平面向量的概念及几何运算
平面向量的运算法则
平面向量的运算法则平面向量是解决平面几何问题的重要工具,通过向量的运算可以简化平面几何问题的处理过程。
本文将介绍平面向量的基本概念和运算法则,以及其在几何问题中的应用。
一、平面向量的表示平面向量用有序数对表示,常用形式为A(x₁, y₁)和B(x₂, y₂),其中A和B分别表示向量的起点和终点,(x₁, y₁)和(x₂, y₂)表示向量的坐标。
二、平面向量的加法平面向量的加法指的是将两个向量按照特定的法则相加,得到一个新的向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A与向量B的和C可以表示为C(x₁ + x₂, y₁ + y₂)。
三、平面向量的减法平面向量的减法指的是计算出一个新的向量,使得用该向量加上被减向量等于另一个向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A 与向量B的差D可以表示为D(x₁ - x₂, y₁ - y₂)。
四、平面向量的数量乘法平面向量的数量乘法指的是将一个向量乘以一个实数,得到一个新的向量。
设有向量A(x, y)和实数k,kA可以表示为kA(kx, ky)。
五、平面向量的点乘平面向量的点乘指的是两个向量的对应坐标相乘后相加的运算。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的点乘可以表示为A·B = x₁x₂ + y₁y₂。
六、平面向量的叉乘平面向量的叉乘指的是两个向量按照一定的法则相乘,得到一个新的向量。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的叉乘可以表示为A×B = x₁y₂ - x₂y₁。
七、平面向量的模长平面向量的模长指的是一个向量的长度,可以通过勾股定理求得。
设有向量A(x, y),则向量A的模长可以表示为|A| = √(x² + y²)。
八、平面向量的单位向量平面向量的单位向量指的是模长为1的向量,可以通过将向量除以其模长得到。
设有向量A(x, y),则向量A的单位向量可以表示为Â = (x/|A|, y/|A|)。
平面向量知识点归纳
平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量与数量的区别。
向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向就是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量就是||AB AB ±u u u r u u u r);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。
提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线⇔ AB AC u u u r u u u r、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量就是-。
如下列命题:(1)若a b =r r,则a b =r r 。
(2)两个向量相等的充要条件就是它们的起点相同,终点相同。
(3)若AB DC =u u u r u u u r ,则ABCD 就是平行四边形。
(4)若ABCD 就是平行四边形,则AB DC =u u u r u u u r 。
(5)若,a b b c ==r r r r ,则a c =r r。
(6)若//,//a b b c r r r r ,则//a c r r。
其中正确的就是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。
平面向量的概念及线性运算
平面向量的概念及线性运算【考点梳理】1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相λ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 【考点突破】考点一、平面向量的有关概念【例1】给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( )A .②③B .①②C .③④D .②④ [答案] A[解析] ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.综上所述,正确命题的序号是②③. 【类题通法】1.相等向量具有传递性,非零向量的平行也具有传递性.2.共线向量即为平行向量,它们均与起点无关.3.向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.4.非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量. 【对点训练】 给出下列六个命题:①若|a |=|b |,则a =b 或a =-b ; ②若AB →=DC →,则ABCD 为平行四边形; ③若a 与b 同向,且|a |>|b |,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线; ⑤λa =0(λ为实数),则λ必为零;⑥a ,b 为非零向量,a =b 的充要条件是|a |=|b |且a ∥b . 其中假命题的序号为________. [答案] ①②③④⑤⑥[解析] ①不正确.|a |=|b |.但a ,b 的方向不确定,故a ,b 不一定是相等或相反向量;②不正确.因为AB →=DC →,A ,B ,C ,D 可能在同一直线上,所以ABCD 不一定是四边形.③不正确.两向量不能比较大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.⑤不正确.当λ=1,a =0时,λa =0.⑥不正确.对于非零向量a ,b ,a =b 的充要条件是|a |=|b |且a ,b 同向.考点二、平面向量的线性运算【例2】(1) 设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( )A .2B .3C .-2D .-3(2)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.[答案] (1)D (2)12 -16[解析] (1)由AD →=-13AB →+43AC →,可得3AD →=-AB →+4AC →,即4AD →-4AC →=AD →-AB →,则4CD →=BD →,即BD →=-4DC →,可得BD →+DC →=-3DC →,故BC →=-3DC →,则λ=-3.(2)由题中条件得,MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,所以x =12,y =-16.【类题通法】1.解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.2.用几个基本向量表示某个向量问题的基本技巧:(1)观察各向量的位置;(2)寻找相应的三角形或多边形;(3)运用法则找关系;(4)化简结果.【对点训练】1.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.[答案] -2[解析] 因为D 是BC 的中点,则AB →+AC →=2AD →.由P A →+BP →+CP →=0,得BA →=PC →. 