201709年高考数学集合的含义及其表示复习.doc

合集下载

集合的含义与表示

集合的含义与表示

集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。

(完整版)《集合的含义及其表示》知识梳理

(完整版)《集合的含义及其表示》知识梳理

集合的含义及其表示一、集合1.集合某些指定的对象集在一起成为集合。

(1)集合中的对象称元素,若a是集合A的元素,记作Aa∈;若b不是集合A的元素,记作Ab∉;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(4)常用数集及其记法非负整数集(或自然数集),记作N;;正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R 。

2.集合的包含关系(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂);集合相等:构成两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ;若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作AB ;(2)简单性质:1)A ⊆A ;2)Φ⊆A ;(3)若A ⊆B ,B ⊆C ,则A ⊆C ; (4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集);3.全集与补集(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;(2)若S 是一个集合,A ⊆S ,则,S C =}|{A x S x x ∉∈且称S 中子集A 的补集;(3)简单性质:1)S C (S C )=A ;2)S C S =Φ,ΦS C =S 。

年高考数学集合复习知识点.doc

年高考数学集合复习知识点.doc

2017年高考数学集合复习知识点2017年高考数学集合概念1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。

元素常用小写字母a、b、c、来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a 元素a不属于集合A,记做a A。

3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

例如A={0,1,3,4},可知0 A,6 A。

(2)互异性:集合张的元素必须是互异的,就是说对于一个给定的集合,它的任何两个元素都是不同的。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。

如方程3x+1=0 的解组成的集合,由2,4,6,8,组成的集合,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如到平面上两个定点的距离相等于所有点所有的三角形,组成上述集合的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的集合叫做空集,记错F,如{x R|+1=0}。

5、特定的集合的表示为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

(1) 全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

(2) 非负整数集内排出0的集合,也称正整数集,记做N*或N+。

(3) 全体整数的集合通常简称为整数集Z。

(4) 全体有理数的集合通常简称为有理数集,记做Q。

(5) 全体实数的集合通常简称为实数集,记做R。

高中数学知识点:集合的含义及表示

高中数学知识点:集合的含义及表示

高中数学知识点:集合的含义及表示
集合的概念:
1、集合:一般地我们把一些能够确定的不同对象的全体称为集合(简称集);集合通常用大写的拉丁字母表示,如A、B、C、……。

元素:集合中每个对象叫做这个集合的元素,元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系:
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作3、集合分类根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
常用数集及其表示方法:
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
集合中元素的特性:
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了. 任何一个元素要么属于该集合,要么不属于该集合,二者必具其一。

(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
易错点:
(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示
成Z。

1.1.1集合的含义与表示

1.1.1集合的含义与表示

课堂练习
5.用适当的方法表示下列集合: (1)A={(x,y)|x+y=4,x∈N*,y∈N*}; (2)平面直角坐标系中所有第二象限的点.
解 (1)∵x∈N*,y∈N*,∴x=1,y=3或x=2,y=2或x=3,y=1, ∴A={(1,3),(2,2),(3,1)}.
(2){(x,y)|x<0,y>0}.
提示 集合{0,1,2,3,4,5,6,7}表示前7个自然数,故用描述法可 表示为{x∈N|x≤7}.
课堂练习
4.已知集合A={-1,0,1},集合B={y|y=|x|,x∈A},则B= ___{0_,_1_}__.
提示 ∵x∈A,∴当x=-1时,y=|x|=1; 当x=0时,y=|x|=0;当x=1时,y=|x|=1.
2.判断正误: (1){(1,2)}={(2,1)}
(2){(1,2),(2,1)}={(2,1),(1,2)}
课堂练习
3.集合{0,1,2,3,4,5,6,7}用描述法可表示为( B ). A.{x|x是不大于7的整数} B.{x∈N|x≤7} C.{x∈Q|0≤x≤7} D.{x|0≤x≤7}
【答案】 (1){x|x=3n+2,n∈N}. (2){(x,y)|xy=0}.
典例精讲:题型三:列举法与描述法的综合应用
例3:集合A={x|kx2-8x+16=0},若集合A只有一个元素, 试求实数k的值,并用列举法表示集合A.
【思路探索】集合A的代表元素x为方程的解,集合A只有1个元 素,意味着方程kx2-8x+16=0只有1解.
(3)2,3,1这三个数;
探究3
集合相等
集合相等:
只要构成两个集合的元素是一样的,我们就 称这两个集合是相等的.
小于“2”的自然数组成的集合.

