第四章几何图形初步复习课件

合集下载

人教版七年级上册数学第四章几何图形初步线段长短的比较与运算ppt教学课件

人教版七年级上册数学第四章几何图形初步线段长短的比较与运算ppt教学课件

另外两个端点的位置作比较.
C (A)
BD
叠合法结论: A
C (A)
B 1. 若点 A 与点 C 重合,点 B 落
在C,D之间,那么 AB < CD. BD
A C (A)
B 2. 若点 A 与点 C 重合,点 B 与
(B) D
点 D 重合 ,那么 AB = CD.
A (A) C
B 3. 若点 A 与点 C 重合,点 B 落
a+b
a
b
A
a-b
D bB
C
做一做
1. 如图,点B,C在线段 AD 上则AB+BC=_A__C_; AD-CD=_A_C_;BC= _A_C_ -_A_B_= _B_D_ - _C_D_.
A
B
C
D
2. 如图,已知线段a,b,画一条线段AB,使
AB=2a-b.
a
b
2a
b
A 2a-b B
A
MB
在一张纸上画一条线段,折叠纸片,使 线段的端点重合,折痕与线段的交点处于线 段的什么位置?
反之也成立:∵ AM = MB = 1 AB 2
( 或 AB = 2 AM = 2 AB )
∴ M 是线段 AB 的中点
点 M , N 是线段 AB 的三等分点:
A
M
N
B
1
AM = MN = NB = __3_ AB
(或 AB = _3__AM = __3_ MN = __3_NB)
典例精析
例1 若 AB = 6cm,点 C 是线段 AB 的中点,点 D
连接两点间的线段的长度,叫做这两点的距离.
你能举出这条性质在生活中的应用吗?
想一想

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)


=17°+6.6′
6.6

°
60


=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,

第四章小结与复习(课件)2024-2025学年沪科版七年级数学上册

第四章小结与复习(课件)2024-2025学年沪科版七年级数学上册
2
∠AON),你认为这个关系式正确吗?请说明理由.
随堂练习
解:(1)因为∠BON=55°,∠AON=15°, 所以∠AOB=∠AON+∠BON=70°. 因为OM平分∠AOB, 所以∠AOM= 12∠AOB=35°. 所以∠MON=∠AOM-∠AON
=35°-15°=20°. (2)正确. 理由如下: ∠= M12 (O∠NA=O∠NA+O∠MB-∠ONA)O-∠N=AO12∠N=AO12 B(∠-∠BAOONN-∠AON).
A
B
C
随堂练习 5. 如图所示,以O点为端点的5条射线OA,OB,OC,
OD,OE一共组成__1_0__个角.
【分析】每条射线都能与其它4条射线组成4个角, 共能组成4×5=20个角,其中有12 是重复的,所以这 5条射线能组成10个角.
随堂练习 6. 已知线段AB=6,在直线AB上取一点C,恰好使AC= 2BC,D为CB的中点,求线段AD的长.
随堂练习
解: ①当点C在线段AB上时,如图.
因为AC=2BC,设BC=x,则AC= 2x.
因为AB=AC+BC,所以6=2x+x,解得x=2.
所以BC=2,AC= 4.
因为D是CB的中点,所以CD=
1 2
BC=1,
所以AD=AC+CD=4+1 =5.
随堂练习
②当点C在线段AB的延长线上时,如图.
B C
O
A
回顾思考
思考: (2)余角的性质:_同__角__(__或__等__角__)__的__余__角__相__等__;
补角的性质:_同__角__(__或__等__角__)__的__补__角__相__等__. 它们是如何得到的?

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

人教版七年级上册数学第四章几何图形初步课件:4.3.3余角和补角课件-(共29张PPT)

1
4
3
如果两个角的和为90° (直角),那么称这两个
角 互为余角 ,简称“互余”。
几何语言叙述:
如果∠1+∠2=90°(或者∠1=90°-∠2),
那么∠1与∠2互为余角 .
总结归纳
2
1
4
3
如果两个角的和为180°(平角),那么称这两
个角 互为补角,简称“互补”。
几何语言叙述:
如果∠3+∠4=180°(或者∠3=180°-∠4),
o
10
o
30
o
o
80
60
o
100
o
120
o
150
o
170
3.填表:
∠α