又AP →=λPD →,所以点P 是以AB ,AC 为邻边的平行四边形的第四个顶点,因此AP →=AB →+AC →=2AD →=-2PD →,所以λ=-2.2.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.[答案] 12[解析] DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,因此λ1+λ2=12.考点三、共线向量定理的应用【例3】(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线 D .B ,C ,D 三点共线(2)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] (1) B (2) B[解析] (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →,AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)由于c 与d 共线反向,则存在实数k 使 c =k d (k <0),于是λa +b =k [a +(2λ-1)b ]. 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎨⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.【类题通法】 共线向量定理的应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB →=λAC →,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. 【对点训练】1.向量e 1,e 2不共线,AB →=3(e 1+e 2),CB →=e 2-e 1,CD →=2e 1+e 2,给出下列结论:①A ,B ,C 共线;②A ,B ,D 共线;③B ,C ,D 共线;④A ,C ,D 共线,其中所有正确结论的序号为________.[答案] ④[解析] 由AC →=AB →-CB →=4e 1+2e 2=2CD →,且AB →与CB →不共线,可得A ,C ,D 共线,且B 不在此直线上.2.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [答案] 12[解析] ∵λa +b 与a +2b 平行,∴λa +b =t (a +2b ),即λa +b =t a +2t b ,∴⎩⎨⎧λ=t ,1=2t ,解得⎩⎪⎨⎪⎧λ=12,t =12.。
平面向量与解析几何
平面向量与解析几何平面向量是解析几何中的重要概念,它们在研究平面几何问题时具有广泛而深入的应用。
本文将介绍平面向量的定义、运算规则以及与解析几何的关系。
一、平面向量的定义平面向量是具有大小和方向的有向线段,用符号表示。
设向量A的起点为点P,终点为点Q,记作A=→PQ。
平面向量还可以用坐标表示。
设A的坐标为(x1, y1),起点在原点O,则A=→OP=(x1, y1)。
二、平面向量的运算1. 向量的加法向量的加法满足平行四边形法则。
设有向量A=→PQ,向量B=→RS,则A+B=→QS。
2. 向量的数乘向量的数乘是指将向量的长度放大或缩小。
设有向量A=→PQ,k为实数,则kA=→P'Q',其中P'为向量A的起点,Q'为向量A的终点,且P'Q'的长度为k倍于PQ的长度。
3. 内积运算内积也称点积,表示两个向量的数量积。
设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A·B=x1x2+y1y2。
4. 外积运算外积也称叉积,表示两个向量的向量积。
设向量A=→PQ,向量B=→RS,A的坐标为(x1, y1),B的坐标为(x2, y2),则A×B=(0,0, x1y2-x2y1)。
三、平面向量与解析几何的关系通过平面向量的运算,我们可以研究解析几何中的一些常见问题。
1. 直线的方程设有点A(x1, y1)和点B(x2, y2),则点A和点B构成的直线的方程可以表示为:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
2. 两条直线的关系设直线L1的方程为(a1x+b1y+c1=0),直线L2的方程为(a2x+b2y+c2=0),则L1与L2平行的条件是a1/a2=b1/b2,L1与L2垂直的条件是a1a2+b1b2=0。
3. 两个向量的夹角设有向量A=→PQ,向量B=→RS,夹角θ的余弦可以由它们的内积表示为:cosθ=(A·B)/(|A||B|)。
什么是平面向量
什么是平面向量平面向量是代数学中的一个重要概念,广泛应用于几何学、物理学和工程学等领域。
平面向量可以用来表示平面上的位移、速度、力等物理量,具有方向和大小两个特征。
一、平面向量的定义平面向量是由两个有序实数组成的有序对,记作AB→,其中A、B 表示平面上的两个点,→表示有向线段。
实数称为平面向量的坐标或分量,可以用来表示向量在坐标轴上的投影。
二、平面向量的表示平面向量可以用坐标轴上的点表示,也可以用向量的坐标表示。
以直角坐标系为例,设A点的坐标为(x1, y1),B点的坐标为(x2, y2),那么平面向量AB→的向量坐标为{(x2-x1), (y2-y1)}。
三、平面向量的运算1. 加法:设有平面向量AB→和CD→,则它们的和为AB→ +CD→ = AD→。
即向量的加法满足“三角形法则”。
2. 数乘:设有平面向量AB→,实数k,则kAB→ = BA→。
即向量的数乘改变了向量的方向或长度。
3. 减法:设有平面向量AB→和CD→,则它们的差为AB→ - CD→ = AD→。
即向量的减法可以看作是加法和数乘的结合。
四、平面向量的性质1. 零向量:零向量是长度为0的向量,任何向量与零向量的和等于该向量本身。
2. 平行向量:若两个向量的方向相同或相反,则它们是平行向量。
3. 共线向量:若两个向量在同一直线上,则它们是共线向量。
4. 相等向量:若两个向量的方向和长度相等,则它们是相等向量。
5. 单位向量:长度为1的向量称为单位向量,可以通过将一个非零向量除以它的模长得到。
五、平面向量的应用平面向量在几何学中被广泛应用,例如求向量的模长、向量的夹角、向量的投影等。
在物理学中,平面向量可用于描述力的大小和方向,在工程学中,平面向量可用于描述力的分解和合成等问题。
总结:平面向量是由两个有序实数组成的有序对,具有方向和大小两个特征。
它可以用坐标轴上的点或向量的坐标来表示。
平面向量的运算包括加法、数乘和减法,满足相应的运算规律。
平面向量与平面几何
平面向量与平面几何平面向量是数学中的重要概念,与平面几何有着紧密的联系。
通过研究平面向量的性质和运算规律,可以更好地理解和解决平面几何的问题。
本文将从定义、性质、基本运算和应用等方面介绍平面向量与平面几何的关系。
一、平面向量的定义与性质1.1 平面向量的定义平面向量是指在平面内具有大小和方向的有序对。
通常用箭头或者加粗的字母表示,如→a或者a。
平面向量的起点和终点分别代表向量的始点和终点,向量的方向由起点指向终点。
平面向量常用坐标表示,如(a, a)。
两个平面向量相等的条件是它们的长度相等且方向相同。
1.2 平面向量的性质(1)平面向量的模或长度:平面向量→a的模表示为|→a|,计算公式为|→a|=√(a²+a²)。
(2)平面向量的零向量:长度为0的平面向量,记作→0或者a。
