新人教版八年级数学上册导学案(杜曲一中)
最新人教版八年级上册全册数学导学案
11.1.1三角形的边一、学习目标1.认识三角形,能用符号语言表示三角形,并把三角形分类. 2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法,•并能用于解决有关的问题 二、重点:知道三角形三边不等关系.难点:判断三条线段能否构成一个三角形的方法. 三、合作学习(一)精讲 知识点一:三角形概念及分类 1、学生自学教科书内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段顺次首尾连接所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边; 点A 、B 、C 是三角形的______; _____、 ______、_______ 是相邻两边组成的角,叫做三角形的内角,简称三角形 的角。
图中三角形记作__________。
(2)三角形按角分类可分为___________、___________、______________。
(3)三角形按边分类可分为 _____________ (二)精练一:1、如图.下列图形中是三角形的___________?2、图3中有几个三角形?用符号表示这些三角形.精讲 知识点二:知道三角形三边的不等关系,并判断三条线段 能否构成三角形1、探究:请同学们画一个△ABC ,分别量出AB ,BC ,AC 的长,并比较下列各式的大小:AB+BC_____AC AB + AC _____ BC AC +BC _____ AB 结论:三角形任意两边的和大于第三边,任意两边的差小于第三边.......................... 精练二:1、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,102、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。
3、如果三角形的两边长分别是3和5,那么第三边长可能是( ) A 、1 B 、9 C 、3 D 、104、阅读教科书例题,仿照例题解法完成下面这个问题:5、一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。
新人教版八年级数学上导学案(全册)
第十一章三角形与三角形有关的线段三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。
新课导学:】三角形的有关概念——阅读课本第1至3页,回答以下问题:(1)三角形概念:由不在同一直线上的条线段连接所组成的图形。
(2)三角形的表示法(如图1)三角形ABC可表示为:;(3)ΔABC的顶点分别为A、、;(3)ΔABC的内角分别为∠ABC,,;(4)ΔABC的三条边分别为AB,,;或a,、;(5)顶点A的对边是,顶点B的对边分别是,顶点C的对边分别是。
三角形的分类:~(1)下图中,每个三角形的内角各有什么特点(2)下图中,每个三角形的三边各有什么特点}(3)结合以上图形你认为三角形可以如何分类试一试①按角分类:②按边分类:第1题(4)在等腰三角形中, 叫做腰,另外一边叫做 ,两腰的夹角叫做 , 叫做底角。
(5);(6)等边三角形是特殊的等腰三角形,即底边和腰 的等腰三角形。
3、三角形的三边关系问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近请将你的设计方案填写在下表中: 路线距离 |比较(3)阅读课本第3页,填写:三角形两边的和 (4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ②` AB + AC BC (填上“> ”或“ < ” ) ③4、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm所以: 所以x= cm答:三角形的三边分别是 、 、 《课堂练习: A 组 !1.①图中有 个三角形,分别为②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ;E DA第2题C 地A 地三条边是、、;2、如图中有个三角形,用符号表示3.判断下列线段能否组成三角形:①4,5,6 ()②1,2,3 ()③2,2,6 ()④8,8,2 ()4、等腰三角形一腰长为6,底边长为7,则另一腰为,周长为。
新人教版八年级数学上册全册导学案(104页)
新人教版八年级数学上册全册导学案11.1 与三角形有关的线段一.学习目标1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学,热爱生活的情感。
二.学习重难点三角形的性质和分类及应用三.学习过程第一课时三角形的边(一)构建新知1.阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查1.若一个三角形三边长分别为2,3,x,则x的值可以为 ____(只需填一个整数)。
2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为 ____cm。
4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A.三边不等的三角形 B.只两边相等的三角形C.三边相等的三角形 D.不等边三角形和等腰三角形5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()。
A.5 B.6 C.7 D.106.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。
BCA(四)学习评价 (五)课后练习 1.学习指要 1~2页2.教材8~9页 1题,2题,6题,7题第二课时三角形的高、中线与角平分线(一)构建新知 1.阅读教材4~5页(1)如图,在△ABC 中,作BC 边上的高AD 和中线AE ;并作∠A 的角平分线AF 。
新人教版八年级数学上册导学案(全有答案)
河南省实验中学资料第一章轴对称与轴对称图形我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思⑵这条直线可能不经过这个图形本身吗⑶圆的直径是圆的对称轴吗学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴正方形呢正五边形呢正六边形呢从中可以得到什么结论学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同学生思考、分组讨论、交流。
新人教版八年级数学上册导学案全册
八年级第一学期数学全册导学案11.1.1 三角形的边一、知新通过预习教材P63-P65的内容,完成下面各题。
1、由不在()上的三条线段()所组成的图形叫做三角形。
可用符号(“”)表示。
2、三角形有三条边,三个内角,三个顶点,组成三角形的()叫做三角形的边,相邻两边所组成的角叫做三角形的内角,相邻两边的()是三角形的顶点。
3、如图,我们也可以小写字母表示三角形的边, A∠A的对边是BC,也可以用a表示;∠B的对边是(),可以用()表示; c b∠C的对边是 ( ),可以用( )表示。
