6 晶体生长基础解析
第六章 晶体生长理论基础

(5.15)
与前面类似,我们定义,
c c0
称饱和比,
1
称过饱和度,故有
g kTIn(C / C0 ) kTIn kT (5.16)
若在溶液生长系统中,生长的晶体为纯溶质构成,将(5.16)式代入(5.9)式,
得溶液生长系统中单个分子相变驱动力f为:
f
kT S
In(C
/ C0 )
kT S
In
S
S1
S2
U1 T1
U2 T2
U( 1 T1
1 T2
)
其中,S1、S2分别为两部分的熵,达到平衡态时,S有最大值, 即T1=T2 ,于是,得到热平衡条件为:T1=T2
就是说,热力学系统的热平衡条件为温度相等。如果系统没
有达到平衡态,则将发生不可逆过程,即热量从高温部分传 向低温部分,直至两部分的温度相等为止。
假定温度T0不变,蒸汽压由p0 增加到p(p为过饱和蒸汽压),汽相的化学式可
写成: ' (T0 p ) 0 (T0 ) RT lnp
0为温度为T0 压强为一个大气压的理想气体。
由于其p差﹥值p0为,:p为过饱和蒸汽压,此R时系T统0 I中n的(汽p相p0的)化学式大于晶体的化学式,
汽相生长系统中的相变驱动力
结晶的过程包括三态(固、液、汽)之间的转变,下面分别讨论之。
6.3.1 汽相生长系统中的相变驱动力
在平衡温度和平衡压力(T0、p0,p0为饱和蒸汽压)下,两相处于平衡,此时
晶体和蒸汽的化学势应当相等, 0 (T0、P0 ) / (T0、P0 )
晶体的化学势可写成:0 (T0 p0 ) 0 (T0 ) RT0Inp0
★单元系:指含有一种化学成分的物质的系统,称之为单元系。 ★复相系:系统中各个部分的性质有差别且有边界的系统,称之为复相系。
第二章晶体生长的基本规律

13
(2)非均匀成核 非均匀成核过程是由于体系中已 经存在某种不均匀性, 经存在某种不均匀性 , 例如悬浮的杂志颗 器壁上凹凸不平等, 粒 , 器壁上凹凸不平等 , 他们有效地降低 了表面能成核的势垒, 了表面能成核的势垒 , 优先在这些具有不 均匀性的地点形成晶核。 均匀性的地点形成晶核。
20
晶体层生长过程
21
(2)螺旋位错模型
螺旋位错形成示意图
22
螺旋生长过程
23
石英条带结构
碳化硅的螺旋生长纹
24
6.生长锥 6.生长锥
生长锥:就是晶体在生长过程中,晶面移动 生长锥:就是晶体在生长过程中, 的轨迹。 的轨迹。 晶面间相对生长速度的变化, 既:晶面间相对生长速度的变化,可以从晶 体生长锥的形状上反映出来。 体生长锥的形状上反映出来。 生长锥表现为,以晶核的中心为角顶, 生长锥表现为,以晶核的中心为角顶,以最 外层晶面为底的棱锥体(图2-5)。实际晶体的生长 可以根据锥体内部的颜色, 锥,可以根据锥体内部的颜色,所含杂质的分布 等方面的不同观察到。由于不同面网的性质不同, 等方面的不同观察到。由于不同面网的性质不同, 所以它吸附杂质等方面的本领也有差异。 所以它吸附杂质等方面的本领也有差异。这种差 异可以从晶体生长锥的形状上反映出来。 异可以从晶体生长锥的形状上反映出来。
9
3. 晶体的发生 晶体的形成包括两个步骤: 晶体的形成包括两个步骤:成核 和晶体长大 成核是一个相变过程 是一个相变过程, 成核是一个相变过程,即在母液相 中形 成固相胚芽。 成固相胚芽。 均匀成核和 成核可分为均匀成核 非均匀成核。 成核可分为均匀成核和非均匀成核。
10
(1)均匀成核 均匀成核是指在一理想体系中 各处有相同的成核概率。 各处有相同的成核概率。这一相变过程中 体系自由能的变化为: 体系自由能的变化为: ΔG=ΔGv+ΔGs 式中△ 为新相形成时体积自由能的变化, 式中△Gv为新相形成时体积自由能的变化, 且△Gv<0, △GS为新相形成时新相与旧相 界面的表面能, 界面的表面能,且△GS>0。
南京大学-晶体生长课件-Chapter 6-晶体生长理论

§6.1. 晶体生长理论简介
1669年丹麦学者斯蒂诺(N.Steno) 发表了《论固体中自然含有的固体》,自此以来,开始了 晶体生长理论探索的篇章。经过各国科学家的精心研究,晶体生长理论已经有了长足的发展, 出现了各种各样的不同理论及模型。如晶体平衡形态理论、界面生长理论、PBC理论和负离子 配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。现代晶体 生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神 秘面纱。
从晶体平衡形态理论到负离子配位多面体生长基元模型,晶体生长理论在不断地发展并趋 于完善,主要体现在以下几个方面:从宏观到微观,从经验统计分析到定性预测,从考虑晶体 相到考虑环境相,从考虑单一的晶体相到考虑晶体相和环境相。晶体生长的定量化,并综合考 虑晶体和环境相,以及微观与宏观之间的相互关系是今后晶体生长理论的发展方向。
(1)布拉维法则:法国晶体学家A.Bravais于1850年利用群论推导出具有一定对称性的空间点阵 只有14种,分属于7大晶系;1866年,Bravais又论述了实际晶面与空间格子构造中面网之间的关系, 提出实际晶体的晶面常常平行网面结点密度最大的面网,这就是布拉维法则。布拉维法则阐明了晶 面发育的基本规,但是它只能预测同种晶体的一种形态, 即晶体的理想生长形态, 无法解释同种晶体 在不同生长条件下可具有不同的生长形态的实验事实。布拉维法法则只给出了晶体内部结构与生长 形态之间的关系, 完全忽略了生长条件对生长形态的作用。
该定律给出了晶体生长形态具体求解方法虽然, 运动学理论能够通过定量计算给出晶体的生 长形态但有一个重要的假设, 即某一生长系统中驱动力场是均匀的这实质上忽视了环境相和生长 条件对晶体生长形态的作用另一方面, 应用运动学定律, 通过计算得出晶体的生长形态, 必须首先 得到法向生长速率与晶面取向的关系, 这实际上是十分困难的从而大大限制了理论的实际应用利 用该定律能够定量计算出晶体的生长形态。
结晶学与矿物学-晶体生长简介

