平面向量知识点总结(供参考)
平面向量复习基本知识点及结论总结
平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
高中数学平面向量知识点归纳总结
高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。
常
用字母表示向量,如a、b等。
向量的大小可以用模表示,记作|a|。
2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。
加法满足交换律和结合律。
2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。
2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。
数量积满足交换律和分配律。
2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。
3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。
平行向
量的数量积等于两个向量的模的乘积。
3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。
垂直向量的
点积为0。
3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。
4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。
在物理学中,平面向量可以用来表示力的大小
和方向。
以上是关于高中数学平面向量的基本知识点归纳总结。
希望能够对你的学习和理解有所帮助!。
平面向量知识点归纳
平面向量知识点归纳
1.定义和表示:
o平面向量是具有大小和方向的量,通常用有向线段表示。
o平面向量可以由坐标表示为(a, b),其中a和b是平面上的两个分量。
2.向量运算:
o向量加法:将两个向量的对应分量相加,得到一个新的向量作为它们的和。
o向量减法:将两个向量的对应分量相减,得到一个新的向量作为它们的差。
o数量乘法:将一个向量的每个分量乘以一个标量,得到一个新的向量。
3.向量的模和单位向量:
o向量的模:向量的大小,可以用欧几里得范数或绝对值表示。
o单位向量:具有相同方向但模为1的向量。
4.向量的数量积:
o数量积(也称为点积或内积):两个向量的数量积是它们对应分量的乘积之和。
o数量积的性质:数量积满足交换律、分配律、与标量乘法结合。
5.向量的向量积:
o向量积(也称为叉积或外积):两个向量的向量积是一个与它们均垂直,并其模长等于由它们围成的平行四边形的面积的向量。
o向量积的性质:向量积与原向量的顺序相关,满足反交换律、非结合律,但满足分配律。
6.平面向量的坐标表示:
o平面向量可以表示为点P(x, y)和原点O之间的有向线段。
o平面向量的坐标形式是将点P的坐标与原点O的坐标相减得到的。
7.平面向量的共线与垂直关系:
o两个向量共线:当两个向量的方向相同或相反时,它们共线。
o两个向量垂直:当两个向量的数量积为0时,它们垂直。
8.平面向量的投影:
o向量在另一个向量上的投影是一个标量,表示向量在另一个向量方向上的投影长度。
(完整版)平面向量知识点总结(精华)
平面向量基础知识复习必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB u u u r按向量(1,3)a =-r 平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量是||AB AB ±u u u ru u u r );4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r 叫做平行向量,记作:a r∥b r ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线 AB AC ⇔u u u r u u u r、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a r的相反向量记作a -r.举例2 如下列命题:(1)若||||a b =r r ,则a b =rr .(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB DC =u u u r u u u u r,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =u u u r u u u u r.(5)若a b =rr ,b c =r r ,则a c =r r .(6)若//a b r r ,//b c r r 则//a c r r.其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB u u u r,注意起点在前,终点在后;平面向量基础知识复习2.符号表示:用一个小写的英文字母来表示,如a r ,b r ,c r等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j r r 为基底,则平面内的任一向量a r可表示为(,)a xi yj x y =+=r r r ,称(,)x y 为向量a r 的坐标,(,)a x y =r 叫做向量a r的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e r r 同一平面内的一组基底向量,a r是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+r r r.(1)定理核心:1122a λe λe =+r r r;(2)从左向右看,是对向量a r 的分解,且表达式唯一;反之,是对向量a r 的合成.(3)向量的正交分解:当12,e e r r 时,就说1122a λe λe =+r r r为对向量a r 的正交分解.举例3 (1)若(1,1)a =r ,(1,1)b =-r ,(1,2)c =-r ,则c =r . 结果:1322a b -rr . (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =r ,2(1,2)e =-r B.1(1,2)e =-r ,2(5,7)e =r C.1(3,5)e =r ,2(6,10)e =r D.1(2,3)e =-r,213,24e ⎛⎫=- ⎪⎝⎭r (3)已知,AD BE u u u r u u u r 分别是ABC △的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r ,则BCu u u r可用向量,a b r r 表示为 . 结果:2433a b +rr . (4)已知ABC △中,点D 在BC 边上,且2CD DB =u u u r u u u r ,CD rAB sAC =+u u u r u u u r u u u r,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a r 的积是一个向量,记作a λr,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅r r;(2)方向:当0λ>时,a λr 的方向与a r 的方向相同,当0λ<时,a λr的方向与a r的方向相反,当0λ=时,0a λ=r r ,注意:0a λ≠r .五、平面向量的数量积1.两个向量的夹角:对于非零向量a r,b r ,作OA a =u u u r r ,OB b =u u u r r ,则把(0)AOB θθπ∠=≤≤称为向量a r,b r 的夹角.当0θ=时,a r ,b 同向;当θπ=时,a r ,b 反向;当2πθ=时,a r,b 垂直.2.平面向量的数量积:如果两个非零向量a r,b r ,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a r与b r 的数量积(或内积或点积),记作:a b ⋅r r ,即||||cos a b a b θ⋅=⋅r r r r.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =u u u r ,||4AC =u u u r ,||5BC =u u u r ,则AB BC ⋅=u u u r u u u r_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭r ,10,2b ⎛⎫=- ⎪⎝⎭r ,c a kb =+r r r ,d a b =-r r r ,c r 与d r 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =r ,||5b =r ,3a b ⋅=-rr ,则||a b +=r r ____. (4)已知,a b r r 是两个非零向量,且||||||a b a b ==-r r r r ,则a r 与a b +rr 的夹角为____. 结果:30o.3.向量b r 在向量a r上的投影:||cos b θr ,它是一个实数,但不一定大于0.举例 5 已知||3a =r ,||5b =r ,且12a b ⋅=rr ,则向量a r 在向量b r 上的投影为______. 结果:125. 4.a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的模||a r 与b r在a r上的投影的积.5.向量数量积的性质:设两个非零向量a r,b r ,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=r rr r ;(2)当a r、b r 同向时,||||a b a b ⋅=⋅r r r r ,特别地,22||||aa a a a =⋅=⇔=r r r r r ||||ab a b ⋅=⋅r r r r 是a r、b r 同向的充要分条件;当a r 、b r 反向时,||||ab a b ⋅=-⋅r r r r ,||||a b a b ⋅=-⋅r r r r 是a r、b r 反向的充要分条件;当θ为锐角时,0a b ⋅>r r ,且a r、b r 不同向,0a b ⋅>r r 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<r r ,且a r、b r 不反向;0a b ⋅<r r 是θ为钝角的必要不充分条件.