[高二数学]平面向量的概念及运算知识总结
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
高二数学向量知识点总结
高二数学向量知识点总结高二数学向量知识点总结(一)考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。
由于向量应用的广泛性,经常也会与函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
考点四:向量与函数的综合问题【内容解读】向量与函数的综合问题是高考经常出现的问题,考查了向量的知识,函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以函数作为坐标,以向量的坐标运算或向量与解形的内容相结合,也有向量与函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的交汇【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将形和数紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.【命题规律】命题多以解答题为主,属中等偏难的试题。
高中数学《平面向量》知识点总结
高中数学《平面向量》知识点总结平面向量是高中数学中的重要内容之一、它是描述平面上的有向线段的数学工具,广泛应用于几何、物理和工程等领域。
以下是对平面向量知识点的总结。
1.平面向量的定义和表示法:平面向量是具有大小和方向的有向线段。
可以用有序数对(x,y)表示向量,也可以用字母加上箭头表示向量,如向量a用小写字母a加上箭头表示。
2.平面向量的运算:(1)向量的加法:向量的加法满足“三角形法则”,即两个向量相加等于以它们为相邻边的平行四边形的对角线;(2)向量的数乘:向量的数乘是指将一个向量与一个实数相乘,结果仍然是一个向量,其大小等于原向量大小乘以实数,方向与原向量相同(如果实数为正)或相反(如果实数为负);(3)数乘的性质:数乘满足交换律、结合律和分配律;(4)向量的减法:向量减法即向量加上其负向量;(5)零向量:大小为0的向量,任何向量与零向量相加等于原向量本身,与零向量的数乘等于零向量本身;(6)向量的线性组合:若有一组向量,每个向量乘以相应的实数再相加得到的向量称为向量的线性组合;(7)内积:内积是一种向量间的一种运算,定义为两个向量的大小之积乘以夹角的余弦值,用点乘符号表示,即向量a与向量b的内积为a·b;(8)内积的性质:内积满足交换律、结合律、分配律和数乘结合律,同时与向量的长度、夹角以及方向都有关系;(9)垂直:若两个非零向量的内积为0,则它们互相垂直。
3.平面向量的坐标表示:平面上的向量可以用坐标表示。
设平面上一个点的坐标为A(x1,y1),则以原点O为起点的向量可以表示为向量a(x1,y1),其中x1和y1分别是向量在x轴和y轴上的投影长度。
4.平面向量的模和方向角:(1) 模:向量的模是指向量的长度,用,a,表示,计算公式为:,a,=sqrt(x^2 + y^2),其中x和y分别表示向量在x轴和y轴上的投影长度;(2) 方向角:向量的方向角是指向量与x轴正半轴之间的夹角,一般用θ表示,计算公式为:θ=tan^(-1)(y/x),其中x和y分别表示向量在x轴和y轴上的投影长度。
高中数学平面向量知识点总结
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
高二年级数学平面向量及线性运算知识点梳理
高二年级数学平面向量及线性运算知识点梳理
2019学年高二年级数学平面向量及线性运算知
识点梳理
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。
以下是查字典数学网为大家整理的高二年级数学平面向量及线性运算知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
一、向量的有关概念
1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.
2.零向量:长度等于0的向量,其方向是任意的.
3.单位向量:长度等于1个单位的向量.
4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.
5.相等向量:长度相等且方向相同的向量.
6.相反向量:长度相等且方向相反的向量.