➋ 在一个晶体上,各晶面间相对的 生长速度与其本身的面网密度成反比。
即 面网密度越Βιβλιοθήκη 的晶面,其生长速度越慢;而 面网密度小的晶面的生长速度则快, 以至最终消失了。
∴ 晶体上得以保存下来的晶面 是面网密度大的晶面。
实际晶体为面网密度大的面网所包围。
小结:
1.重点: 晶体生长和晶面发育的3个基本理论:
按空间格子规律,自发地集结成体积达 一定大小但仍极其微小的微晶粒即晶核。
一、层生长理论
晶体的自限性是晶体在生长过程中
按格子构造中的某些原子面网逐层 平行生长的结果。
层生长理论:科塞尔-斯特兰斯基二维成核理论。
在理想条件下,晶体的生长过程是在晶核 的基础上先长完一条行列,再长相邻的行列,
长满一层面网,再开始长第二层面网, 逐层地向外平行推移。当生长停止时, 其最外层的面网便表现为实际晶面。
意义: 解释:
➊ 晶体自发地长成面平、棱直的
规则的凸几何多面体;(晶体的自限性)
➋ 矿物晶体的环带构造;
➌ 同种矿物的不同晶体对应晶面之间 的夹角不变;(面角守恒定律)
➍ 生长锥或砂钟状构造。
注意: 实际晶体生长并非完全按照 二维生长机制进行,往往一层未长完 另一层又开始生长。
(过饱和度或过冷却度低时)
这意味着,即使是在溶液的过饱和度很低
的情况下,晶体仍可以按螺旋生长机理 而不断地生长。
➋ 晶体按螺旋生长模型生长最终会 在晶面上形成各种各样的螺旋纹。
三、布拉维法则
晶体上的实际晶面 平行于对应空间格子中 面网密度大的面网,且面网密度越大, 相应晶面的重要性也越大。
注意:
➊ 晶面的重要性, 可由晶面本身的大小, 在各个晶体上出现的频数, 以及是否平行于解理面等来衡量。
第三章 晶体生长

(3)气相生长:气体固体
从气相直接转变为固相的条件是要有足够低的蒸气压。 例子: 在火山口附近常由火山喷气直接生成硫、碘或氯化钠 的晶体。 雪花就是由于水蒸气冷却直接结晶而成的晶体 气体凝华:物质从气态直接变成固体 (气体升华?固态气态) 化学气相沉积(CVD)
2.晶体形成的热力学条件(掌握)
光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满,只留下 少数空位或台阶,从而形成整体上平整光滑的界面结构。 光滑界面也称“小晶面”或“小平面”。
四、晶体生长的两种主要理论(了解)
一 层生长理论
柯塞尔1927年首先提出,后来被斯特兰斯基加以发展
内容:
它是论述在晶核的光滑表面上生长一层原子面时,质 点在界面上进入晶格“座位”的 最佳位置是具有三面凹入角的位置 其次具有二面凹入角的位置; 最不利的生长位置吸附分子和孔。 由此可以得出如下的结论 即晶体在理想情况下生长时,先长一条行,然后长相邻 的行。在长满一层面网后,再开始长第二层面网。晶面 (最外的面网)是平行向外推移而生长的。这就是晶体的 层生长理论
固体与晶体的转化:转变潜热 固体与液体的转化:熔解潜热 液体与气体的转化:蒸发潜热 固体与气体的转化:升华潜热 任一潜热L都与系统压力、体积、温度等条件 有关
3.晶核的形成(理解)
热力学条件满足后,晶体开始生长 晶体生长的一般过程是先形成晶核,然后 再逐渐长大. 三个生长阶段:
介质达到过饱和或者过冷却阶段 成核阶段nucleation(均匀成核,非均匀成核) 生长阶段crystal growth
1.气固相转变
定义=p1/p0 为饱和比, 即初态压强/末态压强 = -1 过饱和比, 相变条件: p1p0,或者 1 (即有一定的过饱和度)
半导体制造工艺之晶体的生长