∠α的余角
∠α的补角
85°
175°
32°
58°
148°
45°
45°
135°
77°
13°
103°
27°37′
117°37′
90° x
180° x
62°23′
x
4.如右图,点A、O、B在同一直线上,OD平分
AOB, COE=90°。回答下列问题:
总结归纳
性质:
同角或等角的余角相等。
同角或等角的补角相等。
例题解析
请认真观察下图,回答下列问题:
①图中有哪几对互余的角?请用几何语言形式表示:
(∠A+∠1=90°, ∠1+∠2=90°)
(∠A+∠E=90°) (∠2+∠E=90°)
②图中哪几对角是相等的角(直角除外)?为什么?
(∠2=∠A) (同角的余角相等)
O

人教版七年级数学上册第四章几何图形初步复习课件

人教版七年级数学上册第四章几何图形初步复习课件

下面的知识点你掌握了吗?
(4)线段的基本性质:两点之间线段最短. (5)两点间的距离:连结两点的线段的长度,
叫做这两点间的距离. (6)线段的特点:有两个端点,不能向任何
一方伸展,可以度量,可以比较长短.
知识点2:射线
(1)射线的概念:把线段向一方无限延伸 所形成的图形叫做射线.
(2)射线的表示方法:可用两个大写字母 表示,第一个大写字母表示它的端点; 也可用一个小写字母表示.
探究一、有关距离问题
1.如图,在一条笔直的公路a两侧,分别有 A、B两个村庄,现要在公路a上建一个 汽车站C,使汽车站到A、B两村距离之 和最小,问汽车站C的位置应该如何确 定?
A
a B
··
2.平原上有A、B、C、D四个村庄,如图 所示,为解决当地缺水问题,政府准备 投资修建一个蓄水池,不考虑其他因 素,请你画图确定蓄水池H的位置,使 它与四个村庄的距离之和最小.
角度的加减: 1.同种情势相加减; 2.度加(减)度;分加(减)分; 秒加(减)秒 3.超60进一;减一成60
1 度量法 2 叠合法
∠ABC<∠DEF ∠ABC=∠DEF
∠ABC>∠DEF
用尺规法作一个角等于已知角。
角的平分线
1、定义:一条射线把一个角分成两个相 等的角,这条射线叫做这个角的平分线.
图例
表示方法
特征
性质
A 直线 B
.
(1)直线AB或 没有端点, 两点确
直线BA (字 无始无终无 定一条
. 母无序)
(2)直线m
方向,看不 直线。 见首尾,无 长度。
射线 O
.
n C
(1)射线OF(字 一个端点,
F 母有序) (2)射线n

《直线、射线、线段》PPT课件

《直线、射线、线段》PPT课件

做A、B两点的距离
A
B
连接两点间的线段的长度,叫做这两点的距离.
想一想 绿地里本没有路,为什么大家都喜欢走捷径呢?
两点之间,线段最短.
想一想 公园里设计了曲折迂回的桥,这样做对游人观赏湖面 风光有什么影响?
两点之间,线段最短. 曲折迂回的桥增加了游人在桥上行走的路程, 便于游人欣赏风光.
典型例题
第四章 几何图形初步
4.2 直线、射线、线段
第2课时
学习目标

1. 会用尺规作图画一条线段等于已知线段,会比较两条线段的长短.
线

2. 理解线段等分点的意义.
线
3. 体会文字语言、符号语言和图形语言的相互转化.
线
4. 培养学生对几何图形的兴趣,提高学习几何的积极性.

情境引入 做手工时,在没有刻度尺的条件下,若想从较长的木棍上截 下一段,使其等于短木棒,我们常采用以下办法.
A
C
O DB
解:因为 C,D 分别是线段 OA,OB 的中点,
所以 OC=1 AO,OD= 1 BO.
所以
2
1
CD=OC+OD= 2
2 (OA+OB)=
1 2AB=
1 2
×
4=2.
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
刻度尺: AB<AC
随堂练习 估计下列图中线段AB与线段AC的大小关系,再检验你的估计.
探究
线段和射线都是直线的一部分,类比直线的表示方法, 线段和射线又如何表示呢?
图形
a
A
B
表示方法
线段a 线段AB 线段BA
l
O
A

