广宗县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广宗县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣
>0的解集为( )
A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
2. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面
ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )
A

4 B
.4
C.4
D .34
3.
如果向量
满足
,且
,则
的夹角大小为( )
A .30°
B .45°
C .75°
D .135°
4. 已知F 1、F 2
分别是双曲线

=1(a >0,b >0)的左、右焦点,过点F 2与双曲线的一条渐近线平行
的直线交双曲线另一条渐近线于点M ,若点M 在以线段F 1F 2为直径的圆外,则双曲线离心率的取值范围是( ) A .(1,) B
.(,+∞) C
.(,2) D .(2,+∞)
5. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( )
A .M ∪N
B .M ∩N
C .∁I M ∪∁I N
D .∁I M ∩∁I N
6. 6
2
)21(x x -
的展开式中,常数项是( ) A .45- B .45 C .16
15- D .1615
7. 圆01222
2=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )
A .
B .12+
C .
12
2
+ D .122+ 8. 若一个球的表面积为12π,则它的体积为( ) A
. B
. C
. D

9. 下列函数中,在区间(0,+∞)上为增函数的是( ) A .y=x ﹣1
B .y=
()x C .
y=x+
D .y=ln (x+1)
10.四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .AC BD ⊥
B .A
C B
D =
C.AC PQMN D .异面直线PM 与BD 所成的角为45
11.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 12.是首项
,公差的等差数列,如果
,则序号等于( )
A .667
B .668
C .669
D .670
二、填空题
13.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________. 14.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .
15.已知过双曲线22
221(0,0)x y a b a b
-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若
1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )
A .5-
B
C .6- D
【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.
16.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线2
1y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.
18.设函数
,若用表示不超过实数m 的最大整数,则函数
的值域为 .
三、解答题
19.已知数列{a n }满足a 1=3,a n+1=a n +p •3n (n ∈N *,p 为常数),a 1,a 2+6,a 3成等差数列. (1)求p 的值及数列{a n }的通项公式;
(2)设数列{b n }满足b n =,证明b n ≤.
20.【南通中学2018届高三10月月考】设,,函数
,其中是自然对数的底数,曲
线
在点
处的切线方程为
.
(Ⅰ)求实数、的值;
(Ⅱ)求证:函数存在极小值; (Ⅲ)若,使得不等式
成立,求实数的取值范围.
21.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC . (Ⅰ)求证:AB ⊥SC ;
(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ; (Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.
22.已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.
23.长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点.
(1)求证:BD1∥平面A1DE;
(2)求证:A1D⊥平面ABD1.
24.(本小题满分12分)
某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:
(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;
(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.
千克
广宗县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】B
【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.
∵f(2)=4,则2f(2)=8,
f(x)﹣>0化简得,
当x<2时,
⇒成立.
故得x<2,
∵定义在(0,+∞)上.
∴不等式f(x)﹣>0的解集为(0,2).
故选B.
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
2.【答案】D
【解析】
考点:异面直线所成的角.
3.【答案】B
【解析】解:由题意故,即
故两向量夹角的余弦值为=
故两向量夹角的取值范围是45°
故选B
【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.
4.【答案】D
【解析】解:双曲线﹣=1的渐近线方程为y=±x ,
不妨设过点F 2与双曲线的一条渐过线平行的直线方程为y=(x ﹣c ),
与y=﹣x 联立,可得交点M (,﹣),
∵点M 在以线段F 1F 2为直径的圆外,
∴|OM|>|OF 2|,即有
>c 2

∴b 2>3a 2,
∴c 2﹣a 2>3a 2
,即c >2a .
则e=>2.
∴双曲线离心率的取值范围是(2,+∞). 故选:D .
【点评】本题考查的知识点是双曲线的简单性质,熟练掌握双曲线的渐近线、离心率的计算公式、点与圆的位置关系是解题的关键.
5. 【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6}, ∴M ∪N={1,2,3,6,7,8}, M ∩N={3};
∁I M ∪∁I N={1,2,4,5,6,7,8}; ∁I M ∩∁I N={2,7,8}, 故选:D .
6. 【答案】D
【解析】2612316611()()()22
r
r r r r r
r T C x C x
x --+=-
=-, 令1230r -=,解得4r =.
∴常数项为44
61
15()2
16
C -=

7. 【答案】B
【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半
径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 8. 【答案】A
【解析】解:设球的半径为r ,
因为球的表面积为12π,
所以4πr2
=12π,所以r=,
所以球的体积V==4π.
故选:A.
【点评】本题考查球的表面积、体积公式的应用,考查计算能力.
9.【答案】D
【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,
②y=()x是减函数,
③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,
④y=lnx在区间(0,+∞)上为增函数,
∴A ,B ,C 不正确,D 正确, 故选:D
【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.
10.【答案】B 【解析】
试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面
PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD
所成的角,且为0
45,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD
==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1
考点:空间直线与平面的位置关系的判定与证明.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 11.【答案】C 【解析】
试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.
12.【答案】C
【解析】 由已知,由