半导体制造工艺之晶体的生长导语半导体制造是现代电子行业的关键环节之一,而晶体的生长是半导体制造工艺中的必要步骤之一。
本文将详细介绍半导体制造工艺中晶体的生长过程和相关技术。
一、晶体生长基础概念晶体是由连续的原子、离子或分子排列而成的固体物质,其内部结构具有高度有序性。
晶体的生长是指在适当条件下,将原子、离子或分子从溶液或气相中传输到一个固体基底上,形成一个完整的晶体结构。
半导体晶体通常是通过化学气相沉积(CVD)或溶液法来生长的。
在CVD过程中,悬浮的气体或溶液中的原料物质会在晶体基底表面孕育生长。
晶体的生长速度、晶体的性质和电学性能都与晶体生长条件密切相关。
二、晶体生长过程晶体生长过程涉及一系列的步骤,包括原料制备、气相或溶液传输、吸附、扩散、结晶和去除杂质等。
下面将逐步介绍这些步骤。
2.1 原料制备晶体生长的基本材料是高纯度的原料物质,以确保晶体的纯度和质量。
通常需要对原料进行提纯和处理,以去除其中的杂质。
2.2 传输在气相生长中,原料气体会通过供气系统进入晶体生长的反应室。
在溶液法中,原料会被溶解在溶液中,通过流动或浸没晶体基底的方式被传输到晶体生长区域。
2.3 吸附原料物质在晶体基底表面吸附,形成吸附物。
随着吸附反应的进行,表面吸附物会逐渐增多,形成一个薄层。
2.4 扩散扩散是指原料物质在吸附层内部的传输过程。
原料物质会沿着晶体基底的表面扩散,寻找到新的吸附位置,并逐渐积聚起来。
2.5 结晶当吸附物质达到一定浓度时,会出现结晶现象。
原料物质会从吸附层中析出,形成新的晶体结构。
晶体的生长速度取决于扩散速率和结晶速率。
2.6 去除杂质晶体生长过程中会存在一些杂质,如异质原子或离子。
这些杂质会影响晶体的纯度和性能。
因此,在晶体生长结束后,需要进行杂质的去除和晶体的后处理,以提高晶体的质量。
三、晶体生长技术半导体制造工艺中有多种晶体生长技术,常见的包括单晶生长和多晶生长两种。
3.1 单晶生长单晶生长是将晶体在基底上沿特定方向生长,并形成完整的单晶结构。
晶体生长ppt

晶体缺陷与晶体的物理性质之间存在密切关系。例如,位错 密度越高,材料的强度和韧性越差;空位浓度越高,材料的 导电性越差等。通过对晶体缺陷的控制和优化,可以改善材 料的性能。
03
晶体生长的化学基础
化学键与晶体结构
共价键
01
共价键是原子间通过共享电子对而形成的强相互作用力,它决
定了晶体的结构和化学性质。
固相生长是指通过固态物质之间的反应或扩散过 程,形成新的固态晶体的过程,包括机械研磨法 、热压烧结法等。
晶体生长的应用
1
晶体生长在材料科学和物理学领域具有广泛的 应用价值,如制备高性能材料、制造光学器件 、制备半导体材料等。
2
在能源领域,晶体生长技术也被广泛应用于太 阳能电池、燃料电池等新能源器件的制造过程 中。
04
晶体生长方法
气相生长法
物理气相沉积法
包括真空蒸发、激光烧蚀等,通过 在真空中蒸发原料,使原料原子或 分子沉积在基底表面形成晶体。
化学气相沉积法
通过化学反应的方式,使用气体原 料在基底表面形成晶体。
气相生长法的优点
可以生长出高质量、大尺寸的单晶 ,同时具有高沉积速率。
气相生长法的缺点
需要高真空设备,生产成本较高, 且生长速度较慢。
3
同时,晶体生长技术还可以应用于生物医学领 域,如制备生物材料、药物传递等。
02
晶体生长的物理基础
晶体的结构与性质
晶体结构
晶体具有格子构造,原子或分子在空间中按照一定的规律重复排列。不同的 晶体结构具有不同的物理性质,如硬度、导电性、光学特性等。
晶体对称性
晶体具有对称性,即晶体的形状和内部结构可以在空间中重复出现。这种对 称性也影响了晶体的物理性质。
晶体的生长机理和控制方法

晶体的生长机理和控制方法晶体是由原子或分子有序排列而形成的有规律的固体结构,广泛应用于化学、生物、材料、电子等领域。
晶体的生长是指通过物质的凝聚和有序排列形成完整晶体过程,其机理和控制方法也是学术和实践上重要的问题。
一、晶体的生长机理晶体的生长机理涉及到热力学、动力学、热传导、质量传输、界面化学等多个方面。
其中主要包括以下几个方面的内容:1.核化与成核:在过饱和度条件下,原料分子集聚形成的不稳定凝聚体称为临界核(nucleus),成核的速度与临界尺寸大小有关。
过大的临界尺寸会影响成核速度,过小则会限制晶体成长速率。
2.晶面生长与形核模式选择:晶体在生长过程中受到的外界环境和晶面热力势能的作用,会直接影响晶面造型和选择。
这也是研究晶体形貌和遗传的主要内容之一。
3.晶体成长速率:晶体生长速度受到物理、化学作用力和传质速率等影响,是一种非平稳过程。
晶面生长速率与色散系数、溶解度、传质系数等有关。
二、晶体的控制方法晶体的生长速率和生长状态的控制及调控,是晶体工艺和材料战略发展的主要研究方向之一。
以下是几种晶体生长控制方法的介绍:1.温度差控制法:是利用温度差异控制晶体生长速率和生长方向的一种方法。
在对称的两侧,控制温差形成温差层,从而调控晶体生长位置和速率。
2.流速控制法:流体在晶体表面的流动速度对晶体生长状态有明显影响。
通过调节流体流速来控制晶体生长速率和晶体形态。
3.添加控制剂:控制剂可以影响过饱和度和晶体成核速度。
通过添加控制剂来调节晶体的生长速率和生长方向。
4.电化学控制法:利用电场、电位或电流等电学性质,在晶体生长过程中对物质传输和物种吸附等过程进行有针对性的调节。
以上方法仅是晶体生长控制的概述,实际上还有其他方法,如冷却速率、溶液浓度、晶体取向控制等,具体选择方法还要根据晶体特性和工艺需求。
三、晶体的应用前景晶体作为一种重要的结晶材料,其应用领域广泛,包括但不限于以下几个方面:1.半导体电子学:从硅基结晶到磷化镓、硅锗合金、氧化锌等,晶体在电子学领域的应用尤为广泛,几乎所有电子器件都将其诞生地定义为晶体管!2.磁性材料:铁、钴、镍等金属的磁性,体现在固体晶体中体现出来。
6-晶体生长基础解析