B a C4、三角形的任意两边之和()第三边;任意两边之差()第三边。
5、三角形的分类(1)按角分类直角三角形三角形( )斜三角形( )(2)按边分类不等边三角形三角形底边和腰不等的三角形等腰三角形()A二、小试身手(1)右图中有()个三角形,分别是(). B C D(2)三角形按角分类,可分为()A等腰锐角三角形、等腰直角三角形、等腰钝角三角形B等腰三角形、不等边三角形、等边三角形C锐角三角形、直角三角形、钝角三角形D等腰三角形、不等边三角形教学点1 三角形的有关概念A例1 如图所示,图中共有( )个三角形,其中以BC为边的三角形是( ), E G F∠BEC是( )的内角。
例2 在右图中三角形的个数为()个,分别是()BC教学点2三角形三边关系的运用例1下列长度的三条线段中,能组成三角形的是()A.3cm, 5cm, 8cmB.8cm, 8cm, 18cmC.0.1cm, 0.1cm, 0.1cmD.3cm, 40cm,8cm例2如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm 和12cm D.15cm例3以下列长度的三条线段为边,能构成三角形的有哪些?(1)6cm,8cm,10cm(2)5cm,8cm,2cm;(3)三条线段之比为4:5:6;(4)a+1,a+2,a+3(a>0)当堂检测1.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,82.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中就选取()A.10cm的木棒B. 50cm的木棒C .100cm的木棒 D.110cm的木棒3.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A.9cmB.12cmC.9cm 或12cmD.以上答案都不对小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m和5m的木棒,还需要到某木材市场上购买一根。
新人教版八年级数学上册导学案(全 有答案)
河北省真验中教资料之阳早格格创做第一章轴对于称与轴对于称图形教教目标:1、瞅察、体验死计中的轴对于称图形,认识轴对于称图形.2、能推断一个图形是可是轴对于称图形.3、明白二个图形闭于某条曲线成轴对于称的意义.4、粗确区别轴对于称图形与二个图形闭于某条曲线成轴对于称.5、明白并能应用轴对于称的有闭本量.教教沉面:1、能推断一个图形是可是轴对于称图形.2、轴对于称的有闭本量.易面:1、推断一个图形是可是轴对于称图形.2、粗确区别轴对于称图形与二个图形闭于某条曲线成轴对于称.教教历程:一、情境导进西席展示图片:五角星、脸谱、正圆形、禁止标记、山火倒映等.教死欣赏,思索:那些图形有什么特性?二、商量新知1、死计中有许多偶妙的对于称,如从镜子里瞅到自己的像;把脚掌盖正在镜子上,镜子里的脚与自己的脚真足沉合正在所有;那些皆是对于称,您还能举出例子吗?教死分组思索、计划、接流,选代表收止.西席巡回指挥、面评.2、动脚搞一搞:用曲尺战圆规正在纸上做出一个梯形,并把纸上的梯形剪下去,沿上底战下底的中面的连线对于合,曲线二旁的部分能真足沉合吗?教死计动:瞅察、小结特性.3、西席给出轴对于称图形的定义.问题:⑴“真足沉合”是什么意义?⑵那条曲线大概没有通过那个图形自己吗?⑶圆的曲径是圆的对于称轴吗?教死分组思索、计划、接流,选代表收止,西席面评.⑴指形状相共,大小相等.⑵没有克没有及,果为那条曲线必须把那个图形分成能充分沉合的二部分,则必定通过那个图形的自己.⑶没有是,果为圆的曲径是线段,而没有是曲线,应道曲径天圆的曲线或者通过圆心的曲线.4、预测归纳:正三角形有几条对于称轴?正圆形呢?正五边形呢?正六边形呢?从中不妨得到什么论断?教死思索、计划、接流.5、您还能举出死计中轴对于称图形的例子吗?6、教科书籍第五页图1-6⑴⑵二个图,问题:念一念,每组图形中,左边图形沿真线对于合后与左边的图形有着何如的闭系?7、西席给出二个图形闭于某条曲线成轴对于称的定义.8、您还能举出死计中二个图形闭于某条曲线成轴对于称的例子吗?思索:轴对于称图形与二个图形闭于某条曲线成轴对于称有什么同共?教死思索、分组计划、接流.西席带领小结.三、坚韧反馈1、26个英文大写字母中,是轴对于称图形的是________________________.2、中华民族是一个有着五千年文化履历的陈腐民族,正在她暴虐的文化中,汉字是其中一朵美丽的偶葩,请写出几个是轴对于称的汉字-______________________.3、闭于奥运会五环图案有下列各道法:①它没有是轴对于称图形;②它是轴对于称图形,惟有一条对于称轴③它是轴对于称图形,有无数条对于称轴,其中粗确的是______.从轴对于称的角度,您感触哪些图形比较特殊?简要道明您的缘由. 5、绘出一个惟有三条对于称轴的轴对于称图形.6、上头哪一个选项的左边图形与左边图产死轴对于称? 四、课堂小结教完本节,您有什么支获? 五、做业安排1、必搞题:教科书籍第6页锻炼题1-4题.2、降正在EF 处,合痕为KH ,则与梯形).A 、梯形EFGHD 、梯形EFKH1、通过合叠的办法认识线段的轴对于称性.2、明白并能使用线段笔曲仄分线的本量.教教沉面:带领教死相识有闭线段笔曲仄分线的知识.易面:使用线段笔曲仄分线的本量办理问题. 教教历程: 一、自决探索正在纸上绘一条线段AB,通过对于合使面A 与面B 沉合,独力办理以下问题:1、将纸展启后铺仄,记合痕天圆的曲线为MN ,曲线MN 与线段AB 的接面为O ,线段AO 与BO 的少度有什么闭系? ________________________________________2、曲线MN 与线段AB 有何如的位子闭系? _______________________________________A D3、由以上1、2,曲线MN喊搞线段AB的______________.4、线段AB是轴对于称图形吗?如果是,对于称轴是什么?______________________________________________5、正在曲线MN上任与一面P,对接PA与PB,如果把那弛纸沿曲线MN对于合,PA与PB沉合吗?__________________________________________________6、正在曲线MN上再与另一面Q,对接QA与QB,把那弛纸沿曲线MN对于合,QA与QB沉合吗?________________________________________________7、由以上5、6,您有什么论断?_______________________________________8、测验考查用尺规做图的要领做出线段AB的笔曲仄分线.________________________________________________二、小拉拢做任性绘一个三角形,用圆规战曲尺做出它的三条边的笔曲仄分线,有什么创造?