新北师大版八年级上数学期中测试试卷含问题详解
北师大版八年级上册数学期中测试卷及答案
北师大版八年级上册数学期中测试卷及答案北师大版八年级上册数学期中测试卷及答案本试卷满分120分,考试时间120分钟)一、选择题(每小题3分,共36分)1、36的平方根是()A、±6B、36C、±6D、-6改写:求36的平方根,正确的答案是±6.2、下列语句:①-1是1的平方根。
②带根号的数都是无理数。
③-1的立方根是-1.④38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应。
其中正确的有()A、2个B、3个C、4个D、5个改写:以下语句中,正确的是:①-1是1的平方根;③-1的立方根是-1;⑤(-2)的算术平方根是2;⑥-125的立方根是±5;⑦有理数和数轴上的点一一对应。
共有4个正确的语句,选项C为正确答案。
3、下列计算正确的是()A、-327=3B、a2+a3=a5C、a2·a3=a6D、(-2x)3=-6x3改写:下列计算中正确的是:A、-3-27=3.因为-3-27=-30,不等于3;B、a^2+a^3=a^5,正确;C、a^2·a^3=a^5,不等于a^6;D、(-2x)^3=-8x^3,不等于-6x^3.因此,正确答案为B。
4、分解因式-2xy2+6x3y2-1xy时,合理地提取的公因式应为()A、-2xy2B、2xyC、-2xyD、2x2y改写:分解因式-2xy^2+6x^3y^2-xy时,合理地提取的公因式应为2xy。
因为-2xy^2、6x^3y^2和-xy都含有xy,而且2是它们的最大公因数。
因此,正确答案为B。
5、对下列多项式分解因式正确的是()A、a3b2-a2b3+a2b2=a2b2(a-b)B、4a2-4a+1=4a(a-1)+1C、a2+4b2=(a+2b)2D、1-9a2=(1+3a)(1-3a)改写:对下列多项式分解因式正确的是:A、a^3b^2-a^2b^3+a^2b^2=a^2b^2(a-b);B、4a^2-4a+1=(2a-1)^2;C、a^2+4b^2=(a+2b)(a-2b);D、1-9a^2=(1+3a)(1-3a)。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列运算中错误的有()个①164=②393=③233-=-④2(3)3-=⑤±233=A .4B .3C .2D .12.在△ABC 中,AC=3,BC=4,则AB 的长是()A .5B .7C .5或7D .大于1且小于73.在0(2)-,38,0,934,0.010010001……,2π,-0.333…,5 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A .2个B .3个C .4个D .5个4.在平面直角坐标系中,点P (﹣1,x 2+2)一定在()A .第一象限B .第二象限C .第三象限D .第四象限5.满足3x 7的整数x 是()A .-2,-1,0,1,2,3B .-1,0,1,2C .-2,-1,0,1,2D .-1,0,1,2,36.下列语句:①-1是1的平方根.②带根号的数都是无理数.③-1的立方根是-1.38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A .2个B .3个C .4个D .5个7.若a 、b 为实数,且满足|a -2|2b -=0,则b -a 的值为()A .2B .0C .-2D .以上都不对8.在平面内,确定一个点的位置一般需要的数据个数是()A .1B .2C .3D .49.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B′,那么BB′()A .小于1mB .大于1mC .等于1mD .小于或等于1m10.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是()A .h≤17cmB .h≥8cmC .15cm≤h≤16cmD .7cm≤h≤16cm二、填空题11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12.2(5)-的算术平方根是__________________,-8的立方根是_________,13.直角三角形两直角边长分别为3和4,则它斜边上的高为____________________.14.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.15.在直角三角形ABC 中,斜边2AB =,则222AB AC BC ++=________.16.若一个正数的两个平方根分别为231a a +-与,则=a _____,这个正数是_________.17.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________cm.(π取3)18===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题19.计算(13(2)(3)2+(4)02(1++-20.已知21b +的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根.21.如图所示的一块地,∠ADC =90°,AD =8m ,CD =6m ,AB =26m ,BC =24m ,求这块地的面积S .22.