人教版初中数学七年级上册教学课件 第四章 几何图形初步 角 角的比较与运算

人教版初中数学七年级上册教学课件 第四章 几何图形初步 角 角的比较与运算

课堂小结
比较 度量法;叠合法. 角 运算 度与度、分与分、秒与秒分别相加、减.分秒 相加时逢60要进位,相减时借1作60.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
分析:∠AOB是 平角, ∠BOC=∠AOB-∠AOC .
解:由题意可知,∠AOB是平角, ∠AOB=∠AOC+∠BOC,
所以∠BOC= ∠AOB-∠AOC =180°- 53°17′ =126°43′.
例2 把一个周角7等分,每一份是多少度的 角(精确到分)?
解:360°÷7=51°+3°÷7 =51°+180′÷7 ≈51°26′.
【课本P136 练习 第1题】
2. 估计图中∠1与∠2的大小关系,并用适当的方法 检验.
【课本P136 练习 第2题】
3. 如图,把一个蛋糕等分成8份,每份 中的角是多少度?如果要使每份中的角 是15°,这个蛋糕应等分成多少份?
【课本P136 练习 第3题】
4. 如图,О是直线AB上一点,OC是∠AOB的平分线, ∠COD=31°28‘,求∠AOD的度数.
D C
E
A
O
B
2. 如果EC落在∠BOD的内部,那么∠AEC小 于∠BOD,记作∠AEC<∠BOD.
C D
E
AO
B
3. 如果EC落在∠BOD的外部,那么∠AEC大于 ∠BOD,记作∠AEC>∠BOD.
思考 图中共有几个角?它们之间有什么关 系?
图中共有 3 个角.
∠AOC是∠AOB与∠BOC的 和 .记作∠AOC= ∠AOB+∠BOC ;∠AOB是∠AOC与∠BOC的 差 ,记作:∠AOB=∠AOC-∠BOC ;类似地, ∠BOC= ∠AOC-∠AOB .

点、线、面、体_几何图形初步课件

点、线、面、体_几何图形初步课件

综合运用 8.如图,说出下列物体中含有的一些立体图形.
综合运用
9.“横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只 缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》 ).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?
综合运用
10.如图是一个小正方体的展开图,把展开图折叠成小正方体后 ,与有“建”字的一面相对的那一面上的字是( ).
练习 老师叫小明在地上画圆圈,并交给了他两件东西:一支粉笔和 一根细绳,小明很快画好了,你知道他是怎样画的吗?
一只手按住线头,另一只手扯着线绕圈,同时用笔划线.
从中体现了怎样的数学知识? 点动成线
练习 谜语:千条线,万条线, 落到水中看不见. 雨点 从中体现了什么数学知识? 点动成线
计算旋转体的体积
复习巩固
4.如图,分别从正面、左面、上面观察这些立体图形,各能得 到什么平面图形?
复习巩固
5.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的 是( ).
复习巩固
6.如图,上面的图形分别是下面哪个立体图形展开的形状?把 它们用线连起来.
复习巩固
7.如图,这些图形都是正方体的展开图吗?如果不能确定,折 一折,试一试,你还能再画出一些正方体的展开图吗?
3.点动成__线_____,线动成__面_____,面动成__体______.
4.体由__面___围成,面与面相交成__线_____,线与线相交成_点_____ .
复习巩固 1.把图中的几何图形与它们相应的名称连接起来.
圆锥
圆柱
棱柱
棱锥

复习巩固 2.如图,你能看到哪些立体图形?
复习巩固 3.如图,你能看到哪些平面图形?
人教版 七年级数学 上册

七年级数学第四章《几何图形初步》复习课件

七年级数学第四章《几何图形初步》复习课件
2.教学重点:掌握几何图形的基本概念、性质、判定和应用。
四、教具与学具准备
1.教具:多媒体课件、黑板、粉笔。
2.学具:直尺、圆规、量角器、三角板。
五、教学过程
1.导入:通过展示生活中的几何图形,引导学生回顾本章所学内容,激发学习兴趣。
2.讲解:结合教材,对线与角、三角形、平行四边形、梯形的基本概念、性质进行详细讲解。
4.梯形:梯形的判定和面积计算是本章的另一个难点。要让学生掌握梯形上底、下底、高之间的关系,并熟练运用梯形面积公式进行计算。
二、例题讲解的选取与讲解方式
例题讲解是帮助学生巩固所学知识、提高解题能力的重要环节。以下是例题讲解的重点:
1.选取典型例题:针对每个知识点,选择具有代表性的例题进行讲解,以帮助学生理解并掌握解题方法。
3.例题讲解:针对每个知识点,精选典型例题进行讲解,引导学生运用所学知识解决问题。
4.随堂练习:设计适量练习题,让学生巩固所学知识,提高解题能力。
5.总结:对本节课所学知识进行总结,强调重点,梳理难点。
六、板书设计
1.线与角:直线、射线、线段;角的分类及性质。
2.三角形:分类、性质、周长和面积。
3.平行四边形:性质、判定、面积。
七年级数学第四章《几何图形初步》复习课件
一、教学内容
本课件依据七年级数学第四章《几何图形初步》进行复习。详细内容包括:
1.线与角的认识:直线、射线、线段;角的分类及性质。
2.三角形:三角形的分类、性质、周长和面积。
3.平行四边形:平行四边形的性质、判定、面积。
4.梯形:梯形的性质、判定、面积。
二、教学目标
2.答案:
(1)①无数;②不确定。
(2)A
(3)梯形面积=(6+10)×8÷2=64cm²

