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________EABDα12 C F(第3题图)321l 1l 2(第2题图)(第1题图) EDCBAE A FG D C B8 D A 2 E 1 B C02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________ 03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数. 【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】 因果转化,综合运用. 逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC =180°即要证明DB ∥EC . 要证明DB ∥EC 即要 证明∠1=∠3. 证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) 【变式题组】 01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行)∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义)【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .AB C D O EF A EB C (第1题图) (第2题图) B A M C D N P (第3题图) C DA BE F13 2G B 3 C A 1D 2EF (第1题图)A2 C F3 E D 1 B(第2题图) O / α O θ βB3 1 A B G DC E9B F E ACD α β P B C D A∠P =α+β3 21 γ4 ψ D α βE B C AFH 02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .3.已知如图,AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:∠BCM 的度数.【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角.过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键.【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________⑶____________________________ ⑷____________________________【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°BAPCAC CDAA PCBD PBPD BD⑴⑵⑶⑷A D MCN E B FED21 A B C10F γ Dα β E B CAF DE B C A B CAA ′ lB ′C ′D B CA西30° A 【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( ) A . ∠β=∠α+∠γ B .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90°02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离.⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /. 【变式题组】 01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形. 02.如图,已知三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC 与△A /B /C /的重叠部分的面积. 03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米) 演练巩固 反馈提高 01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( )A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°D 5 3 8A F CB E B B / AA / C C /C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等B.同位角相等C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①②B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52°B.南偏东52°C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.DAB CEDB CED AB CED AB CEA B CP.P.P.P.⑴⑵⑶⑷150°120°DBCE湖21ABEF4P231A BEFC D12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.14.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?15.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.培优升级·奥赛检测01.如图,等边△ABC各边都被分成五等分,这样在△ABC内能与△DEF完成重合的小三角形共有25个,那么在△ABC内由△DEF平移得到的三角形共有()个02.如图,一足球运动员在球场上点A处看到足球从B点沿着BO方向匀速滚来,运动员立即从A处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移)03.如图,长方体的长AB=4cm,宽BC=3cm,高AA1=2cm. 将AC平移到A1C1的位置上时,平移的距离是___________,平移的方向是___________.04.如图是图形的操作过程(五个矩形水平方向的边长均为a,竖直方向的边长为b);将线段A1A2向右平移1个单位得到B1B2,得到CB1AA1C1D1BD.B.O. AFADECBF E B A CG D 封闭图形A 1A 2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1 [即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________.⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么?09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.FEBACGD 100°A 2B 2 A 3 B 3 B 4 A 4 A 1 B 1 草地草地A 1B 2⑵B 1A 2B 2A 1B 1 A 3 B 3A 2⑴⑶⑷⑸F E B A C OBD CF AE10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =±a ,其中a 的平方根为x =a 叫做a 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x =3a .2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2n a ≥0(n 为正整数),a ≥0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m 是小于152+的最大整数,则m 的平方根是____. 03.9的立方根是____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足()2242342a b a b a -+++-+=,则a +b 等于( ) A .-1 B . 0 C .1 D .2 【解法指导】若()23a b -有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵()2242342a b a b a -+++-+=输入x取算术平方根输出y是无理数是有理数A B CD∴()2242342a b a b a -+++-+=,∴()2230b a b ++-=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l .在实数范围内,等式223a a b ----+=0成立,则a b =____. 02.若()2930a b -+-=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且220x y ++-=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-2 04.已知x 是实数,则1x x x πππ--+-+的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b 都为有理效,且满足123a b b -+=+.求a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵123a b b -+=+,∴ 123a b b -=⎧⎪⎨=⎪⎩即112a b b -=⎧⎪⎨=⎪⎩,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b 的平方根为:255a b ±+=±=±.【变式题组】01.(西安市竞赛题)已知m 、n 是有理数,且(5+2)m +(3-25)n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a 为17−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】一个实数由小数部分与整数部分组成,17−2=整数部分+小数部分.整数部分估算可得2,则小数部分=17−2 −2=17−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3+5的小数部分是a ,3−5的小数部分是b ,则a +b 的值为____. 02.5的整数部分为a ,小数部分为b ,则(5+a )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设3a =-,b = -2,52c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与364- C .4与364 D .3与904.在实数1.414,2-,0.1•5•,5−16,π,3.1•4•,83125中无理数有( )A .2个B .3个C .4个D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b >a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b =315a - +153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2与533x y --互为相反数,求22x y +的值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.(黄冈竞赛)代数式x +1x -+2x -的最小值是( )A .0B . 1+2C .1D . 2 03.代数式53x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +b 3=21−53,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a -+-=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--++-=-+--,试确定m 的值.08.(全国联赛)若a 、b 满足35a b +=7,S =23a b -,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y +231x a -=-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.。
根的判别式及根与系数的关系大题专练(重难点培优60题)-九年级数学上册尖子生培优必刷题【人教版】