在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)点B 关于x 轴的对称点B 2的坐标是;(4)△ABC 的面积为.23.如图,在长方形ABCD 中,AB =6,BC =8,将长方形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处.(1)求EF 的长;(2)求四边形ABCE 的面积.24.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.25.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?参考答案1.B【解析】【分析】根据平方根、立方根及算术平方根的定义,即可求解.【详解】=,正确;43≠,错误;=-该等式无意义,错误;33=,正确;=±,错误.⑤3故选:B.【点睛】此题主要考查了立方根、算术平方根、平方根的定义,解题注意平方根和算术平方根的区别:一个非负数的平方根有两个,算术平方根有一个,是非负数.2.D【解析】【分析】三角形中,两边之和永远大于第三边,两边之差永远小于第三边;【详解】题中三角形的两边为3与4,所以第三边的范围应该大于1而小于7【点睛】本题主要考查了三角形三边的关系,由三角形三边性质我们不难得出最后结果3.C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0(=1,2π 2.010101…(相邻两个1之间有1个0)共4个.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B【解析】【详解】解:210,20,x -+ 符合第二象限点的特征故选B5.B【解析】【分析】二次根式的估算,需要准确地找出整数部分【详解】1的整数部分为2,所以整数x 应该满足23x -<<,故答案为B 选项【点睛】本题主要考查了二次根式中的估算思想,重点在于准确找出相应的整数或小数部分.6.B【解析】【分析】根据平方根的意义求出a≥0),即可判断①,根据无理数的意义即可判断②;根据立(a≥0),即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解:1的平方根是±1,①正确;=2-1的立方根是-1,③正确;,2(-2)2=4,4,⑤正确;-125的立方根是-5,⑥错误;实数和数轴上的点一一对应,⑦错误;∴正确的有3个.故选:B.7.C【解析】【详解】由题意得:a-2=0,20b-=,所以a=2,b=0.∴b-a的值为0-2=-2.故选C.8.B【解析】【分析】在一个平面内,要有两个有序数据才能表示清楚一个点的位置.【详解】解:因为在一个平面内,一对有序实数确定一个点的位置,即2个数据,所以选B.故选B.【点睛】本题考查如何在平面内表示一个点的位置的知识.9.A【解析】【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,得出AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB由题意可知AB=A′B′,又OA′=3,根据勾股定理得:OB′∴BB′=<1.故选:A.10.D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【详解】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题考查了勾股定理的应用,解题的关键是注意此题要求的是筷子露在杯外的取值范围,主要是根据勾股定理求出筷子在杯内的最大长度.【分析】利用勾股定理求得AC即可求解.【详解】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴4=∴AC+BC=3+4=7米.故答案是:7.【点睛】本题考查勾股定理的应用,理解题意是解答的关键.12.5±3-2【解析】【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:2(5)-=25∴2(5)-算术平方根是5,±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.13.12 5【解析】【分析】设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案,设斜边为c ,斜边上的高为h ,∵直角三角形两直角边长分别为3和4,∴,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:125.【点睛】本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,解题的关键是熟练掌握面积法.14.1【解析】【详解】解:∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=,故答案为:1.15.8【解析】【分析】直接由勾股定理求解即可.【详解】解:∵在直角三角形ABC 中,2AB =,∴222AC BC AB +==4,∴222AB AC BC ++=4+4=8,故答案为:8.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答的关键.16.14-##-0.254916【解析】【分析】根据平方根的性质,可得2310a a ++-=,从而得到14a =-,即可求解.