(3)非零向量a r,b r 夹角θ的计算公式:cos ||||a b a b θ⋅=r r r r ;④||||a b a b ⋅≤r r r r . 举例6 (1)已知(,2)aλλ=r ,(3,2)b λ=r ,如果a r与b r 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=u u u r u u u r ,若12S <,则OF u u u r ,FQ u u u r 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =r ,(cos ,sin )b y y =r ,且满足|||ka b a kb +-r r r r(其中0k >).①用k 表示a b ⋅r r ;②求a b ⋅rr 的最小值,并求此时a r 与b r 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =u u u r r ,BC b =u u u r r ,则向量AC u u u r 叫做a r与b r 的和,即a b AB BC AC +=+=u u ur u u u r u u u r r r ;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =u u u r r ,AC b =u u u r r ,则a b AB AC CA -=-=u u ur u u u r u u u r r r ,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ;②AB AD DC --=u u u r u u u r u u u u r;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r . 结果:①AD u u u r ;②CB u u u r ;③0r;(2)若正方形ABCD 的边长为1,AB a =u u u r r ,BC b =u u u r r ,AC c =u u u r r ,则||a b c ++=r r r. 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r ,设||||AP PD λ=u u u ru u u r ,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为 . 结果:120o.2.坐标运算:设11(,)a x y =r,22(,)b x y =r ,则(1)向量的加减法运算:1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r . 举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R u u u r u u u r u u u r,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12;(2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =u u r ,2(2,5)F =-u u r ,3(3,1)F =u u r,则合力123F F F F =++u u r u u r u u r u u r的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==r.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--u u u r,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =u u u r u u u r,3AD AB =u u u r u u u r ,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+rr .举例10 已知向量(sin ,cos )a x x =r ,(sin ,sin )b x x =r ,(1,0)c =-r.(1)若3x π=,求向量a r 、c r的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅r r 的最大值为12,求λ的值.结果:(1)150o;(2)12或1.(5)向量的模:2222||||aa x y a ==+⇔=r r r举例11 已知,a b rr 均为单位向量,它们的夹角为60o,那么|3|a b +=r r = .结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+u u u r r r ,其中12,e e r ry 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r,a b b a ⋅=⋅r r r r ;2.结合律:()ab c a b c ++=++r r r r r r ,()a b c a b c --=-+r r r r r r ,()()()a b a b a b λλλ=⋅=⋅r r r r r r; 3.分配律:()a a a λμλμ+=+r r r,()a b a b λλλ+=+r r r r ,()a b c a c b c +⋅=⋅+⋅r r r r r r r .举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅r r r r r r r ;② ()()a b c a b c ⋅⋅=⋅⋅r r r r r r;③222()||2||||||a b a a b b -=-+r rr r r r ;④ 若0a b ⋅=rr ,则0a =r r 或0b =r r ;⑤若a b c b ⋅=⋅r r r r 则a c=r r ;⑥22||a a =r r ;⑦2a b b a a⋅=r r r r r ;⑧222()a b a b ⋅=⋅r r r r ;⑨222()2a b a a b b -=-⋅+r r rr r r .其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=r r r rr r r r .举例14 (1)若向量(,1)a x =r ,(4,)b x =r ,当x =_____时,a r 与b r 共线且方向相同. 结果:2.(2)已知(1,1)a =r ,(4,)b x =r ,2u a b =+r r r ,2v a b =+rr r ,且//u v r r ,则x = . 结果:4.(3)设(,12)PA k =u u u r ,(4,5)PB =u u u r ,(10,)PC k =u u u r,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=r r r rr r r r .特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 举例15 (1)已知(1,2)OA =-u u u r ,(3,)OB m =u u u r ,若OA OB ⊥u u u r u u u r,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =r 向量n m ⊥r r ,且||||n m =r r ,则m=r 的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=u u u r u u u r,则实数λ叫做点P 分有向线段12P P u u u u r 所成的比λ,P 点叫做有向线段12P P u u u u r 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P u u u u r,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P u u u u r时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP u u u u r 所成的比为λ,则点P 分有向线段21P P u u u u r所成的比为1λ.举例16 若点P 分AB u u u r 所成的比为34,则A 分BP u u u r所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P u u u u r所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-u u u u r u u u ur ,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =u u u u r u u u u r,则a =r. 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =r 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =r平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a r 把(2,3)-平移到(1,2)-,则按向量a r 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a r 平移后,所得函数的解析式是cos21y x =+,则a =r ________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+r r r r r r.平面向量基础知识复习(1)右边等号成立条件: a b r r 、同向或 a b r r 、中有0r ||||||a b a b ⇔+=+r r ;(2)左边等号成立条件: a b r r 、反向或 a b r r 、中有0r ||||||a b a b ⇔-=+r r r r;(3)当 a b r r 、不共线||||||||||a b a b a b ⇔-<+<+r r r r r r.3.三角形重心公式 在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔u u u r u u u r u u u r u u u r为△ABC 的重心,特别地0PA PB PC G++=⇔u u u r u u u r u u u r r 为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔u u u r u u u ru u u r u u u ru u u r u u u r为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔u u u u r u u u r u u u u r u u u r u u u u r u u u r为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭u u u r u u u ru u u u r u u u u r 所在直线过△ABC 的内心. 6.点P 分有向线段12P P u u u u r所成的比λ向量形式设点P 分有向线段12P P u u u u r所成的比为λ,若M 为平面内的任一点,则121MP MPMP λλ+=+u u u u r u u u u r u u u r ,特别地P 为有向线段12P P u u u u r 的中点122MP MPMP +⇔=u u u u r u u u u ru u u r .7. 向量,,PA PB PC u u u r u u u r u u u r中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+u u u r u u u r u u u r且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+u u u r u u u r u u u r,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。