【拔尖特训】2023-2024学年九年级数学上册尖子生培优必刷题(人教版)专题21.12根的判别式及根与系数的关系大题专练(重难点培优60题)一.解答题(共60小题)1.(2023春•鼓楼区校级期末)关于x的一元二次方程x2﹣kx﹣k﹣1=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于0,求k的取值范围.2.(2023春•淮北期末)已知:关于x的方程x2+2kx+k2﹣1=0.(1)试说明无论k取何值时,方程总有两个不相等的实数根;(2)如果方程有一个根为3,试求2k2+12k+2023的值.3.(2023春•凤阳县期末)关于x的一元二次方程mx2+(2m+3)x+m+1=0有两个不等的实数根.(1)求m的取值范围;(2)当m取最小整数时,求x的值.4.(2023•西宁二模)已知关于x的一元二次方程x2﹣3x+2a﹣1=0有两个不相等的实数根.(1)求a的取值范围;(2)若a为正整数,求一元二次方程的解.5.(2023春•惠城区校级期末)已知关于x的一元二次方程x2﹣2mx+3=0.(1)当m=1时,判断方程根的情况;(2)当m=2时,求方程的根.6.(2022秋•方城县期末)已知:关于x的方程x2+2mx+m2﹣1=0.(1)请说明:方程总有两个不相等的实数根;(2)若方程有一个根为3,求m的值.7.(2023春•丰城市校级期末)已知关于x的一元二次方程(x﹣1)(x﹣2k)+k(k﹣1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x1,x2是一个矩形的一边长和对角线的长,且矩形的另一边长为5,试求k的值.8.(2023•门头沟区二模)已知关于x的一元二次方程x2﹣2kx+k2﹣1=0.(1)求证:方程有两个不相等的实数根;(2)如果此方程的一个根为1,求k的值.9.(2023•梁山县二模)定义:若一元二次方程ax2+bx+c=0(a≠0)满足b=a+c.则称该方程为“和谐方程”.(1)下列属于和谐方程的是;①x2+2x+1=0;②x2﹣2x+1=0;③x2+x=0.(2)求证:和谐方程总有实数根;(3)已知:一元二次方程ax2+bx+c=0(a≠0)为“和谐方程”,若该方程有两个相等的实数根,求a,c的数量关系.10.(2023春•海淀区校级期末)已知关于x的一元二次方程mx2+(2﹣3m)x+(2m﹣4)=0.(1)求证:方程总有两个实数根;(2)若m为整数,当此方程有两个互不相等的正整数根时,求m的值.11.(2023春•鼓楼区校级期末)已知关于x的一元二次方程x2﹣ax+a﹣1=0.(1)求证:方程总有两个实数根;(2)若该方程有一实数根大于3,求a的取值范围.12.(2023春•安庆期末)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根.(1)求m的取值范围;(2)设p是方程的一个实数根,且满足(p2﹣2p+3)(m+4)=7,求m的值.13.(2023•保康县模拟)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.14.(2023春•延庆区期末)关于x的方程x2﹣4x+2(m+1)=0有两个实数根.(1)求m的取值范围;(2)当m为正整数时,求此时方程的根.15.(2023•北京二模)已知关于x的一元二次方程x2﹣4x+m+2=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,求此时方程的根.16.(2023春•瑶海区期末)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有实数根x1,x2.(1)求m的取值范围;(2)若满足x12+x22=2,求m的值.17.(2023春•南岗区期末)已知:方程(m﹣2)x|m|﹣x+n=0是关于x的一元二次方程.(1)求m的值;(2)若该方程无实数根,求n的取值范围.18.(2023•延庆区一模)已知关于x的一元二次方程x2+mx+m﹣1=0.(1)求证:方程总有两个实数根;(2)如果方程有一个根为正数,求m的取值范围.19.(2023春•肇东市期末)已知关于x的一元二次方程x2+(2m+1)x+m﹣2=0,(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=﹣1,求m的值.20.(2023春•龙口市期中)已知关于x的一元二次方程mx2−(m+2)x+m4=0两个不相等的实数根x1,x2,若1x1+1x2=4m,求m的值.21.(2023•邗江区二模)已知关于x的一元二次方程x2﹣(m﹣1)x+m﹣2=0.(1)求证:该方程总有两个实数根;(2)若该方程两个实数根的差为3,求m的值.22.(2023春•如东县期末)已知关于x的一元二次方程x2+(2m+1)x+2m=0.(1)求证无论实数m取何值,此方程一定有两个实数根;(2)设此方程的两个实数根分别为x1x2,若x12+x22=13,求m的值.23.(2023春•环翠区期末)已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.24.(2023春•霍邱县期末)已知关于x的一元二次方程2x2+4x+m=0.(1)若x=1是方程的一个根,求m的值和方程的另一根.(2)若x1x2是方程的两个实数根,且满足x12+x22+5x1x2−x12x22=0,求m的值.25.(2023春•莒县期末)(1)解方程:(2x+1)(x﹣4)=5;(2)已知方程x2+(2k﹣1)x+k2+3=0的两实数根的平方和比两根之积大15,求k的值.26.(2023春•青阳县期末)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.27.(2023春•广饶县期中)关于x的一元二次方程x2+mx+m﹣2=0.(1)若﹣2是该方程的一个根,求该方程的另一个根;(2)求证:无论m取任何实数,此方程总有两个不相等的实数根.28.(2023春•贵池区期末)已知:关于x的方程x2+mx﹣8=0有一个根是﹣4,求另一个根及m的值.29.(2023春•大观区校级期末)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=x1x2+x2x1+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.30.(2023•湟中区校级开学)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x1+x2﹣2x1x2=0,求m的值.31.(2023•襄州区模拟)已知关于x的一元二次方程x2﹣3x+2﹣m2﹣m=0.(1)求证:无论m为何实数,方程总有两个实数根;(2)若方程x2﹣3x+2﹣m2﹣m=0,的两个实数根α、β满足α2+β2=9,求m的值.32.(2023•惠州一模)若关于x的一元二次方程(m﹣1)x2﹣2mx+m﹣2=0有两个实数根x1,x2.(1)试确定实数m的取值范围;(2)若(x1+2)(x2+2)﹣2x1x2=17,求m的值.33.(2023•鼓楼区校级模拟)已知关于m的方程x2﹣(2m+1)x+m2=0(m≠0)有两实数根x1,x2,请用m表示x12+x22的值并求出m的取值范围.34.(2023春•宁波期末)阅读材料,根据上述材料解决以下问题:材料1:若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1x2,则x1+x2=−bax1x2=c a材料2:已知实数m,n满足m2﹣m﹣1=0n2﹣n﹣1=0,且m≠n,则m,n是方程x2﹣x﹣1=0 的两个不相等的实数根.(1)材料理解:一元二次方程3x2﹣6x+1=0 两个根为x1x2,则x1+x2=,x1x2=.(2)应用探究:已知实数m,n满足9m2﹣9m﹣1=09n2﹣9n﹣1=0,且m≠n,求m2n+mn2的值.(3)思维拓展:已知实数s、t分别满足9s2+9s+1=0t2+9t+9=0,其中st≠1且st≠0.求3st+9s+3t的值.35.(2023春•合肥期末)已知关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)若x1,x2满足x12+x22−x1x2=18,求a的值.36.(2023春•长沙期末)已知关于x的一元二次方程x2﹣2kx+k2+k+1=0有两个实数根.(1)求k的取值范围;(2)若x1x2﹣x1﹣x2=3,求k的值.37.(2023春•莱芜区期末)已知:关于x的一元二次方程x2﹣mx﹣1=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是√2,求另一个根及m的值.38.(2023春•长沙期末)方程x2+2x+m﹣1=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若x12+x22+3x1x2+10=0,求m的值.39.(2023•广陵区校级一模)已知关于x的方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的三边a,b,c中a=3,另两边b、c恰好是这个方程的两个根,求k值.40.(2023•沙市区模拟)已知关于x的一元二次方程x2+(2m+1)x+3m﹣1=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且(x1﹣1)(x2﹣1)=6,求m的值.41.(2023•襄阳模拟)已知关于x的一元二次方程x2+(m+2)x+m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+2x1x2=3,求m的值.42.(2023•蓬江区校级一模)关于x的一元二次方程x2﹣3x﹣k+1=0有两个不相等的实数根.(1)求k的取值范围;(2)若x12+x22=3,求k的值.43.(2023春•淮北月考)关于x的一元二次方程mx2+(2m+1)x+m﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若已知此方程的一个根为﹣2,求m的值以及方程的另一根.44.(2023春•岳麓区校级期末)已知关于x的一元二次方程x2﹣3x+m﹣3=0.(1)若此方程有两个不相等的实数根x1,x2,求m的取值范围;(2)若此方程的两根互为倒数,求x12+x22的值.45.(2023•襄阳模拟)已知关于x的一元二次方程x2﹣6x+2m﹣1=0有x1,x2两实数根.(1)求m的取值范围;(2)是否存在实数m,满足(x1﹣1)(x2﹣1)=−6m−7?若存在,求出实数m的值;若不存在,请说明理由.46.(2023春•房山区期末)已知关于x的一元二次方程x2+nx﹣6=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是1,求方程的另一个根.47.(2023春•顺义区期末)已知关于x的一元二次方程x2+bx﹣3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程的一个根是1,求b的值及方程的另一个根.48.(2023春•思明区校级期末)已知关于x的一元二次方程x2﹣(m+5)x+5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.49.(2023春•虹口区期末)设x1,x2为关于x的方程x2﹣2px﹣p=0的两根,P为实数.(1)求证:2px1+x22+3p≥0.(2)当|x1﹣x2|≤|2p﹣3|时,求p的最大值.50.(2023春•蒙城县校级期中)关于x的一元二次方程为x2﹣2x﹣m(m+2)=0.(1)求证:无论m为何实数,方程总有实数根;(2)若方程的两根之积等于0,求m的值.51.(2023春•蚌山区月考)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0,若△ABC的两边AB,AC 的长是这个方程的两个实数根,第三边BC的长为5.(1)若k=3时,请判断△ABC的形状并说明理由;(2)若△ABC是等腰三角形,求k的值.52.(2023•海淀区二模)已知关于x的一元二次方程x2﹣2x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为﹣1,求m的值和方程的另一个根.53.(2022秋•自贡期末)已知关于x的方程x2+nx+2m=0.(1)求证:当n=m+3时,方程总有两个不相等实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.54.(2023春•建邺区校级期末)已知关于x 的一元二次方程x 2﹣(k +1)x +2k ﹣2=0.(1)求证:方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.55.(2023春•蓬莱区期中)已知关于x 的方程(a ﹣5)x 2﹣4x ﹣1=0,(1)若方程有实数根,求a 的取值范围;(2)是否存在这样的实数a ,使方程的两根x 1,x 2满足x 1+x 2+x 1x 2=3,若存在,求出实数a 的值;若不存在,请说明理由.56.(2023•海淀区校级三模)已知关于x 的方程mx 2﹣(m +3)x +3=0(m ≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.57.(2023•石景山区二模)已知关于x 的一元二次方程x 2﹣2mx +m 2﹣1=0(1)求证:该方程总有两个不相等的实数根;(2)若m >1,且该方程的一个根是另一个根的2倍,求m 的值.58.(2023•郓城县一模)已知关于x 的一元二次方程12x 2+(m ﹣3)x ﹣m +2=0. (1)求证:不论m 取何值,该方程都有两个不相等的实数根;(2)设方程的两个根分别为x 1,x 2,且x 1>x 2,若x 1﹣x 2=2√10,求m 的值.59.(2023春•绍兴期中)已知有关于x 的一元二次方程(k +1)x 2﹣(3k +1)x +2k =0.(1)求k 的取值范围,并判断该一元二次方程根的情况;(2)若方程有一个根为﹣2,求k 的值及方程的另一个根;(3)若方程的一个根是另一个根3倍,求k 的值.60.(2023春•肇源县月考)已知关于x 的一元二次方程x 2﹣3x +2a +1=0有两个不相等的实数根.(1)求实数a 的取值范围;(2)若a 为符合条件的最大整数,且一元二次方程x 2﹣3x +2a +1=0的两个根为x 1,x 2,求x 12x 2+x 1x 22的值.。
(完整版)人教版八年级上数学培优精编讲义教师版
第十一章全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
整式的除法(限时满分培优训练)-八年级数学上册尖子生培优必刷题【人教版】(原卷版)
【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题【人教版】专题14.8整式的除法班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•双阳区期末)计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab 2.(2023春•雅安期末)计算:−13a 2b 2÷(ab)=( )A .13abB .13a 2b 2C .−13abD .−13a 2b 2 3.(2022秋•清河区校级期末)面积为9a 2﹣6ab +3a 的长方形一边长为3a ,另一边长为( )A .3a ﹣2b +1B .2a ﹣3bC .2a ﹣3b +1D .3a ﹣2b4.(易错题)(2023春•遵化市期中)若×4ab 2=﹣12ab 3c ,那么代表的整式是( ) A .﹣3abc B .﹣3ab 2c C .﹣3bcD .bc 5.(易错题)(2023•桃城区校级二模)已知( )÷12ab 2=8a ,则括号内应填( )A .16ab 2B .4ab 2C .16a 2b 2D .4a 2b 26.(2022秋•西丰县期末)长方形的面积是12a 2﹣6ab +3a 3,一边长是3a ,则它的另一边长是( )A .4a 2﹣2b +a 3B .2b ﹣4a +a 2C .a 2+4a ﹣2bD .4a 2﹣2b +a 7.(易错题)(2019春•招远市期末)若x m y n ÷14x 3y =4x 3y ,则m ,n 满足( )A .m =6,n =1B .m =6,n =2C .m =5,n =0D .m =5,n =28.(易错题)(2022春•宁远县期中)墨迹污染了等式12x 3★3x =4x 2(x ≠0)中的运算符号,则污染的运算符号是( )A .+B .﹣C .×D .÷9.(培优题)(2022春•碑林区校级月考)小明在做作业的时候,不小心把墨水滴到了作业本上,■×2ab =4ab +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A .(2+b 2)B .(a +2b )C .(3ab +2b 2)D .(2ab +b 2)10.