【详解】解:∵一个正数的两个平方根分别为231a a +-与,∴2310a a ++-=,解得:14a =-,∴这个正数为()2214922416a ⎛⎫+=-+= ⎪⎝⎭.故答案为:14-;491617.15【解析】【分析】本题应先把圆柱展开即得其平面展开图,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理求得AB 的长.【详解】解:如图所示,圆柱展开图为长方形,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πrcm ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理得=15cm .故蚂蚁经过的最短距离为15cm .(π取3)【点睛】本题考查了平面展开图-最短路径问题,解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.18(1)n n =+≥【解析】【分析】=(2=+(3=+则将此规律用含自然数n(n≥1)(1)n n =+≥【详解】解:=(2=+(3=+……,发现的规律用含自然数n(n≥1)(1)n n =+≥.(1)n n =+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.(1)1;(2;(3)0;(4)3+【解析】【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.【详解】解:(133=623 2+-=4-3=1;(2)=(3)2+=5-7+2=0;(4)02(1=41(12)⨯-=423+-+=3+【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.20..【解析】【分析】直接利用平方根以及算术平方根的定义得出a,b的值,进而得出答案.【详解】∵2b+1的平方根为±3,∴2b+1=9,解得:b=4,∵3a+2b−1的算术平方根为4,∴3a+2b−1=16,则3a+8−1=16,解得:a=3,则a+2b=11,故a+2b 的平方根是:.【点睛】此题考查平方根,算术平方根,解题关键在于掌握其性质定义.21.这块地的面积为296m .【解析】【分析】如图所示,连接AC ,利用勾股定理求出AC ,运用勾股定理逆定理可证ACB △为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【详解】解:如图所示,连接AC ,在Rt ADC 中,10(m)AC ===,22222102467624AC BC BC +=+===,ACB ∴ 为直角三角形,∴这块地的面积21124106896(m )22ACB ADC S S S =-=⨯⨯-⨯⨯= ,答:这块地的面积为296m .【点睛】本题考查了勾股定理和逆定理的应用,解题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.22.(1)见解析;(2)见解析;(3)(﹣2,﹣1);(4)4【解析】【分析】(1)根据A 、C 两点坐标确定平面直角坐标系即可;(2)画出A 、B 、C 的对应点A 1、B 1、C 1即可;(3)根据点B 2的位置,写出坐标即可解决问题;(4)利用分割法求出面积即可.【详解】(1)平面直角坐标系如图所示:(2)△A 1B 1C 1如图所示;(3)点B 关于x 轴的对称点B 2的坐标是(﹣2,﹣1);(4)S △ABC=3×412-⨯2×412-⨯1×212-⨯3×2=4.【点睛】本题考查了作图﹣轴对称变换,解答本题的关键是熟练掌握轴对称的性质,学会用分割法求三角形面积,属于中考常考题型.23.(1)EF=3;(2)梯形ABCE 的面积为39.【解析】【详解】试题分析:(1)根据折叠的性质,折叠前后边相等,即CF CD DE EF ==,,得:AE AD EF =-,在Rt ACD △中,根据勾股定理,可将AC 的长求出,知CF 的长,可求出AF 的长,在Rt AEF 中,根据222AE EF AF =+,可将EF 的长求出;(2)根据S 梯形=()2AE BC AB +⨯,将各边的长代入进行求解即可.试题解析:(1)设EF=x ,∵四边形ABCD 是矩形,∴CD=AB=6,AD=BC=8,依题意知:△CDE ≌△CFE ,∴DE=EF=x ,CF=CD=6.∵在Rt ACD △中,226810AC =+=,∴AF=AC−CF=4,AE=AD−DE=8−x.在Rt AEF 中,有222AE EF AF =+,即222(8)4x x -=+解得x=3,即:EF=3.(2)由(1)知:AE=8−3=5,梯形ABCE 的面积()()5863922AE BC AB S +⨯+⨯===.24.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:52 2.5÷=秒,第二种情况,当点P 在BA 上时.点P 移动的时间是:(641)2 5.5++÷=秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.【点睛】本题考查坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.0.8【解析】【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.。