集合的概念和表示法-集合与关系-离散数学

集合的概念和表示法-集合与关系-离散数学

Φ {Φ}


第22页
3、幂集 引例:求集合的子集及子集的个数




A 子集 子集个数 Φ Φ 1 {a} Φ,{a} 2 {a,b} Φ,{a},{b},{a,b} 4 {a,b,c} Φ,{a},{b},{c},{a,b}, {a,c}, {b,c}, {a,b,c} 8 一般来说,对于n个元素的集合A,它的不同的子集 总数有:
0 2 + Cn + C1 C n n +…… +

Cn n

=(1+1)n=2n 所以,n元集共有2n个子集。
第23页
一般来说,对于n个元素的集合A,它的不同的子 集总数有 0 1 2 n
Cn + Cn
+ C n +…… +
Cn
而 1 n-1 n n n x n-2y2 +… + + (x+y)n= C 0 C n x y + C2 n x C n n y 令x=y=1时得 0 n 2 n + 2 = Cn + C1 + …… + C C n n n 所以不同子集总数有 2n
文氏(Venn)图-辅助的集合的表示方法
第6 页
1、枚举法(显式表示法)

就是把集合的元素(全部或部分)写在花括号的里面, 每个元素仅写一次,不考虑顺序,并用”,”分开。 例 (1)命题的真假值组成的集合:S={T,F} (2)A={a,e,i,o,u}
第7 页
在使用中,分两种情况:
(1)当集合中元素个数有限且较少时,将元素全部写出。 例1:设集合A是由绝对值不超过3的整数组成。 A={-3, -2, -1, 0, 1, 2, 3} (2)当集合A元素的个数无限或有限但个数较多时,不 能或不需要一一列举出来,只要写出少数元素,以显示 出它的规律。(当规律不明确,不能用此方法)。 例2:设集合B是由自然数的平方构成的集合。 B = {0, 1, 4, 9, 16, …, n2, …}