二、向量的数乘运算及其几何意义
1.定义:实数与向量a的积是一个向量,这种运算叫向量的数乘,记作a,它的长度与方向规定如下:
①|a|=|||a|;
②当0时,a的方向与a的方向相同;当0时,a的方向与a 的方向相反;当=0时,a=0.。
平面向量知识点总结归纳
平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量知识点总结
平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。
在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。
本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。
1. 定义:平面向量是一个具有大小和方向的量。
它可以用一个有向线段来表示,也可以用它的坐标来表示。
平面向量的定义包括初始点和终点,表示为AB。
2. 运算法则:平面向量有加法和数乘两种运算方式。
向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。
向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。
3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。
设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。
4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。
否则,向量组V1, V2, ... , Vn是线性无关的。
线性无关的向量组在平面向量的研究中具有重要的作用。
5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。
向量的方向表示向量的朝向,即向量的角度。
向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。
6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。
设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。
7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。
根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
高二数学平面向量知识点
高二数学平面向量知识点一、向量的表示与运算平面向量是具有大小和方向的量,常用箭头表示。
向量AB的起点为A,终点为B。
向量的表示可以用坐标形式,也可以用向量符号表示。
1. 向量的坐标表示:设向量AB的起点为A(x₁, y₁),终点为B(x₂, y₂),则向量AB的坐标表示为AB = (x₂ - x₁, y₂ - y₁)。
2. 向量的向量符号表示:设向量AB的起点为A,终点为B,向量AB的向量符号表示为→AB。
3. 向量的加法与减法:向量的加法满足三角形法则,即将两个向量的起点连接起来,然后连接两个向量的终点,所得向量为其和向量。
向量的减法即为加法的逆运算。
二、向量的数量运算向量的数量运算包括向量的数乘和向量的数量积。
1. 向量的数乘:向量的数乘即将一个向量与一个实数相乘,结果是一个新的向量,其大小为原向量的大小与实数的乘积,方向与原向量相同(当实数为正数时)或相反(当实数为负数时)。
若向量a = (x, y),实数k,则向量ka = (kx, ky)。
2. 向量的数量积:向量的数量积又称为点积,用符号·表示。
设向量a = (x₁, y₁),向量b = (x₂, y₂),则向量a与b的数量积为a·b = x₁x₂ + y₁y₂。
数量积的性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb) (k为实数)- 分配律:(a + b)·c = a·c + b·c三、向量的模与单位向量向量的模即为向量的大小,用符号|a|表示。
设向量a = (x, y),则向量a的模为|a| = √(x² + y²)。
单位向量是模等于1的向量。
设向量a = (x, y),则向量a的单位向量为a/|a| = (x/|a|, y/|a|)。
四、向量的夹角设向量a与向量b的夹角为θ,则有以下公式成立:cosθ = (a·b) / (|a|·|b|)- 若cosθ = 0,则称向量a与向量b垂直。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
高中数学向量知识点总结[整理]
高中数学向量知识点总结[整理]高中数学向量知识点总结向量是高中数学中的重要知识点,涉及到向量的概念、运算、空间几何、平面几何等多个方面。
下面就对高中数学中的向量知识点进行整理。
一、向量的概念1. 向量的定义:向量是有大小和方向的量,用有向线段表示。
2. 向量的表示方法:向量通常用小写字母加箭头表示,如→AB表示从点A到点B的有向线段。
3. 向量的模:向量的模表示向量的长度,记作|→AB|,即向量→AB的长度。
4. 零向量:模为0的向量,记作→0。
5. 向量的相等:两个向量的大小和方向都相同时,这两个向量相等。
二、向量的运算1. 向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点放在一起,然后将两个向量首尾相接,连接起来得到一个新的向量。
2. 向量的减法:向量的减法等价于向量的加法的逆运算,即→AB-→CD = →AB+(-→CD)。
3. 向量的数量积:向量的数量积也称为点乘,计算方法为两个向量的模相乘,再乘以它们的夹角的余弦值。