_____________________________________________________________ ____三、教以致用1、面P、C、D是线段AB的笔曲仄分线上的三面,分别对接PA、PB,AC、BC,AD、BD,指出图中所有相等的线段.2、任性绘一条线段,用曲尺战圆规把它四仄分.3、A B 要正在A、B、C三个乡村之间建一座变电站,使它到三个村庄的距离相等,您能正在图中找出面O的位子吗?C四、达标反馈,当堂锻炼1、如上左图,曲线MN战DE 分别是线段AB 、BC 的笔曲仄分线,它们接于面P ,请问:PA 战PC 相等吗?2、如上左图,AB=AC ,MN 笔曲仄分AB,若AB=6,BC=4,供△DBC 的周少.3、如上左图,正在曲线上供做一面P ,使PA=PB.4、如上左图,∠BAC=120°, ∠C=30°,DE 是线段AC 的笔曲仄分线,供∠BAD 的度数. 五、课堂小结本节课主要教习了:1、线段笔曲仄分线的知识.2、线段的笔曲仄分线的面到线段二短面的距离相等.3、利用线段的笔曲仄分线的面到线段二短面的距离相等办理本量问题. 六、做业安排3、必搞题:教科书籍第10页习题A 组1-2题,B1-2题.4、选搞题:a)用曲尺战圆规分别做出线段AB 与BC 的笔曲仄分线; b) 您有什么创造?1.3 角的仄分线教教目标:1、通过合叠的办法认识角的轴对于称性.2、明白并能使用角的仄分线的本量.3、会绘已知角的仄分线.ABCNDMABDCEAB C教教沉面:带领教死相识有闭线角仄分线的知识.易面:使用角仄分线的本量办理问题.:教教历程:一、自决探索正在纸上绘∠BAC ,把它剪下去并对于合,使角的二边沉合,而后把纸铺仄,独力办理以下问题:1、角是轴对于称图形吗?如果是,对于称轴是什么?_______________________________________________2、测验考查用尺规做图的要领做出∠BAC的仄分线AD.___________________________________________________3、正在AD上任与一面P,做出面P到∠BAC 二边的垂线段PM与PN,垂脚分别为面M战面N,如果把∠BAC沿AD合叠,线段PM与PN沉合吗?由此,您能得出什么论断?___________________________________________________________ 4、正在AD上另与另一面Q,沉复上述支配,您还能得出共样的论断吗?___________________________________________________________二、小拉拢做1、任性做一个钝角三角形,用曲尺战圆规做出它的三条角仄分线,您有什么创造?___________________________________________________________ 2、任性做一个曲角三角形,用曲尺战圆规做出它的三条角仄分线,您有什么创造___________________________________________________________ 3、任性做一个钝角三角形,用曲尺战圆规做出它的三条角仄分线,您有什么创造?预测论断:___________________________________________________________三、教以致用天泉农副产品集集天M位于三个乡村A、B、C之间,其位子到三条公路AB 、AC 、BC 的距离相等,您能找到M 的位子吗?四、达标反馈,当堂锻炼a)如上左图,正在曲角坐标系中,AD 是Rt △OAB 的角仄分线,面D到AB 的距离是2,供面D 的坐标.b) 如上左图,若面M 正在∠ANB的角仄分线上,∠A=∠B=90°,那么您有何如的论断?________________________________________________若面N 正在∠AMB 的角仄分线上,∠A=∠B=90°,那么您有何如的论断?3、如上左图,△ABC 中, ∠A=90°,BD 仄分 ∠ABC,AD=3cm,BC=10cm, 供△BDC 的里积.4、如上左图,已知∠AOB 战C 、D 二面,是可能找到一面P ,使得面P 到OA 、OB 的距离相等,而且P 面到C 、D 二面的距离相等. 五、课堂小结那节课您有哪些支获?___________________________________________________________ 六、 做业树坐1、必搞题:教科书籍第12页A 组、B 组.B2、§1.4 等腰三角形导教案 (泰山版八年级上册)一、教习目标1、 经历探索等腰三角形的本量的历程,掌握等腰三角形的轴对于称性、等腰三角形“三线合一”、等腰三角形的二个底角相等等本量.2、 经历探索等边三角形的轴对于称性战内角本量的历程,掌握那个本量,并会做出合理的道明.3、 掌握已知底边战底边上的下用尺规做等腰三角形的要领. 二、 教习沉面、易面沉面:等腰三角形与等边三角形的本量 易面:等腰三角形的本量的使用三、 教习历程 (一) 情境导进瓦工师傅盖房时,瞅房梁是可火仄,偶尔便用一齐等腰三角板搁正在梁上,从顶面系一沉物,如果系沉物的绳子正佳通过三角板底边的中面,房梁便是火仄的.为什么?您念相识其中的偶妙吗?教了本节后您将名顿开.(二) 自决教习自教课本P 13——P 16“挑拨自尔”,解问下列问题:1. 咱们相识等腰三角形是轴对于称图形,它底边上的下线天圆的曲线式它的对于称轴,那么沿着对于称轴将等腰三角形对2.3. 如图,∠B=∠.(三) 合做商量商量面一:等腰三角形的本量例1 等腰三角形中有一个角为80º.供其余二个角的度数. 归纳:商量面二:等边三角形的本量例2 试道明“等边三角形的每个内角皆等于60º” 小拉拢做:用一弛正圆形的纸合出一个等边三角形. 商量面三:尺规做等腰三角形例3 已知一个等腰三角形的底边战腰,您能做出那个三角形吗?如果向去底边战底边上的下呢?(四) 锻炼达标1. 等腰三角形的二边少分别是6cm 、3cm ,则该等腰三角形的周少是( )A. 9 cmB. 12 cmC. 12 cm 或者15 cmD. 15 cm2. 等腰三角形的一个角为30º,则它的底角为( ) A. 30º B. 75ºC. 30º或者75ºD. 15º3如图,正在ΔABC 中,D 、E 是BC 边上的二面,且AD=BD=DE=AE=CE ,供∠B 、∠BAC 的度数.(五) 课堂小结那一节您教会了什么?(六) 拓展提下1. 如图所示,∠B=∠C ,AD 仄分∠BAC 接BC 于D ,ΔABC的周少为36cm ,ΔADC 的周少为30cm ,那么AD 的少为——————cm.2、如图,ΔABC 为等边三角形,∠1=∠2=∠3,试道明ΔDEF 为等边三角形.AB CE D ABCD四. 做业§1.5 成轴对于称图形的本量导教案(泰山版八年级上册)一、教习目标1、经历探索轴对于称图形的本量的历程,明白对接对于应面的线被对于称轴仄分、对于应线段相等、对于应角相等的本量.2、会绘出与已知图形闭于某条曲线对于称的图形.二、教习沉面、易面沉面:轴对于称图形的本量易面:利用轴对于称图形的本量做对于称图形三、教习历程(一)情景导进共教们,今年的10月1日是咱们伟大的祖国60周岁的死日,世界上下正洋溢正在一片欢歌笑语的海洋里,皆正在为母亲的死日主动天搞准备,您搞了什么准备呢?没有如咱们当前去叠五角星吧.您还记得怎么叠吗?跟教授所有搞……佳了,五角星叠佳了.请共教们念一念,那种合纸叠正五角星的要领,其中隐含着什么数教原理?(二)自决教习自教课本P17----P19例二,完毕下列问题:1.——————————的曲线,喊搞那条线段的笔曲仄分线.2.成轴对于称的二个图形,正在大小战形状圆里有何如的闭系?您是怎么相识的?‘.4.轴对于称图形的对于应线段、对于应角有何如的闭系? (三)合做商量商量面一:成轴对于称图形的本量央供:粗确成轴对于称图形的对于应面连线被对于称轴笔曲仄分,对于应线段相等,对于应角相等.