高中数学知识点精讲精析 集合的含义及其表达

高中数学知识点精讲精析 集合的含义及其表达

1.1 集合的含义及其表达1·1·1 集合的概念与性质1.集合的概念一般地,一定范围内某些确定的.不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素.解读:要判断一些对象能否构成一个集合,主要看这些对象是否是确定的.集合常用大写字母A.B.M.N……标记,一些常用的数集及其记法:自然数集:N;正整数集:N+;整数集:Z;有理数集:Q;实数集:R;2.集合中元素的性质(1)确定性设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.例如:"我国的小河流",由于"小"这个标准不能确定,所以不能构成集合.(2)互异性"集合中的元素必须是互异的",就是说:"对于一个给定的集合,它的任何两个元素都是不同的".(3)无序性集合与其中元素的排列顺序无关,如集合{a,b,c}与{b,c,a}是同一集合.3.元素与集合的关系:若a在集合中,就说a属于集合A,记作a∈A;若a不在集合A中,就说a不属于集合A,记作a A.4.集合的分类(1)有限集:含有有限个元素的集合;(2)无限集:含有无限个元素的集合;(3)空集:不含任何元素的集合,用符号φ表示.5.集合相等两个集合所含的元素完全相同,则称两个集合相等.解读:与集合相等相关的问题主要是利用集合相等确定集合中的元素,此时集合元素的互异性成为被关注的焦点.[例1] 下列不能形成集合的是()A.你现在的家庭成员;B.本单位已退休人员;C.老年人;D.本班的学生分析:因为集合一旦形成,那么对任何一个对象而言,它要么属于这个集合,要么不属于这个集合.但是,如何判断一个人是不是老年人尚无统一标准,所以不能形成集合.答:C.[例2] 考察下列每组对象哪几组能够成集合?( )(1)比较小的数;(2)不大于10的非负偶数;(3)所有三角形;(4)高个子男生;A .(1)(4) B.(2)(3) C.(2) D.(3)分析:集合中的元素具有确定性,(1),(4)中元素不具有确定性,不能构成集合,故选B.[例3] 若集合中有且仅有一个元素.求实数的值. 解:(1)(2)∴[例4]. 已知集合,若,求a. 解:根据集合元素的确定性,得:若a +2=1, 得:, 但此时,不符合集合元素的互异性.若,得:.但时,,不符合集合元素的互异性.若得:a=-1或-2. ,都不符合集合元素的互异性. 综上可得,a = 0.1·1·2 集合的表示法集合的表示方法主要有以下三种:(1)列举法:将集合中的元素一一列出来(在列举时不考虑元素的顺序),并且写在大括号内的一种表示集合的方法.(2)描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性的一种表示集合的方法,格式为{x ∈A| P (x )}.(3)图示法:用平面区域来表示集合之间关系的方法,所用图叫文氏图.如图,解读:1.列举法指把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,由方程 x 2-1=0 的所有解组成的集合,可以表示为{-1,1}.注意(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,}044|{2=++=x kx x A k 0=k }1{-=A 0≠k 01616=-=∆k 1=k }0,1{∈k }33,)1(,2{22++++=a a a a A A ∈1∴∈A 1 133,11,1222=++=+=+a a a a 或)或(1-=a 21332+==++a a a 1)1(2=+a 2-,0或=a 2-=a 22)1(133+==++a a a ,1332=++a a 1)1(-2a 1;2a ,-1a 2=+==+=a 时,时但100},所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素.2.描述法指用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法.格式为{x ∈A| P (x )} 含义是在集合A 中满足条件P (x )的x 的集合. 例如,不等式 x-3>2 的解集可以表示为:{x ∈R|x-3>2} 或{x|x-3>2}所有直角三角形的集合可以表示为:{x| x 是直角三角形} .注意(1)在不致混淆的情况下,可以省去竖线及左边部分.如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}总之,集合的三种表示方法,各有优点.用什么方法来表示集合,要具体问题具体分析.[例1]. 用列举法表示下列集合:(1)(2)(3)解:(1){-2,2} (2){1}(3){(3,-2),(-2,3)}[例2] S 是满足下列两个条件的实数组成的集合 ① ② 若,则(1)若,试写出S 的其它必有元素;(2)若,求证; (3)S 是否会为单元素集.解析:(1) ∴ ∴ ∴∴必在S 内 (2) ∴(3)若S 中仅有一个元素 }04|{2=-∈x R x },01|{3R x x x ∈=-}61|),{(⎩⎨⎧-==+xy y x y x S ∉1S a ∈Sa ∈-11S ∈2S a ∈S a ∈-11S ∈2S ∈-=-1211S ∈=+21111S ∈=-221121,1-S a ∈S a ∈-⇒11S a a a a ∈-=---=--111111111∴∴ 无解 ∴ S 不可能仅有一个元素. a a -=11012=+-a a a。

高考冲刺复习 集合的含义(完整版)

高考冲刺复习 集合的含义(完整版)