(3)平面向量的相反向量:与给定向量大小相等,方向相反的向量,记作−→a。
(4)平面向量的平行:如果两个非零向量→a和→b的方向相同或者相反,则称其平行,记作→a∥→b;如果两个向量方向垂直,则称其互相垂直。
(5)平面向量的共线:如果两个向量→a和→b的起点在同一直线上,则称其共线。
二、平面向量的基本运算2.1 平面向量的加法平面向量的加法运算是指将两个向量的对应分量相加,得到一个新的平面向量。
设有向量→a=(a₁, a₂)和→b=(a₁, a₂),则其和向量表示为→c=→a+→b= (a₁+a₁, a₂+a₂)。
(例子和计算过程省略)2.2 平面向量的数乘平面向量的数乘运算是指将一个向量的每个分量乘以一个实数,得到一个新的平面向量。
设有向量→a=(a₁, a₂)和实数a,数乘后的向量表示为→b=a→a=(aa₁, aa₂)。
(例子和计算过程省略)2.3 平面向量的减法平面向量的减法运算是指将一个向量的对应分量减去另一个向量的对应分量,得到一个新的平面向量。
设有向量→a=(a₁, a₂)和→b=(a₁, a₂),则其差向量表示为→c=→a−→b= (a₁−a₁, a₂−a₂)。
数学平面向量
数学平面向量平面向量是数学中的一个重要概念,广泛应用于几何学、物理学以及工程学等领域。
本文将从数学平面向量的基本定义、性质和运算规则等方面进行论述,帮助读者更好地理解和应用这一概念。
一、定义和表示平面向量是指在平面内具有方向和大小的量。
通常用有向线段来表示平面向量,起点和终点分别表示向量的起点和终点。
记作AB→,其中A为向量的起点,B为向量的终点。
平面向量可以用有序数对表示,也可以用坐标表示。
如果向量AB→的坐标表示为(x, y),则x和y分别表示向量在x轴和y轴上的投影。
二、基本运算规则1. 向量的加法:向量的加法满足平行四边形法则。
即将两个向量的起点相连,以第一个向量的终点和第二个向量的起点为对角线所构成的四边形的对角线,即为两个向量的和。
记作AB→+CD→=AD→。
2. 向量的数乘:向量的数乘是指将一个向量与一个实数相乘,得到一个新的向量,其大小等于原向量大小与实数的乘积,方向与原向量保持一致。
记作kAB→。
3. 向量的差:向量的差等于其起点不变,终点变为减去另一个向量的终点。
即AB→-CD→=AD→。
4. 两个向量的数量积:两个向量的数量积等于两个向量的大小乘积与夹角的余弦值的乘积。
记作AB→·CD→=|AB→||CD→|cosθ。
5. 模长和单位向量:向量的模长是指向量的大小,即向量的长度。
记作|AB→|。
单位向量是模长为1的向量,用A→表示。
三、向量运算的性质1. 交换律:向量的加法满足交换律,即AB→+CD→=CD→+AB→。
2. 结合律:向量的加法满足结合律,即(AB→+CD→)+EF→=AB→+(CD→+EF→)。
3. 数乘与向量加法的分配律:k(AB→+CD→)=kAB→+kCD→。
4. 数乘与数乘的分配律:(k+m)AB→=kAB→+mAB→。
四、平面向量的应用平面向量在几何学中有诸多应用,如表示平面内一个点关于另一个点的位置关系,求解线段、直线和三角形的性质等。
平面向量知识点整理
平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。
下面是关于平面向量的知识点整理。
一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。
平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量通常表示为有序对(a,b),其中a和b是实数。
二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。
加法运算满足交换律和结合律。
2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。
数乘的结果是将向量的大小和方向进行相应的调整。
3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。
减法运算可以转化为加法运算。
三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。
平行向量的大小可以不同。
2.零向量:大小为零的向量称为零向量,用0表示。
任何向量与零向量相加的结果仍为原向量本身。
3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。
4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。
5.非共线向量:不在同一直线上的向量是非共线向量。
6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。
7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。
8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。
四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。
2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。
平面向量概念
1.向量的有关概念2.向量的线性运算三角形法则平行四边形法则三角形法则|λa|=|λ||a|,当λ>0时,λa的方向与向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.,共线向量定理的深解读定理中限定了a≠0,这是因为如果a=0,则λa=0,(1)当b≠0时,定理中的λ不存在;(2)当b=0时,定理中的λ不唯一.因此限定a≠0的目的是保证实数λ的存在性和唯一性.向量概念的4点注意(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.比如:命题“若a∥b,b∥c,则a∥c”是假命题,因为当b为零向量时,a,c可为任意向量,两者不一定平行.(4)任一组平行向量都可以平移到同一直线上.向量线性运算的3点提醒(1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连,利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用. 1.与向量a 共线的单位向量为±a |a |.2.两非零向量不共线求和时,两个法则都适用;共线时,只适用三角形法则.3.A ,B ,C 三点共线,O 为A ,B ,C 所在直线外任一点,则OA→=λOB →+μOC →且λ+μ=1.4.若AB →=λAC →,则A ,B ,C 三点共线.5.P 为线段AB 的中点⇔OP →=12(OA →+OB →). 6.G 为△ABC 的重心⇔GA→+GB →+GC →=0⇔OG →=13(OA →+OB →+OC →)(O 是平面内任意一点).7.P 为△ABC 的外心⇔|P A →|=|PB →|=|PC →|.8.||a |-|b ||≤|a ±b |≤|a |+|b |.9.若a 与b 不共线,λa +μb =0,则λ=μ=0.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2―→+A 2A 3―→+A 3A 4―→+…+A n -1A n ―→=A 1A n ―→.特别地,一个封闭图形首尾连接而成的向量和为零向量. 2.