在晶体生长的不同阶段有不同的热传递方式起主导作用
一般来说:高温时,以晶体表面辐射为主,传导和对流为 次;低温时,热量运输主要以传导为主。
上一内容 下一内容 回主目录
返回
2024/7/15
二、热损耗和稳定温度
单位时间内向环境传输的热量称为热损耗。 热损耗的大小取决于发热体和环境温度间的差值:正比。即 :炉温↑,发热体和环境温度差值↑,热损耗↑。 发热体所能达到的最高温度通常与加热功率成正比。 当热损耗的大小与加热功率相等时,炉内热量交换达到平衡 ,发热体的温度不再随时间而变化,为稳定温度。 为提高发热体可能达到的稳定温度,须尽量减小热损耗。方 法:在发热体和环境之间放置保温层。
晶体侧面热损耗
10瓦
0.5 ﹪
熔体液面热损耗 150瓦 7.1 ﹪
坩埚侧面热损耗 500瓦 23.8 ﹪
坩埚底部热损耗 200瓦 9.5 ﹪
上一内容 下一内容 回主目录
返回
2024/7/15
三、温场和温度梯度
当炉膛内热交换达到平衡,且发热 体的加热功率和各种热损耗都保持不变 时,炉膛内各点都有一个不随时间变化 的确定温度,这种温度的空间分布称为 温场。
热量、溶质:中心→边缘
熔体中的强迫对流
返回
2024/7/15
提拉法中晶体以不同速度转动时的流体效应模拟实验
0转/分
10转/分
100转/分
自然对流
强迫对流 自然对流
强迫对流
上一内容 下一内容 回主目录
返回
2024/7/15Fra bibliotek6.2.3 边界层
在固体-流体系统中,靠近固体表面的一个极薄液体层内,溶 质的浓度、速度、温度均有较大变化,该薄层称为边界层。
晶体生长理论部分

的过程, 晶体生长过程是物质从其它相转变为结晶相的过程, 实际上是组成它的质点从不规则排列到规则排列形成格子
构造的过程。 构造的过程。
一)晶体生长理论
1、层生长理论(Kossel-Stranski模型) 层生长理论(Kossel-Stranski模型) 模型 (Stranski) 科塞尔在1927年提出, 由科塞尔在1927年提出,后经斯特兰斯基(Stranski) 加以发展。 加以发展。
1839年所创的符号, 于1839年所创的符号,也称为米氏符号。
工艺矿物学Ⅰ 工艺矿物学Ⅰ 第一篇 矿物通论 适用专业: 适用专业:矿物加工工程
米氏符号用晶面在三个晶轴上的截矩系数的倒数比来 表示。 例如:如果晶面ABC在 例如:如果晶面ABC在x、y、z三个晶轴上的截距分别为 ABC 2a、3b、6C。 2a、3b、6C。
工艺矿物学Ⅰ 工艺矿物学Ⅰ
第一篇 矿物通论
适用专业: 适用专业:矿物加工工程
二)晶面符号与单形符号
1、晶面符号(简称面号) 晶面符号(简称面号) 1)晶面符号概念 晶体定向后,各晶面在空间的相对位置就可确定, 晶体定向后,各晶面在空间的相对位置就可确定, 表示晶面在空间的相对位置的符号,称为晶面符号。 晶面在空间的相对位置的符号, 2)关于晶面符号的说明 晶面符号种类很多, 晶面符号种类很多,通常采用英国人米勒尔(W.Hmiler)
轴率:定义轴单位a 的连比值a:b:c 轴率。 a:b:c为 轴率:定义轴单位a0、b0 、c0的连比值a:b:c为轴率。
晶体常数:定义轴率a:b:c及轴角αβγ总称为晶体常 晶体常数: 轴率a:b:c及轴角αβγ总称为晶体常 a:b:c及轴角αβγ 数,它表示坐标系特征的一组常数。 它表示坐标系特征的一组常数。
晶体生长机理及应用