A. 3 ∈ A
B. 1 ∈ A
C. 0 ∈ A
D. −1 ∈/ A
解析:

2

3x
>
0,
解得
x
<
2 3
,
所以
A
=
{ x
x
<
2 3
} ,

0
<
2 3
,
从而
0

A,
因此选
C.
例4
设集合 S
是由实数组成的集合, 且满足: 若 a ∈ S, 则
1 1−a
∈ S.
(1) 若 3 ∈ S, 则 S 中还有什么元素, 请写出集合 S;
{ (1) A = (x, y)
y x−3
=
} 1;
(2) B = { (x, y) | x + y = 1 且 x − y = −1 }.
解: (1) 集合 A 表示一个点集, 其代表元素是点 (x, y), 因为 x − 3 ̸= 0, 所以 x ̸= 3, 因此 y ̸= 0, 故集合 A 表示直线 y = x − 3 上的所有点(除 (3, 0) 外);
题型详解
题型一
考查集合的含义
例 1 下列各组对象可以组成集合的是 (
A.
√ 2
的近似值的全体;
). B. 所有能被 3 整除的数;
C. 新华书店中有意义的小说;
D. 数学必修一课本中所有的难题.
解析: 由集合中元素的确定性可知, 所有能被 3 整除的数可以构成集合, 故选 B.
例 2 说明下列各集合表示的含义.
题型四
考查集合的表示
例 7 用描述法表示下列集合: x + y = 1

高考数学 夯实基础 集合的含义、基本关系和运算

高考数学 夯实基础 集合的含义、基本关系和运算

集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或BA真子集A ≠⊂B(或B ≠⊃A ) B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.集合的基本运算名称 记号意义性质示意图交集A BI{|,x x A∈且}x B∈(1)A A A=I(2)A∅=∅I(3)A B A⊆IA B B⊆IBA并集A BU{|,x x A∈或}x B∈(1)A A A=U(2)A A∅=U(3)A B A⊇UA B B⊇UBA补集U Að{|,}x x U x A∈∉且1()UA A=∅Ið2()UA A U=Uð【补充知识】含绝对值的不等式与一元二次不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a> ||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R20(0)ax bx c a++<>的解集12{|}x x x x<<∅∅()()()U U UA B A B=I U痧?()()()U U UA B A B=U I痧?。

高考数学总复习 第一章 第1讲 集合的含义与基本关系名师课件 理

高考数学总复习 第一章 第1讲 集合的含义与基本关系名师课件 理
需m2m+-1≥1≤-52,, 可得 2≤m≤3. 综上所述,当 m≤3 时,有B⊆A.
(2)∵x∈R,且 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}, 没有元素 x 使 x∈A 与 x∈B 同时成立,即 A∩B=∅ . ①若 B=∅ ,即 m+1>2m-1,得 m<2 时满足条件; ②若 B≠∅ ,则要满足条件有:
{x|0<x<2},则集合 A∩B=( A )
A.{x|0<x<1}
B.{x|-1<x<1}
C.{x|-2<x<2}
D.{x|1<x<2}
3.(2013 年广东)设集合M={x|x2+2x=0,x∈R},N={x|x2
-2x=0,x∈R},则 M∪N=( D )
A.{0} C.{-2,0}
B.{0,2} D.{-2,0,2}
{1,3,5,6},则∁U A=( C )
A.{1,3,5,6}
B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
解析:依题意,∁ UA={2,4,7}.故选C.
考点1 集合的运算
例1:(2013 年浙江)设集合 S={x|x>-2},T={x|x2+3x-
4≤0},则(∁RS)∪T=( A.(-2,1]
M={3,4,5}, N={1,2,5}, 则集合{1,2}可以表示为( B )
A.M∩N
B.(∁UM)∩N
C.M∩(∁UN)
D.(∁UM)∩(∁UN)
考点2 集合间的基本关系 例 2:集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}. (1)若 B⊆A,求实数 m 的取值范围; (2)当 x∈R 时,没有元素 x 使 x∈A 与 x∈B 同时成立,求 实数 m 的取值范围. 解:(1)①当m+1>2m-1, 即m<2 时,B=∅ .满足 B⊆A. ②当m+1≤2m-1,即m≥2 时,要使B⊆A 成立,