在△ABC 中,AD ,BE ,CF 分别为三角形三边上的中线,它们交于点G (如图所示),易知G 为△ABC 的重心,则有如下结论:(1) GA ―→+GB ―→+GC ―→=0;(2) AG ―→=13(AB ―→+AC ―→);(3) GD ―→=12(GB ―→+GC ―→)=16(AB ―→+AC ―→).3.若OA ―→=λOB ―→+μOC ―→(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.4.对于任意两个向量a ,b ,都有:①||a |-|b ||≤|a ±b |≤|a |+|b |;②|a +b |2+|a -b |2=2(|a |2+|b |2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系. 1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底❶. 2.平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2)数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)3.设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0❷.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底;(2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2..若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33.设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. [微点提醒]1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.若a 与b 不共线,λa +μb =0,则λ=μ=0.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2―→+A 2A 3―→+A 3A 4―→+…+A n -1A n ―→=A 1A n ―→.特别地,一个封闭图形首尾连接而成的向量和为零向量.2.在△ABC 中,AD ,BE ,CF 分别为三角形三边上的中线,它们交于点G (如图所示),易知G 为△ABC 的重心,则有如下结论:(1) GA ―→+GB ―→+GC ―→=0;(2) AG ―→=13(AB ―→+AC ―→);(3) GD ―→=12(GB ―→+GC ―→)=16(AB ―→+AC ―→).3.若OA ―→=λOB ―→+μOC ―→(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.4.对于任意两个向量a ,b ,都有:①||a |-|b ||≤|a ±b |≤|a |+|b |;②|a +b |2+|a -b |2=2(|a |2+|b |2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B.1C .2D .32.给出下列命题:(1)若|a |=|b |,则a =b ;(2)若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件;(3)若a =b ,b =c ,则a =c ;(4)两向量a ,b 相等的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________.[例1] (1)(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( )A.34AB ―→-14AC ―→B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D .14AB ―→+34AC ―→(2)在四边形ABCD 中,BC ―→=AD ―→,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,则( )A .AF ―→=13AC ―→+23BD ―→ B.AF ―→=23AC ―→+13BD ―→C .AF ―→=14AC ―→+23BD ―→ D .AF ―→=23AC ―→+14BD ―→3.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( )A .2OA ―→-OB ―→ B.-OA ―→+2OB ―→C.23OA ―→-13OB ―→D .-13OA ―→+23OB ―→4.(2018·大同一模)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23b B.-13a -23b C .-13a +23b D .13a -23b5.P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC =6,则△PAB 的面积为( )A .2 B.3 C .4D .86.△ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM ―→=λAB ―→+μAC ―→,则λ+μ=( )A.12 B.-12C .2D .-27. (2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥bD.|a |>|b |8若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|= .9若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为 .10.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n 等于( )A.2B.-2C.1D.-110.已知点P 是△ABC 所在平面内一点,且满足x P A →+y PB →+z PC →=0则x y z s s s BPCAPC APB ::::=∆∆∆22.已知点P 是△ABC 所在平面内一点,且满足3P A →+5PB →+2PC →=0,已知△ABC 的面积为6,则△P AC的面积为( )A.92 B .4C .3 D.12523.已知P 是△ABC 内一点,且满足PA →+2PB →+3PC →=0,记△ABP ,△BCP ,△ACP 的面积依次为S 1,S 2,S 3,则S 1∶S 2∶S 3等于 ( )A .1∶2∶3 B .1∶4∶9 C .6∶1∶2 D .3∶1∶2。
平面向量的概念与运算
平面向量的概念与运算平面向量是解决几何问题中常用的数学工具之一。
本文将介绍平面向量的概念以及常见的运算方法。
一、平面向量的概念平面向量是指具有大小和方向的量。
通常用有向线段来表示,标志有向线段的箭头表示向量的方向,线段的长度表示向量的大小。
平面向量常用大写字母表示,例如A、B。
二、平面向量的表示平面向量可以分为简易表示法和坐标表示法两种方式。
1. 简易表示法在平面上,我们可以通过箭头的起点和终点来表示向量的方向和大小。
例如,向量AB表示从点A指向点B的向量,大小为AB的长度。
2. 坐标表示法使用坐标系来表示平面向量。
在二维坐标系中,平面上的向量可以表示为 <x, y> 的形式,其中x表示向量在x轴上的分量,y表示向量在y轴上的分量。
