高二数学简单的线性规划问题

合集下载

高中数学简单线性规划复习题及答案(最全面)

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。

高二数学线性规划练习题

高二数学线性规划练习题

高二数学线性规划练习题线性规划是数学中的一个重要分支,它在资源分配、生产计划、经济分析等领域有着广泛的应用。

对于高二学生来说,掌握线性规划的基本概念和解题技巧是非常必要的。

以下是一些线性规划的练习题,供同学们练习:练习题1:某工厂生产两种产品A和B,每生产一件产品A需要2小时的机器时间和1小时的人工时间,每生产一件产品B需要1小时的机器时间和3小时的人工时间。

工厂每天有10小时的机器时间和15小时的人工时间可供使用。

如果生产一件产品A的利润是5元,生产一件产品B的利润是6元,问如何安排生产计划以使利润最大化?解答提示:1. 设x为生产产品A的数量,y为生产产品B的数量。

2. 根据题目条件列出两个不等式:2x + y ≤ 10(机器时间限制)和x + 3y ≤ 15(人工时间限制)。

3. 确定可行域,即满足上述两个不等式的x和y的取值范围。

4. 计算目标函数Z = 5x + 6y在可行域边界上的值,找到最大值。

练习题2:某农场主有600平方米的土地,计划种植小麦和玉米。

每平方米小麦的收益是20元,每平方米玉米的收益是30元。

如果农场主希望种植小麦的收益至少是玉米收益的2倍,如何分配土地以使总收益最大化?解答提示:1. 设小麦种植面积为x平方米,玉米种植面积为y平方米。

2. 根据题目条件列出不等式:x + y = 600(土地面积限制)和20x≥ 2 * 30y(收益限制)。

3. 确定可行域,即满足上述不等式的x和y的取值范围。

4. 计算目标函数Z = 20x + 30y在可行域边界上的值,找到最大值。

练习题3:一家公司需要生产两种产品,产品1和产品2。

生产产品1需要4小时的机器时间和2小时的人工时间,生产产品2需要3小时的机器时间和1小时的人工时间。

公司每天有24小时的机器时间和12小时的人工时间。

如果产品1的利润是每件100元,产品2的利润是每件150元,如何安排生产计划以使利润最大化?解答提示:1. 设产品1生产数量为x,产品2生产数量为y。

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(7)

《简单的线性规划问题》教学设计一、教学内容解析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,是辅助人们进行科学管理的数学方法,为合理地利用有限的人力、物力、财力等资源作出最优决策。

本节的教学重点是线性规划问题的图解法。

数形结合和化归思想是研究线性约束条件下求线性目标函数的最值问题的数学理论和方法,本节课重点体现了这一数学思想,将目标函数与直线的截距、斜率、两点距离联系起来,这样就能使学生对数形结合思想的理解和应用更透彻,为以后解析几何的学习和研究奠定了基础,使学生从更深层次地理解“以形助数”的作用。

二、教学目标设置(1)知识与技能:使学生了解线性规划的意义,利用数形结合及化归的数学方法,理解并掌握非线性目标函数及非线性约束条件下目标函数的最值求法;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力;(3)情态、态度与价值观:激发学生动手操作、勇于探索的精神,培养学生发现问题、分析问题及解决问题的能力,体会数学活动充满着探索与创造。

三、教学重点难点教学重点:求非线性目标函数的最值;教学难点:能将代数问题转化为斜率或距离等几何问题;四、学情分析本节课学生在学习了简单线性规划问题的基础上,会画出平面区域,并且会计算简单线性目标函数的最值。

从数学知识上看,学生在此基础上还学习过直线的斜率,两点距离问题,直线与圆的位置关系,具备本节课所需知识要素。

从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。

五、教学方法本课以例题为载体,以学生为主体,以数学实验为手段,以问题解决为目的,激发学生动手操作、观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从具体到一般”的抽象过程。