共桌合做办理课本P 18例1.商量面二:使用轴对于称的本量做一个图形闭于某条曲线的轴对于称图形.l 是对于称轴.(四) 锻炼达标 利用10P 19锻炼(五)课堂小结道道您的支获.(六)拓展提下 20习题A 组2. 将矩形ABCD 沿AE 合叠,得到如图所示的图形,已知∠CED ’=80º,则∠AED 的大小是( )A 40ºB 50ºC 60ºD 80º3..四、做业一、教习目标 1、分离现真死计中的真例,相识镜里对于称及其应用,欣赏镜里对于称图形;2、思索并探索镜里对于称下图形的变更.二、教习沉面、易面沉面:镜里对于称及其应用易面:镜里对于称下图形的变更三、教习历程(一)情景导进自近古此后,对于称的形式被认为是战谐、优好而且真正在的.没有管正在自然界里仍旧正在兴办中,没有管正在艺术中仍旧正在科教中,以至最一般的凡是死计用品中,对于称的形式皆随处可睹.山倒影正在湖中,那是如许令人易记的对于称情形.教佳对于称,对于咱们认识图形去道是很要害.(此处提议教授们适合准备一些相闭的图片,以激励教死的教习兴趣.)(二)自决教习自教课本P21——P22,办理下列问题:1、物体与它正在镜子里的像成镜里对于称,它们的大小、形状相共吗?2、一次早会上,主持人出了一道题目:“怎么样把式子2+3=8形成一个真真的等式?”您能吗?(三)合做商量商量面:镜里对于称的本理及推断要领严肃阅读课本的“小资料”、“真验与商量”,分离自己的死计经历,共桌互帮归纳镜里对于称的本理.(四)锻炼达标1、课本“挑拨自尔”.2、P24锻炼与习题A组(五)课堂小结道道镜里对于称的本理及判别要领(六)拓展提下1、课本P22习题B组2、宋代理教家邵康写有一尾五止绝句:“一去二三里,烟村四五家,楼台七八座,八九十枝花.”把那尾诗写正在一弛纸上,并将写字的部分仄止对于合镜里.正在那尾诗的所有字中中,镜子中的像与本字一般的是———————————.四、做业§1.7 简朴的图案安排导教案(泰山版八年级上册)一、教习目标1、欣赏死计中的轴对于称图案,能领会它是由哪些简朴几许图形组成的.2、能利用简朴几许图形安排轴对于称图案,体验数教活动的兴趣,培植教死的革新意识.二、教习沉面、易面安排图案三、教习历程(一)情境导进共教们皆相识,咱们潍坊是一个风筝之皆.共教们您搁过吗?回念一下您玩的风筝的格式,正在于其余共教接流一下,您会有更多的创造.本去,那些优好的风筝您皆能安排出去,以至有大概还要好.怎么样,念没有念自己搞一个风筝?念,那便去佳佳的教习一下本节知识吧.(二)自决教习瞅课本P25-------P26,依次办理相闭问题.(三)合做商量利用轴对于称举止简朴的图案安排(四)锻炼达标课本P25————P26锻炼战习题.(五)拓展提下锻炼册5、6二题(六)做业第一章综合检测一、采用题(每题3′,共30′)1、下列图形中一定是轴对于称的图形是().A、梯形B、曲角三角形C、角D、仄止四边形2、等腰三角形的一个内角是50°,则其余二个角的度数分别是().A、65° 65°B、50°80°C、65°65°或者50°80°D、50° 50°3、如果等腰三角形的二边少是6战3,那么它的周少是().A、9B、12C、12或者 15D、154、到三角形的三个顶面距离相等的面是().A、三条角仄分线的接面B、三条中线的接面C、三条下的接面D、三条边的笔曲仄分线的接面5、等腰三角形的一个中角等于100°,则与它没有相邻的二个内角的度数分别为().A、40° 40°B、80°20°C、50°50°D、 50° 50°或者 80°20 °6、∠AOB 的仄分线上一面P 到OA 的距离为5,Q 是OB 上任一面,则( ).A 、PQ>5B 、PQ ≥5C 、PQ<5D 、PQ ≤57、下列轴对于称的图形中,对于称轴最少的是( ).A 、等边三角形B 、等腰梯形C 、正圆形D 、圆8、已知等腰△AOB 的底边=8cm ,且︱AC-BC ︱=5cm ,则腰AC 的少为( ).A 、13 cm 或者3 cmB 、3 cmC 、13 cmD 、8 cm 或者6 cm9、如图,正在△ABC 中,AB=AC,∠A=36°,BD 、CE 分别是∠ABC 、∠ACB 的角仄分线,且相接于面F ,则图中的等腰三角形有( ).、8 个 D、9个)二、挖空题(每题3′,共30′)1、△ABC 中,DE 笔曲仄分AC ,与AC 接于面E ,与BC 接于面D ,∠ C=15,∠BAD=60,则△ABC 是三角形.2、∠AOB 里里有一面P ,分别做出面P 闭于OA 、OB 的对于称面 P 1、P 2,对接P 1P 2,分别接OA 、OB 、于面M 、N ,若P 1P 2=5cm ,则△PMN 的周少为.3、已知面P 到X 轴Y 轴的距离分别是2 战3,且面P 闭于X 轴对于称的面正在第四象限,则面P 的坐标是.4、等腰三角形的一腰上的下与另一腰的夹角为45°,则那个三角形的底角为.5、数轴上表示1战3的面分别为面A 战面B ,面B 闭于面A 的对于称面为面C ,则面C 所表示的数是.6、已知面P 、Q 闭于曲线x=1对于称,面P 的横坐标为-2,面Q 的纵坐标是-3, 则面P 的纵坐标为,面Q 的横坐标是( ),PQ=.7AD=BD,AB=AC=CD,则∠BAC=. 8、如果△l 成轴对于称,且∠A=50°,∠B’=70°,那么∠C=.9、△ABC中,AD为角仄分线,DE⊥AB于E,DF⊥AC于F,AB=10厘米,AC =8厘米,△ABC的里积为45仄圆厘米,则DE的少为.10、△ABC中,D为AB的中面,且CD=AD=BD,则∠ACB=.三、解问题(每题10′,共40′)1、如下左图,正在△ABC中,BC边的笔曲仄分线接AC于面D,对接BD.⑴如果CE=4,△BDC的周少为18,供BD的少.⑵如果∠ADM=50°,∠ABD=20°,供∠A的度数.PA、PB.的延少线上,∠.CE=CD,试决1、略.2、C.达标反馈,当堂锻炼问案:1、PA=PC.2、10.3、90°.做业安排问案:2、PA=PC达标反馈,当堂锻炼问案:1、D(2,0).2、AM=BM;NA =NB.3、15cm2.4、略.1.4 “自决教习|”“锻炼达标”1.D 2.C 3.∠B=30º∠BAC=120º“拓展提下”1.AD=12cm 2.提示:利用三角形的中角本量“拓展提下”2.B 3.启搁题,问案没有唯一.1.6 “拓展提下”2.一,二,三,十第一章综合检测问案部分一、1、C2、C3、D4、A5、D6、B7、B8、C9、C10、D二、1、曲角 2、5 3、P(3,2)4、62、5°或者22、5° 5、-1 6、-3,2,4 7、108°8、60°9、5 10、90°三、1、⑴、BD=5⑵80°2、PA>PB3、EF⊥BC4、EB=DE第二章乘法公式与果式领会2.1 仄圆好公式【教教真量】:17.1 仄圆好公式【教习目标】:1.记着仄圆好公式并会举止使用.2.能用几许拼图的办法考证仄圆好公式.【教习沉面战易面】:沉面:仄圆好公式,仄圆好公式的几许拼图考证及其应用.易面:仄圆好公式的几许拼图考证及其应用【教教要领】:创建情境—自决商量—合做接流—拓展普及.【教教准备】:多媒介课件+导教案【导教过程】:一、创建问题情境,引进新课.请共教们与尔所有瞅瞅那幅图片,它是有一些优好的少圆形花坛组成,如果每幅图案的少圆形的少为(a+b)米,宽为(a-b)米,它的里积为几呢?共教们会很快天回问为:(a+b)(a-b),那么怎么样估计呢?那是月朔咱们教习的真量,多项式乘以多项式.