晶体生长机理及应用晶体是自然界中最具有周期性和规律性的物质之一,晶体生长机理是研究晶体形成过程中发生的物理、化学、热力学现象及其相互关系的学科。
在科技发展的过程中,晶体生长与制备技术已经被广泛应用于材料科学、化学、生物学、医学、电子学、光电子、纳米技术等领域,成为了现代科学技术的基础。
一、晶体生长的基本原理晶体生长是指从溶液、熔体或气相中生长出具有规则结晶面的晶体的过程。
在晶体生长的过程中,晶体生长速度、晶体形态、晶格畸变以及缺陷等多个参数都具有重要作用。
晶体生长主要的过程有三种:溶解、扩散和形核。
1. 溶解过程晶体的形成都需要一定的物质来提供能量,这些物质往往会以溶解度形式存在于溶液、熔体或气相中。
晶体生长过程中,物质的溶解度与温度、溶质浓度、溶剂的属性等因素都有关系。
当溶质的浓度超过溶解度限制时,就会开始形成晶体。
2. 扩散过程溶液中的溶质通过扩散来到达晶体表面,挤出溶剂,并在表面吸附析出。
扩散的速率与溶液的温度、深度、组分以及扩散系数等都有关,扩散速度越快、扩散系数越大,晶体生长速度也就越快。
3. 形核过程当溶液中的溶质达到饱和度时,会出现极小的“晶胞”形态的晶核,这个过程叫作形核。
然后周围的物质会聚集在晶核上,形成可以看见的晶体,并向外扩散生长。
在晶体形,成长的过程中,依照晶体的结构类型、生长条件、电场、磁场等因素会出现多种多样的形态。
二、晶体的分类晶体按其生长方式不同,可以分为单晶体、多晶体以及微晶体。
1. 单晶体:单晶体是指具有连续、完整结晶面、在空间中具有确定的取向关系和晶体结构,使用在电子器件、光电器件、晶体振荡器和欧姆管等方面。
2. 多晶体:多晶体是指由多个晶粒组成,在物理、化学等方面具有多种性质,可广泛应用于摩擦材料、耐火材料、磁性材料等方面。
3. 微晶体:微晶体是指晶粒大小在10nm至100nm之间的晶体,这种晶体的表面具有很大的比表面积,具有优异的光电性质,可应用于导电材料、高效电池、可见光催化等方面。
晶体生长理论

晶体⽣长理论晶体⽣长理论晶体⽣长理论是⽤以阐明晶体⽣长这⼀物理-化学过程。
形成晶体的母相可以是⽓相、液相或固相;母相可以是单⼀组元的纯材料,也可以是包含其他组元的溶液或化合物。
⽣长过程可以在⾃然界中实现,如冰雪的结晶和矿⽯的形成;也可以在⼈⼯控制的条件下实现,如各种技术单晶体的培育和化学⼯业中的结晶。
基础晶体⽣长的热⼒学理论[1]J.W.吉布斯于1878年发表的著名论⽂《论复相物质的平衡》奠定了热⼒学理论的基础。
他分析了在流体中形成新相的条件,指出⾃然体⾃由能的减少有利新相的形成,但表⾯能却阻碍了它。
只有通过热涨落来克服形成临界尺⼨晶核所需的势垒,才能实现晶体的成核。
到20世纪20年代M.福⽿默等⼈发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作⽤(⾮均匀成核)。
⼀旦晶核已经形成(或预先制备了⼀块籽晶),接下去的就是晶体继续长⼤这⼀问题。
吉布斯考虑到晶体的表⾯能系数是各向异性的,在平衡态⾃由能极⼩的条件就归结为表⾯能的极⼩,于是从表⾯能的极图即可导出晶体的平衡形态。
晶体平衡形态理论曾被P.居⾥等⼈⽤来解释⽣长着的晶体所呈现的多⾯体外形。
但是晶体⽣长是在偏离平衡条件下进⾏的,表⾯能对于晶体外形的控制作⽤限于微⽶尺⼨以下的晶体。
⼀旦晶体尺⼨较⼤时,表⾯能直接控制外形的能⼒就丧失了,起决定性作⽤的是各晶⾯⽣长速率的各向异性。
这样,晶⾯⽣长动⼒学的问题就被突出了。
动⼒学理论晶体⽣长的动⼒学理论晶⾯⽣长的动⼒学指的是偏离平衡的驱动⼒(过冷或过饱和)与晶⾯⽣长的速率的关系,它是和晶体表⾯的微观形貌息息相关的。
从20世纪20年代就开始了这⽅⾯的研究。
晶⾯的光滑(原⼦尺度⽽⾔)与否对⽣长动⼒学起了关键性的作⽤。
在粗糙的晶⾯上,⼏乎处处可以填充原⼦成为⽣长场所,从⽽导出了快速的线性⽣长律。
⾄于偏离低指数⾯的邻位⾯,W.科塞⽿与 F.斯特兰斯基提出了晶⾯台阶-扭折模型,晶⾯上台阶的扭折处为⽣长的场所。
由此可以导出相应的⽣长律。
晶体生长理论基础(浅显易懂)

第二章§§§§2.3.1 晶体生长理论的发展和研究对象●半导体材料制备的基本问题--晶体生长●晶体生长理论的发展:晶体生长理论--1669年丹麦学者斯蒂诺(N.Steno)开始研究,主要有:1.晶体平衡形态理论、2.界面生长理论、3.PBC(周期键链)理论和4.负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型.其发展与完善主要体现在:从宏观到微观,从经验统计分析到定性预测,从考虑晶体相到考虑环境相,从考虑单一的晶体相到考虑晶体相和环境相。
晶体生长的定量化,并综合考虑晶体和环境相,以及微观与宏观之间的相互关系是今后晶体生长理论的发展方向。
§2.3.1 晶体生长理论的发展和研究对象●本课程中将着重介绍的理论:9晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Curie-Wulff生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。
晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件。
以晶体平衡形态理论解释晶体生长形态--晶面的发育9界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。
界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用。
以界面生长理论解释晶核长大的动力学模型§2.3.1 晶体生长理论的发展和研究对象●晶体生长基本理论的研究对象:①生长热力学--相平衡及相变晶核的形成与长大等②生长动力学--晶体生长的微观过程生长界面结构等③生长系统中的传输过程--对流热传输质量输运等§2.3.1 晶体生长理论的发展和研究对象晶体是怎样生长出来的?●晶体形成—在物相(气相、液相和固相)转变(相变)的情况下实现。
固相中只有晶体才是真正的固体。
晶体生长基础