应用“数形结合”的思想方法,培养学生学会分析问题,解决问题的能力。

六、教学过程。

高二数学简单的线性规划问题4

高二数学简单的线性规划问题4

设生产甲产品x乙产品y件时,工厂获得的
利润为z,则z=2x+3y.上述问题就转化为:
当x、y满足不等式※并且为非负整数时,
z的最大值是多少?
讲授新课
1. 上述问题中,不等式组是一组对变量 x、y的约束条件,这组约束条件都是 关于x、y的一次不等式,所以又叫线 性约束条件.
讲授新课
1. 上述问题中,不等式组是一组对变量 x、y的约束条件,这组约束条件都是 关于x、y的一次不等式,所以又叫线 性约束条件. 线性约束条件除了用一次不等式表示
2
x 1
l2
x 4y 3 0
B
O
2
3 x 5 y 25 0 4 6 x
A
讲授新课
练习1.解下列线性规划问题:求z=2x+y
的最大值和最小值,使式中的x、y满足
y x 约束条件 x y 1. y 1
讲授新课
解:先作出可行域,见图中△ABC表示的
y
4
x 1
C
x 4y 3 0
2
B
O
2
3 x 5 y 25 0 4 6 x
A
讲授新课
我们先画出不等式组(1)表示的平面区 域,如图中△ABC内部且包括边界,点(0,0) 不在这个三角形
区域内,当x=0,
y=0时,z=2x+y
y
4
x 1
C
x 4y 3 0
=0,点(0,0)在直
为线性规划问题.
讲授新课
3. 一般地,求线性目标函数在线性约束
条件下的最大值或最小值的问题,统称
为线性规划问题.
4. 满足线性约束条件的解(x,y)叫做可行解.

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

高中数学必修5:简单的线性规划问题  知识点及经典例题(含答案)

简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。

高二数学人教A必修5练习:3.3.2 简单的线性规划问题(一)

高二数学人教A必修5练习:3.3.2 简单的线性规划问题(一)

3.3.2 简单的线性规划问题(一)课时目标1.了解线性规划的意义.2.会求一些简单的线性规划问题.线性规划中的基本概念名称 意义 约束条件 由变量x ,y 组成的不等式或方程 线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组 目标函数 欲求最大值或最小值所涉及的变量x ,y 的函数解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题一、选择题1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大. 由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.10 B .8 C .16 D .10答案 D解析 画出不等式组对应的可行域如下图所示: 易得A (1,1),|OA |=2,B (2,2), |OB |=22,C (1,3),|OC |=10.∴(x 2+y 2)max =|OC |2=(10)2=10.3.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧y ≥0y ≤x y ≤2-x ,区域N ={(x ,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f (t )表示,则f (t )的表达式为( )A .-t 2+t +12 B .-2t 2+2tC .1-12t 2 D.12(t -2)2答案 A 解析作出不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x所表示的平面区域.由t ≤x ≤t +1,0≤t ≤1,得f (t )=S △OEF -S △AOD -S △BFC=1-12t 2-12(1-t )2=-t 2+t +12.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A .3,-11B .-3,-11C .11,-3D .11,3 答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0y ≥x,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB |的最小值为( )A.285 B .4 C.125 D .2 答案 B解析 如图所示.由约束条件作出可行域,得D (1,1),E (1,2),C (3,3).要求|AB |min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求.经分析,D (1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴|AB |min =4.二、填空题6.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3.则目标函数z =2x +3y 的最小值为________.答案 7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)答案 (3,8)解析 由⎩⎪⎨⎪⎧-1<x +y <4,2<x -y <3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧ x +y =-1,x -y =3得⎩⎪⎨⎪⎧x =1,y =-2. 由⎩⎪⎨⎪⎧ x +y =4,x -y =2得⎩⎪⎨⎪⎧x =3,y =1.∴2×3-3×1<z =2x -3y <2×1-3×(-2), 即3<z <8,故z =2x -3y 的取值范围是(3,8). 8.已知实数x ,y 满足⎩⎪⎨⎪⎧ x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx的最大值为________. 答案 2解析 画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P (x ,y )与原点的连线的斜率. A (1,2),B (3,0),∴0≤yx≤2.三、解答题9.线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下,求z =2x -y 的最大值和最小值.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B (3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1), 设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB |2=25,z min =|OC |2=5. 能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y +6)(x +y -6)≥01≤x ≤4,求x 2+y 2-2的取值范围.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方, 即|OP |2,最大值为|OA |2,其中A (4,10),|OP |=|0+0-6|12+12=62=32,|OA |=42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114, ∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值.解 由于z =y +1x +1=y -(-1)x -(-1),所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率,因此y +1x +1的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2;z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析1.已知△ABC的顶点A(3,0),B(0,1),C(1,1),P(x,y)在△ABC内部(包括边界),若目标函数z=(a≠0)取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是()【答案】A【解析】由线性规划问题的求解可知这三个值中有两个相等且为最大值,因为a≠0,所以,若,则(a≠0);若,则(a≠0),所以答案为A.【考点】线性规划的最优解2.已知O为坐标原点,点A(1,0),若点M(x,y)为平面区域内的一个动点,则的最小值为( ).A.3B.C.D.【答案】C【解析】作出可行域如图所示,表示到的距离;由图可知,所求最小值即是点B到直线的距离.【考点】二元一次不等式组与平面区域、平面向量的模长.3.在平面直角坐标系中,若点在直线的上方(不含边界),则实数a的取值范围是.【答案】【解析】由题意得:当时,,即【考点】不等式表示区域4.实数x,y满足,则的最小值为3,则实数b的值为()A.B.—C.D.—【答案】C【解析】试题分析:当时,根据约束条件画出可行域,可知在直线与的交点处取到最小值,则,解得,同理可得当时,b的值不存在。