(培优题)(2022春•诸暨市期末)若A 、B 、C 均为整式,如果A •B =C ,则称A 能整除C ,例如由(x +3)(x ﹣2)=x 2+x ﹣6,可知x ﹣2能整除x 2+x ﹣6.若已知x ﹣3能整除x 2+kx ﹣7,则k 的值为( )A .−73B .−23C .43D .23 二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(易错题)(2022秋•上海期末)计算(9x 3﹣3x 2)÷(﹣3x 2)= .12.(易错题)(2023春•达州期中)已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 看成了B ÷A ;结果得x 2+x ,则B +A = .13.(易错题)(2022秋•兴城市期末)若(﹣25y 3+15y 2﹣5y )÷M =﹣5y ,则M = .14.(培优题)(2023春•福山区期中)如图1.将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若纸盒的容积为4a 2b ,则图2中纸盒底部长方形的周长为 .15.(培优题)(2023春•龙口市期末)若n 是正整数,且x 2n =5,则(2x 3n )2÷(4x 2n )= .16.(培优题)(2023春•威海期末)已知9m ÷32m+2=(13)n ,n 的值是 .三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.计算:(1)(7+x )8÷(7+x )7.(2)(abc )5÷(abc )3.(3)(12)7÷(−12)3. (4)(y 10)÷(y 4÷y 2).18.计算:(1)(6a 2b +3a )÷a ;(2)(4x 3y 2﹣x 2y 2)÷(﹣2x 2y );(3)(20m 4n 3﹣12m 3n 2+3m 2n )÷(﹣4m 2n ):(4)[15(a+b)3﹣9(a+b)2]÷3(a+b)2.19.(易错题)(2023春•兴平市期末)已知4m2﹣7m+6=0,求代数式(3m2﹣2m)÷m﹣(2m﹣1)2的值.20.(易错题)(2023春•武功县期中)学习了《整式的乘除》这一章之后,小明联想到小学除法运算时,会碰到余数的问题,那么类比多项式除法也会出现余式的问题.例如,如果一个多项式(设该多项式为A)除以2x2的商为3x+4,余式为x﹣1,那么这个多项式是多少?他通过类比小学除法的运算法则:被除数=除数×商+余数,推理出多项式除法法则:被除式=除式×商+余式.请根据以上材料,解决下列问题:(1)请你帮小明求出多项式A;(2)小明继续探索,如果一个多项式除以3x的商为2x2+x﹣1,余式为x+3,请你根据以上法则求出该多项式.21.(培优题)(2023春•和平区校级月考)(1)若(x2+nx+3)(x2﹣3x+m)的结果中不含x2和x3项,求2m+n ﹣1的值;(2)已知单项式A=4x,B是多项式,小虎计算B+A时,看成了B÷A,结果得x2+12x,求正确的结果.22.(培优题)(2021春•盐湖区校级期末)观察下列各式:(x﹣1)÷(x﹣1)=1;(x2﹣1)÷(x﹣1)=x+1;(x3﹣1)÷(x﹣1)=x2+x+1;(x4﹣1)÷(x﹣1)=x3+x2+x+1;…(x8﹣1)÷(x﹣1)=x7+x6+x5+…+x+1.(1)根据以上各式的规律填空:①(x2018﹣1)÷(x﹣1)=;②(x n﹣1)÷(x﹣1)=.(2)利用②中的结论求22018+22017+22016+…+2+1的值;(3)若1+x+x2+…+x2016+x2017=0,求x2018的值.23.(创新题)(2023春•姜堰区期中)阅读理解:由两个或两类对象在某些方面的相同或相似,得出它们在其他方面也可能相同或相似的推理方法叫类比法.多项式除以多项式可以类比于多位数的除法进行计算.如图1:∴278÷12=23…2,∴(x3+2x2﹣3)÷(x﹣1)=x2+3x+3即多项式除以多项式用竖式计算,步骤如下:①把被除式和除式按同一字母的指数从大到小依次排列(若有缺项用零补齐).②用竖式进行运算.③当余式的次数低于除式的次数时,运算终止,得到商式和余式.若余式为零,说明被除式能被除式整除.例如:(x3+2x2﹣3)÷(x﹣1)=x2+3x+3∵余式为0∴x3+2x﹣3能被x﹣1整除.根据阅读材料,请回答下列问题:(1)多项式x2+5x+6除以多项式x+2,所得的商式为;(2)已知关于x的二次多项式除以x+1,商式是2x﹣2,余式是﹣1,求这个多项式;(3)已知x3+2x2﹣ax﹣10能被x﹣2整除,则a=;(4)如图2,有2张A卡片,3张B卡片,1张C卡片,能否将这6张卡片拼成一个与原来总面积相等且一边长为(a+b)的长方形?若能,求出另一边长;若不能,请说明理由.。
人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)
人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
八年级上数学培优试题及答案(供参考)
第十一章三角形11.1与三角形有关的线段专题一三角形个数的确定1.如图,图中三角形的个数为()A.2 B.18 C.19 D.202.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形__________个.3.阅读材料,并填表:在△ABC中,有一点P1,当P1、A、B、C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 …专题二根据三角形的三边不等关系确定未知字母的范围4.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3 B.-5<a<-2 C.2<a<5 D.a<-5或a>-25. 在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.6.若三角形的三边长分别是2、x、8,且x是不等式22x+>123x--的正整数解,试求第三边x的长.状元笔记【知识要点】1.三角形的三边关系三角形两边的和大于第三边,两边的差小于第三边.2.三角形三条重要线段(1)高:从三角形的顶点向对边所在的直线作垂线,顶点与垂足之间的线段叫做三角形的高.(2)中线:连接三角形的顶点与对边中点的线段叫做三角形的中线.(3)角平分线:三角形内角的平分线与对边相交,顶点与交点之间的线段叫做三角形的角平分线.3.三角形的稳定性三角形具有稳定性.【温馨提示】1.以“是否有边相等”,可以将三角形分为两类:三边都不相等的三角形和等腰三角形.而不是分为三类:三边都不相等的三角形、等腰三角形、等边三角形,等边三角形是等腰三角形的一种.2.三角形的高、中线、角平分线都是线段,而不是直线或射线.【方法技巧】1.根据三角形的三边关系判定三条线段能否组成三角形时,要看两条较短边之和是否大于最长边.2.三角形的中线将三角形分成两个同底等高的三角形,这两个三角形面积相等.参考答案:1.D 解析:线段AB上有5个点,线段AB与点C组成5×(5-1)÷2=10个三角形;同样,线段DE上也有5个点,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.故选D.2.21 解析:根据前边的具体数据,再结合图形,不难发现:后边的总比前边多4,若把第一个图形中三角形的个数看作是1=4-3,则第n个图形中,三角形的个数是4n-3.所以当n=6时,原式=21.3.解:填表如下:△ABC内点的个数 1 2 3 (1007)构成不重叠的小三角形的个数 3 5 7 (2015)解析:当△ABC内有1个点时,构成不重叠的三角形的个数是3=1×2+1;当△ABC内有2个点时,构成不重叠的三角形的个数是5=2×2+1;参考上面数据可知,三角形的个数与点的个数之间的关系是:三角形内有n个点时,三角形内互不重叠的小三角形的个数是2n+1,故当有3个点时,三角形的个数是3×2+1=7;当有1007个点时,三角形的个数是1007×2+1=2015.4.B 解析:根据题意,得8-3<1-2a<8+3,即5<1-2a<11,解得-5<a<-2.故选B.5.10 解析:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b.∵b=4,∴a=1,2,3,4.a=1时,c=4;a=2时,c=4或5;a=3时,c=4,5,6;a=4时,c=4,5,6,7.∴这样的三角形共有1+2+3+4=10个.6.解:原不等式可化为3(x+2)>-2(1-2x),解得x<8.∵x是它的正整数解,∴x可取1,2,3,5,6,7.再根据三角形三边关系,得6<x<10,∴x=7.11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC 且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C 解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,∴∠DCB=12∠ACB=34°.∵CE是AB边上的高,∴∠ECB=90°-∠B=90°-72°=18°.∴∠DCE=34°-18°=16°.(2)∠DCE=12(∠B-∠A).6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.证明:∠BDC+∠ACD+∠A+∠ABD=∠3+∠2+∠6+∠5+∠4+∠1=(∠3+∠2+∠1)+(∠6+∠5+∠4)=180°+180°=360°.11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十二章全等三角形12.1全等三角形12.2三角形全等的判定专题一三角形全等的判定1.如图,BD是平行四边形ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB 的平分线DF交BC于点F.求证:△A BE≌△CDF.2.如图,在△AB C中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:__________;(2)证明:3.如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE;②AE=CD;③∠BAC=∠BCA;④∠ADB=∠CEB;请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.__________________.专题二全等三角形的判定与性质4.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6B.4 C.23D.55.【2013·襄阳】如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.求证:AM=AN.NME D B CA6.如图,△ABC 是等边三角形,D 是AB 边上一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE .求证:AE ∥BC .专题三 全等三角形在实际生活中的应用7.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A .60°B .90°C .120°D .150°8.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B两端的距离,你能说说其中的道理吗?9.已知如图,要测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,对吗?为什么?状元笔记【知识要点】1.全等三角形能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质全等三角形的对应边相等,全等三角形的对应角相等.3.三角形全等的判定方法(1)三边分别相等的两个三角形全等(简写成“边边边”或“SSS”).(2)两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”).(3)两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”).(4)两个角和其中一个角的对边分别相等的两个三角形全等(简写成“角角边”或“AAS”).4.直角三角形全等的判定方法斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”). 【温馨提示】1.两个三角形全等的条件中必须有一条边分别相等,只有角分别相等不能证明两个三角形全等.2.有两边和其中一边的对角分别相等的两个三角形不一定全等. 3.“HL ”定理指的是斜边和一条直角边分别相等,而不是斜边和直角分别相等. 【方法技巧】1.应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角; (2)对应顶点所对应的边是对应边; (3)公共边(角)是对应边(角); (4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角).全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若△ABC ≌△DEF , 说明A 与D ,B 与E ,C 与F 是对应点,则∠ABC 与∠DEF 是对应角,边AC 与边DF 是对应边.2.判定两个三角形全等的解题思路:SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎩找夹角——已知两边找另一边——边为角的对边——找任一角——找夹角的另一边——已知一边一角边为角的邻边找夹边的另一角——找边的对角——找夹边——已知两角找任一边——参考答案:1.证明:平行四边形ABCD 中,AB=CD ,∠A=∠C ,AB ∥CD , ∴∠ABD=∠CDB .∵∠AB E=21∠ABD ,∠CDF=21∠CDB ,∴∠ABE=∠CDF .在△ABE 与△CDF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CDF ABE CDAB C A ∴△ABE ≌△CDF . 2.解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒(2)以DC BD =为例进行证明: ∵CF ∥BE ,∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC =∠EDB , ∴△BDE ≌△CDF . 3.解:(1)添加条件②,③,④中任一个即可,以添加②为例说明. 证明:∵AE=CD ,BE=BD , ∴AB=CB .又∠ABD=∠CBE ,BE=BD , ∴△ADB ≌△CEB . (2)③④.4.B 解析:∵∠ABC =45°,AD ⊥BC ,∴AD =BD ,∠ADC =∠BDH , ∠AHE =∠BHD =∠C .