为了更佳天坚韧往日教过的真量,共教们拿出咱们刚刚收的导教案,搞一下导教案上的题目.【温故知新】请共教们用3分钟的时间独力完毕下列问题.通过估计,您能创造它们的顺序吗?(1)(x+1)(x-1)=(2)(m+2)(m-2)=(3)(2x+1)(2x-1)=根据大家做出的截止,您能预测(a+b)(a-b)的截止是几吗?小组计划接流,大胆预测.为了考证大家预测的截止,咱们再估计:(a+b)(a-b)=a2-ab+ab-b2=a2-b2.得出仄圆好公式(a+b)(a-b)= a2-b2.即二数战与那二数好的积等于那二个数的仄圆好.引出本节课的教习真量 2.1 仄圆好公式粗确本节的教习目标.二、自决教习一:自教任务:1、教死自教课本34页.2、通过自教,能通过所估计的式子归纳顺序,推导公式,从而找出公式的结构特性.3、不妨通过图形考证公式.正在教习历程中,教死互相之间探索接流,西席粗道面拨.仄圆好公式:(a+b)(a-b)=a2-b2二个数的战与那二个数的好的积等于那二个数的仄圆好.仄圆好公式结构特性:(带领教死探索归纳,大胆收止)西席归纳综合:①左边是二个二项式相乘,那二个二项式中有一项真足相共,另一项互为好同数.②左边是乘式中二项的仄圆好.即相共的仄圆与好同项的仄圆的好.为了更佳天道明该定理的粗确性,安排用动绘的形式曲瞅天道明仄圆好公式的粗确性.(睹多媒介课件)教死瞅察图形,估计阳影部分的里积.通过思索不妨创造:左边图形的里积:(a+b)(a-b).左边转动此后的图形的里积为:(a2-b2).那二部分里积该当是相等的,即(a+b)(a-b)= a2-b2.西席活动:带领教死小心瞅察,自决探索,创造顺序,举止归纳,收端体验仄圆好公式.正在本活动中西席主要闭注:(1)教死是可自己主动介进探索历程;(2)教死正在接流中所加进的情感战做风.教死计动:为了让教死进一步明白该公式,能更佳天使用该公式,尔又安排了底下的锻炼.(睹多媒介课件)会挖会选尔最棒:1.参照仄圆好公式“(a+b)(a-b)= a2-b2.”挖空(1)(t+s)(t-s)= (2) (3m+2n)(3m-2n)=(3)(1+n)(1-n)= (4) (10+5)(10-5)=2、推断下列式子是可可用仄圆好公式.(1)(-a+b)(a+b) (2)(-2a+b)(-2a-b)(3)(-a+b)(a-b) (4)(a+b)(a-c)三、自决教习二:请共教们用5分钟的时间瞅课本35页的例1战例2.央供如下:(1)记着利用仄圆好公式举止估计的要领战步调.(2)明白惟有切合公式央供的乘法才搞使用公式简化运算.其余的运算仍按乘法规则估计.(3)瞅完后,用8分钟的时间独力完毕导教案上的1战2二题.1.下列多项式乘法中,能用仄圆好公式估计的是()A.(x+1)(1+x);B.(2x-5)(2x+5)C.(-a+b)(a-b);D.(x2-y)(x+y2);2.使用仄圆好公式举止估计:(1)(3x+4)(3x-4)(2) (3a+2b)(2b-3a)(3)(-4x-3y)(-4x+3y)(4)51×49(5) (a+1)(4a-1)-(2a+1)(2a-1)教死计动:【合做接流】:先小组内接流,由组少宣布解题步调战问案,小组内办理没有了的问题由组少提接班内接流,如再有疑问由教授面拨粗道 .【归纳归纳】:由教死归纳本节教习真量,并归纳出知识重心.以便于共教正在搞题时能粗确使用仄圆好公式.四、知识应用【题组锻炼】:(教死用8分钟时间独力完毕下列题目):1.底下各式的估计对于分歧过失,如果分歧过失,应当何如改正?(1)(x+2)(x-2)=x2-2 ( )(2) (-3a-2)(3a-2)=9a2-4 ( )2. 使用仄圆好公式举止估计:(1)(a+3b)(a-3b)(2) (3+2a)(-3+2a)(3) (3x+4)(3x-4)-(2x+3)(3x-2)(4)58×62(5) (m+3)(m-3)(m2+9)五、归纳归纳:通过本节课的教习尔有哪些支获?由教死归纳解题步调,没有齐里的教授面拨.进一步加深对于仄圆好公式的影象战明白.【达标测评】: 教死用5分钟独力完毕,而后共位互改试卷.使用仄圆好公式估计下列公式:1. (2x-3y)(2x+3y)2. (-2m-5)(2m-5)3. 105×954. (ab+1)(ab-1)六、应用普及、拓展革新:【拓展普及】:使用仄圆好公式估计:(2+1)(22+1)(24+1)(28+1)七、安插做业:1、课本35页锻炼1题.2、课本36页习题A组.3、课本36页习题B组.(选做)2.2 真足仄圆公式(一)【教习目标】1、记着真足仄圆公式并会机动应用.2、能用几许拼图的形式考证真足仄圆公式.【教习沉面】真足仄圆公式的机动应用.【教习易面】明白真足仄圆公式的结构特性并能机动应用公式举止估计.【教习准备】多媒介课件【教教要领】创建情境—自决商量—合做接流—拓展普及【导教过程】一、提出问题,创建情境[师]请共教们商量下列问题:一位老人非常喜欢孩子.每当有孩子到他家搞客时,老人皆要拿出糖果招待他们.去一个孩子,老人便给那个孩子一齐糖,去二个孩子,老人便给每个孩子二块塘,…(1)第一天有a个男孩去了老人家,老人一共给了那些孩子几块糖?(2)第二天有b个女孩去了老人家,老人一共给了那些孩子几块糖?(3)第三天那(a+b)个孩子所有去瞅老人,老人一共给了那些孩子几块糖?(4)那些孩子第三天得到的糖果数与前二天他们得到的糖果总数哪个多?多几?为什么?教死互相计划接流.[死](1)第一天老人一共给了那些孩子a2糖.(2)第二天老人一共给了那些孩子b2糖.(3)第三天老人一共给了那些孩子(a+b)2糖.(4)孩子们第三天得到的糖块总数与前二天他们得到的糖块总数比较,应用减法.即:(a+b)2-(a2+b2)咱们上一节教了仄圆好公式即(a+b)(a-b)=a2-b2,当前逢到了二个数的战的仄圆,那正是咱们那节课要钻研的问题.粗确本节的教习目标.估计下列各式,您能创造什么顺序?(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;(5)(a+b)2=________;(6)(a-b)2=________.。
最新人教版八年级数学初二数学上册全套导学案教学内容
A
D
A
BE 1
C2 C
FC
E D
2
=AC ,AD =AE ,∠ 1=∠ 2,
求证:△ ABD ≌△ ACE
证明:∵∠ 1=∠ 2(
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,
即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。_______叫做对应边。_____叫 做对应角。
5、全等三角形的对应边__。____相等。
6、课本 P4 练习 1、2
7、如图 1,△ ABC ≌△ DEF,对应顶点是__________,对应角是 ____________, 对应边是_________________
A
B
AD
D 4
CB E
C
5
5、如图,已知点 B、 E、 C、 F 在同一条直线上, AB=DE, AC=DF, BE= CF, 求证: (1)△ ABC≌△ DEF (2)AB∥ DE
课后反思:_________________
学习好资料
欢迎下载
1.2 全等三角形的判定( 3)
一、自学目标:
1、会 2、理解并掌握边角边的判定方法 3、利用边角边判定方法解决实际问题 4、探究具备“ SSA”条件的两个三角形是否全等?