平面向量知识点归纳
平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||ABAB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如 下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
平面向量知识点归纳总结
平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。
本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。
一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
一个平面向量由起点和终点确定,可以用有序对表示。
例如,向量AB表示从点A指向点B的有向线段,记作AB。
二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。
2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。
三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。
设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。
新的线段即为向量A + B。
2. 数乘运算:向量的数乘运算满足分配律和结合律。
设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。
3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。
即A - B = A + (-B)。
4. 零向量:零向量是长度为0的向量,记作0。
任何向量与零向量相加等于该向量本身。
四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。
2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。
3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。
4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。
5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。
6. 单位向量:长度为1的向量称为单位向量。
五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。
平面向量知识点梳理
平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。
2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。
3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。
三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。
2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。
3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。
4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。
5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。
四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。
2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。
五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。
2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。
六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。
2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。
以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。
通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
平面向量知识点归纳总结
平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
平面向量知识点总结归纳
平面向量知识点总结归纳1、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0 的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.2、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式: a b a b a b⑷运算性质:①交换律:a ;②结合律:(a b c a b c ③aCaBbAa b C -AB=B C⑸坐标运算:设a =x y ),b =(x , y ),则a +b =x +x , y +y ).1 2 1 21 12 23、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设a x y ),b =(x , y ),则a b x -x , y -y ).1 12 2 1 2 1 2μ) a a aa b a be b = λa .设A 、B 两点的坐标分别为( x , y ) , ( x , y ) ,则 - x , y - y ).4、向量数乘运算:1122212⑴实数λ 与向量 a 的积是一个向量的运算叫做向量的数乘,记作 λa ① λaa②当λ > 0 时, λa 的方向与a 的方向相同;当λ < 0 时, λa 的方向与a 反;当λ = 0时, λa⑵运算律:① λ (μa a⑶坐标运算:设 ax y , 则λax y ) = (λx ,λ y ) .5、向量共线定理:向量 a a b 共线,当且仅当有唯一一个实数λ ,使设a = x y ), b = ( x , y ) ,其中b ≠ 0 ,则当且仅当 x y - x y= 0 时,向量 a11 2 2 1 22 1b (b ≠ 0 )共线.6、平面向量基本定理:如果e 1 、e 2 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ 、λ ,使 a = e + λ e .(不共12 1 1 2 2线的向量 、 12作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段P P 上的一点, P 、P 的坐标分别是(x , y ) ,1 2⎛ x + λ x 121 1y + λ y ⎫( x , y ) ,当P P = λPP 时,点P 的坐标是 1 2 , 1 + λ λ 2 ⎪ . 2 2 1 2⎝ 1 1+ ⎭ 8、平面向量的数量积: ⑴ a ba ba b 0 ≤ θ ≤ 180 .零向量与任一向量的数量积为 0 .⑵性质:设 ab是非零向量,则① a b a b②当 ab向时,⑷坐标运算:设两个非零向量 a = x y ),b = ( x , y ) ,则a ⋅b = x x + y y . 11221 21 2AB = ( x 1a b a b a b向时, a ba b a ⋅ a = a = a a = a ⋅aa ⋅b ≤ a b⑶运算律:① a b b a λa ⋅ b = λ a ⋅ b = a ⋅ λb(a + b ⋅ c = a ⋅c + b ⋅ ce若a x y ,则a x y2 ,或a x y2 .设a =x y ),b =(x , y ),则a b x x +y y = 0 .1 12 2 1 2 1 2设a 是非零向量,a x y ),b =(x , y ),θ是a 与b 的夹角,则cosθ=1 12 2.aa bx +y y2 1 2x2 +y2 x2 +y21 12 2。
(完整版)高中平面向量知识点总结.doc
r
uuur
r
uuur
r
,则∠AOB=
(0
0
180
0
)叫做向
29、已知两个非零向量a与b,作OA=a,
OB=b
r
r
量a与b的夹角
rr
r
?
r
x x
y y
b
2
2
cos =cos a,b
a
=
1
1
r
r
2
2
x2
22
(可用此公式求两向量夹角)
a ? b
x1
y1
y2
当x1x2
y1y2< 0,?(
??