∴△ADC ≌△BDH .∴BH =AC =4.故选B . 5.证明:如图所示,7654321NME D B CA∵△AEB 由△ADC 旋转而得, ∴△AEB ≌△ADC .∴∠3=∠1,∠6=∠C .∵AB =AC ,AD ⊥BC ,∴∠2=∠1,∠7=∠C .∴∠3=∠2,∠6=∠7.∵∠4=∠5,∴∠ABM =∠ABN . 又∵AB =AB ,∴△AMB ≌△ANB .∴AM =AN .6.证明:∵△ABC 和△EDC 是等边三角形, ∴∠BCA =∠DCE =60°. ∴∠BCA -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE . 在△DBC 和△EAC 中,BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS ). ∴∠DBC =∠EAC . 又∵∠DBC =∠ACB =60°, ∴∠ACB =∠EAC .∴AE ∥BC .7.B 解析:∵滑梯、墙、地面正好构成直角三角形,又∵BC=EF ,AC=DF ,∴Rt △ABC ≌Rt △DEF .∴∠ABC=∠DEF ,∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°. 故选B .8.解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD ,EC=BC ,∴△ABC ≌△CED .∴AB=ED .即量出DE 的长,就是A 、B 两端的距离. 9.解:对.理由:∵AC ⊥AB,∴∠CAB=∠CAB′=90°. 在△ABC 和△AB′C 中,ACB ACB AC AC CAB CAB =⎧⎪=⎨⎪=⎩∠∠′,,∠∠′, ∴△ABC ≌△AB′C (ASA ).∴AB′=AB .第十三章 轴对称13.1轴对称 13.2画轴对称图形专题一 轴对称图形1.下列图案是轴对称图形的是( )2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二 轴对称的性质4.如图,△ABC 和△ADE 关于直线l 对称,下列结论:①△ABC ≌△ADE ;②l 垂直平分DB ;③∠C=∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误的有( )A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B 点、C 点关于DE 对称,有∠DBE=∠BCD ,∠ABC=2∠BCD . 且已知∠A=90°,故∠ABC+∠BCD=90°. 故∠ABC=60°,∠C=30°.6.解:(1)对称点有A 和A',B 和B',C 和C'. (2)连接A 、A′,直线m 是线段AA′的垂直平分线.(3)延长线段AC 与A′C′,它们的交点在直线m 上,其他对应线段(或其延长线)的交点也在直线m 上,即若两线段关于直线m 对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt △FDB 中,∵∠F =30°,∴∠B =60°. 在Rt △ABC 中,∵∠ACB =90°,∠ABC =60°, ∴∠A =30°.在Rt △AED 中,∵∠A =30°, DE =1,∴AE =2.连接EB. ∵DE 是AB 的垂直平分线,∴EB =AE =2. ∴∠EBD =∠A =30°.∵∠ABC =60°,∴∠EBC =30°.∵∠F =30°,∴EF =EB =2.故选B .ABFCED8.8 解析:∵DF 是AB 的垂直平分线,∴DB=DA .∵EG 是AC 的垂直平分线,∴EC=EA . ∵BC=8,∴△ADE 的周长=DA+EA+DE=DB+DE+EC=BC=8. 9.解:AB+BD=DE .证明:∵AD ⊥BC ,BD=DC ,∴AB=AC . ∵点C 在AE 的垂直平分线上, ∴AC=CE . ∴AB=CE .∴AB+BD=CE+DC=DE .10.C 解析:关于y 轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5. 解得1.5<a <2.5,又因为a 必须为整数,∴a=2.∴点P 2(-1,-1). ∴P 1点的坐标是(-1,1).第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.下列运算中,正确的是( )A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.下列计算正确的是( )A .3x ·622x x = B .4x ·82x x =C .632)(x x -=- D .523)(x x =3.下列计算正确的是( )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.若2a =3,2b =4,则23a+2b 等于( ) A .7 B .12 C .432 D .1085.若2m=5,2n=3,求23m+2n的值.6.计算:(1)(-0.125)2014×(-2)2014×(-4)2015; (2)(-19)2015×811007.专题三 整式的乘法7.下列运算中正确的是( )A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.若(3x 2-2x +1)(x +b )中不含x 2项,求b 的值,并求(3x 2-2x +1)(x +b )的值.9.先阅读,再填空解题: (x +5)(x +6)=x 2+11x +30; (x -5)(x -6)=x 2-11x +30; (x -5)(x +6)=x 2+x -30; (x +5)(x -6)=x 2-x -30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. (2)根据以上的规律,用公式表示出来:________.(3)根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.专题四 整式的除法10.计算:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:(a -b )3÷(b -a )2+(-a -b )5÷(a +b )4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:n m n m aa a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m n mn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m n a a a-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减. (2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【温馨提示】1.同底数幂乘法法则与合并同类项法则相混淆.同底数幂相乘,应是“底数不变,指数相加”;而合并同类项法则是“系数相加,字母及字母的指数不变”. 2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加”;幂的乘方,应是“底数不变,指数相乘”.3.运用同底数幂的乘法(除法)法则时,必须化成同底数的幂后才能运用上述法则进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减”符号也可以看成系数的符号来参与运算.【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否则容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22(a 2)2=4a 4,故D 错误.故选C .2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 故选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 故选D .4.C 解析:23a+2b =23a ×22b =(2a )3×(2b )2=33×42=432.故选C .3m+2n=23m·22n=(2m)3·(2n)2 3·32=1125.6.解:(1)原式=(0.125×2×4)2014×(-4)=12014×(-4)=-4.(2)原式=(-19)2015×92014=(19×9)2014×(-19)=-19.7.B 解析:A 中,由合并同类项的法则可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法则可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法则可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法则可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .8.解:原式=3x 3+(3b -2)x 2+(-2b+1)x+b ,∵不含x 2项,∴3b -2=0,得b=23. ∴(3x 2-2x+1)(x+23) =3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23. 9.解:(1)观察积中的一次项系数、常数项与两因式中的常数项的关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a -100)=a 2-a -9900;(y -80)(y -81)=y 2-161y+6480.10.-12x+3y -16解析:(3x 3y -18x 2y 2+x 2y )÷(-6x 2y )=(3x 3y )÷(-6x 2y )-18x 2y 2÷(-6x 2y )+x 2y÷(-6x 2y )=-12x+3y -16.11.解:原式。
新人教版数学八年级数学培优资料全年级全章节培优
B AC D EF 第01讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等A FC E DB 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE . 【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO的长为( ) A .2 B .3 C .4 D .5A BCD OFEA CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE=BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠F AC =∠CDF ∵∠AOD =∠F AC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAB (E )OC F 图③DAAE第1题图A BCDEBCDO第2题图AFECB D【变式题组】 01.(绍兴)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58° 02.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP =AQ ,也就是证△APD 和△AQE ,或△APB 和△QAC 全等,由已知条件BP =AC ,CQ =AB ,应该证△APB ≌△QAC ,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP ⊥AQ ,即证∠P AQ =90°,∠P AD +∠QAC =90°就可以.证明:⑴∵BD 、CE 分别是△ABC 的两边上的高,∴∠BDA =∠CEA =90°, ∴∠1+∠BAD =90°,∠2+∠BAD =90°,∴∠1=∠2. 在△APB 和△QAC 中, 2AB QC BP CA =⎧⎪=⎨⎪=⎩∠1∠ ∴△APB ≌△QAC ,∴AP =AQEFB ACDG 第2题图21ABCPQE FD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠P AD =90° ∵∠CAQ +∠P AD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )第1题图a αcca50° b72° 58°AECBA 75° C45° BNM第2题图第3题图DA .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB=AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______. 09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F ,请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下; 已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .F第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFC D 第1题图B第2题图第3题图AB E D CAB C D EAE B DC 09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB=90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
人教版八年级数学上册金榜名师推荐课时提升作业11.2.1三角形的内角(含答案解析)