最新北师大新版八年级上学期数学期中考试试卷(含答卷)
最新北师大新版八年级上学期数学期中试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、16的算术平方根是()A.4B.﹣4C.±4D.82、在2π,,﹣,,3.14,3.868668666…(相邻两个8之间6的个数逐次加1)中,无理数的数是()个A.2B.3C.4D.53、直线y=2x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4、方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限5、下列运算正确的是()A.B.C.D.=2 6、△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5D.a=5,b=12,c=137、如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度8、一个正数的两个平方根分别是2a﹣3和5﹣a,则这个数是()A.49B.25C.16D.79、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3 B.﹣3 C.3或﹣3 D.k的值不确定10、如图所示,直线y=x+4与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB,y轴上的动点,则△CDE周长的最小值是()A.3B.3C.2D.2二、填空题(每小题3分,满分18分)11、点M(2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是.12、计算:|3.14﹣π|=.13、函数y=2x﹣4+b是正比例函数,则b=.14、如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.15、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16、如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E为BC上两点.∠DAE=45°,F为三角形ABC外一点,且FB⊥BC,F A⊥AE,则结论:①CE =BF;②BD2+CE2=DE2;③S△ADE=AD•EF;④CE2+BE2=2AE2,其中正确的有(横线上填写序号).第14题第15题第16题最新北师大新版八年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算18、已知2a﹣1的算术平方根是3,3a+b﹣1的立方根是2,求a﹣2b的平方根.19、如图,直角坐标系中,每个小正方形边长为单位1,△ABC的三个顶点分别在正方形格点上.(1)请在图中作出△ABC关于原点中心对称的△A′B′C′;(2)求△ABC的面积.20、已知y+4与x﹣3成正比例,且x=1时,y=0.(1)求y与x的函数表达式;(2)点M(m+1,2m)在该函数图象上,求点M的坐标.21、如图,矩形ABCD中,AB=10,BC=7,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD交于点O,且OE=OD.(1)求证:OP=OF;(2)求AP的长.22、已知平面直角坐标系中一点P(m﹣4,2m+1);(1)当点P在y轴上时,求出点P的坐标;(2)当P A平行于x轴,且A(﹣4,﹣3),求出点P的坐标;(3)当点P到两坐标轴的距离相等时,求出m的值.23、小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?24、如图,直线y=﹣2x+4交x轴和y轴于点A和点B,点C(0,﹣2)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△APC的面积为4,求点P;(3)过点B的直线BE交x轴于点E(E点在点A右侧),当∠ABE=45°时,求直线BE.25、在平面直角坐标系中,点A(a,0),点B(0,b),且a、b满足(a﹣5)2+|b﹣3|=0.(1)填空:a=,b=;(2)如图1,作等腰Rt△ABC,∠ABC=90°,AB=BC,求C点坐标;(3)如图2,点M(m,0)在x轴负半轴上,分别以AB、BM为腰,点B为直角顶点,在第一、第二象限作等腰Rt△ABD、等腰Rt△MBE,连接DE交y轴于点F,求点F的坐标。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
北师大版八年级上学期数学期中测试卷(含答案)