三、平面向量的运算平面向量的运算包括加法、减法和数乘三种运算。
1. 加法运算设有向量A和向量B,它们的和向量记作A + B。
假设A = <a1,a2>,B = <b1, b2>,则A + B = <a1 + b1, a2 + b2>。
2. 减法运算设有向量A和向量B,它们的差向量记作A - B。
假设A = <a1, a2>,B = <b1, b2>,则A - B = <a1 - b1, a2 - b2>。
3. 数乘运算设有向量A和实数k,它们的数乘记作kA。
假设A = <a1, a2>,则kA = <ka1, ka2>。
数乘可以改变向量的大小和方向,当k大于0时,向量的方向与原向量一致,当k小于0时,向量的方向与原向量相反。
四、平面向量的性质平面向量具有以下性质:1. 相等性两个向量相等表示它们的大小和方向都相同。
2. 平移性向量的平移不会改变其大小和方向。
3. 共线性若两个向量的方向相同或者相反,则它们共线。
4. 三角形法则若将两个向量的起点连结,形成的三角形的第三条边是这两个向量的和向量。
平面向量与几何应用知识点总结
平面向量与几何应用知识点总结一、平面向量的定义与基本性质平面向量可以用有向线段表示,具有大小和方向两个特征。
向量的相等与几何位置无关,只与大小和方向相同有关。
平移、伸缩和旋转都不改变向量相等的性质。
二、平面向量的表示方式1. 数学表示法:用字母加上一个箭头(→)表示向量,如AB→表示从点A到点B的向量。
2. 列向量表示法:用一个有序数对表示向量,该数对的第一个数是向量在水平方向上的分量,第二个数是向量在垂直方向上的分量。
三、向量的运算法则1. 向量的加法:向量的加法满足交换律和结合律,即A + B = B + A,(A + B) + C = A + (B + C)。
2. 向量的减法:向量的减法可看作加法的逆运算,即A - B = A + (-B),其中- B表示B的相反向量。
3. 向量的数乘:向量的数乘就是将向量的每个分量乘以一个常数,如kA表示向量A的每个分量都乘以k。
4. 平面向量的数量积:向量的数量积(内积)是向量的一个重要运算,数量积是一个标量。
它的计算公式为A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模,θ表示A和B之间的夹角。
四、向量的线性运算1. 在平面内,若A、B和C为三个向量,m和n为实数,则m(A +B) = mA + mB,(m + n)A = mA + nA,(mn)A = m(nA)。
2. 若向量A与向量B共线,且m为实数,则m(A + B) = mA + mB。
五、平面向量的几何应用1. 向量共线及坐标计算:两个向量共线的充要条件是它们的分量成比例,即A = k × B,其中k为常数。
2. 向量的模计算:向量的模定义为向量的大小,计算公式为|A| =√(x² + y²),其中x和y分别为向量A的水平和垂直分量。
3. 向量的投影:向量A在向量B上的投影定义为A在B方向上的分量,计算公式为A在B上的投影= |A|cosθ。
平面向量的基本运算
平面向量的基本运算平面向量是指在二维平面上具有大小和方向的箭头。
平面向量的基本运算包括加法、减法、数乘和点积。
本文将详细介绍这些运算的定义、性质和计算方法,以及它们在实际问题中的应用。
一、平面向量的定义和表示在平面直角坐标系中,设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By),则向量AB的表示为→AB = (x, y)。
其中,x = Bx - Ax表示向量在x轴上的分量,y = By - Ay表示向量在y轴上的分量。
向量的大小用向量的模或长度来表示,记作|→AB|或|→a|。
二、平面向量的加法设向量→a = (a1, a2),向量→b = (b1, b2),则向量→a + →b的定义为:→a + →b = (a1 + b1, a2 + b2)。
即将两个向量的对应分量相加得到新的向量。
三、平面向量的减法设向量→a = (a1, a2),向量→b = (b1, b2),则向量→a - →b的定义为:→a - →b = (a1 - b1, a2 - b2)。
即将两个向量的对应分量相减得到新的向量。
四、平面向量的数乘设向量→a = (a1, a2),数k为实数,则向量k→a的定义为:k→a = (ka1, ka2)。
即将向量的每个分量都乘以实数k得到新的向量。
五、平面向量的点积设向量→a = (a1, a2),向量→b = (b1, b2),则向量→a · →b的定义为:→a · →b = a1b1 + a2b2。
即将两个向量的对应分量相乘并求和。
六、平面向量的运算性质1. 加法的交换律:→a + →b = →b + →a2. 加法的结合律:→a + (→b + →c) = (→a + →b) + →c3. 减法的定义:→a - →b = →a + (-→b)4. 数乘的结合性:k(→a + →b) = k→a + k→b5. 数乘的分配律:(k + m)→a = k→a + m→a6. 数乘的分配律:k(→a · →b) = (k→a) · →b = →a · (k→b)7. 点积的交换律:→a · →b = →b · →a8. 点积的分配律:→a · (→b + →c) = →a · →b + →a · →c七、平面向量的计算方法1. 求向量的模:|→a| = √(a1^2 + a2^2)2. 求两个向量的夹角θ:cosθ = (→a · →b) / (|→a| |→b|),其中0 ≤ θ≤ π3. 求两个向量的夹角θ的余弦值:cosθ = (→a · →b) / (|→a| |→b|),其中-1 ≤ cosθ ≤ 14. 判断两个向量是否垂直:→a · →b = 0,则→a与→b垂直5. 判断两个向量是否平行:→a × →b = 0,则→a与→b平行,其中×表示叉积运算符6. 求两个向量的和:→a + →b7. 求两个向量的差:→a - →b8. 求向量的数乘:k→a八、平面向量的应用平面向量的基本运算在几何、物理、工程等领域都有广泛的应用。
平面向量的概念和运算法则
平面向量的概念和运算法则平面向量是二维空间中的一个有向线段,具有大小和方向。
在数学和物理学中,平面向量被广泛应用于解决各种几何和力学问题。
本文将介绍平面向量的概念以及其相关的运算法则。
概念平面向量通常用字母加上一个箭头来表示,如 $\vec{a}$,其中箭头表示向量的方向。
平面向量可以用两个定点来确定,即起点和终点。
起点和终点之间的线段表示向量的大小和方向。
平面向量可以写成分量的形式,如 $\vec{a} = a_{x}\vec{i} +a_{y}\vec{j}$,其中 $a_{x}$ 和 $a_{y}$ 是向量在 $x$ 和 $y$ 轴上的分量,$\vec{i}$ 和 $\vec{j}$ 是单位向量,分别指向 $x$ 和 $y$ 轴正方向。
平面向量的表示还可以用坐标形式,如 $\vec{a} = (a_{x},a_{y})$,其中 $a_{x}$ 和 $a_{y}$ 分别表示向量在 $x$ 和 $y$ 轴上的坐标。
运算法则1. 向量的加法平面向量的加法满足三角形法则,即将两个向量的起点相连,以第一个向量的终点为起点,第二个向量的终点为终点,所得的向量即为两个向量之和。
2. 向量的数乘向量的数乘是指将向量的大小进行相乘或相除的操作。
若向量$\vec{a}$ 的大小为 $k$,则数乘后的向量为 $k\vec{a}$。
当 $k$ 为正数时,数乘后的向量与原向量的方向相同;当 $k$ 为负数时,数乘后的向量与原向量的方向相反。