课时提高作业 ( 三)三角形的内角(30 分钟50分)一、选择题 ( 每题 4 分, 共 12 分)1.(2013 ·泉州中考 ) 在△ ABC中, ∠A=20°, ∠B=60°, 则△ ABC的形状是()A. 等边三角形B. 锐角三角形C.直角三角形D. 钝角三角形【分析】选 D. ∵∠ A=20°, ∠ B=60°, ∴∠ C=180° - ∠A-∠B=180°-20 °-60 °=100° , ∴△ ABC是钝角三角形 .【互动研究】若将∠B=60°改为∠B=70°, 则三角形的形状是.【分析】∵∠ A=20°, ∠ B=70°, ∴∠ C=180°- ∠A- ∠B=180° -20 °-70 °=90°, ∴△ ABC是直角三角形 .答案 : 直角三角形2. 若一个三角形三个内角度数的比为2︰3︰4, 那么这个三角形是()A. 直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】选 B. 三角形的内角和是180° , 所以这个三角形的三个内角分别是180°× =40°,180 °× =60°,180 °×=80°, 故这个三角形是锐角三角形 .3.如图 , △ABC的角均分线 BO,CO订交于点 O,∠A=120°, 则∠ BOC= ()A.150 °B.140°C.130°D.120°【分析】选 A. ∵∠ BAC=120°, ∴∠ ABC+∠ACB=60°, ∵点 O 是∠ABC 与∠ ACB的均分线的交点 ,∴∠ OBC+∠OCB=30°, ∴∠ BOC=150°.【知识概括】以下图 , △ABC的角均分线 BO,CO订交于点 O,则∠ BOC 与∠ A 的关系是什么 ?提示 : ∠ O=180°- ∠ 1- ∠ 2=180°-( ∠ABC+∠ACB)=180° - (180 ° -∠A)=90°+∠A.二、填空题 ( 每题 4 分, 共 12 分)4.(2014 ·姜堰三中模拟 ) 如图, ∠1+∠2+∠3+∠4=.【分析】∵∠ 1+∠2=180°-40 °=140°, ∠3+∠4=180°-40 °=140° ,∴∠ 1+∠2+∠3+∠4=280°.答案 : 280°5. 一个三角形中最多有个内角是钝角,最多可有个角是锐角 .【分析】假如一个三角形中出现 2 个或 3 个钝角 , 那么三角形的内角和就大于180°, 不切合三角形内角和是 180°, 所以 , 三角形中最多有 1 个钝角 , 一个三角形中最多有 3 个锐角 , 如锐角三角形 .答案:1 3【知识概括】三角形的角之最1.最多 :(1) 三角形的三个角中最多有 1 个钝角 ;(2) 三角形的三个角中最多有 1 个直角 ;(3) 三角形的三个角中最多有 3 个锐角 .2.最少 : 三角形的三个角中最罕有 2 个锐角 .6.(2013 ·上海中考 ) 当三角形中一个内角α是另一个内角β的两倍时 , 我们称此三角形为“特点三角形” , 此中α称为“特点角” . 假如一个“特点三角形”的“特点角”为 100°, 那么这个“特点三角形”的最小内角的度数为.【分析】依据定义 , α =100° , β =50° , 则依据三角形内角和等于180°, 可得另一角为30° , 所以 , 这个“特点三角形”的最小内角的度数为 30°.答案 : 30°三、解答题 ( 共 26 分)7.(8分)如图,在△ ABC中,AD是∠ BAC的均分线,∠B=54°, ∠C=76°.(1)求∠ ADB和∠ ADC的度数 .(2)若 DE⊥AC,求∠ EDC的度数 .【分析】 (1) 由于∠ B+∠C+∠BAC=180°, 又由于∠ B=54°, ∠C=76° ,所以∠B AC=50°.又由于AD 均分∠ BAC,所以∠ DAC=∠ DAB=25° . 所以∠ ADB=180°-54 °-25°=101°, ∠ADC=180°-101 °=79° .(2) 由于 DE⊥AC,∠DAE=25°, 所以∠ ADE=65°.又由于∠ ADC=79° , 所以∠ EDC=14°.【变式训练】如图 , 在△ ABC中, ∠B=32°, ∠C=55°,AD⊥BC于 D,AE均分∠ BAC交 BC于 E,DF⊥A E于 F, 求∠ ADF的度数 .【分析】∵∠ B=32°, ∠C=55°, ∴∠ BAC=93° .∵A E均分∠ BAC交 BC于 E,∴∠ BAE=∠BAC=46.5°,∴∠ AED=∠B+∠BAE=78.5°.∵A D⊥BC,DF⊥AE,∴∠ ADF=∠AED=78.5°.8.(8 分) 以下图 , 将△ ABC沿 EF折叠 , 使点 C落到点 C' 处, 尝试究∠1,∠2与∠C的数目关系 .【分析】∵∠ 1=180°-2 ∠CEF,∠2=180°-2 ∠CFE, ∴∠ 1+∠2=360°-2( ∠CEF+∠CFE)=360°-2(180 °- ∠C)=360°-360 °+2∠C=2∠ C.【培优训练】9.(10 分) 如图 1, △ABC中,AD⊥BC于 D,CE⊥AB于 E.(1)猜想∠ 1 与∠ 2 的关系 , 并说明原因 .(2)假如∠ B 是钝角 , 如图 2,(1) 中的结论能否还建立 ?【分析】 (1) ∠1=∠2.∵A D⊥BC,CE⊥AB,∴△ ABD和△ BCE是直角三角形 ,∴∠ 1+∠B=90°, ∠2+∠B=90°,∴∠ 1=∠2.(2)结论仍旧建立 .原因以下 : ∵AD⊥BC,CE⊥AB,∴∠ D=∠E=90°,∴∠ 1+∠4=90°, ∠2+∠3=90°,∵∠ 3=∠4( 对顶角相等 ),∴∠ 1=∠2.。
人教版初中数学八年级上册全册知识梳理及练习(提高版)(家教补习复习专用)
新人教版八年级上册数学全册知识点及巩固练习题与三角形有关的线段(提高)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点. (2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3) 三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.【与三角形有关的线段 2、三角形的分类 】 2.三角形的分类 (1)按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. (2)按边分类:要点诠释:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ②等边三角形:三边都相等的三角形. 要点二、三角形的三边关系定理:三角形任意两边的和大于第三边. 推论:三角形任意两边的的差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. (3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线 1.三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言: 如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB =∠ADC=90°.注意:AD 是ΔABC 的高 ∠ADB=∠ADC=90°(或AD⊥BC 于D); 要点诠释:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心; (3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部; (ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部; (ⅲ)直角三角形三条高的交点是直角的顶点. 2.三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线. 三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =21BC.要点诠释:(1)三角形的中线是线段; (2)三角形三条中线全在三角形内部;(3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心; (4)中线把三角形分成面积相等的两个三角形.3.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔA BC 的角平分线 ∠BAD=∠DAC=21∠BAC (或∠BAC=2∠BAD=2∠DAC) . 要点诠释:(1)三角形的角平分线是线段;(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心; (4)可以用量角器或圆规画三角形的角平分线. 要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变. (2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形. 【典型例题】类型一、三角形的定义及表示1.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC 为公共边的“共边三角形”有( ).A .2对;B .3对;C .4对;D .6对;EDC BA【答案】B.【解析】以BC 为公共边的“共边三角形”有:△BDC 与△BEC 、△BDC 与△BAC 、△BEC 与△BAC 三对.【总结升华】根据新定义和已学过的知识,全面准确的识图.举一反三:【变式】根据下图所示的形⑴、⑵、⑶三个图所表示的规律,依次下去第n 个图中的三角形的个数是( ).(1) (2)(3)A .6(n-1)B .6nC .6(n+1)D .12n 【答案】C.类型二、三角形的三边关系2.(2016春•丹阳市期末)若三角形的三边长分别为a 、b 、5,其中a 、b 为正整数,且a ≤b ≤5,则所有满足条件的三角形共有 个.【思路点拨】根据已知条件,得a 的可能值是1,2,3,4,5,再结合三角形的三边关系,对应求得b 的值即可.【答案与解析】解:∵三角形的三边a 、b 、5的长都是整数,且a ≤b ≤5,c 最大为5, ∴a=1,b=5,c=5; a=2,b=4,或5,c=5;a=3,b=3,或4,或5,c=5; a=4,b=4,或5,c=5; a=5,b=5,c=5.故存在以a 、b 、5为三边长的三角形的个数为9个. 【总结升华】考查了三角形三边关系,此题要注意根据“三角形的任意两边之和大于第三边,任意两边之差小于第三边”进行分析计算.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x为时,所组成的三角形周长最大.【答案】三;8 (由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x<9,因为x为整数,故x可取6,7,8;当x=8时,组成的三角形周长最大为11).3.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】三角形边的关系经常用来证明线段之间的不等关系.举一反三:【变式】(2015春•邗江区校级月考)已知a、b、c为△ABC的三边,则化简|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|= .【答案】0.解:|a+b+c|﹣|a﹣b﹣c|﹣|a﹣b+c|﹣|a+b﹣c|,=(a+b+c)﹣(﹣a+b+c)﹣(a﹣b+c)﹣(a+b﹣c),=a+b+c+a﹣b﹣c﹣a+b﹣c﹣a﹣b+c,=0.类型三、三角形中的重要线段4.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、ED、AF.方案2:如答图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如答图(3),取BC中点D、再取AD的中点E,连接AD、DE、BE、CE.方案2:如答图(4),在AB取点D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离.它的固定方法是:任选两个不在同一木条上的顶点固定就行了.【总结升华】要使物体具有稳定性,应做成三角形,否则做成四边形、五边形等等.举一反三:【变式】(2014秋•仙桃校级月考)(1)下列图中具有稳定性是(填序号)(2)对不具稳定性的图形,请适当地添加线段,使之具有稳定性.【答案】解:(1)具有稳定性的是①④⑥三个.(2)如图所示:与三角形有关的线段(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个B.2个C.3个D.4个2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为( )A.2个B.4个C.6个D.8个3.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③ D.①③4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是( ) A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高5.(2015春•南长区期中)有4根小木棒,长度分别为3cm、5cm、7cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.2个B.3个C.4个D.5个6.给出下列图形:其中具有稳定性的是( )A.①B.③C.②③D.②③④7.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为214平方公分,则此方格纸的面积为多少平方公分? ( )A.11 B.12 C.13 D.148.王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?( )A.0根B.1根C.2根D.3根二、填空题9.(2014春•渝北区期末)对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2= .10.三角形的两边长分别为5 cm 和12 cm ,第三边与前两边中的一边相等,则三角形的周长为________. 11.(2016春•丹阳市校级期中)如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有 个.12.在数学活动中,小明为了求23411112222++++ (1)2n +的值(结果用n 表示),设计了如图所示的几何图形.请你利用这个几何图形求23411112222++++ (1)2n +=________.13.请你观察下图的变化过程,说明四边形的四条边一定时,其面积________确定.(填“能”或“不能”)14.如图,是用四根木棒搭成的平行四边形框架,AB =8cm ,AD =6cm ,使AB 固定,转动AD ,当∠DAB =_____时,ABCD 的面积最大,最大值是________.三、解答题15.草原上有4口油井,位于四边形ABCD 的四个顶点上,如图所示,如果现在要建一个维修站H ,试问H 建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD 为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD 按图②所示折叠,则AB 与DC 相交于点G .试问:△AGC 和△BGD 的面积哪个大?为什么?17. 已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.18. (2014春•西城区期末)阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:BD=PM+PN.他发现,连接AP,有S△ABC=S△ABP+S△ACP,即AC•BD=AB•PM+AC•PN.由AB=AC,可得BD=PM+PN.