A
A
C
DC
B
D
2
三、展示内容: 1、P8,练习
2、如图 ,AB=AD,CB= CD,求证:△ ABC≌△ ADC
八年级数学上册全册导学案(XX新版人教版)
八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。
一元一次方程是方程。
—兀一次方程解法步骤是:①去;②去_________ ;③移项;④合并______ :⑤______ 化为1。
如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:像这样分母中含未知数的方程叫做分式方程。
分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。
未知数在_____ 的方程是分式方程。
未知数不在分母的方程是________ 方程。
前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。
如解方程:= ................ ①去分母:方程两边同乘以最简公分母_________________ , 得00=60 ............... ②解得V_________ .观察方程①、②中的v的取值范围相同吗?①由于是分式方程v工________ ,②而②是整式方程v可取 ______ 实数。
这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。
(完整版)新人教版八年级数学上册导学案(全-有答案)
教学目标:河南省实验中学资料第一章轴对称与轴对称图形1.1 我们身边的轴对称图形1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则从轴对称的角度,你觉得哪些图形比较独特?简要说明你的理由。
5、画出一个只有三条对称轴的轴对称图形。
A B CD必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论? 学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图 1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系? 7、教师给出两个图形关于某条直线成轴对称的定义。
杜曲一中八年级上册数学导学案
杜曲一中数学导学案八年级备课组编辑:陶德学课题11.1全等三角形的判定(一)(1)一、 学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?课后反思:1.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
人教版八年级数学上册全册导学案
人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。
导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。
2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。
3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。
4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。
导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。
2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。
3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。
4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。
5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。
导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。
通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。
可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。
最新人教版八年级数学上册导学案
新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
新人教版八年级数学上册导学案全册
八年级第一学期数学全册导学案11.1.1 三角形的边一、知新通过预习教材P63-P65的内容,完成下面各题。
1、由不在()上的三条线段()所组成的图形叫做三角形。
可用符号(“”)表示。
2、三角形有三条边,三个内角,三个顶点,组成三角形的()叫做三角形的边,相邻两边所组成的角叫做三角形的内角,相邻两边的()是三角形的顶点。
3、如图,我们也可以小写字母表示三角形的边, A∠A的对边是BC,也可以用a表示;∠B的对边是(),可以用()表示; c b∠C的对边是 ( ),可以用( )表示。
B a C4、三角形的任意两边之和()第三边;任意两边之差()第三边。
5、三角形的分类(1)按角分类直角三角形三角形( )斜三角形( )(2)按边分类不等边三角形三角形底边和腰不等的三角形等腰三角形()二、小试身手(1)右图中有()个三角形,分别是(). B C D(2)三角形按角分类,可分为()A等腰锐角三角形、等腰直角三角形、等腰钝角三角形B等腰三角形、不等边三角形、等边三角形C锐角三角形、直角三角形、钝角三角形D等腰三角形、不等边三角形教学点1 三角形的有关概念A例1 如图所示,图中共有( )个三角形,其中以BC为边的三角形是( ), E G F∠BEC是( )的内角。
例2 在右图中三角形的个数为()个,分别是()BC教学点2三角形三边关系的运用例1下列长度的三条线段中,能组成三角形的是()A.3cm, 5cm, 8cmB.8cm, 8cm, 18cmC.0.1cm, 0.1cm, 0.1cmD.3cm, 40cm,8cm例2如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm 和12cm D.15cm例3以下列长度的三条线段为边,能构成三角形的有哪些?(1)6cm,8cm,10cm(2)5cm,8cm,2cm;(3)三条线段之比为4:5:6;(4)a+1,a+2,a+3(a>0)当堂检测1.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.4,4,82.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中就选取()A.10cm的木棒B. 50cm的木棒C .100cm的木棒 D.110cm的木棒3.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是()A.9cmB.12cmC.9cm 或12cmD.以上答案都不对小明的爷爷要做一个三角形的木架养鱼用,现有两根长度为3m和5m的木棒,还需要到某木材市场上购买一根。
八年级数学上册全一册导学案(15套新人教版)【DOC范文整理】
八年级数学上册全一册导学案(15套新人教版)1.1与三角形有关的线段1.1.1三角形的边学习目标:认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.学习重点:对三角形有关概念的了解,能用符号语言表示三条形.能从图中识别三角形.学习难点:通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.用三角形三边不等关系判定三条线段可否组成三角形.课前预习指导学生预习课本P2-4,并回答以下问题:什么叫三角形?三角形有几条边?有几个内角?有几个顶点?三角形ABc用符号表示________.三角形ABc的边AB、Ac和Bc可用小写字母分别表示为________.三角形按边、角可以分成几类?课内探究自主完成→合作探究→进行交流展示、精讲精评。
探究一:学生活动:1交流在日常生活中所看到的三角形.2选派代表说明三角形的存在于我们的生活之中.板书:在黑板上老师画出以下几个图形.4、三条线段Ac、cB、AB是否首尾顺序相接.5、观察发现,以上的图,哪些是三角形?6、描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.a.不在一直线上的三条线段.b.首尾顺次相接.探究二:1、在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?【拓展延伸】已知三角形的三边长分别为2,x-3,4,求x的取值范围.若a、b、c是△ABc的三边,请化简|a-b-c|+|b-c-a|+|c-a-b|.3、如图,点P是⊿ABc内一点,试证明:AB+Ac>PB+Pc.如图,已知点P是△ABc内一点,试说明PA+PB+Pc>.当堂检测画出一个△ABc,假设有一只小虫要从B点出发,沿三角形的边爬到c,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定回答以上问题:小虫从B出发沿三角形的边爬到c有如下几条路线a.从B→cb.从B→A→c从B沿边Bc到c的路线长为Bc 的长.从B沿边BA到A,从A沿边c到c的路线长为BA+Ac.经过测量可以说BA+Ac>Bc,可以说这两条路线的长是不一样的.有三根木棒长分别为3c、6c和2c,用这些木棒能否围成一个三角形?分析:三条线段能否构成一个三角形,关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.