2
,π];
当x1x2
则把有序数对(x,y)叫做向量a的坐标。
(2)坐标表示
在向量a的直角坐标中,x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,a=(x,y)
叫做向量的坐标表示。
(3)在向量的直角坐标中,
i=(1,0)j=(0,1)
0=(0,0)
r
r
x2, y2
20、若a
x1, y1,b
和实数 λ
rr
x2, y1
y2
(1)a bx1
L1:A1x+B1y+C1=0
与直线L2:A2x+B2y+C2=0
的夹角,则只要求与两直线平
行的向量的夹角, 再取这两个向量的夹角或补角,
即与直线L1
、
2
分别平行的向量
1
,
L
m=(A
??·??
??·??+??·??
1
2
2
=︱??︱·︱??︱
平面向量基础知识梳理
__________________________________________________平面向量基础知识梳理一、向量的概念:⒈有向线段:叫做有向线段.⒉向量:叫做向量.向量通常用有向线段→AB或a 表示.⒊向量的模:向量→AB的又叫做向量的模,记作 .⒋两个重要概念:①零向量:叫做零向量.记作 .注意:零向量没有规定它的方向,因此零向量的方向是任意的.②单位向量:叫做单位向量.注意:单位向量的方向与它所在向量的方向相同.⒌相等向量:叫做相等向量. 向量a 与b 相等记作 .⒍平行向量:叫做平行向量. 向量a 与b 平行可记作 .规定:0 与任一向量平行.即0 ∥a ,→AB∥0 ,0 ∥0 .⒎共线向量:叫做共线向量.注意:若a 与b 是共线向量,则a 与b 的方向,它们所在的直线它们的夹角是 .⒏相反向量:叫做相反向量.的相反向量是,−a 的相反向量是,0 的相反向量是 .a__________________________________________________⒐两个非零向量a和b的夹角: . 二、向量的运算:⒈向量的加法:⑴向量a 与b的和的定义:⑵向量加法法则:①三角形法则(请画图于右)→AB +→BC (首尾相连) ②平行四边形法则(请画图于右)→AB +→AC (起点相同) ⑶向量加法运算律:①交换律:②结合律:⑷特例:0+a = ,a +0= ,00 += .⑸向量加法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a+= .⒉向量的减法:⑴向量a 与b 的差的定义:向量a 加上b 的相反向量叫做a与b的差,记作a+(−b )=a −b.a−b是怎样的一个向量?答: .⑵向量减法法则:设a =→OA ,b=→OB ,则a −b=→OA -→OB = .(请画图于右).重要结论:设AB ,AD 是两个不共线向量,则以AB 、AD 为邻边的平行四边形的两条对角线的长分别是这两个向量和与差的模.⑶特例:0-a= ,a-0= ,00-= . ⑷向量减法的坐标运算:设a=(x 1,y 1),b =(x 2,y 2),则b a-= . ⒊实数与向量的积:⑴定义:实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下: ①|λa |= ;OB__________________________________________________②当λ>0时,λa 的方向与a 的方向 ,当λ<0时,λa的方向与a 的方向 ;当λ=0时,λa = .⑵运算律:①λ(μa )= ;②(λ+μ)a = ;③λ(b a+)= . ⑶实数与向量的积的坐标运算: ⑷特例:若λ∈R ,则λ0= . ⒋向量的数量积(或内积):⑴定义:已知非零向量a和b,它们的夹角为θ,则b a⋅= . ⑶运算律:①ba⋅= ;②(λa)·b= = ;③(a +b)·c = .注意:向量的数量积没有结合律!特别地,a a ⋅= ,或|a |= .⑸向量的数量积的坐标运算:设a=(x 1,y 1),b=(x 2,y 2),则b a⋅= . ⑹特例:a⋅0= ,00⋅= .三、重要定理、公式及方法: ⒈平面向量基本定理:如果1e 和2e 是同一平面内的两个不共线...向量,那么对该平面内的任一向量a 有且只有一对实数λ1、λ2,使a =λ11e +λ22e .⒉向量模的计算公式:设a =(x ,y ),则|a |= .⒋如何证明A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)三点共线?⒌两个向量平行、垂直的充要条件:⑴向量a =(x1,y1),和b =(x2,y2)平行的充要条件....是x1y2-x2y1=0.⑵向量a =(x1,y1),和b =(x2,y2)垂直的必要不充分条件.......是x1x2+y1y2=0.⒎已知向量a =(x1,y1),和b =(x2,y2),它们的夹角为θ,则cosθ= .⒐线段的中点坐标公式:已知P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标是 .⒑三角形的重心坐标公式:设△ABC三顶点的坐标为A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是 .。
平面向量知识点汇总
平面向量知识点汇总平面向量是高中数学中的重要内容,它不仅在数学领域有着广泛的应用,还为解决物理等其他学科的问题提供了有力的工具。
下面我们来详细汇总一下平面向量的相关知识点。
一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。
向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
2、向量的模向量的大小叫做向量的模,记作\(\vert \overrightarrow{a}\vert\)。
3、零向量长度为\(0\)的向量叫做零向量,记作\(\overrightarrow{0}\)。
零向量的方向是任意的。
4、单位向量长度等于\(1\)个单位的向量叫做单位向量。
5、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也称为共线向量。
规定零向量与任意向量平行。
6、相等向量长度相等且方向相同的向量叫做相等向量。
二、平面向量的线性运算1、向量的加法(1)三角形法则已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在平面内任取一点\(A\),作\(\overrightarrow{AB}=\overrightarrow{a}\),\(\overrightarrow{BC}=\overrightarrow{b}\),则向量\(\overrightarrow{AC}\)叫做\(\overrightarrow{a}\)与\(\overrightarrow{b}\)的和,记作\(\overrightarrow{a}+\overrightarrow{b}\),即\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{a}+\overrightarrow{b}\)。
(2)平行四边形法则已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在平面内任取一点\(O\),作\(\overrightarrow{OA}=\overrightarrow{a}\),\(\overrightarrow{OB}=\overrightarrow{b}\),以\(OA\),\(OB\)为邻边作平行四边形\(OACB\),则对角线\(\overrightarrow{OC}\)就是\(\overrightarrow{a}\)与\(\overrightarrow{b}\)的和,记作\(\overrightarrow{a}+\overrightarrow{b}\)。