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:BD=PN﹣PM.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵S△ABC=S△APC﹣,∴AC•BD=AC•﹣AB•.∵AB=AC,∴BD=PN﹣PM.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ 分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示的位置,利用图4探究得出此时BD,PM,PN,PQ之间的数量关系是:.【答案与解析】一、选择题1. 【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.2. 【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以3. 【答案】B ;【解析】①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误. 4. 【答案】C ;【解析】三角形高的定义. 5. 【答案】B ;【解析】解:可搭出不同的三角形为:3cm 、5cm 、7cm ;3cm 、5cm 、9cm ;3cm 、7cm 、9cm ;5cm 、7cm 、9cm 共4个,其中3cm 、5cm 、9cm 不能组成三角形,故选B . 6. 【答案】C ;【解析】均是由三角形构成的图形,具有稳定性. 7. 【答案】B ;【解析】设每个小正方形的边长为a ,则有16a 2-4 a ×2 a ÷2-3 a ×2 a ÷2-4 a ×a ÷2=214,解得a 2=34,而整个方格纸的面积为16a 2=12(平方公分). 8. 【答案】B ; 二、填空题9. 【答案】361;【解析】解:连接A 1C ,根据A 1B=2AB ,得到:AB :A 1A=1:3,因而若过点B ,A 1作△ABC 与△AA 1C 的AC 边上的高,则高线的比是1:3, 因而面积的比是1:3,则△A 1BC 的面积是△ABC 的面积的2倍, 设△ABC 的面积是a ,则△A 1BC 的面积是2a ,同理可以得到△A 1B 1C 的面积是△A 1BC 面积的2倍,是4a , 则△A 1B 1B 的面积是6a ,同理△B 1C 1C 和△A 1C 1A 的面积都是6a , △A 1B 1C 1的面积是19a ,即△A 1B 1C 1的面积是△ABC 的面积的19倍, 同理△A 2B 2C 2的面积是△A 1B 1C 1的面积的19倍, ∴S 2=19×19×1=361. 故答案为:361.10.【答案】29cm ; 11.【答案】6; 12.【答案】112n -; 【答案】解:如图所示,设大三角形的面积为1,然后不断地按顺序作出各个三角形的中线,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n+表示组成面积为1的大三角形的n 个小三角形的面积之和,因此23411112222++++ (1)2n +=112n -. 13.【答案】不能;【解析】因为四边形的高不能确定. 14.【答案】90°, 48 cm 2; 三、解答题 15.【解析】解:维修站应建在四边形两对角线AC 、BD 的交点H 处,理由如下:取不同于H 的F 点,根据三角形两边之和大于第三边可得;FD+FB >HD+HB ,FC+FA >HC+HA . 所以:FD+FB+FC+FA >HD+HB+HC+HA , 即HD+HB+HC+HA 为最小. 16.【解析】解:∵ BD =CD ,∴ ABD ACD S S =△△. ∴ ABD ADG ACD ADG S S S S -=-△△△△. ∴ ADG BGD S S =△△.17.【解析】 解:(1)当高AD 在△ABC 的内部时(如图(1)).因为∠BAD =70°,∠CAD =20°,所以∠BAC =∠BAD+∠CAD =70°+20°=90°.当高AD 在△ABC 的外部时(如图(2)). 因为∠BAD =70°,∠CAD =20°,所以∠BAC =∠BAD-∠CAD =70°-20°=50°.综上可知∠BAC 的度数为90°或50°. (2)如图(1),当AD 在△ABC 的内部时,因为∠BAC =∠BAD+∠CAD =70°+20°=90°, 所以△ABC 是直角三角形.如图(2),当AD 在△ABC 的外部时,因为∠BAC =∠BAD-∠CAD =70°-20°=50°, ∠ABC =90°-∠BAD =90°-70°=20°,所以∠ACB =180°-∠ABC-∠BAC =180°-50°-20°=110°. 所以△ABC 为钝角三角形.综上可知,△ABC 是直角三角形或钝角三角形. 18.【解析】解:(1)证明:连接AP .∵S △ABC =S △APC ﹣S △APB ,∴AC•BD=AC•PN﹣AB•PM. ∵AB=AC ,∴BD=PN ﹣PM .(2)①BD=PM+PN+PQ;如图3,连接AP、BP、CP,∵S△ABC=S△APC+S△APB+S△BPC∴AC•BD=AC•P N+AB•PM+BC•PQ,∵AB=AC=BC,∴BD=PM+PN+PQ;②BD=PM+PQ﹣PN;如图4,连接AP、BP、CP,∵S△ABC=S△APB+S△BPC﹣S△APC.∵AC•BD=AB•PM+BC•PQ﹣A C•PN,∵AB=AC=BC,∴BD=PM+PQ﹣PN.与三角形有关的角(提高)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.(2016春•东平县期中)适合条件∠A=∠B=∠C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形【思路点拨】设∠A=x,则∠B=x,∠C=3x.根据三角形的内角和是180°,列方程求得三个内角的度数,即可判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=x,∠C=3x.根据三角形的内角和定理,得x+x+3x=180,x=36.则∠C=108°.则该三角形是钝角三角形,故选B.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.举一反三:【变式1】三角形中至少有一个角不小于________度.【答案】60.【变式2】(2015春•新沂市校级月考)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .【答案】40°.解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.类型二、三角形的外角【与三角形有关的角例4、】3.如图,在△ABC中,AE⊥BC于E,AD为∠BAC的平分线,∠B=50º,∠C=70º,求∠DAE .【答案与解析】解:∠A =180°-∠B -∠C =180°-50°-70°=60°,又AD 为∠BAC 的平分线, 所以∠BAD =12BAC ∠=30°,∠ADE =∠B +∠BAD =50º+30°=80°, 又 AE ⊥BC 于E ,所以∠DAE =90°-∠ADE =90°-80°=10°.举一反三:【变式】如图,在△ABC 中,AB >AC ,AE ⊥BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .【答案】2C BDAE ∠-∠∠=. 4.如图所示,已知CE 是△ABC 外角∠ACD 的平分线,CE 交BA 延长线于点E.求证: ∠BAC >∠B.【答案与解析】证明:在△ACE 中,∠BAC >∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△BCE 中,∠2 >∠B , 因为∠1=∠2,所以∠BAC >∠B.【总结升华】涉及角的不等关系的问题时,经常用到三角形外角性质:“三角形的一个外角大于与它不相邻的任何一个内角”. 举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A 联系起来________.【答案】∠A <∠2 <∠1.类型三、三角形的内角外角综合5.(2015春•启东市校级月考)如图,BE与CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线.(1)试探求:∠F与∠B、∠D之间的关系?(2)若∠B:∠D:∠F=2:4:x.求x的值.【思路点拨】(1)先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据对顶角相等和三角形内角和定理得到∠D+∠1=∠F+∠3,∠B+∠4=∠F+∠2,然后把两式相加即可得到∠F 与∠B、∠D之间的关系;(2)设∠B=2a,则∠D=4a,∠F=ax,利用(1)中的结论得到2ax=2a+4a,然后解关于x的方程即可.【答案与解析】解:(1)∵CF为∠BCD的平分线,EF为∠BED的平分线,∴∠1=∠2,∠3=∠4,∵∠D+∠1=∠F+∠3,∠B+∠4=∠F+∠2,∴∠B+∠D+∠1+∠4=2∠F+∠3+∠2,∴∠F=(∠B+∠D);(2)当∠B:∠D:∠F=2:4:x时,设∠B=2a,则∠D=4a,∠F=ax,∵2∠F=∠B+∠D,∴2ax=2a+4a∴2x=2+4,∴x=3.【总结升华】本题考查了三角形内角和定理:通过三角形内角和为180°列等量关系.也考查了角平分线的定义.举一反三:【变式1】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°.【答案】解:因为∠AGF是△GCE的外角,所以∠AGF=∠C+∠E.同理∠AFG=∠B+∠D.在△AFG中,∠A+∠AFG+∠AGF=180°.所以∠A+∠B+∠C+∠D+∠E=180°.【变式2】一个三角形的外角中,最多有锐角( ).A.1个B.2个C.3个D.不能确定【答案】A (提示:由于三角形最多有一个内角是钝角,故最多有一个外角是锐角.)与三角形有关的角(提高)巩固练习【巩固练习】一、选择题1.如图所示,一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M,N.那么∠CME+∠BNF是( )A.150°B.180°C.135°D.不能确定2.若一个三角形的三个内角互不相等,则它的最小角必小于( )A.30°B.45°C.60°D.55°3.下列语句中,正确的是( )A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角4.如果一个三角形的两个外角之和为270°,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.(2016春•泰山区期中)具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A:∠B:∠C=1:2:3 D.∠A=2∠B=3∠C6.(2015春•泰山区期中)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°二、填空题7.在△ABC中,若∠A-2∠B=70°,2∠C-∠B=10°,则∠C=________.8.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠A=76°,则∠BOC=________;(2)若∠BOC=120°,则∠A=_______;(3)∠A与∠BOC之间具有的数量关系是_______.9. 已知等腰三角形的一个外角等于100°,则它的底角等于________.10.将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________.11. (2016•贵港二模)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…∠A n﹣1BC的平行线与∠A n CD的平分线交于点A n,设∠A=θ,则∠A n= .﹣112.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,则∠BOC=(用含n的代数式表示).三、解答题13.如图,求证:∠A+∠B+∠C+∠D+∠E=180°.14.(2015春•扬州校级期中)如图①,△ABC 的角平分线BD 、CE 相交于点P . (1)如果∠A=80°,求∠BPC 的度数;(2)如图②,过P 点作直线MN ,分别交AB 和AC 于点M 和N ,且MN 平行于BC ,则有∠MPB+∠NPC=90°﹣∠A .若将直线MN 绕点P 旋转,(ⅰ)如图③,试探索∠MPB 、∠NPC 、∠A 三者之间的数量关系是否依然成立,并说明理由;(ⅱ)当直线MN 与AB 的交点仍在线段AB 上,而与AC 的交点在AC 的延长线上时,如图④,试问(ⅰ)中∠MPB 、∠NPC 、∠A 三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB 、∠NPC 、∠A 三者之间的数量关系,并说明你的理由.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D .试说明12D A ∠=∠.16.如图所示,在△ABC 中,∠1=∠2,∠C >∠B ,E 为AD 上一点,且EF ⊥BC 于F .(1)试探索∠DEF 与∠B ,∠C 的大小关系;(2)如图(2)所示,当点E 在AD 的延长线上时,其余条件都不变,你在(1)中探索到的结论是否还成立? 【答案与解析】 一、选择题 1. 【答案】A【解析】(1)由∠A =30°,可得∠AMN+∠ANM =180°-30°=150°又∵ ∠CME =∠AMN ,∠BNF =∠ANM ,故有∠CME+∠BNF=150°.2. 【答案】C;【解析】假如三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°.3. 【答案】C ;【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角.4. 【答案】B;【解析】因为三角形的外角和360°,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90°.5. 【答案】D;6. 【答案】C;【解析】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选C.二、填空题7. 【答案】20°;【解析】联立方程组:A-2B=702C-10180BA B C∠∠︒⎧⎪∠∠=︒⎨⎪∠+∠+∠=︒⎩,解得20C∠=︒.8.【答案】128°, 60°,∠BOC=90°+12∠A;9. 【答案】80°或50°;【解析】100°的补角为80°,(1)80°为三角形的顶角;(2)80°为三角形底角时,则三角形顶角为20°.10.【答案】75°;11.【答案】;【解析】解:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A 1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A,。