3. 平移法则若有向量 $\vec{a}$ 和向量 $\vec{b}$,则向量 $\vec{a}$ 加上向量$\vec{b}$ 的终点得到的向量为向量 $\vec{a} + \vec{b}$。
换句话说,将向量 $\vec{b}$ 平移至向量 $\vec{a}$ 的终点所在位置,所得的向量为向量 $\vec{a}$ 的平移向量。
4. 多个向量的运算对于给定的多个向量 $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$,可以进行向量的加法和数乘运算。
平面向量的运算与应用知识点总结
平面向量的运算与应用知识点总结一、平面向量的定义平面向量是具有大小和方向的量,通常用有向线段来表示。
平面向量的定义包括起点、终点和方向,同时还可以表示为有序数对或列向量。
二、平面向量的表示法平面向量可以使用有向线段、有序数对或列向量来表示。
有向线段表示形式为AB,表示从点A指向点B的有向线段。
有序数对表示形式为(a,b),表示向量的水平分量和垂直分量。
列向量表示形式为[a;b],表示向量的水平分量和垂直分量。
三、平面向量的加法平面向量的加法满足三角形法则,即将向量的起点连接起来,从第一个向量的起点到第二个向量的终点,再从第二个向量的起点到第三个向量的终点,得到一个新的向量,该向量的起点为第一个向量的起点,终点为第三个向量的终点。
四、平面向量的数量积平面向量的数量积也称为点积或内积,表示为A·B,结果是一个实数。
计算公式为A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的长度,θ表示两个向量的夹角。
五、平面向量的应用1. 平面几何问题:平面向量常常用于解决平面几何问题,如证明等腰三角形的性质、求解平面图形的面积等。
2. 力的合成与分解:平面向量可以用于分解一个力为两个分力的合力,或者合成两个力为一个合力。
3. 直角坐标系中的运算:平面向量可以用于直角坐标系中的向量运算,如求两点之间的距离、解决平面射线与直线的交点等问题。
六、平面向量的运算方法1. 向量的加法:将两个向量的水平分量相加,垂直分量相加,得到一个新的向量。
2. 向量的减法:将两个向量的水平分量相减,垂直分量相减,得到一个新的向量。
3. 数乘:将向量的每个分量乘以一个实数,得到一个新的向量。
4. 向量的数量积:将两个向量的对应分量相乘,然后相加,得到一个实数。
七、平面向量的运算性质1. 加法交换律:A + B = B + A2. 加法结合律:(A + B) + C = A + (B + C)3. 数乘结合律:k(A + B) = kA + kB4. 数乘分配律:(k + l)A = kA + lA5. 零向量的性质:A + 0 = A,0A = 0八、平面向量的坐标表示平面向量的坐标表示可以通过列向量来表示,其中向量的水平分量对应 x 坐标,垂直分量对应 y 坐标。
平面向量及其应用知识点总结
平面向量及其应用知识点总结
一、平面向量的定义和性质
1. 平面向量的定义:平面上的向量是由两个有序数对表示的,称为平
面向量。
2. 平面向量的性质:
(1)平面向量有大小和方向,大小为其长度,方向为从起点指向终点的方向。
(2)平面向量可以相加、相减和数乘,满足加法交换律、结合律和数乘结合律。
(3)平面向量之间可以定义数量积和叉积,满足数量积交换律、结合律和分配律,叉积具有反交换律和分配律。
二、平面向量的表示方法
1. 坐标表示法:设平面上两个点A(x1,y1)和B(x2,y2),则以A为起点,B为终点所表示的平面向量为AB=(x2-x1,y2-y1)。
2. 向量符号表示法:在AB上任取一点C作为起点,则以C为起点,B为终点所表示的平面向量也是AB。
三、平面向量之间的运算
1. 平移:将一个平面上的向量沿着另一个给定的非零向量进行移动得到新的向量。
2. 旋转:将一个给定角度旋转后得到新的向量。
3. 投影:将一个向量沿着另一个向量的方向投影得到新的向量。
4. 反向:将一个向量反过来得到新的向量。
5. 平面向量之间的加法、减法和数乘运算。
四、平面向量的应用
1. 向量运动学:平面上的物体在运动时可以用平面向量表示其位移、速度和加速度等物理量。
2. 向量力学:平面上的物体在受力时可以用平面向量表示其受力和作
用力等物理量,通过分解力求解问题。
3. 向量几何:利用平面向量可以求解线段长度、角度、垂直、平行等几何问题,如判断两条直线是否相交,判断三点共线等问题。
4. 向量代数:利用平面向量可以进行代数运算,如求解方程组、矩阵计算等问题。
初识平面向量的几何意义与运算
初识平面向量的几何意义与运算平面向量是数学中常见的概念,它可以用来描述平面上的运动、位移和力等物理量。
本文将介绍平面向量的几何意义以及相关的运算。
一、平面向量的几何意义平面向量可以表示平面上的位移和方向。
它由两个有序的数对(x, y)表示,其中x代表水平方向的位移,y代表垂直方向的位移。
平面向量可以用箭头来表示,箭头的起点表示向量作用的初始位置,箭头的方向表示向量的方向,箭头的长度表示向量的大小(也称为模)。
平面向量的起点和终点分别为A和B,用向量AB来表示。
二、平面向量的基本运算1. 加法:平面向量的加法是指将两个向量的对应分量相加,得到一个新的向量。
设有平面向量A(x1, y1)和B(x2, y2),则它们的和记作C(x1+x2, y1+y2)。
几何上,向量的加法可通过将第一个向量的终点与第二个向量的起点连接起来,新的向量即为连接起点和终点的直线。
2. 减法:平面向量的减法是指将一个向量的对应分量分别减去另一个向量的对应分量,得到一个新的向量。
设有平面向量A(x1, y1)和B(x2, y2),则它们的差记作D(x1-x2, y1-y2)。
几何上,向量的减法可通过将第一个向量的终点与第二个向量的起点连接起来,新的向量即为连接起点和终点的直线的反向。
3. 数乘:平面向量的数乘是指将向量的每个分量与一个实数相乘,得到一个新的向量。
设有平面向量A(x, y)和实数k,则kA为与A方向相同(或相反)但长度为|k|倍的向量。
几何上,kA的起点和A的起点相同,方向与A相同(或相反),长度为k|A|。
三、平面向量的运算性质1. 交换律:对于任意的平面向量A和B,有A + B = B + A。
2. 结合律:对于任意的平面向量A、B和C,有(A + B) + C = A +(B + C)。
3. 数乘结合律:对于任意的平面向量A和实数k1、k2,有(k1k2)A = k1(k2A)。
4. 数乘分配律:对于任意的平面向量A和实数k1、k2,有(k1 +k2)A = k1A + k2A。
平面向量概念
平面向量概念1. 概念定义平面向量是指在平面上具有大小和方向的量。
它由两个有序实数对(x,y)表示,其中x表示向量在x轴上的投影,y表示向量在y轴上的投影。
平面向量通常用小写字母加上一个箭头来表示,如→a。
2. 重要性平面向量是数学中的重要概念,具有广泛的应用。
它在几何、物理、工程等领域中起着重要作用。
2.1 几何应用平面向量可以用于描述平面上的点、直线、曲线等几何对象的位置、方向和形状。
通过向量的加法、减法、数乘等运算,可以得到平面上的向量和向量之间的关系,从而解决几何问题。
2.2 物理应用在物理学中,平面向量用于描述物体的位移、速度、加速度等物理量。
通过向量的运算,可以分析物体的运动规律,解决物理问题。
2.3 工程应用在工程领域中,平面向量可以用于描述力、力矩、电场强度等物理量。
通过向量的运算,可以分析结构的受力情况、电场的分布等问题,为工程设计和分析提供依据。