人教版七年级数学上册课件:第四章几何图形初步 巧用线段中点(或分点)的有关计算 (共20张PPT)

人教版七年级数学上册课件:第四章几何图形初步 巧用线段中点(或分点)的有关计算 (共20张PPT)
设运动时间为x s,依题意得x+3=12-4x, 解得x=1.8. 答:1.8 s后,原点恰好在两点正中间.
(2)几秒后,恰好有OA:OB=1:2? 设运动时间为t s. ①B与A相遇前:12-4t=2(t+3),即t=1; ②B与A相遇后:4t-12=2(t+3),即t=9. 答:1 s或9 s后,恰好有OA:OB=1:2.
解:(1)因为点M,N分别是AC,BC的中点,
所以MC= 1 AC= 1 ×8=4(cm),
NC= 1 BC=2 1 ×62=3(cm). 所以M2 N=MC2 +NC=4+3=7(cm).
(2)若C为线段AB上任意一点,满足AC+CB=a cm,其
他条件不变,你能猜想出MN的长度吗?说明理由.
所以BN= BC= ×8=4(cm).
所以MN=M1 B+BN1 =10+4=14(cm). 综上所述,2 线段MN2 的长为6 cm或14 cm.
(2)根据(1)中的计算过程和结果,设AB=a,BC=b, 且a>b,其他条件都不变,求MN的长度(直接写 出结果).
MN= 1 (a+b)或MN= 1 (a-b).
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/72021/9/72021/9/72021/9/79/7/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月7日星期二2021/9/72021/9/72021/9/7 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/72021/9/72021/9/79/7/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/72021/9/7September 7, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/72021/9/72021/9/72021/9/7

人教版七年级数学上册第四章《几何图形初步》单元复习课件

人教版七年级数学上册第四章《几何图形初步》单元复习课件

求MN的长.
【思路解析】有关比例问题,可设每一份为x,列方程求解,再利用中
点定义,找出线段的和、差.
【解析】设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,
∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,
∴AB=20 cm, BC=30 cm, CD=40 cm,
的角叫做方位角. 要点诠释: (1)方位角还可以看成是将正北或正南的射线旋转一定角度而形
成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方 向是向东还是向西,三要确定旋转角度的大小.
(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方 向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.
【例2】(天门、潜江、仙桃)如图所示,是每个面上都有一个汉字的正 方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上 的汉字是 ( C ).
A.南 B.世 C.界 D.杯 【解析】由图形可以判定“南”与“世”相对,“看”与“界”相 对,“非”与“杯”相对.故选C. 【归纳】判断两个面是对面的根据是:展开图的对面没有公共边或 公共顶点.
(3)方位角在航行、测绘等实际生活中的应用十分广泛.
【例1】下列说法正确的是( D ). A.射线AB与射线BA表示同一条射线. B.连结两点的线段叫做两点之间的距离. C.平角是一条直线. D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3; 【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中 两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角 和直线是两种不同的概念,不能混淆.故选D. 【归纳】理解概念,掌握概念与概念的本质区别,并进行“比较”性 分析和记忆.