平面向量知识点总结
平面向量知识点总结一、向量的基本概念1. 向量的定义既有大小又有方向的量叫做向量。
物理学中的位移、力、速度等都是向量。
例如,一个物体从点A移动到点B的位移,它不仅有移动的距离(大小),还有移动的方向,这就是一个向量。
向量可以用有向线段来表示。
有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
以A为起点、B 为终点的向量记作AB,向量也可以用小写字母a,b,c等来表示。
2. 向量的模向量的大小叫做向量的模。
向量AB的模记作AB,向量a的模记作。
例如,在平面直角坐标系中,若向量a=(x,y),则\t=x^2+y^2。
模为1的向量叫做单位向量,单位向量的方向是任意的,对于任意非零向量a,与它同方向的单位向量是\fracat。
3. 零向量模为0的向量叫做零向量,记作0。
零向量的方向是任意的,规定vert = 0。
零向量在向量的加法和减法等运算中有特殊的性质,例如a+0=a,aa=0等。
4. 平行向量(共线向量)方向相同或相反的非零向量叫做平行向量。
规定零向量与任意向量平行。
平行向量也叫做共线向量,因为平行向量可以平移到同一条直线上。
例如,在平行四边形ABCD中,AB与DC是平行向量,AD与BC也是平行向量。
如果a与b 是平行向量,记作ab。
5. 相等向量长度相等且方向相同的向量叫做相等向量。
向量相等有传递性,即若a=b,b=c,则a=c。
例如,在正方形ABCD中,AB=DC,因为它们的模相等且方向相同。
二、向量的运算1. 向量的加法三角形法则已知非零向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC。
三角形法则适用于求两个向量的和,并且可以推广到多个向量的加法,即a+b+c=(a+b)+c=a+(b+c)。
平行四边形法则已知两个不共线向量a,b,作AB=a,AD=b,以AB,AD为邻边作平行四边形ABCD,则AC=a+b。
平行四边形法则只适用于求两个不共线向量的和。
平面向量的计算知识点总结
平面向量的计算知识点总结一、基本概念1. 平面向量的定义在二维空间中,若给定两个不平行的线段AB和CD,其起点O重合,那么可以确定一个平面向量a,记作a=→AB。
平面向量a表示由有向线段AB所确定的量,它的大小为线段AB的长度,方向为从A指向B。
2. 平面向量的表示平面向量可以用有向线段来表示,也可以用坐标表示。
若O为坐标原点,i为x轴正向单位向量,j为y轴正向单位向量,那么平面向量a可以表示为a=xi+yj,其中x为a在x轴上的投影,y为a在y轴上的投影。
3. 平行向量与相等向量如果两个平面向量a=→AB和b=→CD的方向相同,则称它们为平行向量;如果两个平面向量a=→AB和b=→CD的大小和方向均相同,则称它们为相等向量。
4. 向量的模和方向角给定平面向量a=xi+yj,它的模记作|a|,定义为平面向量a的长度,即|a|=sqrt(x^2+y^2);它的方向角记作θ,定义为平面向量a与x轴正向的夹角,即tanθ=y/x。
二、平面向量的运算1. 平面向量的加法给定平面向量a=→AB和b=→CD,它们的和记作c=a+b,c=→AC,其中C为有向线段AB和CD的终点。
平面向量的加法满足平行四边形法则和三角形法则,即将起点O作为共同点,以a和b为两条边作平行四边形或三角形的第三边。
2. 平面向量的减法给定平面向量a=→AB和b=→CD,它们的差记作c=a-b,c=→AD,其中D为有向线段AB和CD的终点。
平面向量的减法可以理解为将向量b取反后与向量a进行加法运算。
3. 数乘运算给定平面向量a=xi+yj和实数k,那么ka=kxi+kyj,它的模为|ka|=|k||a|,它的方向与向量a的方向相同(k>0)或相反(k<0),即乘积ka为向量a的长度的k倍或-k倍。
4. 数量积给定平面向量a=→AB和b=→CD,它们的数量积记作a·b,定义为|a|·|b|·cosθ,其中|a|和|b|分别为向量a和b的模,θ为向量a和b之间的夹角。
高中平面向量知识点总结
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
(完整版)平面向量重要基础知识点
平面向量重要知识点1、向量有关概念:(1) 向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0 的向量叫零向量,记作:0,注意零向量的方向是任意的;uuu单位向量:长度为一个单位长度的向量叫做单位向量 (与AB 共线的单位向量是 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 平行向量(也叫共线向量):方向相同或相反 的非零向量a 、b 叫做平行向量,记作:a // b ,规定零向量和任何向量平行。
提醒平行向量 无传递性!(因为有0)2.平面向量的基本定理:如果e i 和e 2是同一平面内的两个不共线向量,那么对该平面内的任4、平面向量的数量积: (1)两个向量的夹角:(2) 平面向量的数量积:规定:零向量与任一向量的数量积是 0注意数量积是一个实数,不再是一个向量。
(3) b 在a 上的投影为|b|cos ,它是一个实数,但不一定大于 0。
(4) a ?b 的几何意义:数量积a?b 等于a 的模与b 在a 上的投影的积。
(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为,则:r r rb a?b 0 ;(3) uuuAB ).uuu), |AB|一向量a ,有且只有一对实数12,使 a= 1^ + 2 62。
3、实数与向量的积:实数 与向量a 的积是一个向量,记作 a :当>0时,a 的方向与a 的方向相同,当 <0时,a 的方向与a 的方向相反②当「2 r r 特别地,a a?aa ,b 同向时,a ?b =拧 ;当a 与b 反向时,;当为锐角时,a?b > 0,且a、b不同向,ab 0是为锐角的必要非充分a ? b5、向量的运算:(1)几何运算:掌握三角形发展或者平行四边形法则, (2)坐标运算:设 a (x 1, y 1),b (x 2, y 2),贝U:7、向量平行(共线)的充要条件 8、8.线段的定比分点:(1)定比分点的概念:设点P 是直线P 1P 2上异于P i 、P 2的任意一点,若存在一个实数的定比分点;X L 1(知道怎样推出来的吗)* y 2 19.向量平移平面向量章节复习题r f r r条件;当 为钝角时,a ?b < 0,且a 、b 不反向,r ra b 0是为钝角的必要非充分条件; ③非零向量a , b 夹角的计算公式:cos④ ia?bi |;|£|。
《平面向量》知识点归纳总结
第一章 平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C-=A -AB =B为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
平面向量知识点总结归纳
平面向量知识点总结归纳平面向量是二维空间内的向量,由两个有大小和方向的向量组成,可以用于描述平面内的位移、速度、加速度等物理量。
平面向量的知识点总结如下:一、平面向量的定义1. 平面向量是具有大小和方向的量,通常用有向线段来表示,记作→AB。
2. 平面向量的大小称为模,记作|→AB|或AB,表示向量的长度。
3. 平面向量的方向可以用与x轴的夹角来表示,记作θ。
二、平面向量的表示方法1. 基底表示法:使用坐标系中的两个非零向量作为基底,根据向量分解的原理将向量表示为基底的线性组合。
2. 基底表示法的基底选择:通常选择单位向量i和j作为基底,i表示x轴的正方向,j表示y轴的正方向。
三、平面向量的运算1. 加法:向量相加的结果是一个新的向量,新向量的大小等于两个向量大小的和,方向等于两个向量的夹角的平分线方向。