【考点】(1)根据线性约束条件求目标函数的最值;(2)分类讨论思想的应用。

5.若实数满足条件,则的最大值为【答案】4【解析】满足条件的线性规划如图阴影所示:当经过时,能取到最大值4.【考点】不等式的应用、最值问题.6.若原点O和点在直线x+y=a的两侧,则实数a的取值范围是 ( )A.B.C.D.【答案】B【解析】将直线直线变形为直线。

因为两点在直线两侧,则将两点代入所得符号相反,即,解得。

故B正确。

【考点】二元一次不等式表示平面区域。

7.已知实数x,y满足,则的最小值是 .【答案】2【解析】线性不等式组表示的可行域如图:,,。

表示点与可行域内的点间的距离的平方。

,点到直线的距离为,因为,所以。

【考点】线性规划。

8.已知点满足条件,则的最小值为()A.B.C.-D.【答案】B【解析】满足约束条件的点的可行域,如图所示由图可知,目标函数在点处取得最小值,故选B.【考点】线性规划问题.9.设变量、满足约束条件,则的最大值为________.【答案】18【解析】解:变量x,y满足约束条件,表示的可行域为如图,所以z=4x+6y的最大值就是经过M即2x-y="2," x-y=-1的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划点评:本题考查线性规划的应用,正确作出约束条件的可行域是解题的关键.10.若为不等式组表示的平面区域,当从连续变化到时,动直线扫过中的那部分区域的面积为()A.B.C.D.【答案】A【解析】作出可行域,如图,可知则直线扫过的面积为三角形面积的差得到,即为S=,故选A.【考点】线性规划问题点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解11.若满足约束条件,则目标函数的最大值是()A.B.C.D.【答案】D【解析】满足约束条件的平面区域如下图所示:由图易得,当x=2,y=-1时,目标函数z=2x+y的最大值为3,故选D【考点】本题考查了简单的线性规划点评:解此类问题的关键是画出满足约束条件的可行域,属于基础题12.(本小题满分12分)已知x,y满足条件求: (1)4x-3y的最大值(2)x2+y2的最大值(3)的最小值【答案】(1)最大值为13(2)最大值为37(3)最小值为-9【解析】解:x,y满足条件根据不等式组表示的区域可知,当目标函数过点(4,1)时目标函数的截距最大且为13,故可知)4x-3y的最大值为13。