界面翻转是因熔体流动状态突变所致。由于一旦固液界面前沿出现了占优势 的强迫对流的环流, 传输到固液界面处的热量突然增加, 使得晶体出现局部回熔, 即出现界面翻转。 3、如何避免界面翻转 为了避免界面翻转,以保持合理的固液界面形状,在晶体直径到达 dc 之前, 或在生长后期,应该逐渐降低 w,目的是减弱强迫对流的程度。 4、格拉索夫数 Gr 和雷诺数 Re 存在什么关系时存在界面翻转(即界面翻转的判 据) 晶体生长过程中,坩埚中流体存在两种对流:强迫对流和自然对流。 �当作 用于流体元上的惯性力克服了粘滞力时,流体就会产生强迫对流。在提拉法生长 晶体的熔体中,如果强迫对流只是由于晶体旋转引起的,那么雷诺数 Re 为:
1/ 2
4.21
∂θ ~ −θ m ∂r
C.
4.22
或
2
⎧ ∂ 2θ 2 h (1 − hr 2 / 2 ra ) ⎪ ⎛ 2h ⎞ ~ ∂ exp D. ⎨− ⎜ m ⎜r ⎟ ⎟ ∂z 2 ra ⎛ 1 ⎞ ⎪ ⎩ ⎝ a ⎠ ⎜1 − hra ⎟ ⎝ 2 ⎠ 四个近似表达式的意义:
1/ 2
⎫ ⎪ z⎬ ⎪ ⎭
1
四、边界层理论 1、流动 流动的两种极端情况:a、粘滞性很大、雷诺数很小的情况 b、粘滞性很小、雷诺数很大的情况(极大的雷诺数 等价于极小的粘滞性,可近似认为理想流体) 2、边界层形成原因 由于在理想流体中不允许存在不可逆过程,所以诸如内摩擦过程、导热过程 以及扩展过程等是不可能的出现在理想流体中的。这意味着,由物体传播的速度 场、温度场、溶质浓度场本质上只是波及到物体表面邻近的一个狭窄区域 ,我们 将这些区域分别称为速度边界层δV,温度边界层δT 和溶质边界层δC。 3、边界层的分类 速度边界层δV、温度边界层δT、溶质边界层δC(详细介绍课本 165 页) 4、边界层与外部空间的区别 引入边界层的概念,就将流体分成两部分,在边界层以外的流体,可以近似地 认为是理想的, 即流体的运动是无摩擦的, 热量的传输主要靠对流而不是热传导; 同样质量的传输也主要靠对流而不是扩散。 在边界层以内, 由于存在较大的速度、 温度和浓度的梯度变化, 可以将动力学方程组进行一些简化,是原来不能求解的 问题,可以近似的加以解决,如可以将边界层内的热量传输主要看作是传导, 质 量传输主要看作是扩散等。 5、根据流体动力学可知,当平板或有曲度的物体在流体中运动时,整个流场可 以明显的分成性质很不相同的两个区域,一个是紧贴物体表面非常薄的一层区 域,称为边界层;另外是边界层以外的整个流动区域,称之为外部流动。 五、提拉法生长晶体的晶体的温度分布 四个公式: A.
晶体材料基础 晶体生长方法

入溶液后表面微溶。 3)控制降温速度,进行晶体生长。
28
降温法晶体生长实例—CMTC晶体生长
CMTC (分子式:CdHg(SCN)4 ):有机金属络合物非线性光学 晶体(双重基元结构模型理论的指导下设计)。
液称为该物质的饱和溶液。
▪ 溶解度曲线实际上是给出不同温度下的饱和溶液的浓度, 所以溶解度溶解度曲线也称为饱和曲线。
过饱和溶液:某温度时,溶液浓度大于平衡浓度。
不饱和溶液:某温度时,溶液浓度小于平衡浓度。
▪ 过饱和状态是从溶液中生长晶体的前提条件。 ▪ 所有的晶体生长过程都是在过饱和溶液中进行的,非平衡
一般来讲,在生长初期降温速度要慢,到了后期可稍快些。 3) 为使溶液温度均匀,并使生长中的各个晶面在过饱和溶液中
能得到均匀的溶质供应,要求晶体对溶液作相对运动。 程序控制:正转—停—反转—停—正转。
27
降温法生长晶体的一般步骤/技术
1)配制溶液及过热处理 过热处理完毕后,将溶液降到略高于饱和点的温度(2-
5
一、溶液和溶解度 1、溶液和溶液浓度 溶液: 由两种或两种以上物质所组成的均匀混合体系称为溶液。 ➢ 由溶质和溶剂组成。 ➢ 通常将溶液中含量较多的组分称为溶剂,较少的为溶质。 溶液浓度:
一定量的溶液中含有溶质的量称为溶液的浓度。
6
❖溶液浓度的表示方法: (1)体积摩尔浓度():M = 溶质(mol数) / 1L溶液。 (2)重量摩尔浓度(m):m = 溶质(mol数) / 1000g 溶剂。
过饱和曲线将过饱和溶液分为亚稳区和不稳区。
11
溶液状态图
晶体生长基础