2. 减法:向量相减的结果是一个新的向量,新向量的大小等于两个向量大小的差,方向等于两个向量的夹角的平分线反方向。
3. 数乘:向量乘以一个标量得到的是一个新的向量,新向量的大小等于标量与原向量大小的乘积,方向与原向量相同(正向量)或相反(负向量)。
4. 内积:向量的内积是两个向量的大小之积与它们夹角的余弦值之积,可以用于求夹角、判断垂直和平行等。
5. 外积:向量的外积又称为叉乘,结果是一个新的向量,大小等于两个向量的大小之积与它们夹角的正弦值之积,方向垂直于这两个向量构成的平面。
6. 向量的投影:一个向量在另一个向量上的投影是一个新的向量,大小等于原向量与投影方向的夹角的余弦值与原向量大小之积,方向与投影方向相同。
四、平面向量的性质1. 平面向量相等的充要条件是它们大小相等且方向相同。
2. 平面向量相反的充要条件是它们大小相等且方向相反。
3. 平面向量与其负向量的和等于零向量。
4. 平面向量的模可以为零,只有零向量的模为零,其它向量的模都大于零。
5. 平面向量与标量相乘,改变的是向量的大小,不改变其方向。
平面向量及其应用知识点总结
平面向量及其应用知识点总结
一、平面向量的定义和性质
1. 平面向量的定义:平面上的向量是由两个有序数对表示的,称为平
面向量。
2. 平面向量的性质:
(1)平面向量有大小和方向,大小为其长度,方向为从起点指向终点的方向。
(2)平面向量可以相加、相减和数乘,满足加法交换律、结合律和数乘结合律。
(3)平面向量之间可以定义数量积和叉积,满足数量积交换律、结合律和分配律,叉积具有反交换律和分配律。
二、平面向量的表示方法
1. 坐标表示法:设平面上两个点A(x1,y1)和B(x2,y2),则以A为起点,B为终点所表示的平面向量为AB=(x2-x1,y2-y1)。
2. 向量符号表示法:在AB上任取一点C作为起点,则以C为起点,B为终点所表示的平面向量也是AB。
三、平面向量之间的运算
1. 平移:将一个平面上的向量沿着另一个给定的非零向量进行移动得到新的向量。
2. 旋转:将一个给定角度旋转后得到新的向量。
3. 投影:将一个向量沿着另一个向量的方向投影得到新的向量。
4. 反向:将一个向量反过来得到新的向量。
5. 平面向量之间的加法、减法和数乘运算。
四、平面向量的应用
1. 向量运动学:平面上的物体在运动时可以用平面向量表示其位移、速度和加速度等物理量。
2. 向量力学:平面上的物体在受力时可以用平面向量表示其受力和作
用力等物理量,通过分解力求解问题。
3. 向量几何:利用平面向量可以求解线段长度、角度、垂直、平行等几何问题,如判断两条直线是否相交,判断三点共线等问题。
4. 向量代数:利用平面向量可以进行代数运算,如求解方程组、矩阵计算等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB u u u r 按向量(1,3)a =-r平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是||ABAB ±u u u ru u u r ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r 、b r 叫做平行向量,记作:a r∥b r ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线 AB AC ⇔u u u r u u u r、共线. 6.相反向量:长度相等方向相反的向量叫做相反向量.a r 的相反向量记作a -r .举例2 如下列命题:(1)若||||a b =rr,则a b =rr.(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB DC =u u u r u u u u r,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =u u u ru u u u r.(5)若a b =rr ,b c =r r ,则a c =r r .(6)若//a b r r ,//b c r r 则//a c r r.其中正确的是 . 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB u u u r,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a r ,b r ,c r等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j r r为基底,则平面内的任一向量a r 可表示为(,)a xi yj x y =+=r r r ,称(,)x y 为向量a r的坐标,(,)a x y =r 叫做向量a r的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同. 三、平面向量的基本定理定理 设12,e e r r 同一平面内的一组基底向量,a r是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+r r r.(1)定理核心:1122a λe λe =+r r r ;(2)从左向右看,是对向量a r 的分解,且表达式唯一;反之,是对向量a r的合成.(3)向量的正交分解:当12,e e r r 时,就说1122a λe λe =+r r r为对向量a r 的正交分解.举例3 (1)若(1,1)a =r,(1,1)b =-r,(1,2)c =-r ,则c =r. 结果:1322a b -r r.(2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =r ,2(1,2)e =-rB.1(1,2)e =-r ,2(5,7)e =rC.1(3,5)e =r ,2(6,10)e =rD.1(2,3)e =-r ,213,24e ⎛⎫=- ⎪⎝⎭r(3)已知,AD BE u u u r u u u r 分别是ABC △的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r ,则BC u u u r 可用向量,a b rr 表示为 . 结果:2433a b +r r . (4)已知ABC △中,点D 在BC 边上,且2CD DB =u u u r u u u r ,CD rAB sAC =+u u u r u u u r u u u r,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a r 的积是一个向量,记作a λr,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅r r;(2)方向:当0λ>时,a λr 的方向与a r 的方向相同,当0λ<时,a λr 的方向与a r的方向相反,当0λ=时,0a λ=rr ,注意:0a λ≠r.五、平面向量的数量积1.两个向量的夹角:对于非零向量a r ,b r,作OA a =u u u r r ,OB b =u u u r r ,则把(0)AOB θθπ∠=≤≤称为向量a r,b r 的夹角.当0θ=时,a r ,b r 同向;当θπ=时,a r ,b r 反向;当2πθ=时,a r,b r 垂直.2.平面向量的数量积:如果两个非零向量a r ,b r,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a r与b r 的数量积(或内积或点积),记作:a b ⋅r r ,即||||cos a b a b θ⋅=⋅r r r r .