,故选C
答案:C
二、填空题
13.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由
正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.
14.【答案】 [﹣,] .
【解析】解:∵函数奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f (1﹣m )+f (1﹣2m )<0等价为f (1﹣m )<﹣f (1﹣2m )=f (2m ﹣1),
即,即,得﹣≤m ≤,
故答案为:[﹣,] 【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限
制.
15.【答案】B 【

析】
16.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k -
=(,)A B ϕ∴=<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=

1211,(,)A B ϕ==>因为1
(,)
t A B ϕ<恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 17.【答案】
【解析】(2a +b )·a =(2,-2+t )·(1,-1) =2×1+(-2+t )·(-1) =4-t =2,∴t =2. 答案:2
18.【答案】 {0,1} .
【解析】
解:
=[

]+[
+]
=[

]+[
+],
∵0

<1,







+
<,
①当0

<时, 0
<﹣



+<1,
故y=0;


=时,
﹣=0

+=1, 故y=1;
③<<1时,
﹣<﹣<0,1<+<,
故y=﹣1+1=0;
故函数的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
三、解答题
19.【答案】
【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),
∴a2=3+3p,a3=3+12p,
∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.
∵a n+1=a n+p•3n,
∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,
将这些式子全加起来得
a n﹣a1=3n﹣3,
∴a n=3n.
(2)证明:∵{b n}满足b n=,∴b n=.
设f(x)=,则f′(x)=,x∈N*,
令f′(x)=0,得x=∈(1,2)
当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,
且f(1)=,f(2)=,
∴f(x)max=f(2)=,x∈N*.
∴b n≤.
【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.
20.【答案】(Ⅰ);(Ⅱ)证明见解析;(Ⅲ).
【解析】试题分析:
(Ⅰ)利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;
(Ⅱ)结合(Ⅰ)中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;
试题解析:
(Ⅰ)∵,∴,由题设得,∴;
(Ⅱ)由(Ⅰ)得,∴,∴,∴函数在
是增函数,∵,,且函数图像在上不间断,∴,使得

极小值
∴函数存在极小值;
(Ⅲ),使得不等式成立,即,使得不等式成立……
(*),令,,
则,
∴结合(Ⅱ)得,其中,满足,
即,∴,,∴,∴,,∴在内单调递增,
∴,
结合(*)有,即实数的取值范围为.
21.【答案】
【解析】(Ⅰ)证明:∵SA⊥平面ABC,AB⊂平面ABC,
∴SA⊥AB,又AB⊥AC,SA∩AC=A,
∴AB⊥平面SAC,
又AS⊂平面SAC,∴AB⊥SC.
(Ⅱ)证明:取BD中点H,AB中点M,
连结AH,DM,GF,FM,
∵D,F分别是AC,SA的中点,
点G是△ABD的重心,
∴AH过点G,DM过点G,且AG=2GH,
由三角形中位线定理得FD∥SC,FM∥SB,
∵FM∩FD=F,∴平面FMD∥平面SBC,
∵FG⊂平面FMD,∴FG∥平面SBC.
(Ⅲ)解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,
∵SA=AB=2,AC=4,∴B(2,0,0),D(0,2,0),H(1,1,0),
A(0,0,0),G(,,0),F(0,0,1),
=(0,2,﹣1),=(),
设平面FDG的法向量=(x,y,z),
则,取y=1,得=(2,1,2),
又平面AFD的法向量=(1,0,0),
cos<,>==.
∴二面角A﹣FD﹣G的余弦值为.
【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.
22.【答案】
【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.
理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)
又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),
则f(x)是奇函数.
(2)g(x)=log=2log3,(5分)
又﹣1<x<1,k>0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x∈[,]时,1﹣x2最小值为,(10分)
则k2≥,(11分)
又k>0,则k≥,
即k的取值范围是(﹣∞,].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
23.【答案】
【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,
∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,
∴O是AD1的中点,∴OE∥BD1,
∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,
∴BD1∥平面A1DE.
(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,
∴ADD1A1是正方形,∴A1D⊥AD1,
∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,
∴A1D⊥AB,
又AB∩AD1=A,∴A1D⊥平面ABD1.
24.【答案】(本小题满分12分)
解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)
每天销售量的中位数为0.15
701074.30.35
+
⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;
若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)。

相关文档
最新文档