高二数学必修5简单的线性规划问题-PPT

高二数学必修5简单的线性规划问题-PPT

问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
C 设z=2x+y
y=-2x+ z
2x+y=0
o
问题4:z几何意义是:
斜率为-2的直线在y轴上的截距
x-4y=-3
A
3x+5y=25
x B 当直线过点 B(1,1)时,z 最小,即zmin=3 当直线过点A(5,2)时,z最大,即zmax= 2×5+2=12
产安排是什么?
应用举例
【引例】:
某工厂用A、B两种配件生 产甲、乙两种产品,每生 产一件甲产品使用4个A配 件并耗时1h,每生产一件 乙产品使用4个B配件并耗 时2h,该厂每天最多可从 配件厂获得16个A配件和 12个B配件,按每天工作 8h计算,该厂所有可能的 日生产安排是什么?
4 2
2
4
6
8
应用举例
【优化条件】: 若生产一件甲产 品获利2万元,生 产一件乙产品获 利3万元,采用哪 种生产安排获得 利润最大?
4
M(4,2 )
2
2
4
6
8
z y2x2x3yz
33
x -4y≤ - 3
例1、画出不等式组 3x+5y≤ 25 表示的平面区域
x≥1
x-4y≤-3
在该平面区域上
3x+5y≤25 x≥1
y x=1
3
故有四个整点可行解.
2
1
x +4y=11
0 1 2 3 4 5x
3x +2y=10
应用举例
练习5: 某工厂计划生产甲、乙两种产品,这两种产品都需要两

高中数学简单的线性规划问题

高中数学简单的线性规划问题

(3)
Z
y1Biblioteka x2的取值范围?课题小结:
一组关于变量x、y的一次不等式,称为线性约束条件。
把求最大值或求最小值的的函数称为目标函数,因为它是关
于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值问题, 统称为线性规划问题。
满足线性约束的解(x,y)叫做可行解。
由所有可行解组成的集
y
合叫做可行域。
可行域
使目标函数取得
最大值或最小值的可行解
o
最优解
x C
叫做这个问题的最优解。
2、求z=3x+5y的最大值,使x、y满足约束条件:
5x+3 y 15

y

x+1
x-5 y 3
作出直线3x+5y =z 的 图像,可知直线经过A点时,
y
Z取最大值;直线经过B点 时,Z取最小值。
一、引例:
1、已知x、y满足的条件,求x、y满足的区域: 并求z=2x+y的最大值,
y x

x+y

1
y -1
解析:
Z=2x+y变形为y=-2x+z, 它表示斜率为-2,在y轴上的截距 为z的一组直线系。
y
由图可以看出,当直线经过可行域上
的点C时,截距z最大。
x 可知z要求最大值,即直线经过C点时。
o
C
求得C点坐标为(2,-1),
则Zmax=2x+y=3
一、基本概念
一组关于变量x、y的一次不等式,称为线性约束条件。
把求最大值或求最小值的的函数称为目标函数,因为它是关
于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值问题, 统称为线性规划问题。

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0,则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎨⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎨⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(8)

高二数学人教A版必修5教学教案3-3-2简单的线性规划问题(8)

一、内容及其解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、教学目标(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

三、教学重、难点1、教学重点 :求线性规划问题的最优解2、教学难点 :学生对为什么要将求目标函数的最值问题转化为经过可行域的直线在y轴上的截距的最值问题以及如何想到这样转化存在疑惑,在教学中应紧扣实际,突出知识的形成发展过程。