规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =u u u r ,||4AC =u u u r ,||5BC =u u u r ,则AB BC ⋅=u u u r u u u r_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭r ,10,2b ⎛⎫=- ⎪⎝⎭r ,c a kb =+r r r ,d a b =-r r r ,c r 与d r 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =r ,||5b =r ,3a b ⋅=-rr ,则||a b +=r r ____. 23(4)已知,a b r r 是两个非零向量,且||||||a b a b ==-r r r r ,则a r 与a b +rr 的夹角为____. 结果:30o .3.向量b r 在向量a r上的投影:||cos b θr ,它是一个实数,但不一定大于0.举例5 已知||3a =r ,||5b =r ,且12a b ⋅=r r ,则向量a r 在向量b r 上的投影为______. 结果:125.4.a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的模||a r 与b r 在a r上的投影的积.5.向量数量积的性质:设两个非零向量a r,b r ,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=r rr r ;(2)当a r、b r 同向时,||||a b a b ⋅=⋅r r r r ,特别地,222||||a a a a a a =⋅=⇔=r r r r r r||||a b a b ⋅=⋅r r r r 是a r、b r 同向的充要分条件;当a r 、b r 反向时,||||a b a b ⋅=-⋅r r r r ,||||a b a b ⋅=-⋅r r r r 是a r、b r 反向的充要分条件;当θ为锐角时,0a b ⋅>r r ,且a r、b r 不同向,0a b ⋅>r r 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<r r ,且a r、b r 不反向;0a b ⋅<r r 是θ为钝角的必要不充分条件.(3)非零向量a r,b r 夹角θ的计算公式:cos ||||a b a b θ⋅=r r r r ;④||||a b a b ⋅≤r r r r .举例6 (1)已知(,2)a λλ=r ,(3,2)b λ=r ,如果a r 与b r 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=u u u r u u u r,若132S <,则OF u u u r ,FQ u u u r 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫ ⎪⎝⎭; (3)已知(cos ,sin )a x x =r ,(cos ,sin )b y y =r ,且满足||3|ka b a kb +-r r r r(其中0k >).①用k 表示a b ⋅r r ;②求a b ⋅r r 的最小值,并求此时a r 与b r 的夹角θ的大小. 结果:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o .六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =u u u r r ,BC b =u u u r r ,则向量AC u u u r 叫做a r与b r 的和,即a b AB BC AC +=+=u u u r u u u r u u u r r r ;作图:略.注:平行四边形法则只适用于不共线的向量.(2)向量的减法运算法则:三角形法则.运算形式:若AB a =u u u r r ,AC b =u u u r r ,则a b AB AC CA -=-=u u ur u u u r u u u r r r ,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ;②AB AD DC --=u u u r u u u r u u u u r;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r . 结果:①AD u u u r ;②CB u u u r ;③0r;(2)若正方形ABCD 的边长为1,AB a =u u u r r ,BC b =u u u r r ,AC c =u u u r r ,则||a b c ++=r r r. 结果:22(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r ,设||||AP PD λ=u u u ru u u r ,则λ的值为 . 结果:2;(5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为 . 结果:120o .2.坐标运算:设11(,)a x y =r,22(,)b x y =r ,则(1)向量的加减法运算:1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--rr .举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R u u u ru u u ru u u r,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =u u r ,2(2,5)F =-u u r ,3(3,1)F =u u r ,则合力123F F F F =++u u r u u r u u r u u r的终点坐标是 . 结果:(9,1). (2)实数与向量的积:1111(,)(,)a x y x y λλλλ==r.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--u u u r,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =u u u r u u u r ,3AD AB =u u u r u u u r ,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-.(4)平面向量数量积:1212a b x x y y ⋅=+rr .举例10 已知向量(sin ,cos )a x x =r,(sin ,sin )b x x =r,(1,0)c =-r. (1)若3x π=,求向量a r 、c r的夹角;(2)若3[,]84x ππ∈-,函数()f x a b λ=⋅r r 的最大值为12,求λ的值.结果:(1)150o ;(2)12或21-. (5)向量的模:222222||||a a x y a x y ==+⇔=+r r r举例11 已知,a b rr 均为单位向量,它们的夹角为60o ,那么|3|a b +=r= . 13(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则222121||()()AB x x y y -+-举例12 如图,在平面斜坐标系xOy 中,60xOy ∠=o ,平面上任一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+u u u r r r ,其中12,e e r r分别为与x 轴、y 轴同方向的单 位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ; (2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=.