第4章几何图形初步复习题-2024-2025学年初中数学七年级上册(沪科版)上课课件

第4章几何图形初步复习题-2024-2025学年初中数学七年级上册(沪科版)上课课件

2
2
综上所述,∠MON的度数是40°或10°.
复习题
C组
1.有两块三角板,一块的三个角分别是90°,60°, 30°,另一块的三个角分别是90°,45°,45°.用 这两块三角板,你能画出多少个小于平角的、度数 确定且互不相等的角?
解:最多可以画出11个小于平角的、度数确定且 互不相等的角,它们分别是15°,30°,45° ,60°, 75° ,90° ,105°,120°,135°,150°,165°.
2.如图,∠AOB的平分线为OM,ON为∠AOM 内的
一条射线.
(1)若∠BON= 55°,∠AON= 15°,求∠MON的度数;
(2)用等式表示∠MON与∠AON,∠BON的关系,并
A
说明你是如何得到的.
N
M
O
B
解:(1)因为∠BON=55°,∠AON= 15°,
所以∠AOB=∠BON+∠AON=70°.
=
1
×50°+
1
2
×30°=40°.
2
2
2
3. 在平面内有∠AOB = 50°,∠BOC= 30°,
OM是∠AOB的平分线,ON是∠BOC的平分
线.求∠MON的度数. (2)当∠BOC在∠AOB内部时,
∠MON= ∠MOB-∠NOB1= ∠AO1B- ∠BOC
=
1×50°-
1
×30°=
2
10°.
2
第四章 几何图形初步
复习题
沪 科 ·七 年 级 数 学 上 册
复习题
A组
1.已知线段AB=2 cm.延长AB到点C,使BC=2AB. D为AB的中点,求DC的长.
解:示意图如图所示. 因为AB=2 cm, D为AB的中点, 所以AD=DB=1 AB=1 cm. 又因为BC=2A2B,所以BC=2×2=4(cm). 所以DC=DB+BC=1+4=5(cm).

第四章几何图形初步复习课一

第四章几何图形初步复习课一

•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/302021/8/30Monday, August 30, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/302021/8/302021/8/308/30/2021 4:04:58 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/302021/8/302021/8/30Aug-2130-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/302021/8/302021/8/30Monday, August 30, 2021
归纳总结
根据复习练习的情况进行小结,抓住重点和 难点,总结做题方法。
(1、表面展开图尤其是与正方体表面展开图 相关的知识应用。 2、利用线段和、差、倍、分如何去进行线 段的计算。)
日清反馈
必做题: 课本P147 1题、2题、3题、4题、6题
选做题: 课本P148 9题、10题、11题
字.若数字为6的面是底面,则朝上一面所标注的数字为 ____________.
8.在同一平面内的3个点,过任意2个点作一条直线,则可作直 线的条数为______。
9.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D 是AC的中点,则AC的长等于____________.
10.下图是由一些相同的小正方体构成的几何体从不同方向看 得到的平面图形,这些相同的小正方体的个数是_______.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
【问题4】对于几何中的一些概念、性质 及关系,应把几何意义与数量表示结合起 来加以认识,达到形与数的统一.如此, 你能从数和形两个方面认识线段中点和角 平分线概念吗?
10
例5:如图,长方形纸片ABCD,点E、F 分别在边AB、CD上,连接EF.将∠BEF对 折,点B落在直线EF上的点B'处,得折痕EM; 将∠AEF对折,点A落在直线EF上的点A'处, 得折痕EN,求∠NEM的度数.
A' D F N B' M C
A
E
B
11
解:由折纸过程可知,EM平分∠BEB' ,EN平∠AEA' , 1 1 ∠AEA'. ∠BEB',∠NEA'= 所以有∠MEB'= 2 2
因为∠BEB'+∠AEA'=180°, 所以有∠NEM=∠NEA'+∠MEB'
1 1 = ∠AEA'+ ∠BEB' 2 2 1 = (∠AEA'+∠BEB') =90°. 2
第四章
几何图形初步
复习小结
【问题1】本章学习了哪些知识?
它们之间的联系是什么?
2
3
【问题2】在本章中,从哪些方面 反映了立体图形与平面图形的关系?
4
在下列图形中(每个小四边形皆为全等的正方 形) ,可以是一个正方体表面展开图的是( C )
A
B
C
D
5
例2:如图,从正面看A、B、C、D四个立体图 形,可以得到a、b、c、d四个平面图形,把上下两 行相对应的立体图形与平面图形用线连接起来.
12
【问题5】通过对本章内容的复习,
你有哪些新的收获?
13
14
a
a
b b
c c
dd
6
【问题3】与以前相比,你对直线、射线、
线段和角有什么新的认识?在解决有关线 段和角的问题中,常用到哪些数学思想方 法?
7
例3: 点A,B,C 在同一条直线上,AB=
3 cm,BC=1 cm.求AC的长.
解:(1)如图①,因AB=3 cm,BC=1 cm, 所以,AC=AB+BC=3+1=4 (cm).
A 图①
B
C
A
C 图②
B
(2)如图②,因AB=3 cm,BC=1 cm, 所以, AC=AB-BC=3-1=2(cm).
8
例4:已知∠α和∠β互为补角,并且∠β 的一半比∠α小30°,求∠α、∠β.
解:设∠α=x°,则∠β=18080- x° =2(x°-30°), 解得 x°= 80°. 所以,∠α= 80°,∠β= 100°.
相关文档
最新文档