3. 平面向量的基本运算3.1 加法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a+→b=(x1+x2, y1+y2)。
向量加法满足交换律和结合律。
3.2 减法设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a-→b=(x1-x2, y1-y2)。
减法可以看作加法的逆运算。
3.3 数乘设有向量→a=(x, y)和实数k,则k→a=(kx, ky)。
数乘改变向量的大小,但不改变其方向。
3.4 数量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的数量积为→a·→b=x1x2+y1y2。
数量积的结果是一个实数,表示两个向量的夹角的余弦值乘以两个向量的模的乘积。
3.5 向量积设有向量→a=(x1, y1)和→b=(x2, y2),则向量→a与向量→b的向量积为→a×→b=x1y2-y1x2。
向量积的结果是一个向量,其大小表示两个向量构成的平行四边形的面积,方向垂直于这个平行四边形。
平面向量及运算法则
平面向量及运算法则1、向量:(1)概念:既有 又有 的量叫做向量(2)表示:可以用有向线段来表示,包含三个要素: 、 和 ;记为AB 或 a (3)模:AB 的长度叫向量的模,记为||AB 或 ||a(4)零向量:零向量的方向是任意的单位向量是____________的向量.(5)相等向量: 的向量叫相等向量;(6)共线向量: 的向量叫平行向量,也叫共线向量 2、向量运算的两个法则: 加法法则:(1)平行四边形法则,要点是:统一起点; (2)三角形法则,要点是:首尾相接;减法法则:向量减法运算满足三角形法则,要点是统一起点,从 指向 。
3、实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a λ ,其长度与方向规定如下:(1)||a λ = ||||a λ;(2)λ> 0 时,a λ与a 同向;λ< 0 时,a λ与a 反向;(3)λ= 0 时,a λ=04、向量的线性运算满足: (1)()a λμ=(2)(λμ+)a = (3)()a b λ+=5、//a b (0)b a a λ⇔=≠其中R λ∈且唯一随堂练习1.给出下列命题:①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上; ②两个单位向量是相等向量; ③若a =b, b=c,则a=c ;④若一个向量的模为0,则该向量的方向不确定; ⑤若|a |=|b |,则a =b 。
错误!未找到引用源。
若a 与b 共线, b 与c 共线,则a 与c 共线 其中正确命题的个数是( )DBAA .1个B .2个C .3个D .4个2、如图所示,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则DB AF -=( )A. B.C.FED.BE3、在平行四边形ABCD 中,下列各式中成立的是( ) A .+=AB BC CA B .+=AB AC BC C .+=AC BA AD D .+=AC AD DC4.下面给出的四个式子中,其中值不一定为0的是( ) A.AB BC CA ++ B.OA OC BO CO +++ C.AB AC BD CD -+- D.NQ QP MN MP ++-5.在平行四边形ABCD 中,若AB AD AB AD +=-则必有 ( ) A. 0AD = B. 00AB AD ==或 C. ABCD 是矩形 D. ABCD 是正方形6、如图所示,OADB 是以向量=,=为边的平行四边形,又BM=31BC ,CN=31CD .试用,表示OM ,ON ,.7、设两个非零向量1e 、2e 不是平行向量(1)如果AB =1e +2e ,BC =21e +82e ,CD =3(21e e -),求证A 、B 、D 三点共线; (2)试确定实数k 的值,使k 1e +2e 和1e +k 2e 是两个平行向量.OADBCMN变式: 已知OA 、OB 不共线,OP =a OA +b OB . 求证:A 、P 、B 三点共线的充要条件是a +b =1.1.平面向量的基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a = (2)平面向量的坐标运算: 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差;一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的概念及几何运算检测卷班级 姓名 座位号一、选择题(新题型的注释) 1.下列说法中错误的是( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2.已知平面向量(3,1)a = ,(,3)b x =- ,且b a//,则x = ( )A 9B 9-C 3-D 3 3.若(1,1,1),(0,1,1)a b =--= 且()a b b λ+⊥,则实数λ的值是( )A 、0B 、1C 、1-D 、2 4.已知平面向量)1,1(=→a ,)1,1(-=→b ,则向量2a b →→--的坐标是( ) A.(31)--,B .(31)-, C.(10)-,D.(12)-,5.已知)1,2(=a ,)4,3(-=b ,则a 与b 的数量积为: ( ) A .)4,6(- B .)5,1(-C .2-D .06.已知,A (2,3),B (-4,5),则与AB 共线的单位向量是( )A .)1010,10103(-=e B .)1010,10103()1010,10103(--=或eC .)2,6(-=eD .)2,6()2,6(或-=e7.化简=--+CD AC BD AB ( )A .ADB .0C .BCD .DA8.在下列向量组中,不能作为表示它们所在平面内所有向量的基底的是( )A.)1,0(1=e )6,1(2-=eB.)2,1(1-=e )1,5(2-=eC.)5,3(1-=e )10,6(2=eD.)3,2(1-=e)43,21(2-=e9.下列命题:(1)若向量a b =,则a 与b 的长度相等且方向相同或相反;(2)对于任意非零向量若a b =且a 与b 的方向相同,则a b = ; (3)非零向量a 与b 满足a b ∥,则向量a 与b方向相同或相反; (4)向量AB 与CD是共线向量,则,,,A B C D 四点共线;(5)若a b ∥,且b c ∥,则a c∥正确的个数:( )A.0B.1C.2D.3 10.下列命题正确的是A .若→a ·→b =→a ·→c ,则→b =→c B .若||||b a b a -=+,则→a ·→b =0 C .若→a //→b ,→b //→c ,则→a //→cD .若→a 与→b 是单位向量,则→a ·→b =111.已知,A (2,3),B (-4,5),则与AB 共线的单位向量是( )A .)1010,10103(-=e B .)1010,10103()1010,10103(--=或eC .)2,6(-=eD .)2,6()2,6(或-=e12.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥,则k 的值为 ( ) A 、 B 、 C 、 D 、 二、填空题13.若=(1,5),=,则=_________.14.已知(tan ,1),(1,2)a b θ=-=- ,若()()a b a b +⊥-,则tan θ=15. 判断下列命题正确的是 (1)共线向量一定在同一条直线上。