七、向量的运算律1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r,a b b a ⋅=⋅r r r r ;2.结合律:()a b c a b c ++=++r rr rr r,()a b c a b c --=-+r r r rrr,()()()a b a b a b λλλ=⋅=⋅r rrr r r; Oxy60o3.分配律:()a a a λμλμ+=+r r r,()a b a b λλλ+=+r r r r ,()a b c a c b c +⋅=⋅+⋅r r r r r r r .举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅r rr rr r r;② ()()a b c a b c ⋅⋅=⋅⋅r rr rr r;③ 222()||2||||||a b a a b b -=-+rrrrrr ;④ 若0a b ⋅=r r ,则0a =r r 或0b =r r ;⑤若a b c b ⋅=⋅r r r r 则a c =r r ;⑥22||a a =r r ;⑦2a b ba a⋅=r r r r r ;⑧222()a b a b ⋅=⋅r r r r ;⑨222()2a b a a b b -=-⋅+r r r r r r .其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,为什么?八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=r r r r r r r r .举例14 (1)若向量(,1)a x =r ,(4,)b x =r ,当x =_____时,a r与b r 共线且方向相同. 结果:2.(2)已知(1,1)a =r ,(4,)b x =r ,2u a b =+r r r ,2v a b =+rr r ,且//u v r r ,则x = . 结果:4.(3)设(,12)PA k =u u u r,(4,5)PB =u u u r,(10,)PC k =u u u r,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=r r r rr r r r .特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 举例15 (1)已知(1,2)OA =-u u u r ,(3,)OB m =u u u r ,若OA OB ⊥u u u r u u u r ,则m = .结果:32m =;(2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =r 向量n m ⊥r r ,且||||n m =r r ,则m =r的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=u u u r u u u r ,则实数λ叫做点P 分有向线段12P P u u u u r 所成的比λ,P 点叫做有向线段12P P u u u u r的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P u u u u r,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P u u u u r时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP u u u u r 所成的比为λ,则点P 分有向线段21P P u u u u r所成的比为1λ.举例16 若点P 分AB u u u r 所成的比为34,则A 分BP u u u r 所成的比为 . 结果:73-.3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P u u u u r所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ. 举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-u u u u ru u u ur ,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =u u u u ru u u u r,则a =r. 结果:2或4-.十一、平移公式如果点(,)P x y 按向量(,)a h k =r 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =r 平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a r 把(2,3)-平移到(1,2)-,则按向量a r把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a r 平移后,所得函数的解析式是cos21y x =+,则a =r ________. 结果:(,1)4π-.十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+r r r r r r.(1)右边等号成立条件: a b r r 、同向或 a b r r 、中有0r ||||||a b a b ⇔+=+r r r r;(2)左边等号成立条件: a b r r 、反向或 a b r r 、中有0r ||||||a b a b ⇔-=+r r r r;(3)当 a b r r 、不共线||||||||||a b a b a b ⇔-<+<+r r r r r r.3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔u u u r u u u r u u u r u u u r为△ABC 的重心,特别地0PA PB PC G ++=⇔u u u r u u u r u u u r r 为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔u u u r u u u r u u u r u u u r u u u r u u u r为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔u u u u r u u u r u u u u r u u u r u u u u r u u u r 为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭u u u r u u u ru u u u r u u u u r 所在直线过△ABC 的内心.6.点P 分有向线段12P P u u u u r所成的比λ向量形式设点P 分有向线段12P P u u u u r 所成的比为λ,若M 为平面内的任一点,则121MP MPMP λλ+=+u u u u r u u u u ru u u r ,特别地P 为有向线段12P P u u u u r 的中点122MP MPMP +⇔=u u u u r u u u u ru u u r .7. 向量,,PA PB PC u u u r u u u r u u u r 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+u u u r u u u r u u u r且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+u u u r u u u r u u u r,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。