四、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。

高中数学《简单的线性规划问题 》课件

高中数学《简单的线性规划问题 》课件

11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 解线性规划问题的关键是准确地作出可行域,正确理解 z 的几何意义,对一个封闭图形而言,最优解一般在可行域 的边界线交点处或边界线上取得.在解题中也可由此快速找 到最大值点或最小值点.
12
课前自主预习
课堂互动探究
随堂达标自测
27
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
x≥0,
【跟踪训练 3】 记不等式组x+3y≥4, 3x+y≤4
所表示的平
面区域为 D,若直线 y=a(x+1)与区域 D 有公共点,则 a 的 取值范围是___12_,__4_ _.
28
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
24
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
探究3 已知目标函数的最值求参数 例 3 已知变量 x,y 满足约束条件 1≤x+y≤4,-2≤x -y≤2.若目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最 大值,则 a 的取值范围为__a_>_1____.
解析 由约束条件画出可行域(如图). 点 C 的坐标为(3,1),z 最大时,即平移 y=-ax 时,使 直线在 y 轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)(教材改编 P89 例 6)某公司招收男职员 x 名,女职员 y
5x-11y≥-22, 名,x 和 y 需满足约束条件22xx≤+131y≥,9,

高二数学简单的线性规划问题

高二数学简单的线性规划问题

3.3.3简单的线性规划问题(一)我来学习:1.线性目标函数、线性约束条件、线性规划问题、可行解、可行域、最优解的概念;2.能从实际情境中抽象出一些简单的二元线性规划问题;3.简单的二元线性规划问题的解法.我来探究:一.引人某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元。

现有库存A 种原料10t、B种原料60t,如何安排生产才能使利润最大?为理解题意,可以将已知数据整理成下表:将上述问题转化为数学问题为:●如何解决这个问题?二.建构数学一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为 。

满足线性约束条件的解()y x ,叫做 。

由所有可行解组成的集合叫做 。

使目标函数取得最值的可行解叫做 。

我来练习:1.投资生产A 产品时,每生产100t 需要资金200万元,需要场地2002m ,可获利润300万元;投资生产B 产品时,每生产100m 需要资金300万元,需要场地1002m ,可获利润200万元。

现某单位可使用资金1400万元,场地9002m ,问:应作怎样的组合投资,可使获利最大?2.设y x z 53+=,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≥>≥+≥+01710732y x y x y x ,求z 的最小值.3、求y x z 257+=的最小值,使式中的y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+01051552y x y x y x4.某公司的仓库A 存有货物12吨,仓库B 存有货物8吨。

现按7吨、8吨和5吨把货物分别调运给甲、乙、丙三个商店,从仓库A 运货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元;从仓库B 运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、5元。

则应如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少?我来小结:解简单的线性规划问题要注意:1.准确作出可行域;2.理解目标函数的几何意义;3.找准最优解的对应点,对应点一般在可行域的顶点、边界上。

八种 经典线性规划例题(超实用)

八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将【l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选B'三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D~五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2 .C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()"A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩,故0<m <3,选C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析1.不等式组所表示的平面区域的面积等于()A.B.C.D.【答案】C【解析】根据条件,作出可行域,如图所示,联立方程组,解得A(0,3),B(0,),C(1,1),则,C点到AB的距离d=1,所以.故选 D.【考点】线性规划.2.已知变量,满足约束条件则的最大值为【答案】【解析】把函数转化为表示斜率为截距为平行直线系,当截距最大时,最大,由题意知当直线过和两条直线交点时【考点】线性规划的应用.3.已知实数满足约束条件,则的最小值为.【答案】3.【解析】如图所示,令,当过A点时,Z取到最小值为.【考点】线性规划问题(求线性目标函数的最小值).4.实数x,y满足,则的最小值为3,则实数b的值为()A.B.—C.D.—【答案】C【解析】试题分析:当时,根据约束条件画出可行域,可知在直线与的交点处取到最小值,则,解得,同理可得当时,b的值不存在。

【考点】(1)根据线性约束条件求目标函数的最值;(2)分类讨论思想的应用。

5.已知点满足,目标函数仅在点(1,0)处取得最小值,则的范围为()A.B.C.D.【答案】B【解析】根据图像判断,目标函数需要和,平行,由图像知函数a的取值范围是(,2 ),故选B【考点】本题考查了线性规划的运用点评:解此类问题时要注意两点:一是直线斜率的变化关系;二是可行域画法(直线的虚和实)。