北师大版八年级上学期数学期中测试卷(含答案)一、填空题(共9小题,每小题2分,满分18分)1.(2分)49的平方根是,36的算术平方根是,﹣8的立方根是.2.(2分)比较大小:(填“>”“<”“=”).3.(2分)如图,如果把正方形CDFE经过旋转后能与正方形ABCD重合,那么图形所在的平面上可作为旋转中心的点共有个.4.(2分)若一个n边形的内角都相等,且内角的度数与它相邻的外角的度数的比为3:1,那么这个多边形的边数为.5.(2分)若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.6.(2分)如图,在梯形ABCD中,DC∥AB,∠D=90°,AD=4cm,AC=5cm,S梯形ABCD =18cm2,那么AB=cm.7.(2分)如图,▱ABCD中,BC=2CD,CA⊥AB,AC=3cm,则ABCD的面积为cm2.8.(2分)如图,四边形ABCD是正方形,△ABE是等边三角形,则∠AED=度.9.(2分)如图,正方形ABCD的边长为2cm,E是CD的中点,BF⊥AE,垂足为F,则BF的长为cm.二、选择题(共8小题,每小题3分,满分24分)10.(3分)在下列条件中,不能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行且相等C.两组对边分别平行D.对角线互相平分11.(3分)在①平行四边形,②矩形,③菱形,④正方形中,能找到一点,使该点到各顶点的距离相等的图形是()A.①②B.②③C.②④D.③④12.(3分)顺次连接矩形各边中点所得的四边形是()A.等腰梯形B.菱形C.矩形D.正方形13.(3分)既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰梯形C.平行四边形D.正六边形14.(3分)商店出售下列形状的地砖:①正方形;②长方形;③正五边形;④正六边形;⑤正八边形.如果要求只选购其中一种地砖镶嵌平面,则可供选择的地砖有()A.1种B.2种C.3种D.4种15.(3分)时钟从下午1:00到1:20,时针和分针旋转的角度分别是()A.5°,60°B.10°,60°C.6°,30°D.10°,120°16.(3分)如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们的交角为60°,则它们重叠部分的面积为()A.B.1C.D.217.(3分)如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有()A.3对B.4对C.5对D.6对三、解答题(共9小题,满分53分)18.(4分)如图,平移方格纸中的图形,使点A平移到点A′处,画出平移后的图形.19.(5分).20.(5分)21.(5分)(﹣)2﹣2+(﹣1)2004(1+)2005+|1﹣|22.(5分)已知x,y为实数,y=+2,求3x+4y的值.23.(6分)如图,在矩形ABCD中,AE⊥BD于E,∠DAE=2∠BAE,且AB=4cm.(1)求∠EAC的度数;(2)求DE的长度.24.(6分)如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,求梯形ABCD的面积.25.(8分)如图,在正方形ABCD中,E是CD的中点,F是BC延长线上的一点,CF=BC.(1)证明:△BCE≌△DCF;(2)利用图形的平移和旋转方法分析:使∠BCE到∠DCF的位置,是通过怎样的图形变换得到的;(3)图中线段BE与DF有怎样的位置关系?请说明理由.26.(9分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,动点P从D点出发,沿DA方向以2cm/秒的速度运动,运动时间为t秒.(1)当t为何值时,以PDCB为顶点的四边形是平行四边形;(2)当t为何值时,以PCD为顶点的三角形是直角三角形;(3)问:在点P的运动过程中,梯形内是否存在这样的点Q,使得过PQ的直线与BC 相交且把梯形ABCD分成面积相等的两部分?若存在,请你用一句话概括出Q点的位置;否则说明理由.附选填题答案一、填空题(共9小题,每小题2分,满分18分)1.±7;6;﹣2;2.>;3.3;4.8;5.﹣1;9;6.6;7.3;8.15;9.;二、选择题(共8小题,每小题3分,满分24分)10.A;11.C;12.B;13.D;14.C;15.D;16.C;17.C;。
北师大版八年级上册数学期中考试试卷带答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,最小的数是()A .-3B .3C .13D .-π2.在下列各数0,13,3.14,π,0.731)A .1B .2C .3D .43.与数轴上的点一一对应的是()A .有理数B .无理数C .实数D .正数和负数4.在平面直角坐标系中,点(5,-7)在()A .第一象限B .第二象限C .第三象限D .第四象限5.点A(-3,4)关于y 轴对称的点的坐标是()A .(3,-4)B .(-3,-4)C .(3,4)D .(-4,-3)6.如图:在△ABC 中,∠C =90°,AB =13,BC =5,则以AC 为直径的半圆面积为()A .6πB .12πC .36πD .18π7.已知△ABC 为直角三角形,在下列四组数中,不可能是它的三边长的一组是()A .3,4,5B .6,8,10C .5,12,13D .3,3,58.下列说法正确的是()A .-4没有立方根B .1的立方根为±1C .5的立方根为D .136的立方根是169.下列函数:①y=8x ;②y=-8x;③y=2x 2;④y=-2x+1.其中是一次函数的个数为A .0B .1C .2D .310.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是()A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><二、填空题11.计算:328.12.比较大小(填“>、<或=”)55-121213.若函数y=(a-1)x+2a -1是正比例函数,则a=_____________.14.