高中数学_集合知识讲解(精编文档).doc

高中数学_集合知识讲解(精编文档).doc

【最新整理,下载后即可编辑】集合一、章节结构图123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩二、复习指导1.新课标知识点梳理在高中数学中,集合的初步知识与常用逻辑用语知识,与其它内容有着密切联系,它们是学习、掌握和使用数学语言的基础,准确表述数学内容,更好交流的基础.集合知识点及其要求如下:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系.(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.1集合的概念及其运算(一)(一)复习指导本节主要内容:理解集合、子集、交集、并集、补集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,会用集合的有关术语和符号表示一些简单\的集合.高考中经常把集合的概念、表示和运算放在一起考查.因此,复习中要把重点放在准确理解集合概念、正确使用符号及准确进行集合的运算上.1.集合的基本概念(1)某些指定的对象集在一起就成为一个集合.集合中每个对象叫做这个集合的元素.集合中的元素是确定的、互异的,又是无序的.(2)不含任何元素的集合叫做空集,记作.(3)集合可分为有限集与无限集.(4)集合常用表示方法:列举法、描述法、大写字母法、图示法及区间法.(5)元素与集合间的关系运算;属于符号记作“∈”;不属于,符号记作“∉”.2.集合与集合的关系对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,就说集合B包含集合A,记作A⊆B(读作A包含于B),这时也说集合A是集合B的子集.也可以记作B⊇A(读作B包含A)①子集有传递性,若A⊆B,B⊆C,则有A⊆C.②空集是任何集合的子集,即⊆A③真子集:若A⊆B,且至少有一个元素b∈B,而b∉A,称A是B的真子集.记作A B(或B∉A).④若A⊆B且B⊆A,那么A=B⑤含n(n∈N*)个元素的集合A的所有子集的个数是:2的n次方个.(二)解题方法指导例1.选择题:(1)不能形成集合的是( )(A)大于2的全体实数(B)不等式3x -5<6的所有解(C)方程y =3x +1所对应的直线上的所有点(D)x 轴附近的所有点(2)设集合62},23|{=≥=x x x A ,则下列关系中正确的是( )(A)x A (B)x ∉A (C){x }∈A (D){x }A(3)设集合},214|{},,412|{Z Z ∈+==∈+==k k x x N k k x x M ,则( ) (A)M =N(B)M N (C)M N (D)M ∩N =例2.已知集合}68{N N ∈-∈=x x A ,试求集合A 的所有子集.例3.已知A ={x |-2<x <5},B ={x |m +1≤x ≤2m -1},B ≠,且B ⊆A ,求m 的取值范围.例4*.已知集合A ={x |-1≤x ≤a },B ={y |y =3x -2,x ∈A },C ={z |z =x 2,x ∈A },若C ⊆B ,求实数a 的取值范围.1.2集合的概念及其运算(二)(一)复习指导(1)补集:如果A ⊆S ,那么A 在S 中的补集s A ={x |x ∈S ,且x ≠A }.(2)交集:A ∩B ={x |x ∈A ,且x ∈B }(3)并集:A ∪B ={x |x ∈A ,或x ∈B }这里“或”包含三种情形:①x ∈A ,且x ∈B ;②x ∈A ,但x ∉B ;③x ∈B ,但x ∉A ;这三部分元素构成了A ∪B(4)交、并、补有如下运算法则全集通常用U 表示.U (A ∩B )=(U A )∪(U B );A ∩(B ∪C )=(A ∩B )∪(A ∩C )(A∪B)=(U A)∩(U B);A∪(B∩C)=(A∪B)∩(A∪C)U(5)集合间元素的个数:card(A∪B)=card(A)+card(B)-card(A∩B)集合关系运算常与函数的定义域、方程与不等式解集,解析几何中曲线间的相交问题等结合,体现出集合语言、集合思想在其他数学问题中的运用,因此集合关系运算也是高考常考知识点之一.(二)解题方法指导例1.(1)设全集U={a,b,c,d,e}.集合M={a,b,c},集合N={b,d,e},那么(U M)∩(U N)是( )(A)(B){d} (C){a,c} (D){b,e}(2)全集U={a,b,c,d,e},集合M={c,d,e},N={a,b,e},则集合{a,b}可表示为( )(A)M∩N(B)(U M)∩N(C)M∩(U N) (D)(U M)∩(U N)例2.如图,U是全集,M、P、S为U的3个子集,则下图中阴影部分所表示的集合为( )(A)(M∩P)∩S(B)(M∩P)∪S(C)(M∩P)∩(U S) (D)(M∩P)∪(U S)例3.