6.设变量x,y满足,则的最大值和最小值分别为()A.1,1B.2,2C.1,2D.2,1【答案】B【解析】满足的平面区域如下图所示:由图可知当x=0,y=1时x+2y取最大值2,当x=0,y=-1时x+2y取最小值-2,故选B【考点】简单线性规划点评:本题考查的知识点是简单线性规划,画出满足条件的可行域及各角点的坐标是解答线性规划类小题的关键.7.点满足平面区域:,点满足:,则的最小值是( )A.B.C.D.【答案】D【解析】根据题意可知,点满足平面区域:,点满足:,点Q在圆上,点P在环形区域内,结合两点的距离公式,和两圆的位置关系P,那么M=,可知的最小值为,选D.【考点】本试题考查了线性规划的最值问题。

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析1.设实数x、y满足,则的最大值是_____________.【答案】9【解析】作出不等式组对应的平面区域如图:由得,平移直线由图象,可知当直线经过点时的截距最大,此时最大.代入得即目标函数的最大值为9.【考点】简单的线性规划2.已知变量满足则的最小值是()A.4B.3C.2D.1【答案】C【解析】先作出不等式组所表示的平面区域,如下图所示,设,则相当于直线的纵截距,要使最小,则须直线的纵截距最小,当直线经过点时,纵截距取得最小值,此时,选C.【考点】线性规划.3.设变量满足约束条件则目标函数的最大值为()A.14B.11C.12D.10【答案】B【解析】因为可行域表示三角形,因此当目标函数过点时,取到最大值11【考点】线性规划求最值4.若实数满足条件,则的最大值为【答案】4【解析】满足条件的线性规划如图阴影所示:当经过时,能取到最大值4.【考点】不等式的应用、最值问题.5.已知表示的平面区域包含点和,则实数的取值范围是()A.B.C.D.【答案】B【解析】依题意可得。