(2)所有的单位向量都相等。
(3)向量→→b a 与共线,→→c b 与共线,则→→c a 与共线。
(4)向量→→b a 与共线,则→→b //a(5)向量→→CD //AB ,则CD //AB 。
(6)平行四边形两对边所在的向量一定是相等向量。
16.已知A(2,3),)3,6(-=OB ,点P 在线段BA 延长线上,且PB AP 32=, 则点P 的坐标是________.AB )2,7(-OB OA 10191019-109109-AB三、解答题17. 化简)()(BD AC CD AB ---18.在矩形ABCD 中,2AB BC =,M 、N 分别为AB 和CD 的中点,在以A 、B 、C 、D 、M 、N 为起点和终点的所有向量中,相等向量共有多少对?19.已知点A (3,0),B (0,3),C (cos α,sin α),α∈322ππ⎛⎫ ⎪⎝⎭,. (1)若AC =BC,求角α的值;(2)若AC BC ⋅ =-1,求22sin sin 21tan ααα++的值.20.已知ABC ∆的三个内角A 、B 、C 所对的三边分别是a 、b 、c ,平面向量))sin(,1(A B m -=,平面向量).1),2sin((sin A C n -= (I )如果,3,3,2=∆==S ABC C c 的面积且π求a 的值;(II )若,n m ⊥请判断ABC ∆的形状. 21.已知M 为△ABC 的边AB 上一点,且18AMCABC S S ∆∆=. 求点M 分AB 所成的比. 22.(本题满分14分)已知向量a 是以点A (3,-1)为起点,且与向量b =(-3,4) 垂直的单位向量,求a 的终点坐标。
参考答案1.A 2.B【解析】因为//a b ,所以331x -=,解得9x =-,故选B3.B【解析】(1,1,1)a b λλλ+=-- ,因为()a b b λ+⊥ ,所以()110a b b λλλ+⋅=-+-=,解得1λ=,故选B 4.A 5.C 6.B 7.B【解析】解:由于()0AB BD AC CD AD AC CD AD AD +--=-+=-=故选择B8.D 9.C【解析】解:因为(1)若向量a b =,则a 与b 的长度相等且方向相同或相反;不成立 (2)对于任意非零向量若a b =且a 与b 的方向相同,则a b = ;满足定义 (3)非零向量a 与b 满足a b ∥,则向量a 与b方向相同或相反;成立(4)向量AB 与CD是共线向量,则,,,A B C D 四点共线;可能构成能四边形,错误(5)若a b ∥,且b c ∥,则a c ∥,当b为零向量时,不成立。
10.B【解析】解:因为选项A 中不能约分,选项B 中,两边平方可知成立,选项C 中,当→b 为零向量时不成立,选项D 中,夹角不定,因此数量积结果不定,选B 11.B 12.D13._(-8,-3)14.2± 15.(4) 【解析】(1)错。
因为两个向量的方向相同或相反叫共线向量,而两个向量所在直线平行时也称它们为共线向量,即共线向量不一定在同一条直线上。
(2)错。
单位向量是指长度等于1个单位长度的向量,而其方向不一定相同,它不符合相等向量的意义。
(3)错。
注意到零向量与任意向量共线,当→b 为零向量时,它不成立。
(想一想:你能举出反例吗?又若→→≠0b 时,此结论成立吗?)(4)对。
因共线向量又叫平行向量。
(5)错。
平行向量与平行直线是两个不同概念,AB 、CD 也可能是同一条直线上。
(6)错。
平行四边形两对边所在的向量也可能方向相反。
16.(-6,15)17.0【解析】考查向量的加、减法,及相关运算律。
解法一(统一成加法))()(BD AC CD AB ---=BD CA DC AB BD AC CD AB +++=+--=0=+++CA DC BD AB 解法二(利用BA OB OA =-))()(BD AC CD AB ---=BD AC CD AB +--=BD CD AC AB +--)( =0=+=+-BD DB BD CD CB 解法三(利用OA OB AB -=)设O 是平面内任意一点,则)()(BD AC CD AB ---=BD AC CD AB +-- =)()()()(OB OD OA OC OC OD OA OB -+----- =0=-++-+--OB OD OA OC OC OD OA OB【名师指引】掌握向量加减的定义及向量加法的交换律、结合律等基础知识.在求解时需将杂乱的向量运算式有序化处理,必要时也可化减为加,减低出错律.18.相等的向量共有24对 【解析】模为1的向量有18对.其中与AM 同向的共有6对,与AM 反向的也有6对;与AD同向的共有3对,与AD反向的也有3对;模为2的向量共有4对;模为2的向量有2对.19.(1)α=54π;(2)59-. 【解析】(1)解法1:由题意知AC =(cos α-3,sin α),BC=(cos α,sin α-3).由AC=BC ,化简整理得cos α=sin α.因为α∈322ππ⎛⎫⎪⎝⎭,,所以α=54π. 解法2:因为AC =BC ,所以点C 在直线y =x 上,则cos α=sin α.因为α∈322ππ⎛⎫⎪⎝⎭,,所以α=54π. (2)由A C B C ⋅=-1,得(cos α-3)cos α+sin α(sin α-3)=-1,即sin α+cos α=23.所以2(sin cos )αα+=1+2sin cos αα=49,即2sin cos αα=59-. 所以22sin sin 21tan ααα++=2sin cos αα=59-.20.(I ).2=∴a (II )ABC ∆∴是直角三角形或等腰三角形.【解析】 由题意列余弦定理及面积公式两个方程,联立解得a,b; 若,n m ⊥sin sin 2sin()0.C A B A --=进而化简求证。
解:(I )由余弦定理及已知条件得,422=-+ab b a.4.3sin 21,3=∴=∴∆ab C ab ABC 的面积等于联立方程组得.2,2,4,422==⎩⎨⎧==-+b a ab ab b a 解得.2=∴a …………5分 (II ).0)sin(2sin sin ,=--∴⊥A B A C n m 化简得.0)sin (sin cos =-A B A ……7分o 0sin sin 0.c sA B A ∴=-=或当,2,0cos π==A A 时此时ABC ∆是直角三角形;当A B A B sin sin ,0sin sin ==-即时,由正弦定理得,a b = 此时ABC ∆为等腰三角形.ABC ∆∴是直角三角形或等腰三角形. 21.17【解析】由18AMC ABC S S ∆∆=得17AMC BMC S S ∆∆= . 设从C 向AB 所作的高为h ,则111272A M h B M h =⨯. ∴ 17AM BM =,从而17AM BM = ,∴点M 分AB 的比为17 .22.()58,511()52,519--或【解析】 设a 的终点坐标为(m,n)……1分 则a =(m-3,n+1) ……3分 由题意 ……6分由①得:n=(3m-13)代入②得 ……7分 25m2-15O m+2O9=O ……9分解得……13分∴a 的终点坐标是(……14分.)58,511()52,519--或⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-==.58,511.52,5192211n m n m 或41⎩⎨⎧=++-=++--1)1()3(0)1(4)3(322n m n m ①②。