(1)设A={x|x2-2x-3=0},B={x|ax=1},若A∪B=A,则实数a 的取值集合为____;(2)已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=M,则实数a 的取值集合为____.例4.定义集合A-B={x|x∈A,且x B}.(1)若M={1,2,3,4,5},N={2,3,6}则N-M等于( )(A)M(B)N(C){1,4,5 } (D){6}(2)设M、P为两个非空集合,则M-(M-P)等于( )(A)P(B)M∩P(C)M∪P(D)M例5.全集S={1,3,x3+3x2+2x},A={1,|2x-1|}.如果sA={0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.例 题 解 析1.1 集合的概念及其运算(1)例1分析:(1)集合中的元素是确定的、互异的,又是无序的;(2)注意“∈”与“⊆”以及x 与{x }的区别;(3)可利用特殊值法,或者对元素表示方法进行转换.解:(1)选D .“附近”不具有确定性.(2)选D .(3)选B . 方法一:N M ∉∉21,21故排除(A)、(C),又N ∉∉43,43M ,故排除(D). 方法二:集合M 的元素.),12(41412Z ∈+=+=k k k x 集合N 的元素=+=214k x Z ∈+k k ),2(41.而2k +1为奇数,k +2为全体整数,因此M N .小结:解答集合问题,集合有关概念要准确,如集合中元素的三性;使用符号要正确;表示方法会灵活转化.例2分析:本题是用{x |x ∈P }形式给出的集合,注意本题中竖线前面的代表元素x ∈N .解:由题意可知(6-x )是8的正约数,所以(6-x )可以是1,2,4,8;可以的x 为2,4,5,即A ={2,4,5}.∴A 的所有子集为,{2},{4},{5},{2,4},{2,5},{4,5},{2,4,5}.小结:一方面,用{x |x ∈P }形式给出的集合,要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;另一方面,含n (n ∈N*)个元素的集合A 的所有子集的个数是:+++210n nn C C C n n n C 2=+ 个. 例3分析:重视发挥图示法的作用,通过数轴直观地解决问题,注意端点处取值问题.解:由题设知⎪⎩⎪⎨⎧<-->+-≤+51221121m m m m , 解之得,2≤m <3.小结:(1)要善于利用数轴解集合问题.(2)此类题常见错误是:遗漏“等号”或多“等号”,可通过验证“等号”问题避免犯错.(3)若去掉条件“B ≠”,则不要漏掉⊆A 的情况.例4*分析:要首先明确集合B 、C 的意义,并将其化简,再利用C ⊆B 建立关于a 的不等式.解:∵A =[-1,a ],∴B ={y |y =3x -2,x ∈A },B =[-5,3a -2]⎪⎩⎪⎨⎧≥<≤<≤-=∈==∴1],,0[10],1,0[01],1,[}.,|{222a a a a a C A x x z z C (1)当-1≤a <0时,由C ⊆B ,得a 2≤1≤3a -2无解;(2)当0≤a <1时,1≤3a -2,得a =1;(3)当a ≥1时,a 2≤3a -2得1≤a ≤2综上所述,实数a 的取值范围是[1,2].小结:准确理解集合B 和C 的含义(分别表示函数y =3x -2,y =x 2的值域,其中定义域为A )是解本题的关键.分类讨论二次函数在运动区间的值域是又一难点.若结合图象分析,结果更易直观理解.1.2 集合的概念及其运算(2)例1分析:注意本题含有求补、求交两种运算.求补集要认准全集,多种运算可以考虑运算律.解:(1)方法一:∵U M ={b ,c },U N ={a ,c } ∴(U M )∩(U N )=,答案选A方法二:(U M )∩(U N )= U (M ∪N )=∴答案选A方法三:作出文氏图,将抽象的关系直观化.∴答案选A(2)同理可得答案选B小结:交、并、补有如下运算法则U (A ∩B )=(U A )∪(U B );A ∩(B ∪C )=(A ∩B )∪(A ∩C )U (A ∪B )=(U A )∩(U B );A ∪(B ∩C )=(A ∪B )∩(A ∪C )例2分析:此题为通过观察图形,利用图形语言进行符号语言的转化与集合运算的判断.解:∵阴影中任一元素x 有x ∈M ,且x ∈P ,但x ∉S ,∴x ∈U S .由交集、并集、补集的意义.∴x ∈(M ∩P )∩(U S )答案选D .小结:灵活进行图形语言、文字语言、符号语言的转化是学好数学的重要能力.例3解:(1)由已知,集合A ={-1,3}, ⎪⎩⎪⎨⎧=/=∅=0}1{0a a a B ∵A ∪B =A 得B ⊆A∴分B =和}1{a B =两种情况.