4. 向量的数量积的性质:(1) 交换律:→a·→b = →b·→a(2) 结合律:(λ·→a)·→b = λ·(→a·→b),其中λ为实数(3) 分配律:(→a+→b)·→c = →a·→c + →b·→c(4) 若→a与→b垂直,则→a·→b = 0三、点和向量的关系1. 向量的起点和终点与其相对应的点相等,即→AB与A、B两点相等。
2. 两个向量→AB和→CD相等的条件是:它们的起点和终点分别相等。
3. 向量与点集的关系:(1) 两向量的和与差的终点的坐标分别等于两向量的起点坐标与终点坐标的和与差(2) 给定一点A和一向量→a,则存在唯一的一点B,使得→AB = →a,这个点B的坐标等于A的坐标与→a的坐标分别相加。
四、向量的几何应用1. 向量的共线和共面:当两个或多个向量共线时,它们处于同一条直线上;当三个或多个向量共面时,它们处于同一平面上。
平面向量知识点整理
平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。
下面是关于平面向量的知识点整理。
一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。
平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量通常表示为有序对(a,b),其中a和b是实数。
二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。
加法运算满足交换律和结合律。
2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。
数乘的结果是将向量的大小和方向进行相应的调整。
3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。
减法运算可以转化为加法运算。
三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。
平行向量的大小可以不同。
2.零向量:大小为零的向量称为零向量,用0表示。
任何向量与零向量相加的结果仍为原向量本身。
3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。
4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。
5.非共线向量:不在同一直线上的向量是非共线向量。
6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。
7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。
8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。
四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。
2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
高中数学中的平面向量知识点总结
高中数学中的平面向量知识点总结在高中数学学习的过程中,平面向量是一个重要的内容,它在几何与代数中都有广泛的应用。
本文将对高中数学中的平面向量知识点进行总结。
一、平面向量的定义与表示平面向量是有大小和方向的量,它可以由箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
通常用大写字母表示向量,例如向量A。
二、平面向量的运算1. 平面向量的加法:将两个向量的对应部分相加,得到一个新的向量。
2. 平面向量的数乘:将一个向量的大小与一个标量相乘,得到一个新的向量。
3. 平面向量的减法:将两个向量相加其中一个的相反向量,得到一个新的向量。
三、平面向量的数量表示平面向量还可以用坐标表示。
设向量A的起点坐标为(x1, y1),终点坐标为(x2, y2),则向量A可以表示为A = (x2 - x1, y2 - y1)。
四、平面向量的数量运算1. 平面向量的加法:将对应坐标相加得到新的坐标表示的向量。
2. 平面向量的数乘:将向量的每一个坐标与标量相乘得到新的坐标表示的向量。
3. 平面向量的减法:将对应坐标相减得到新的坐标表示的向量。
五、平面向量的性质1. 平面向量共线性:如果两个向量的方向相同或者相反,那么它们是共线向量。
2. 平面向量垂直性:如果两个向量的乘积等于0,那么它们是垂直向量。
3. 平面向量的模长:向量的模长即向量的大小,可以用勾股定理计算,模长公式为|A| = √(x^2 + y^2)。
六、平面向量的应用1. 平面向量的平移:设向量A的起点为点P,终点为点Q,平移向量v的起点为点P,终点为点R,则点Q和点R在同一条平行线上。
2. 平面向量的共线与面积:三个向量共线时,它们的向量积为0;三角形面积可以由两个向量的向量积的模长的一半来计算。
3. 平面向量的位矢:位矢是以参考点为起点,以某个点为终点的向量。
综上所述,高中数学中的平面向量是一个重要的知识点,掌握了平面向量的定义、表示、运算、性质和应用,有助于解决几何和代数中的各种问题。
高二数学知识点之平面向量
高二数学知识点之平面向量高二数学知识点之平面向量平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量。
以下是小编整理的高二数学知识点之平面向量,欢迎参考阅读!1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2.加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);3.实数与向量的积:实数与向量的积是一个向量。
(1)||=||·||;(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.4.P分有向线段所成的比:设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。