1、原料;2、过滤器;3,泵;4、晶体; 5、加热电阻丝
▪ 凝胶法
▪ 凝胶法又称扩散法或化学反应法,它是以凝胶 (最常用的是硅胶)作为扩散和支持介质,使一 些在溶液中进行的化学反应,通过凝胶扩散缓慢 进行,使溶解度较小的反应产物在凝胶中逐渐形 成晶体。对于不同晶体的生长,可选择不同的容 器,一般多采用玻璃试管或U形管。
历史回顾
人类同晶体打交道是从史前时 期就开始的
蓝田猿人及北京猿人(50万年前) 石英工具
人造晶体 食盐 <<演繁露>>记载说:盐已成卤水,暴烈日中,即 成方印,洁白可爱,初小渐大,或数十印累累相 连。 过饱和溶液中生长晶体 <<演繁露>>为宋代程大昌撰,成书于1000年前。
晶体生长方法简介
▪ 人工晶体品种繁多。不同晶体根据技术要求可采 用一种或几种不同的方法生长。这就造成了人工 晶体生长方法的多样性及生长设备和生长技术的 复杂性。
自发成核(多处) 长成多晶体
不自发成核,若已有 晶核生长(单晶生长区)
不成核,不长大 恒温蒸发
降温法
▪ 降温法
利用晶体正溶解度温度系数,将在一定 温度下配制的饱和溶液,于封闭状态下保 持溶剂总量不变,而逐渐降低温度,使溶 液成为过饱和溶液,析出的溶质不断结晶 在籽晶上。其装置示意图如下:
气相生长法
▪ 气相生长法的原理是将拟生长的晶体材料通过升 华、分解等过程转化为气态,然后在适当的条件 下使它成为饱和蒸气,经过冷凝结晶而生长出晶 体。
3.5 均匀成核
▪ 根据热力学原理,当熔体过冷至熔点温度以下时,就 会出现结晶现象。首先,在熔体中会形成许多大小不 等、与固相结构相同的基元团,把它们叫做晶胚。这 些晶胚再靠凝聚熔体中的溶质原子而不断长大,形成 具有一定的晶体。整个结晶过程临界大小的晶核,继 而发育成完整就是形成晶核和晶核不断长大的过程。 这就是我们所要讨论的成核理论,成核现象可作如下 分类
晶体生长与设计