当B =时,解得a =0;当}1{a B =时,解得a 的取值}31,1{- 综上可知a 的取值集合为⋅-}31,1,0{ (2)由已知,⎪⎩⎪⎨⎧=/=∅==0}1{0},{a aa N a M ∵M ∩N =M ⇔M ⊆N当N =时,解得a =0;M ={0} 即M ∩N ≠M ∴a =0舍去当}1{aN =时,解得11±=⇔=a aa 综上可知a 的取值集合为{1,-1}.小结:(Ⅰ)要重视以下几个重要基本关系式在解题时发挥的作用:(A ∩B )⊆A ,(A ∩B )⊆B ;(A ∪B )⊇A ,(A ∪B )⊇B ;A ∩U A =,A ∪U A =U ;A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.(Ⅱ)要注意是任何集合的子集.但使用时也要看清题目条件,不要盲目套用.例4解:(1)方法一:由已知,得N -M ={x |x ∈N ,且x ∉M }={6},∴选D方法二:依已知画出图示∴选D .(2)方法一:M -P 即为M 中除去M ∩P 的元素组成的集合,故M -(M -P )则为M 中除去不为M ∩P 的元素的集合,所以选B .方法二:由图示可知M =(M ∩P )∪(M -P )选B .方法三:计算(1)中N-(N-M)={2,3},比较选项知选B.小结:此题目的检测学生的阅读理解水平及适应、探索能力,考查学生在新情境中分析问题解决问题的能力.事实证明,虽然这类问题内容新颖,又灵活多样,但其涉及的数学知识显得相对简单和基础,要勇于尝试解题.例5*解:假设这样的x存在,∵S A={0},∴0∈S,且|2x-1|∈S.易知x3+3x2+2x=0,且|2x-1|=3,解之得,x=-1.当x=-1时,S={1,3,0},A={1,3},符合题设条件.∴存在实数x=-1满足S A={0}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1 集合的含义及其表示
重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表
示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.
考纲要求:①了解集合的含义、元素与集合的“属于”关系;
②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
经典例题:若x ∈R ,则{3,x ,x 2
-2x }中的元素x 应满足什么条件?
当堂练习:
1.下面给出的四类对象中,构成集合的是( )
A .某班个子较高的同学
B .长寿的人
C
D .倒数等于它本身的数
2.下面四个命题正确的是( )
A .10以内的质数集合是{0,3,5,7}
B .由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}
C .方程2
210x x -+=的解集是{1,1} D .0与{0}表示同一个集合
3. 下面四个命题: (1)集合N 中最小的数是1; (2)若 -a ∉Z ,则a ∈Z ;
(3)所有的正实数组成集合R +
;(4)由很小的数可组成集合A ;
其中正确的命题有( )个
A .1
B .2
C .3
D .4
4.下面四个命题: (1)零属于空集; (2)方程x 2
-3x+5=0的解集是空集;
(3)方程x 2
-6x+9=0的解集是单元集; (4)不等式 2 x-6>0的解集是无限集;
其中正确的命题有( )个
A .1
B .2
C .3
D .4 5. 平面直角坐标系内所有第二象限的点组成的集合是( )
A . {x,y 且0,0x y <>}
B . {(x,y)0,0x y <>} C. {(x,y) 0,0x y <>} D. {x,y 且0,0x y <>} 6.用符号∈或∉填空:
0__________{0}, a __________{a }, π
__________Q ,
2
1__________Z ,-1__________R ,
0__________N , 0 Φ.
7.由所有偶数组成的集合可表示为{x x = }.
8.用列举法表示集合D={2
(,)8,,x y y x x N y N =-+∈∈}为 . 9.当a 满足 时, 集合A ={30,x x a x N +-<∈}表示单元集. 10.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________. 11.数集{0,1,x 2
-x }中的x 不能取哪些数值?
12.已知集合A ={x ∈N|126x
-∈N
},试用列举法表示集合A .
13.已知集合A={2
210,,x ax x a R x R ++=∈∈}.
(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.
14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则
11A a
∈-,证明:
(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。