当点P在线段上时,>0;当点P在线段或的延长线上时,<0;分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.5.向量的数量积:(1).向量的夹角:已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。
(2).两个向量的数量积:已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.其中|b|cos称为向量b在方向上的投影.(3).向量的数量积的性质:若=(),b=()则e·=·e=||cos(e为单位向量);⊥b·b=0(,b为非零向量);||=;cos==.(4).向量的数量积的运算律:·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.6.主要思想与方法:本章主要树立数形转化和结合的'观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。
高二数学平面向量知识点总结
高二数学平面向量知识点总结高二数学平面向量知识点总结上学的时候,大家对知识点应该都不陌生吧?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
为了帮助大家掌握重要知识点,以下是小编精心整理的高二数学平面向量知识点总结,仅供参考,欢迎大家阅读。
1、有向线段的定义线段的端点A为始点,端点B为终点,这时线段AB具有射线AB 的方向。
像这样,具有方向的线段叫做有向线段。
记作:。
2、有向线段的三要素:有向线段包含三个要素:始点、方向和长度。
3、向量的定义:(1)具有大小和方向的量叫做向量。
向量有两个要素:大小和方向。
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量。
书写时,则用带箭头的小写字母,来表示。
4、向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||。
5、相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=。
6、相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:—。
7、向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线。
向量平行于向量,记作//。
规定: //。
8、零向量:长度等于零的向量叫做零向量,记作:。
零向量的方向是不确定的,是任意的。
由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量。
9、单位向量:长度等于1的向量叫做单位向量。
10、向量的加法运算:(1)向量加法的三角形法则11、向量的减法运算12、两向量的和差的模与两向量模的和差之间的关系对于任意两个向量,,都有|||—|||||+||。
13、数乘向量的定义:实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作。
向量()的长度与方向规定为:(1)||=|(2)当0时,与方向相同;当0时,与方向相反。
(3)当=0时,当=时,=。
14、数乘向量的运算律:(1))= (结合律)(2)(+)=+(第一分配律)(3)(+)=+。
高中数学有关平面向量的公式的知识点总结
高中数学有关平面向量的公式的知识点总结高中数学中,关于平面向量的公式有很多。
以下是一些常见的知识点总结:1. 平面向量的表示:- 平面向量可以用坐标表示,即一个有序数对(a,b),其中a和b称为向量的横纵坐标。
- 平面向量也可以用有向线段表示,即在平面上用一条有方向的线段来表示向量,线段的起点为向量的始点,终点为向量的终点。
2. 向量的加法和减法:- 平面向量的加法满足平行四边形法则,即将两个向量的始点相接,以它们的终点为对角线的平行四边形的对角线。
- 向量的减法可以看作是加上负向量,即将减法转化为加法。
3. 数乘:- 平面向量与一个实数或标量相乘,相当于将向量的长度(模)乘以这个实数,并改变向量的方向,若实数为负数,则改变向量的方向。
4. 向量的数量积(内积):- 向量的数量积是一个标量,表示为向量的点乘,也可以称为内积。
- 内积的计算公式:a·b = |a||b|cosθ,其中a与b分别为两个向量,|a|和|b|为它们的长度(模),θ为它们之间的夹角。
5. 向量的向量积(叉乘):- 向量的向量积是一个向量,表示为向量的叉乘,也可以称为外积。
- 外积的计算公式:a×b = |a||b|sinθn,其中a与b分别为两个向量,|a|和|b|为它们的长度(模),θ为它们之间的夹角,n为垂直于它们所在平面的单位法向量。
6. 向量的共线和垂直:- 两个向量共线的条件是它们的夹角为0度或180度,也就是它们的数量积等于0或它们的向量积等于0。
- 两个向量垂直的条件是它们的夹角为90度,也就是它们的数量积等于0。
这些是高中数学中关于平面向量的一些常见的公式和知识点。
还有一些额外的知识点如向量在坐标系中的投影、单位向量、平面向量的判定式等,这些知识点会在更进一步的数学学习中涉及到。
平面向量的基本概念与运算知识点总结
平面向量的基本概念与运算知识点总结平面向量是研究平面运动的重要工具,具有方向和大小两个基本特征。
本文将对平面向量的基本概念和运算进行总结,帮助读者理解和掌握相关知识。
1. 平面向量的定义平面向量由有向线段表示,起点和终点分别称为向量的始点和终点。
向量通常用小写字母加箭头表示,如向量a表示为→a。
平面向量有两个基本属性:方向和大小。
方向由向量的方向夹角确定,大小由向量的长度表示。
2. 平面向量的表示方法平面向量可以用坐标表示,也可以用位置矢量表示。
在直角坐标系中,向量a的坐标表示为(a₁, a₂),其中a₁表示向量在x轴上的投影,a₂表示向量在y轴上的投影。
位置矢量表示中,向量a的始点为原点O,终点为点A,表示为向量OA。