晶体生长与设计介绍晶体生长与设计是研究晶体形成、生长机制以及晶体结构调控的课题。
通过深入探究晶体生长的原理和方法,有助于控制晶体的形成和性能,从而为材料科学、化学、生物学等领域提供了重要的基础和应用技术。
晶体生长的原理晶体生长是指由一种物质在一定条件下从溶液、气体或熔体中排列有序地结晶形成的过程。
晶体生长的原理包括以下几个方面:原子层面的排列晶体的结构由原子或分子等微观基本单位组成,而晶体生长是通过原子或分子的定向排列逐渐形成。
晶体生长的过程中,原子或分子通过特定的排列方式在晶体表面或溶液中有序堆积,形成具有长程有序性质的结晶。
超饱和度与溶解度晶体生长的过程与溶液中的超饱和度和溶解度密切相关。
当溶液中物质的浓度超过其溶解度时,就会形成超饱和溶液。
超饱和度越高,晶体生长的速度越快。
晶体生长的过程中,物质从超饱和溶液中析出,并逐渐沉积在晶体的表面,从而促进晶体的生长。
形态与结构的调控晶体的生长过程中,其形态和结构可以通过调控生长条件和添加外界因素来改变。
例如,改变反应温度、pH值、添加表面活性剂或控制晶体生长速率等参数,可以调整晶体的形态和尺寸。
此外,通过引入其他物质,如掺杂剂、共晶物质等,可以改变晶体的结构和性能。
晶体生长的方法晶体生长的方法主要包括溶液法、气相法和熔融法等。
不同的方法适用于不同类型的晶体和不同的应用需求。
溶液法溶液法是一种常用且广泛应用的晶体生长方法。
它通过将合适的溶质物溶解在溶剂中,控制溶液的浓度和温度等条件,从而促使晶体在溶液中生长。
溶液法适用于生长各种形态的晶体,如自然晶体、单晶、细晶等。
气相法气相法是利用气相中的原子或分子通过化学反应形成晶体的方法。
它包括物质在气氛中直接沉积或通过气相传输至基底上生长晶体。
气相法常用于生长金属、半导体晶体,以及一些有机小分子的晶体。
熔融法熔融法是将固体物质加热至熔点,使其转变为液体状态后,再通过降温使其重新结晶形成晶体。
熔融法适用于一些高熔点的物质,如金属和高聚物等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A’ B’ h1
A B h2
C‘
C
图2-3晶面消失过程
一般显露在外面的晶面其法向生长速度的是比较慢的。
上一内容 下一内容 回主目录
返回
2018/10/13
实际上晶体外形常由简单面指数的晶面如 (100)、(110)、
(111)等包围。晶体形态除与晶体结构有关外,还与生长环境密切
相关。 (1)过饱和度的影响: 溶液过饱和的超过某一临界值时,晶体的形态就会发生变化 (2)PH值的影响: 生长磷酸二氢胺时,PH↓,晶体细长,PH↑,晶体短粗 (3)杂质的影响: 晶面吸附杂质后单位表面能发生变化,使晶体法向生长速度 发生变化,从而引起晶体形态的变化
二、热损耗和稳定温度
单位时间内向环境传输的热量称为热损耗。 热损耗的大小取决于发热体和环境温度间的差值:正比。即 :炉温↑,发热体和环境温度差值↑,热损耗↑。
D
面网密度对质点引力的关系 C A B
上一内容
下一内容
回主目录
返回
2018/10/13
完整晶面生长模型成功解释了晶核存在条件下,质点布满整 个晶面的过程。若晶体要继续生长,需在完整晶面晶面上形成一 个新的二维晶核做台阶源,然后质点沿其布满整个晶体。因此, 新的二维晶核形成的难易决定了晶体生长速度。
实际上,成核的过冷度和过饱和度并不需要那么 大。因为在通常的生长系统中总是存在不均匀的部位 (如容器壁、外来的微粒等),它有效降低了成核时 的表面位垒,使晶核优先在这些不均匀部位形成。
例如:人工降雨就是在饱和比不大又不能均匀成核 的云层中,撒入碘化银细小微粒,就能形成雨滴。
上一内容 下一内容 回主目录
第六章 晶体生长基础
6.1 晶体生长基本过程 6.2 晶体生长的热量输运 6.3 晶体生长的质量输运 6.4 晶体生长与相平衡关系
上一内容
下一内容
回主目录
返回
2018/10/13
6.1 晶体生长过程
6.1.1 晶核的形成
气相、液相(溶液或熔体)、固相物质通过相变可以形 成晶体。相变时,先形成晶核,然后再围绕晶核慢慢长大。 自发产生晶核的过程称为均匀成核;从外界某些不均匀处 (如容器壁或外来杂质等)产生晶核的过程称非均匀成核。
1、均匀成核
均匀成核指在理想体系中各处有相同的成核几率。实际上
某一瞬间由于热起伏,局部区域里分子分布可能出现不均匀, 一些分子可能聚集成团而形成胚芽,而在另一瞬间这些胚芽也 可能消失。
上一内容 下一内容 回主目录
返回
2018/10/13
1、均匀成核
据热力学计算,当胚芽半径r大于晶核临界尺寸r0时,就可 以稳定的继续长大,不会自行消失。因为当r>> r0时,胚芽的 自由能△F的改变就明显降低,且胚芽越大△F越小。 这种稳定的胚芽称为晶核。 自行消失。通常单位表面能小的 晶面围成的晶核出现的几率较大
△F极大 r0 自由能变化与 胚芽半径的关系 返回 △F(自由能)
反之,当胚芽r< r0时,胚芽可能
;核化速率随结晶潜热增加而变
快;改变生长条件如降低温度、 增加过冷度也可增加核化速率。
r
上一内容
下一内容
回主目录
2018/10/13
2、非均匀成核
据均匀成核理论计算,水汽凝华的临界饱和比为 4.4,水凝固的临界过冷度为40℃,某些金属凝固的 临界过冷度达100~110 ℃。
上一内容 下一内容 回主目录
3 2
1
晶体生长示意图
返回
2018/10/13
在立方晶格的二维点阵 图中,晶面密度AB=AD> BC >CD。而面网密度↓(如 CD晶面),引力↑,通常质点 优先位于这个晶面,其生长 速度↑,消失也↑;其次为BC 晶面,晶体最后形态中,面 网密度较大的AB和AD晶面占 优势。
返回
2018/10/13
6.2 晶体生长的热量输运
6.2.1 热量运输
传导 一、热量输运的基本形式 对流 辐射 在晶体生长的不同阶段有不同的热传递方式起主导作用 一般来说:高温时,以晶体表面辐射为主,传导和对流为 次;低温时,热量运输主要以传导为主。
上一内容
下一内容
回主目录
返回
2018/10/13
返回
2018/10/13
2、非均匀成核
在区熔法制备单晶的过程中,固液界面的形状对杂散晶核 的形成产生一定的影响。 固态在接近器壁处温度较内部低,固液界面凸向固方,θ< 90 ℃,非均匀成核的杂散晶核容易形成,单晶生长被干扰。θ↓ ,界面越凸向固方,干扰↑。为生长优质单晶,必须抑制杂散晶 核的产生,使单晶生长占主导地位,θ应大于或等于90 ℃,界 面呈平直状或凸向液方。
固 态 固 态 液 态
θ
液
态
杂散晶核 (a)凹界面易生杂散晶核
缓冷器
(b)平直界面杂散晶核受抑
区熔法单晶生长中固液界面的形状对器壁非均匀成核的影响
上一内容 下一内容 回主目录
返回
பைடு நூலகம்
2018/10/13
6.1.2 晶体生长过程和形状
最初形成晶核时,由于晶面能量对整个表面能量影响不大 ,它趋于形成球状。当晶核逐渐长大,各晶面按自己特定的生长 速度向外推移时,球面变成凸多面体。随着晶体持续长大,许多 能量高的晶面被淘汰,只有少数单位表面能量小的晶面显露在外 表,晶体的表面能量处于最小值。
通过对气相生长的观察,发现晶体表面常可见到涡旋状的生 长图像,用准晶面生长即螺旋位错模型可以解释这种现象。 螺旋位错模型认为螺旋状的图 像表示晶体中存在螺旋位错形成的 台阶。气相生长时气体分子首先吸 附在台阶处,然后沿这个台阶逐步 发展,呈现一种螺旋生长。
上一内容 下一内容 回主目录
螺旋生长形成的螺旋锥
上一内容 下一内容 回主目录
返回
2018/10/13
6.1.3 完整晶面生长
晶体生长实质 生长的质点从环境相中 不断的通过界面而进人 晶格的过程。
完整晶面生长模型解释了 晶体生长过程。其出发点 是:质点先坐落于一个行 列,待排满后再长相邻另 一行,如此重复,长满整 个面网,再长第二层。依 此规律,面网不断向外推 移,晶体不断长大。