§1.1 集合的含义及其表示
经典例题:解:由集合中元素的互异性知
2
23,32,2,x x x x x x ≠≠-≠-⎧⎪⎨⎪⎩
解之得x ≠-1,且x ≠0,且x ≠3. 当堂练习:
1. D;
2. B;
3. A;
4. C;
5. B;
6.∈、∈、∉、∉、∈、∈、∉;
7. {2,x x n n Z =∈};
8. {(0,8),(1,7),(2,4)};
9. 36a <≤;10. 2或4;
11.因为数集中的元素是互异的,所有2201x x x x ≠≠⎧⎨⎩
-,
-.
∵x 2-x =0的解是x =0或x =1, ∴x 2
-x ≠0的
解是x ≠0或x ≠1; ∵x 2
-x =1的解是x
2
或x
2
, ∴x 2
-x ≠1的解为x
2

x
2; 因此,x 不能取的数值是0,1
2
12.∵
126x
-∈N (x ∈N ), ∴6-x =1,2,3,4,6(x ∈N ),即x =5,4,3,2,0.故A ={0,2,3,
4,5}. 13.(1)当a=0时,方程2x+1=0只有一根12
x =-
;当a ≠0时,△=0,即4-4a=0,所以a=1,这
时121x x ==-.所以,当a=0或a=1时,A 中只有一个元素分别为12
-或-1.(2)A 中至多有一元素包括
两种情形即A 中有一个元素和A 是空集.当A 是空集时,则有0
440
a a ≠∆=-<⎧⎨⎩,解得a>1;结合(1)知,
当a=0或a ≥1时,A 中至多有一个元素. 14.(1)1,2
1-; (2)集合A 非空,故存在a ∈A, a ≠1,∴1
1A a ∈-且
111a ≠-,即0a ≠时,有
A
a
a a
∈-=--
111
11,且11a a
-≠,∴
111a A a a
=∈--,∴三个数为
11,,
1a a a
a
--,再证这三数两两互不相等即可.。

相关文档
最新文档