【2013版新教材】八年级数学沪科版上册【能力培优】专题训练:15.4 角的平分线(含答案)
15.4 角的平分线专题一 角平分线知识的应用1.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,S △ABC =36cm 2,•AB =18cm ,BC =12cm ,求DE 的长.2.已知:如图,在△ABC 求证:AC -AB =2BE .专题二 作图与实际问题3.如图,点B 、C 在∠SAT 的两边上,且AB =AC .(1)请按下列语句用尺规画出图形(不写画法,保留作图痕迹) ①AN ⊥BC ,垂足为N ;②∠SBC 的平分线交AN 延长线于M ; ③连接CM .(2)该图中有__________对全等三角形.4.夏令营组织学员到某一景区游玩,老师交给同学一张画有直角坐标系和标有A 、B 、C 、D 四个景点位置的地图,指出:今天我们游玩的景点E 是新开发的,地图上还没来得及标注,但已知这个景点E 满足:①与景点A 、C 和景点B 、D 所在的两条直线等距离;②到B 、C 两景点等距离.请你在平面直角坐标系中,AB SCT画出景点E 的位置,并标明坐标(用整数表示).专题三 角平分线中的探究题5.已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB =OC . (1)如图1,若点O 在BC 上,求证:AB =AC ;(2)如图2,若点O 在△ABC 的内部,求证:AB =AC ;(3)若点O 在△ABC 的外部,AB =AC 成立吗?请画图表示。
6.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点I ,过I 作DE ∥BC 交BA •于D ,交AC 于E .(1)你能发现哪些结论?把它们一一列出来,并选择一个加以证明. (2)若AB =7,AC =5,你能求△ADE 的周长吗?(3)作∠ABC 与∠ACB 的外角平分线,他们相交于点O ,过O 点作BC •的平行线分别交AB 、AC 的延长线于F 、G ,你还能发现什么结论?【知识要点】1.角平分线上任意一点到角的两边的距离相等.2.在一个角的内部,到角的两边距离相等的点在这个角的平分线上.【温馨提示】1.角平分线性质定理中的“角平分线上的点”是指角的平分线上的任意一点.2.角平分线性质和判定定理中的“距离”是指点到直线的距离,它是过角的平分线上任意一点向角的两边作垂线,该点与垂足间的距离,是指点到直线的垂线段的长,而不是该点与角的两边上任意一点的距离.【方法技巧】1. 利用角平分线的性质可证明两条线段相等, 利用角平分线的判定可证明两个角相等,要注意不要再利用全等三角形证明.OO BCAACB图2 图12.遇到证明有关角平分线的问题时,可作角的两边的垂线,证明垂线段相等.参考答案1.解:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥AB ,∴DE =DF . ∵S △ABC =36cm 2,S △ABD =12BC ·DF . 又∵S △ABC =S △ABD +S △BCD ,AB =18cm ,BC =12cm ,∴12×18DE +12×12DF =36, ∴9DE +6DF =36.又∵DE =DF ,∴9DE +6DE =36,∴DE =125cm . 2.证明:延长BE 交AC 于点M , ∵BE ⊥AE ,∴∠AEB =∠AEM =90°.在△ABE 中,∵∠1+∠3+∠AEB =180°,∴∠3=90°-∠1. 同理,∠4=90°-∠2.∵∠1=∠2,∴∠3=∠4,∴AB =AM .∵BE ⊥AE ,∴BM =2BE ,∴AC -AB =AC -AM =CM . ∵∠4是△BCM 的外角,∴∠4=∠5+∠C . ∵∠ABC =3∠C,∴∠ABC =∠3+∠5=∠4+∠5,∴3∠C =∠4+∠5=2∠5+∠C .∴∠5=∠C ,∴CM =BM .∴AC -AB =BM =2BE . 3.(1)如图;(2)3. 4.如图,坐标为(2,2).5.(1)过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,∴Rt △OEB ≌Rt △OFC ,∴∠B =∠C ,从而AB =AC . (2)过点O 分别作OF ⊥AB ,OE ⊥AC ,F 、E 分别是垂足,由题意知,OE =OF .在Rt △OFB 和Rt △OEC 中,∵OF =OE ,OB =OC ,∴Rt △OFB ≌Rt △OEC .∴∠OBF =∠OCE ,又由OB =OC 知∠OBC =∠OCB ,∴∠ABC =∠ACD ,∴AB =AC . (3)不一定成立。
专题13.6等边三角形的判定(限时满分培优训练)-八年级数学上册尖子生培优必刷题【人教版】
【拔尖特训】2023-2024学年八年级数学上册尖子生培优必刷题(人教版)专题13.6等边三角形的判定(限时满分培优训练)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分100分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•扶风县期中)在△ABC中,若AB=AC=5,∠B=60°,则BC的值为()A.3B.4C.5D.62.(2023春•碑林区校级期末)下列推理中,不能判断△ABC是等边三角形的是()A.∠A=∠B=∠C B.AB=AC,∠B=60°C.∠A=60°,∠B=60°D.AB=AC,且∠B=∠C3.(2023春•漳州期中)若一个三角形有两条边相等,且有一内角为60°,那么这个三角形一定为()A.钝角三角形B.等腰三角形C.直角三角形D.正三角形4.(2022秋•邹城市校级期末)已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A.3个B.2个C.1个D.0个5.(2022春•海州区校级期中)下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④6.(2022秋•鄱阳县月考)下列对△ABC的判断,错误的是()A.若AB=AC,∠B=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=3:4:7,则△ABC是直角三角形C.若∠A=20°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°7.(易错题)(2023春•淄博期末)如图,D是等边△ABC的边AC上的一点,E是等边△ABC外一点,若BD=CE,∠1=∠2,则对△ADE的形状最准确的是()A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形8.(易错题)(2023春•高州市期末)如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,连接FH.给出下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形.其中正确结论的个数是()A.1B.2C.3D.49.(培优题)(2021•西陵区二模)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC 长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.则下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD⋅BC10.(压轴题)(2021秋•霍林郭勒市期末)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP ≌△QSP.正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023春•尤溪县期中)若△ABC,∠B=∠C,请添加一个条件使△ABC是等边三角形,则添加的条件可以是.(写出一个即可)12.(2021秋•绥滨县期末)如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B 两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.13.(培优题)(2022秋•灌阳县期中)如图,∠AOB=60°,点C是BO延长线上的一点,OC=6cm,动点P从点C出发沿射线CB以2cm/s的速度移动,动点Q从点O出发沿射线OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=s时,△POQ是等边三角形.14.(易错题)(2020秋•遂宁期末)如图,将含有30°角的直角三角尺ABC绕直角顶点A逆时针旋转到ADE 的位置,使B点的对应点D落在BC边上,连接EB,EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④△ABD为等边三角形.其中正确的是.(填序号)15.(易错题)(2008秋•江岸区期中)如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE 交∠C的外角平分线于E,则△ADE是三角形.16.(培优题)(2021秋•新吴区期中)如图,过边长为4的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2023春•渠县校级期末)如图,在△ABC中,AB=AC,D为AB边的中点,DE⊥AC于点E,DF⊥BC 于点F,DE=DF.求证:△ABC是等边三角形.18.(易错题)(2022秋•丛台区校级期末)如图,△ABC中,AB=AC,∠BAC=120°.点D,E在BC边上,且AD⊥AC,AE⊥AB.(1)求∠C的度数;(2)求证:△ADE是等边三角形.19.(易错题)(2023春•宽甸县期末)如图所示,在等腰△ABC中,AB=AC,AF为BC的中线,D为AF 上的一点,且BD的垂直平分线过点C并交BD于E.求证:△BCD是等边三角形.20.(易错题)(2023春•市北区期中)如图,△ABC中,D为AC边上一点,DE⊥AB于E,ED的延长线交BC的延长线于F,且CD=CF.(1)求证:△ABC是等腰三角形;(2)当∠F=度时,△ABC是等边三角形?请证明你的结论.21.(易错题)(2020秋•惠州期中)已知:如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF ⊥BC,垂足分别为E,F,且DE=DF.求证:(1)∠B=∠C;(2)△ABC是等边三角形.22.(培优题)(2020秋•赣榆区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,且AE=BE.(1)求∠CAE的度数;(2)若点D为线段EC的中点,求证:△ADE是等边三角形.23.(压轴题)(2023春•宣汉县校级期末)在边长为9的等边三角形ABC中,点P是AB上一动点,以每秒1个单位长度的速度从点A向点B运动,设运动时间为t秒.(1)如图1,若点Q是BC上一定点,BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位长度的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?。
八年级数学人教版上册【能力培优】14.3因式分解(含答案)
14.3因式分解专题一因式分解1.下列分解因式正确的是()A.3x2-6x =x(x-6) B.-a2+b2=(b+a)(b-a) C.4x2-y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)2 2.分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.(3)平方差公式:a 2-b 2=(a+b)(a -b),两个数的平方差,等于这两个数的和与这两个数的差的积. (4)完全平方公式:a 2±2ab+b 2=(a ±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.【温馨提示】1.分解因式的对象必须是多项式,如把25a bc 分解成abc a ⋅5就不是分解因式,因为25a bc 不是多项式.2.分解因式的结果必须是积的形式,如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式.【方法技巧】1.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此时括号内的各项都应变号,如)2(22--=+-x x x x .2.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行变化,使之符合公式的特点.参考答案:1.B 解析:A中,3x2-6x=3x(x-2),故A错误;B中,-a2+b2=-(a-b)(a+b)=(b+a)(b -a),故B正确;C中,4x2-y2=(2x)2-(2y)2=(2x-y)(2x+y),故C错误;D中,4x2-2xy+y2的中间项不是2×2x×y,故不能因式分解,故D错误.综上所述,选B.2.3m(m-3n)2解析:3m3-18m2n+27mn2=3m(m2-6mn+9n2)=3m(m-3n)2.3.(2a-b)2解析:(2a+b)2-8ab=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.4.(x2解析:x4-4=(x2+2)(x2-2)=(x2.5.解:(1)3x2--4);(2)x4-10x2+25=(x2-5)22(x)2.6.解:(1)x3-2x=x(x2-;(2)x4-6x2+9=(x2-3)2)2(x2.7.B 解析:∵m-n=-5,mn=6,∴m2n-mn2=mn(m-n)=6×(-5)=-30,故选B.8.2013 解析:32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.9.解:(1)答案不唯一,如:(x2-4x)+(x2+2x)=2x2-2x=2x(x-1).(2) 答案不唯一,如:x2-4x>x2+2x,合并同类项,得-6x>0,解得x<0.。
【精编】八年级数学人教版上册【能力培优】15.2分式的运算(含答案).doc