故B正确。

【考点】1不等式表示平面区域;2绝对值不等式。

6.设变量满足约束条件,则的最小值为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如下图所示作直线,则为直线在轴上的截距加2,联立与,解得,,即点,当直线经过可行域内上的点时,直线在轴上的截距最小,此时取最小值,即,故选A【考点】简单的线性规划问题.7.在平面直角坐标系中,不等式组表示的平面区域的面积为,则实数的值是 .【答案】2【解析】等价于,即直线的下方和直线的上方,而与直线围成三角形区域,当时,不等式组表示的平面区域的面积为.【考点】不等式中的线性规划问题.8.某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?【答案】甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124吨【解析】先由线性约束条件作出可行域,再由目标函数得出最优解.试题解析:设该厂每天安排生产甲产品x吨,乙产品y吨,则日产值,(1分)线性约束条件为. (3分)作出可行域. (7分)把变形为一组平行直线系,由图可知,当直线经过可行域上的点M时,截距最大,即z取最大值.解方程组,得交点,(12分). (13分)所以,该厂每天安排生产甲产品5吨,乙产品7吨,则该厂日产值最大,最大日产值为124吨(14分)【考点】线性规划问题.9.设x,y满足约束条件,则z=2x-3y的最小值是【答案】【解析】先作出约束条件的可行域,将目标函数转化为,在坐标系中作出函数的图像,考虑到函数中的系数为负号,所以将函数的图像在可行域范围内向上平移,直到可行域的最上顶点A,并求出A点坐标,将其代入目标函数即可求出的最小值(如下图所示).【考点】线性规划问题.10.不等式组表示的平面区域是()A.矩形B.三角形C.直角梯形D.等腰梯形【答案】D【解析】依题意可得:或,通过作图可得平面区域是一个等腰梯形.故选D.该题型知识点不难,但要细心,标清楚每个不等式所标示的区域是关键.【考点】线性规划问题.11.若实数满足则的最大值为;【答案】9【解析】先在平面直角坐标系中画出实数的可行解范围,将目标函数化为,在直角坐标系中作出函数的图像,考虑到前的符号是“”,所以将函数的图像向上平移至可行解范围的最上顶点,此时函数的图像在轴上的截距为所求的最大值(另解:可将可行解范围的最上顶点的坐标代入目标函数可得解).如下图所示.【考点】简单线性规划问题.12.若不等式组,所表示的平面区域被直线分为面积相等的两部分,则的值是( )A.B.C.D.【答案】A【解析】不等式组所表示的平面区域为所包围的阴影部分(包括边界),如图所示:因为直线把可行域分成面积相等的两部分,所以直线一定过线段BC的中点D,由B,C,可求出D,代入,得.故选A.【考点】简单的线性规划问题13.已知,,若,则.【答案】【解析】M集合中的元素是半圆上的点(扣除的直径的端点).N集合中元素是平行于y=x的直线.因为两个集合有公共的元素,即两图形有交点,如图所示:直线AB和直线DE是两条临界的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
(x,y)叫集合叫做可行域。
o
4
8
使目标函数取得最大值或最小值的可行解叫 做这个问题的最优解。
x
三、练习题:
1、求z=2x+y的最大值,使x、y满足约束条件:
y x x+y 1 y - 1
2、求z=3x+5y的最大值,使x、y满足约束条件:
四.课时小结
用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数; (2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解
五、课后作业:
课本P105 习题3.3
A组
3
/ 华宇娱乐
又是急急忙忙地赶时间 自然无暇四处张望 但是守株待兔の月影可是清清楚楚地看到那两各丫环壹转眼儿就进咯烟雨园の大门!果然 王爷在李侧福晋の院子里!月影怀着沉重の心情 回咯怡然居 看到她家仆役还在挑灯夜战 以为水清是在待王爷回来 可是她又怎么忍心将他在烟雨园の事情告诉水清呢?可是别告诉她家仆役 难道就任由她那么傻傻地等上壹整夜吗? 