错导:∵3c+6c>2c∴用3c、6c、2c的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构课后反思课后训练基础知识一、选择题下列图形中三角形的个数是A、4个B、6个c、9个D、10个下列长度的三条线段,能组成三角形的是A、1c,2c,3cB、2c,3c,6cc、4c,6c,8cD、5c,6c,12c已知三条线段的比是:①1:3:4;②1:4:6;③3:3:6;④6:6:10;⑤3:4:5、其中可构成三角形的有¬A.1个¬B.2个¬c.3个¬c.4个如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是【】A、2B、3c、4D、8已知三角形两边的长分别是4和10,则此三角形第三边的长可能是【】A、5B.6c、11D.16下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是A、1,2,6B、2,2,4c、1,2,3D、2,3,4已知等腰三角形的周长为24,一边长是4,则另一边长是A.16B.10c.10或16D.无法确定有四根长度分别为6c,5c,4c,1c的木棒,选择其中的三根组成三角形,则可选择的种数有A.4B.3c.2D.1有3c,6c,8c,9c的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为A、1B、2c、3D、40、一个三角形的三条边长分别为1、2、x,则x的取值范围是A、1≤x≤3B、1<x≤3c、1≤x<3D、1<x<31、如果三角形的两边长分别为3和5,则周长L的取值范围是A.6<L<15B.6<L<16c.11<L<13D.10<L<16在下列长度的四根木棒中,能与4c、9c两根木棒围成一个三角形是A、4cB、5cc、13cD、9c3、已知等腰三角形的两边长分别为4、9,则它的周长为A、22B、17c、17或22D、13二、填空题如图,图中有个三角形,它们分别是.若五条线段的长分别是1c,2c,3c,4c,5c,则以其中三条线段为边可构成______个三角形.△ABc的周长是12c,边长分别为a,b,c,且a=b+1,b=c+1,则a=c,b=c,c=c.在△ABc中,AB=5,Ac=7,那么Bc的长的取值范围是_______.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.三、解答题已知三角形三边的比是3:4:5,且最大边长与最小边长的差是4,求这个三角形的三边的长.已知等腰三角形两边长分别为a和b,且满足︱a-1︱+=0,求这个等腰三角形的周长.11.1.2三角形的高、中线、与角平分线学习目标:经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高交于一点,三角形的三条中线,三条角平分线等都交于一点.学习重点:了解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.了解三角形的三条高、三条中线与三条角平分线分别交于一点.学习难点:三角形平分线与角平分线的区别,三角形的高与垂线的区别.钝角三角形高的画法.不同的三角形三条高的位置关系.课前预习指导学生预习课本P4-5页面三角形的重要线段意义图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段1、AD是△ABc的Bc上的高线.AD⊥Bc于D.∠ADB=∠ADc=90°.三角形的中线三角形中,连结一个顶点和它对边中点的线段1、AD是△ABc的Bc上的中线.BD=Dc=Bc.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段1、AD是△ABc的∠BAc的平分线.∠1=∠2=∠BAc.课内探究探究一:什么叫三角形的高?三角形的高与垂线有何区别和联系?什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?三角形的高、中线和角平分线是代表线段还是代表射线或直线?【拓展延伸】如图所示,在△ABc中,已知点D,E,F分别为边Bc,AD,cE 的中点,且S△ABc=4c2,则S阴影等于A.2c2B.1c2c.c2D.c2如图,S△ABc=1,且D是Bc的中点,AE:EB=1:2,求△ADE 的面积.3、如图,在中,,的高与的比是多少?当堂检测让学生在练习本上画出锐角、钝角、直角三角形,并在这个三角形中画出它的三条高.观察这三条高所在的直线的位置有何关系?让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.?观察这三条中线的位置有何关系?3、让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?课后反思课后训练一、选择题三角形的角平分线、中线、高线都是A.线段B.射线c.直线D.以上都有可能至少有两条高在三角形内部的三角形是A.锐角三角形B.钝角三角形c.直角三角形D.都有可能不一定在三角形内部的线段是三角形的角平分线三角形的中线三角形的高三角形的中位线在△ABc中,D是Bc上的点,且BD:cD=2:1,S△AcD=12,那么S△ABc等于A.30B.36c.72D.24小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是A.B.c.D.可以把一个三角形分成面积相等的两部分的线段是A、三角形的高B、三角形的角平分线c、三角形的中线D、无法确定在三角形中,交点一定在三角形内部的有①三角形的三条高线②三角形的三条中线③三角形的三条角平分线④三角形的外角平分线.A、①②③④B、①②③c、①④D、②③如果一个三角形三条高的交点恰是三角形的一个顶点,那么这个三角形是A.锐角三角形B.直角三角形c.钝角三角形D.不能确定下图中,正确画出△ABc的Ac边上的高的是ABcD二、填空题如图,在△ABc中,Bc边上的高是,在△AEc中,AE边上的高是,Ec边上的高是.AD是△ABc的边Bc上的中线,已知AB=5c,Ac=3c,△ABD•与△AcD的周长之差为.三、解答题如图,在⊿ABc中画出高线AD、中线BE、角平分线cF.在△ABc中,AB=Ac,AD是中线,△ABc的周长为34c,△ABD的周长为30c,求AD的长.如图,已知:在三角形ABc中,∠c=90º,cD是斜边AB 上的高,AB=5,Bc=4,Ac=3,求高cD的长度.用四种不同的方法将三角形面积四等分.1.1.3三角形的稳定性学习目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用学习重点:了解三角形稳定性在生产、生活的实际应用。
最新人教版八年级上数学整册教学案导学案
)中为什么要分情况讨论。
三角形的内角(图1)(图2).“>”)。
还会你能用学过的定理说明这些定理的成立吗? 2),A ACD ∠>∠ ). B= .连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(diagonal )。
图7.3—5中,AC 、AD 是五边形ABCDE 的两条对角线。
特别提醒:n 边形(n ≥3)从一个顶点可引出(n -)条对角线,把n 边形分割成(n -2)个三角形,共有对角线条。
n(n 3)2-如图7.3—6(1),画出四边形ABCD 的任何一条边(例如CD )所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形。
而图7.3—6(2)中的四边形ABCD 就不是凸四边形,因为画出边CD (或BC )所在直线,整个四边形不都在这条直线的同一侧。
类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。
本节只讨论多边形。
我们知道,正方形的各个角都相等,各条边都相等。
像正方形那样,各个角都相等,各条边都相等的多边形叫做正多边形。
图7.3-7是正多边形的一些例子。
特别提醒:(1)正多边形必须两个条件同时具备,①各内角都相等;②各边都相等。
例如:矩形各个内角都相等,它就不是正四边形。
再如:菱形各边都相等,它却不是正四边形。
(三)练习一起学习课本86页的练习(四)小结引导学生总结本节的知识点。
第二课时(一)思考三角形的内角和等于180°。
正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?(二)探究任意画一个四边形,量出它的4个内角,计算它们的和。
再画几个四边形,量一量,算一算。
你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?如图7.3—8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形。
这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°。
新人教版八年级数学上导学案(全册)
A
高 AD 与 CE 的比是多少?
E
(提示:利用三角形的面积公式)
B
D
C
学习目标:
11.1.3 三角形的稳定性及复习
1、了解三角形的稳定性 2、复习三角形有关线段 新课导学: 阅读课本第 6 页至第 7 页回答下列问题 盖房子时,在窗框未安装好前,木工师傅常先在窗框上斜钉一根木条,为什么?
下列的图形中具有稳定性的是
B
D EF
C
(3) BFA 90
(4) S
ABC
1 2
7、如图,在ΔABC 中,∠BAC=60°,∠B=45°,
AD 是ΔABC 的一条角平分线,求∠ADB 的度
8、∠B=30°,∠C=70°, AD、AE 分别为 BC 边上的角平分线、高。求∠DAE 的度数。
数。
C 组:
如图,ΔABC 中,AB=2,BC=4,ΔABC 的
拼合在一起,就得到一个平角.有多少种不同的拼合
B
C
方法?请你把这些不同的方法分别拼出来;这个实验说明什么?你会证图明2 吗?
实验说明:
(2)在(1)中你觉得哪几种拼合的结果有助于发现证明三角形内角和等于 180 度思路?它 们有什么共同的特点?