15.2分式的运算专题一 分式的混合运算1.化简221111x x ⎛⎫-÷ ⎪+-⎝⎭的结果是( )A . ()21x 1+ B .()21x 1- C .()21x + D .()21x -2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x +3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( )A .BCD . 35.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222()1121x xx xx x x x --÷---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.1.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a b c c ++=这样的错误. 3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x .故选D . 2.原式221(1)(1)11111x x x x x x x x +-+-=-==---. 3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x +3 =x -x +3=3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵224m n mn += ∴2226m n mn mn ++=,2222m n mn mn +-=,∴()()m n m n mn +-===A . 5.解:原式=b a b b a b a b a ++-+-))(()(2=ba b b a b a +++-=b a b b a ++-=b a a +,当a =2-,1=b 时,原式=2122=+--.6.解:原式=22221()11x x x xx x x x -+-⋅---=22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+=1xx +.∵x ≠-1,0,1∴当x =2时,原式=22213=+.。
幂的运算与新定义问题大题培优专练-八年级数学上学期复习备考高分秘籍【人教版】(原卷版)
2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.10幂的运算与新定义问题大题培优专练班级:_____________ 姓名:_____________ 得分:_____________一.解答题(共30小题)1.(2023秋•西城区校级期中)如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.2.(2023秋•西城区校级期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.令(2,6)=x,(2,7)=y,(2,42)=z,求证:(2,6)+(2,7)=(2,42).3.(2023秋•南岗区校级期中)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,则(a,b)=c.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,1)=;(3,27)=.(2)计算(5,2)+(5,7)=,并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.4.(2023秋•叙州区校级月考)对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=loga M+log a N.(1)解方程:log x4=2.(2)log28=.(3)计算:lg 2+1g 5﹣2021.5.(2023春•茂名期末)阅读下列材料:若a ,b 两数满足a x =b ,则称x 为b 的“对数”,记作(a ,b )=x ,如42=16,所以(4,16)=2. 请根据以上规定,回答下列问题:(1)根据上述规定要求,请完成填空:(3,27)= ,(﹣2,16)= ,(−23, )=3.(2)计算(3,2)+(3,4)=( , ),并写出计算过程;(3)直接写出结果:①(5,10)﹣(5,2)= ;②(10,4)×(2,10)= .6.(2023春•江南区校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地,我们规定关于任意正整数m 、n 的一种新运算:f (m )•f (n )=f (m +n )(其中m 、n 为正整数).例如,若f (3)=2,则f (6)=f (3+3)=f (3)•f (3)=2×2=4.f (9)=f (3+3+3)=f (3)•f (3)•f (3)=2×2×2=8.(1)若f (2)=5,①填空:f (6)= ;②当f (2n )=25,求n 的值;(2)若f (a )=3,化简:f (a )•f (2a )•f (3a )•…•f (10a ).7.(2023春•仪征市期末)阅读材料,完成问题.如果a c =b ,则(a ,b )=c .例如:32=9,则(3,9)=2.(1)填空:(4,64)= ,(﹣2,1)= ,(−3,−127)= ; (2)试说明(5,3)+(5,7)=(5,21).8.(2023春•泰兴市校级月考)规定两正数a ,b 之间的一种运算记作L (a ,b ),如果a c =b ,那么L (a ,b )=c .例如:因为32=9,所以L (3,9)=2.小明在研究这种运算时发现一个结论:L (a ,m n )=L (a ,m )﹣L (a ,n ). 小明给出了如下的证明:设L (a ,m )=x ,L (a ,n )=y ,由规定,得a x =m ,a y =n ,∴m n =a x ÷a y =a(x ﹣y ), ∴L (a ,m n)=x ﹣y , ∴L (a ,m n )=L (a ,m )﹣L (a ,n ).请你解决下列问题:(1)填空:L (2,16)= ,L ( ,36)=﹣2;(2)证明:L (3,5)+L (3,8)=L (3,40);(3)如果正数a 、m 、n ,满足L (a ,m )=x ﹣2,L (a ,n )=3x ﹣6,L (a ,mn )=2x +2,求x .9.(2023春•万秀区校级期中)如果a c =b ,那么我们规定(a ,b )=c ,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c ,求证:a +b =c .10.(2023春•巨野县期中)规定a *b =2 a ×2 b ,求:(1)求1*3;(2)若2*(2x +1)=64,求x 的值.11.(2023春•滦南县期中)【阅读理解】阅读下列内容,观察分析,回答问题:Ⅰ.33×34=(3×3×3)×(3×3×3×3)=37;Ⅱ.53×54=(5×5×5)×(5×5×5×5)=57;Ⅲ.a 3×a 4=(a ×a ×a )×(a ×a ×a ×a )=a 7.【概括总结】通过以上分析,填空:a m ×a n =(a ×a ×a ×⋯×a ︸m 个)(a ×a ×a ×⋯×a ︸n 个); =a ×a ×a ×⋯×a ︸(①)=a (②)(m 、n 为正整数).(1)在上述分析过程中:①所在括号中填 ,②所在括号中填 .【应用与拓展】:计算:(2)105×104= ;(3)a •a 3•a 7= ;(4)如果x 是不等于1的正数,且x n •x 3n +3=x 35,求n 的值.12.(2023春•亭湖区校级期中)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(3,243)= ,(﹣2,﹣32)= ;②若(x ,116)=﹣4,则x = ;(2)若(4,5)=a ,(4,6)=b ,(4,30)=c ,探究a ,b ,c 之间的数量关系并说明理由.13.(2023春•建邺区校级期中)我们约定a ☆b =10 a ×10 b ,如2☆3=102×103=105.(1)试求12☆3和4☆8的值;(2)(a +b )☆c 是否与a ☆(b +c )相等?并说明理由.14.(2022秋•松滋市期末)如果x n =y ,那么我们规定(x ,y ]=n .例如:因为42=16,所以(4,16]=2.(1)(﹣2,16]= ;若(2,y ]=6,则y = ;(2)已知(4,12]=a ,(4,5]=b ,(4,y ]=c ,若a +b =c ,求y 的值;(3)若(5,10]=a ,(2,10]=b ,令t =2ab a+b . ①求25a16b 的值;②求t 的值.15.(2023春•东海县月考)如果a c =b ,那么我们规定(a ,b )=c ,如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2,0.25)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c .求证:c ﹣b =a .16.(2023春•霍邱县期中)如果a c =b ,那么我们规定(a ,b )=c ,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)= ,(4,1)= (2,0.25)= ;(2)记(3,5)=a ,(3,6)=b ,(3,30)=c .求证:a +b =c .17.(2022秋•米东区期中)我们规定:a ⊗b =10 a ×10 b ,例如3⊗4=103×104=107,请解决以下问题:(1)试求7⊗8的值.(2)想一想(a +b )⊗c 与a ⊗(b +c )相等吗?请说明理由.18.(2023春•徐汇区校级期中)阅读下列材料:一般地,n 个相同的因数a 相乘a •a …,记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a ≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.19.(2022秋•浦东新区校级期中)如果a c=b,那么我们规定:F(a,b)=c,例如,因为23=8,34=81那么我们就说F(2,8)=3,F(3,81)=4.(1)请根据上述定义,填空:F(4,16)=;F(2,64)=;F(25,16625)=;(2)已知F(x,5)=a,F(x,6)=b,F(x,m)=c,且a+b=c,求m的值.20.(2022春•平和县期中)如果x n=y,那么我们规定(x,y)=n.例如:因为32=9,所以(3,9)=2.(1)(理解)根据上述规定,填空:(2,8)=,(2,14)=;(2)(说理)记(4,12)=a,(4,5)=b,(4,60)=c.试说明:a+b=c;(3)(应用)若(m,16)+(m,5)=(m,t),求t的值.21.(2022春•邳州市期中)规定m*n=3m×3n.求:(1)0*2;(2)如果2*(x﹣1)=81,求x的值.22.(2021秋•曲阜市期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,1)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).23.(2022春•包河区校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地,我们规定关于任意正整数m 、n 的一种新运算:f (m )•f (n )=f (m +n )(其中m 、n 为正整数);例如,若f (3)=2,则f (6)=f (3+3)=f (3)•f (3)=2×2=4.(1)若f (2)=5,则:①计算f (6);②当f (2n )=25,求n 的值;(2)若f (a )=3,化简:f (a )•f (2a )•f (3a )•…•f (10a ).24.(2022春•沛县校级月考)规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)= ,(﹣3,1)= ,(﹣2,−132)= .(2)令(4,6)=a ,(4,7)=b ,(4,42)=c ,试说明下列等式成立的理由:(4,6)+(4,7)=(4,42)25.(2022春•宜兴市校级月考)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)= ,(﹣2,﹣32)= ;②若(x ,18)=﹣3,则x = . (2)若(4,5)=a ,(4,6)=b ,(4,30)=c ,试探究a ,b ,c 之间存在的数量关系;(3)若(m ,8)+(m ,3)=(m ,t ),求t 的值.26.(2022春•邗江区校级月考)根据同底数幂的乘法法则,我们发现:a m +n =a m •a n (其中a ≠0,m ,n 为正整数),类似地我们规定关于任意正整数m ,n 的一种新运算:h (m +n )=h (m )•h (n ),请根据这种新运算解决以下问题:(1)若h (1)=﹣1,则h (2)= ;h (2019)= ;(2)若h (7)=128,求h (2),h (8)的值;(3)若ℎ(4)ℎ(2)=4,求h (2)的值.27.(2021春•清江浦区校级期中)某学习小组学习了幂的有关知识发现:根据a m =b ,知道a 、m 可以求b 的值.如果知道a 、b 可以求m 的值吗?他们为此进行了研究,规定:若a m =b ,那么T (a ,b )=m .例如34=81,那么T (3,81)=4.(1)填空:T (2,32)= ;(2)计算:T(13,27)+T(−2,16);(3)探索T (2,3)+T (2,7)与T (2,21)的大小关系,并说明理由.28.(2021秋•宁江区校级期中)规定a ※b =2 a ×2 b ,例如:1※2=21×22=4.(1)求2※3的值;(2)若2※(x +1)=16,求x 的值.29.(2021秋•郫都区校级月考)定义新运算:a ☆b =10 a ×10 b .(1)试求:12☆3和4☆8的值;(2)判断(a ☆b )☆c 是否与a ☆(b ☆c )相等?验证你的结论.30.(2021春•高新区校级期中)对数的定义:一般地,若a x =N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作:x =L a N .比如指数式24=16可以转化成对数式4=L 216,对数式2=L 225可以转化成指数式52=25,根据对数的定义可得到对的一个性质:L a (M •N )=L a M +L a N (a >0,a ≠1,M >0,N >0).理由如下:设L a M =m ,L a N =n ,则M =a m ,N =a n ,∴M •N =a m •a n =a m +n ,由对数的定义得m +n =L a (M •N );而m +n =L a M +L a N ,∴L a (M •N )=L a M +L a N ,认真阅读理解上述材料,解决以下问题:(1)填空:①将指数式43=64转化成对数式为 ;②将对数式4=L 381转化成指数式为 ;③计算:L 1010= ;(2)试说明:L a (M N )=L a M ﹣L a N (a >0,a ≠1,M >0,N >0); (3)计算:L 32+L 318﹣L 34.。