最终在多次劝解水清入睡无效の情况下 月影只得狠心地告诉她家仆役:“仆役 您别要等咯 再怎么等 爷今天也别会过来咯 ”第壹卷 第921章 风平即使月影没什么说他为啥啊别会 过来 也没什么说她是怎么晓得の他别会过来 但水清从月影那欲言又止の哀怨目光中立即猜咯出来 他壹定是去看望李姐姐去咯 也好 总好过半夜被请过去吧 还别如自己主动送上门去 免得伤李姐姐の心 于是水清更加放心大胆地继续她の缝补工作 王爷没什么告诉她去烟雨园の事情 以为她就真の别晓得 而水清也没什么告诉他 从昨天开始就自行恢复去排字琦那里 请安 请安是本分 她已经请咯那么多天の假 况且 有很多の事情 是需要她自己去面对 而别是依赖他过分の保护 而且也别是所有の事情都能依赖他の保护 王爷有保护水清の心思 排 字琦也大有保护她の心思 当然咯 两各人の出发点别壹样 王爷是因为对她心存有爱 排字琦则是希望后院安宁 别要打乱咯王爷利用年家の宏图大业 所以对于水清の请安 她没什么太 多地为难她 壹般就是客客气气地聊壹些别痛别痒、鸡毛蒜皮之类の事情 然后就早早地打发她回去咯 毕竟水清历来都是早来早走 现在排字琦更是希望她早来早走 别与其它女眷有接 触の机会 就会少咯许多惹事生非の机会 由于昨天晚上在烟雨园又被耽搁到咯后半夜 而且昨天看到淑清の气色明显好咯许多 所以今天回府之后 他自己先回咯朗吟阁 然后只差秦顺儿 去咯烟雨园 壹是咯解壹下她の病情恢复情况 二是免得自己过去后又因为各式各样の原因抽别出身来 又弄到三更半夜才去怡然居 没壹会儿 秦顺儿就回来咯:“启禀爷 李侧福晋の风 寒已经基本好差别多咯 再吃两副药应该就没什么啥啊大碍 ”“噢 那就好 ”虽然嘴上没什么说啥啊 可是他の心中却是欢喜别已 壹连两天搅得水清别能好好睡觉休息 他很是内疚 于 是趁着今天没啥啊事情 淑清那里也没什么咯后顾之忧 他在朗吟阁用过晚膳之后就到咯怡然居 那各时候来到怡然居 水清赶快询问他是否用膳 他就是因为别想让水清辛苦操劳 才会决 定在自己の院子解决晚膳 于是对她说:“别用咯 爷已经用过晚膳咯 您今天怎么样?有没什么听爷の吩咐 好好休息养身子?”“您天天除咯要妾身养身子 就没什么别の吩咐咯 妾身 天天照您那各吩咐 过两天 您就见别到妾身咯 ”“啥啊?爷怎么就见别到您咯?您怎么咯?生病咯?还是怎么咯?”壹听水清说再过两天就见别到她咯 他立即心慌起来 那两天他壹 直忙于淑清 冷落咯水清 难道她所以而伤心难过 准备逃跑?还是说又要给他上演壹出以死明志?水清没什么料到他会那么惊慌 原本只是随口说咯壹句 谁想到惹得他又是心急又是着 慌 想想前些天他总是落井下石地看她の笑话 现在终于轮到她好好地整治他壹番 于是故意闭起嘴巴 别说咯!第壹卷 第922章 白胖王爷越是心急 越是见水清闭口别说咯 急得他壹把 抓住她の胳膊 表情极为严肃地说道:“您!您快说 怎么爷就见别到您咯?您要是敢……”“妾身要是敢啥啊 爷就将妾身满门抄斩?”他哪里料到水清会说出那句话来 壹下子被戳到 咯软肋 他就像是壹只泄咯气の皮球壹样 他确实是向她摞过那种狠话 当然也是事出有因 若别是她把他逼急咯 他怎么可能说出那么绝情の话来?现在 那句当时の气话竟然成咯水清攥 在手中の把柄 时别时地就要被拎出来好好敲打他壹番 搞得他急别得、恼别得 无可奈何之下 他只能
2.解:作出平面区域
y
A
o C x
B
5 x+3 y 1 5 1 y x+ x-5 y 3 z=3x+5y
作出直线3x+5y =z 的 图像,可知直线经过A点时, 求得A(1.5,2.5), B(-2,-1),则 Z取最大值;直线经过B点 Zmax=17,Zmin=-11。 时,Z取最小值。
简单的线性规划问题
【教学目标】 1.了解二元一次不等式表示平面区域; 2.了解线性规划的意义以及约束条件、目标函数、 可行解、可行域、最优解等基本概念; 3.了解线性规划问题的图解法,并能应用它解决一些 简单的实际问题; 【教学重点】 用图解法解决简单的线性规划问题 【教学难点】 准确求得线性规划问题的最优解
1.课题导入
在日常生活中,经常会遇到资源利用、人力调配、生产安 排等如何合理分配利用,使其达到最优效果的问题。为此 科学的管理是一种重要的方法和手段。 1、下面我们就来看有关生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算, 该厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y A o B x
y x x+y 1 y - 1
z=2x+y
C
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
x+2 y 8 x 2 y 8 4 x 1 6 x 4 4 y 1 2 y 3 x 0 x 0 y 0 y 0
将不等式组表示成平面区域, 图中的阴影部分中的整点
(坐标为整数)就代表所有可能的日生产安排。 提出新问题: 若生产一件甲产品获利2万元,生 产一件乙产品获利3万元,采用那种生产安排利润最 大? 设工厂获得的利润为z,则z=2x+3y
y
4
把z=2x+3y变形 2 z 为 y x 3 3 2 它表示斜率为 3 的直线系,z与这条 直线的截距有关。
3
M
o
4
8
x
设工厂获得的利润为z,则z=2x+3y
2 z y x 3 3 2 它表示斜率为 的直线系,z与这条直线的截距 3 有关。
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
相关文档
最新文档