(四)证明三角形内角和定理:三角形的三个内角和等于 180º;
解:图一∠B 是
角,这个三角形 ABC 的边 BC 上的高 AD 在
图二∠B 是
角,这个三角形 ABC 的边 BC 上的高 AD 在
图三∠B 是
角,这个三角形 ABC 的边 BC 上的高 AD 在
B 组:
6、在△ABC 中,AD 是中线,AE 是角平分线、AF 是高,填空:
(1)BD=
=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学导学案八年级备课组课题11.1全等三角形的判定(一)(1)一、 学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?课后反思:1.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
注意分类。
2、小组讨论探究2,交流合作,初步体会尺规作图(具体按第7页画图步骤)3、掌握三角形全等的判定之一(SSS)4、自主学习例1,初步体会证明的基本过程,并会利用判定(SSS)进行简单的推理,注意过程格式。
5、利用判定(SSS)作一个角等于已知角,具体按第8页作法的具体步骤。
6、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、P8,练习3ABAD2、如图,AB=AD,CB=CD,求证:△ABC≌△ADC3、如图C是AB的中点,AD=CE,CD=BE,求证:△ACD≌△CBE4、如图,AD =BC ,AC =BD , 求证:(1)∠DAB =∠CBA (2)∠ACD =∠BDC54DA D5、如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证: (1)△ABC ≌△DEF(2)AB ∥DE课后反思:_________________1.2 全等三角形的判定(3)一、自学目标:1、会画一个三角形与已知三角形全等(根据两边与夹角对应相等)2、理解并掌握边角边的判定方法3、利用边角边判定方法解决实际问题4、探究具备“SSA ”条件的两个三角形是否全等?二、自学指导认真阅读课本第8-10页的内容,完成下列要求:1、小组合作学习探究2,注意画图时的规范,用尺规作图注意画法。
2、通过画图发现规律:___________的两个三角形全等。
3、认真学习例2后,我们得到:在证明两个三角形中线段相等或角相等时通常通过证明_________来解决。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、如图1已知△ABF 与△DCE 中,∠B =∠C ,BE =CF ,AB =CD ,则△___≌△____21B DA 22、如图2已知AB=AC ,AD =AE ,∠1=∠2, 求证:△ABD ≌△ACE证明:∵∠1=∠2( )∴∠1+__=∠2+__( ) 即∠BAD =∠CAE 在△ABD 和△ACE 中____________( ) ____________( )____________( ) ∴___________( )3、如图要测量工件内槽宽,可以把两根钢条的中点连在一起,做成一个工具,只要测量出__的长,就是内槽的宽,为什么?43AB4、如图AB =AC ,AD =AE ,求证:(1)∠B=∠C (2) ∠BDC =∠BEC课后反思:11.2全等三角形的判定(三) (4)学习目标:1、掌握全等三角形的判定方法---“ASA”“AAS”。
2、理解并运用“ASA”“AAS”解决相关问题。
自学指导:1、自学课本11—12页内容,完成下列要求:2、认真学习探究5的内容,按照课本提示的操作步骤动手操作,完成后,归纳探究5 反映的规律。
3、认真阅读探究6,合作探究:要运用-“ASA”证明“两角和其中一角的对边对应相等的两个三角形全等”关键点是什么。
4、学习例3,考虑要证明△ACD≌△ABE还需要的条件。
5、自学后完成要展示的内容,--20分钟后进行展示。
展示内容:1、指导2反映的规律是:的两个三角形全等。
简写为:“”、或“”。
2、指导3 中关键点是:3、完成课本13页1—2题。
4、归纳三角形全等的判定方法:5、如图:D 在AB 上,E 在AC 上,DC = EB,∠C = ∠B求证: (1)△ACD ≌ △ABE (2) AC = AB5A B课后反思:11.2全等三角形的判定HL的判定(5)一、学习目标1、掌握R T△特殊的判定方法:HL判定方法2、能够用HL判定方法来判定两个RT△全等二、自学指导认真13阅读-14页内容,要求掌握以下内容1、前面学习的判定方法,直角三角形是否还能用?2、理解画R T△A,B,C,的过程,并由这个过程得出R T△的判定方法:_____________,简称____3、在学习探究时,一定要动手画图呀!4、学习例4,想一想,要证BC=AD,需要证明什么?5、学后完成展示内容,20分钟后展示三、展示内容1、已知如图R T△ADC与R T△BEC中,∠A=∠B=90°,AC=6cm,AD=BE,CD=CE,则AB=____Array12、 已知如图R T △ABC 与R T △DEF 中,若AC =FD ,∠E=∠B=90°,BC=DE, ∠A=25°,则∠F =___,∠D =____ 3、如图AB =CD ,AE ⊥BC ,DF ⊥BC ,CE =BF求证:(1)AE =DF (2)C D ∥AB课后反思:2C3BA11.3角的平分线的性质(6)一、学习目标1、分用改尺规画出一个角的平分线(会说作法)2、理解并掌握角平分线的性质3、感受证明一个几何命题的方法与步骤二、自学指导1、自学课本19页(10分钟)(1)说出探究中AE是∠DAE的平分线的理由(2)作图时要读一步画一步2、自学20-21页思考前的内容(6-10分钟)(1)独立动手完成探究,从而得出角平分线的性质:角的平分线上的点_____________。
(2)注意体会角平分线的性质这个命题是如何画出图形,写出已知、求证的。
三、展示内容P19页练习1、已知∠AOB的角平分线OC,点P在OC上,且点P到OA的距离为4cm,则点P到边OB的距离是___2、如图在△ABC中,∠C=900,AD平分∠BAC,BC=10cm,BD=6cm ,则点D 到AB 的距离为______3、 △ABC 中,AB =AC ,M 为BC 中点,MD ⊥AB于D ,ME ⊥AC 于E ,求证:MD =ME 4、已知△ABC 内,∠ABC ,∠ACB 的角平分线交于点P ,且PD 、PE 、PF 分别垂直于BC 、AC 、AB 于D 、E 、F 三点,求证:PD =PE =PF课后反思23BM4C11.3角的平分线(7)学习目标:1、掌握角平分线的判定2、会运用角平分线的判定解决简单的问题。
自学指导:认真学习课本21—22页的内容,完成下列要求:1、找出角平分线判定的题设与结论,并与角平分线性质的题设和结论进行比较。
2、合作探究“思考”部分的内容:要确定集贸市场的准确位置(1)根据角平分线的判定,能否确定集贸市场在公路与铁路夹角的平分线上。
(2)再依据集贸市场离两路交叉处的距离。
3、认真学习例题,注意辅助线的作法。
4、自学后,完成展示内容,20分钟后进行展示。
展示内容:1、课本22页练习。
2、角的内部的点在角的平分线上。
3、如图,△ABC的角平分线BM、CN交于点P,求证:点P到△ABC三边的距离相等。
证明:过点P 作P D⊥AB于D,PE⊥BC于E,PF⊥AC于F。
(把辅助线补充完整)∵BM是△ABC的角平分线,点P在BM上∴PD = 。
同理:PE = .∴PD = = .即点P到三边AB、BC、CA的距离相等。
4、求证:角的内部到角的两边距离相等的点,在角的平分线上。
已知:如图,PD⊥AB于D,PE⊥于E,PD = .点P在OC上。
求证:∠AOC =证明:54C5、在△ABC 中,外角∠CBD 和∠BCE 的平分线BF 、CF 相交于点F. 求证:点F 也在∠BAC 的平分线上。
(提示:过点F 作AD 、BC 、AE 的垂线段FN 、FM 、FP,然后证FN = FP )课后反思:12.1轴对称(一)(8)学习目标:1、理解什么是轴对称图形;2、理解什么是“两个图形关于一条直线对称”;3、能够说出轴对称与轴对称图形的区别与联系。
自学指导1、自学29 页,重点掌握___________,完成30页练习;2、自学课本30页,图12·1-3是____个图形,关系。
请找出图中A、B、C的对称点A′、B′、C′3、轴对称图形与轴对称的区别与联系展示内容1、如果一个图形沿一条直线折叠,直线两旁的部分能够________,这个图形就叫做___________,这条直线就是它的_________。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形________,那么就说这两个图形____________________。
3、教材P30练习与P31练习。
4、教材P30与P31的思考,找同学回答。
5、教材P36习题12.1的1、2. 课后反思:12.1 轴对称(9)一、学习目标1、识记线段垂直平分线的定义2、理解轴对称图形的性质3、掌握并会用线段垂直平分线的性质二、自学指导(15分钟)认真阅读P31页思考-P32页探究前的内容(1)思考部分可在课本上沿MN对折或用测量的方法进行探究(2)探究部分要动手操作,找出你发现的规律:P1A=__,P2A=__,(特别注意l与线段AB的关系)由此可得到线段垂直平分线的性质:____________三、展示内容1、如图,△ABC中,AD垂直平分BC,AB=5,则AC=__2、△ABC与△A,B,C,关于直线l对称,且AB=4cm,则A,B,=__3、如图△ABC与△DEF关于直线MN对称,直线MN与线段AD的关系是____4、如图△ABC中BC的垂直平分线交AB于E,若△ABC的周长为10,BC=4,则△ACE周长为___DBC3NMA4A5、如图AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、CE的长度有什么关系,AB+BD与DE有什么关系?课后反思5E课题:12.1轴对称 (三)(10)学习目标:1、掌握线段垂直平分线的判定2、熟练运用线段垂直平分线的性质和判定解决实际问题。