在坐标系中,已知两点A (3,-2)、B (-3,-2),则直线AB 与x 轴的位置关系是__________.15.如图,在△ABC 中,AB =10,AC =13,AD ⊥BC ,垂足为D ,M 为AD 上任一点,则MC 2﹣MB 2等于_____.16.若实数a ,b 10a a b ++,则代数式20212022a b +=________.17.已知点A(a ,0)和点B(0,4),且直线AB 与坐标轴围成的三角形的面积10,则a 的值是______.三、解答题18.计算:12793(2)(1312364324-⎛⎫----+- ⎪⎝⎭;57)572+;21220482333⎛÷ ⎝19.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(0,0)表示A点的位置,用(4,-1)表示B点的位置.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.20.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.x+3与x轴相交于点A,与y轴相交于点B22.如图,直线y=12(1)直接写出△AOB的面积;(2)若C为y轴上一点,且△ABC的面积是12,求点C的坐标;(3)若P是x轴上一点,且AB=AP,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.24.某教育网站对下载资源规定如下:若注册VIP用户,则下载每份资源收0.2元,另外每年收500元的VIP会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用()1分别写出注册VIP用户的收费1(y元)和注册普通用户2(y元)与下载数量(x份)之间的函数关系式()2某学校每年要下载1500份资源,那么注册哪种用户比较合算?()3一年内下载多少份资源是两种用户收费一样?25.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长参考答案1.D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵-π<−3<13<3,∴最小的数是-π,故选:D.【点睛】此题考查了实数的大小比较,解题的关键是掌握实数的大小比较法则.2.B【解析】【分析】根据无理数的定义即可求解.【详解】解:在下列各数0,13,3.14,π,0.7312π2两个.故选:B【点睛】本题考查了无理数的定义,无理数是指无限不循环小数,熟知无理数的定义是解题的关键.3.C【解析】【详解】∵实数与数轴上的各点是一一对应关系,∴与数轴上的点一一对应的是实数.故选C.4.D【解析】【分析】根据各象限的点的坐标的符号特点判断即可.【详解】解:在平面直角坐标系中,点(5,-7)所在的象限为第四象限.故选:D.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(-3,4)关于y轴对称的点坐标(3,4).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D 【解析】【详解】∵∠C=90°,AB=13,BC=5,∴=12,∴以AC 为直径的半圆的面积=211822AC ππ=(故选D .7.D 【解析】【详解】A 选项:∵32+42=52,∴三条线段能组成直角三角形,故A 选项不符题意;B 选项:∵62+82=102,∴三条线段能组成直角三角形,故B 选项不符题意;C 选项:∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符题意;D 选项:∵32+32≠52,∴三条线段不能组成直角三角形,故D 选项符合题意;故选D .8.C 【解析】【分析】根据正数的立方根是正数,负数的立方根是负数,可以求出题目中各式子的结果,然后分析即可.【详解】解:∵正数的立方根是正数,负数的立方根是负数,∴A .-4有立方根,故选项错误,不符合题意;B .1的立方根是1,故选项错误,不符合题意;C .5的立方根,故选项正确,符合题意;D .136的立方根是故选:C .【点睛】此题考查了立方根,解题的关键是明确正数的立方根是正数,负数的立方根是负数.9.D【解析】【详解】根据一次函数定义可知:③由于的自变量x的指数是2,故不是一次函数,其它都是一次函数,共计有3个.故选D.10.D【解析】【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【详解】观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:D.【点睛】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b参数的意义的了解与运用.11【解析】【分析】【详解】解:-=【点睛】本题考查了二次根式的加减,熟知二次根式的加减运算法则是解题关键,注意将二次根式化简后被开方数相同的二次根式才能进行加减运算.12.>>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:∵25=,22=4,∴5>4,;12=,∴1122->0,∴1122,故答案为:>;>.【点睛】本题考查了二次根式的大小比较,解题的关键是熟练掌握二次根式的大小比较的方法.13.