3. 平面向量的相等与相反两个向量相等,当且仅当它们的大小相等且方向相同。
两个向量的相反向量,大小相等但方向相反,用符号-→a表示。
4. 平面向量的加减运算平面向量的加法满足平行四边形法则,即将一个向量的起点和另一个向量的终点相连,得到一个新向量,表示两个向量的和。
向量的减法可以通过向量加上其相反向量得到。
5. 平面向量的数量积平面向量的数量积,也称为内积或点积,表示为a·b,是两个向量的长度之积与它们夹角的余弦值的乘积。
计算公式为a·b = |a| |b| cosθ。
其中,|a|和|b|分别表示向量a和向量b的长度,θ表示两个向量的夹角。
6. 平面向量的数量积的性质平面向量的数量积具有以下性质:- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b)- 分配律:(a+b)·c = a·c + b·c7. 平面向量的夹角与垂直条件两个向量夹角的余弦值可以通过数量积的公式计算。
若两个向量的数量积为0,则它们互相垂直。
8. 平面向量的向量积平面向量的向量积,也称为叉积或外积,表示为a×b,是两个向量长度之积与它们夹角的正弦值的乘积,另外加上垂直于这两个向量所在平面的单位向量n。
平面向量知识点总结归纳
平面向量知识点总结归纳平面向量是数学中一个重要的概念,它在几何、代数和物理等领域都有广泛的应用。
下面是平面向量的一些常见知识点总结归纳。
1.平面向量的定义与表示:平面向量是具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
常用表示方法有坐标表示和分量表示。
2.平面向量的基本运算:平面向量的基本运算包括加法、减法、数乘、取负等运算。
两个向量的加法是将它们的对应分量相加,减法和加法类似,数乘是将向量的每个分量乘以一个标量,取负就是将向量的每个分量取负值。
3.平面向量的数量积:平面向量的数量积(内积)是将两个向量的对应分量相乘再相加得到一个标量。
数量积有以下几个性质:-交换律:A·B=B·A-结合律:(A+B)·C=A·C+B·C-分配律:(aA)·B=a(A·B)-零向量的数量积为0-若A·B=0,则A与B垂直(即正交)4.平面向量的向量积:平面向量的向量积(叉乘)是一个向量,它与原来的两个向量都垂直。
向量积的大小等于两个向量的数量积的模,方向遵循右手法则。
向量积有以下几个性质:-反交换律:A×B=-B×A-结合律:(aA)×B=a(A×B)-分配律:A×(B+C)=A×B+A×C-零向量与任何向量的向量积都为零向量-若A与B共线,则A×B=05.平面向量的共线与垂直关系:两个向量共线指的是它们的方向相同或相反,共线的标准是两个向量的比值为常数。
两个向量垂直指的是它们的数量积为0,也就是说两个向量的夹角为90度。
6.平面向量的线性相关与线性无关:若存在不全为零的常数使得两个向量的线性组合等于零向量,那么这两个向量是线性相关的,否则就是线性无关的。
若多个向量中存在一个线性无关的向量,则认为这多个向量也是线性无关的。
(完整版)[高二数学]平面向量的概念及运算知识总结,推荐文档
平面向量的概念及运算一.【课标要求】(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件二.【命题走向】本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。
以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
此类题难度不大,分值5~9分。
预测2010年高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。
三.【要点精讲】1.向量的概念①向量既有大小又有方向的量。
向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法AB u u u r ,a ;坐标表示法),(y x y x a。
向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 |a|=0。
由于0r 的方向是任意的,且规定0r平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量模为1个单位长度的向量,向量0a 为单位向量 |0a|=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的概念及运算一.【课标要求】(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件二.【命题走向】本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。
以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。
此类题难度不大,分值5~9分。
预测2010年高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。
三.【要点精讲】1.向量的概念①向量既有大小又有方向的量。
向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+=。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a|=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别) ③单位向量模为1个单位长度的向量,向量0a 为单位向量⇔|0a|=1。
④平行向量(共线向量) 方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的⑤相等向量长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。
2.向量的运算 (1)向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC 。
规定:(1)a a a =+=+00;(2)向量加法满足交换律与结合律;向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”。
(2)向量的减法①相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a -,零向量的相反向量仍是零向量。
关于相反向量有: (i ))(a --=a; (ii)a +(a -)=(a -)+a =0 ;(iii)若a 、b是互为相反向量,则a =b -,b =a -,a +b =0 。
②向量减法向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)。
(3)实数与向量的积①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a⋅=λλ;(Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的。
②数乘向量满足交换律、结合律与分配律 3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ。
4.平面向量的基本定理如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底5.平面向量的坐标表示(1)平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标。
规定:(1)相等的向量坐标相同,坐标相同的向量是相等的向量;(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关系。
(2)平面向量的坐标运算:①若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±; ②若()()2211,,,y x B y x A ,则()2121,AB x x y y =--; ③若a =(x,y),则λa =(λx, λy);④若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=。
6.向量的数量积(1)两个非零向量的夹角已知非零向量a 与a ,作OA =a ,OB =b ,则∠A OA =θ(0≤θ≤π)叫a 与b 的夹角; 说明:(1)当θ=0时,a 与b 同向; (2)当θ=π时,a 与b 反向;(3)当θ=2π时,a 与b 垂直,记a ⊥b ; (4)注意在两向量的夹角定义,两向量必须是同起点的,范围0︒≤θ≤180︒。
(2)数量积的概念已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积)。
规定00a ⋅=;向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影。
投影的绝对值称为射影;(3)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 (4)向量数量积的性质①向量的模与平方的关系:22||a a a a ⋅==。
②乘法公式成立()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b ±=±⋅+222aa b b =±⋅+;③平面向量数量积的运算律 交换律成立:a b b a ⋅=⋅;对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈;分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±。
④向量的夹角:cos θ=cos ,a b a b a b∙<>=∙=222221212121y x y x y y x x +⋅++。
当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题(5)两个向量的数量积的坐标运算已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +。
(6)垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 。
两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔02121=+y y x x ,平面向量数量积的性质。
(7)平面内两点间的距离公式设),(y x a =,则222||y x a +=或22||y x a +=。
如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)2.向量的应用(1)向量在几何中的应用; (2)向量在物理中的应用。
五.【思维总结】数学教材是学习数学基础知识、形成基本技能的“蓝本”,能力是在知识传授和学习过程中得到培养和发展的。
新课程试卷中平面向量的有些问题与课本的例习题相同或相似,虽然只是个别小题,但它对学习具有指导意义,教学中重视教材的使用应有不可估量的作用。
因此,学习阶段要在掌握教材的基础上把各个局部知识按照一定的观点和方法组织成整体,形成知识体系。
学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离等。
由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点(1)向量的加法与减法是互逆运算;(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件; (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况;(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关系。