-1【详解】解: 函数y=(a-1)x+2a -1是正比例函数,解得:1,a =-故答案为:1-【点睛】本题考查的是正比例函数的定义,掌握“正比例函数的定义”是解本题的关键.14.平行【解析】【详解】∵A (3,-2)、B (-3,-2),∴点A 、点B 到x 轴的距离相等,∴AB∥x轴,故答案是:平行.15.69【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2),=132−102,=69.故答案为:69.【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出MC2和MB2.16.0【解析】【分析】首先根据二次根式的非负性,即可求得a,b的值,再把a,b的值代入代数式,即可求得其值.【详解】解: 0+=,0≥0≥100a ab +=⎧∴⎨+=⎩解得11a b =-⎧⎨=⎩20212022∴+a b ()2021202211=-+11=-+0=故答案为:0【点睛】本题考查了利用算术平方根的非负性求参数及代数式的值,熟练掌握和运用利用二次根式的非负性求参数的方法是解决本题的关键.17.±5【解析】【分析】根据坐标先表示,4,OA a OB ==再利用三角形的面积公式列方程即可.【详解】解: 点A(a ,0)和点B(0,4),直线AB 与坐标轴围成的三角形的面积10,故答案为:5±【点睛】本题考查的是坐标与图形,直线与坐标轴围成的图形面积,掌握“表示坐标系内线段的长度”是解本题的关键.18.(1)3;(2)3;(3)0;(4)3-.【解析】(1)333=+33=+2833=;(2)解:(101224-⎛⎫-- ⎪⎝⎭()()(1442=---+-1442=+-+3=(3)解:2+=5-7+2=0;(4)⎛÷ ⎝3⎛÷ ⎝==.【点睛】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,立方根的定义,绝对值的化简等知识,综合性较强,熟练掌握二次根式的运算法则和相关定义是解题关键.19.(1)见解析;(2)见解析;(3)D(0,0),E(4,1),F(1,2)【解析】【分析】(1)根据平面直角坐标系的定义以点A为坐标原点建立即可;(2)根据网格结构找出点A、B、C关于x轴对称的点D、E、F的位置,然后顺次连接即可;(3)根据平面直角坐标系写出各点的坐标即可.【详解】解:(1)如图所示;(2)△DEF如图所示;(3)由图可知:D(0,0),E(4,1),F(1,2).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.12米【解析】【分析】设旗杆的高度为x米,根据勾股定理列方程求解即可.【详解】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.21.①证明见解析;②见解析.【分析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:∵90ACB ︒∠=,∴90ACE BCD ︒∠+∠=.∵90ACE CAE ︒∠+∠=,∴CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDCCAE BCD AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CAE BCD AAS ∆∆≌.∴EC BD =;②解:由①知:BD CE a==CD AE b==∴1()()2AEDB S a b a b =++梯形221122a ab b =++.又∵AEC BCD ABCAEDB S S S S =++ 梯形2111222ab ab c =++212ab c =+.∴222111222a ab b abc ++=+.整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.22.(1)9;(2)(0,-1)或(0,7);0)或0).【解析】【分析】(1)先求出点A 、B 的坐标,即可求出△AOB 的面积;(2)设点C(0,y),根据△ABC 的面积是12,得到12×6×∣3-y ∣=12,求出y ,问题得解;(3)根据勾股定理求出P 坐标.(1)解:∵直线y=12x+3与x 轴相交于点A ,与y 轴相交于点B ,∴点A(-6,0),点B(0,3),∴AO=6,BO=3,∴△AOB 的面积=12×AO×BO=12×6×3=9;(2)解:设点C(0,y),∵△ABC 的面积是12,∴12×6×∣3-y ∣=12∴y=-1或y=7∴点C 的坐标为(0,-1)或(0,7);(3)解:∵AO=6,BO=3,∠AOB=90°,∴∴∴点0)或0).【点睛】本题为一次函数综合题,考查了一次函数与坐标轴交点问题,面积问题,勾股定理等知识,综合性较强,理解题意,学会用点的坐标表示线段的长是解题关键.23.(1)10cm,4cm AB BE ==(2)3cm CD =【解析】【分析】(1)根据勾股定理求得AB 的长,根据折叠的性质可得AE AC =,根据BE AB AE =-即可求解(2)由勾股定理求得AB=10cm ,然后由翻折的性质求得BE=4cm ,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在△BDE 中,利用勾股定理列方程求解即可.【详解】解:(1)∵在Rt △ABC 中,两直角边AC=6cm ,BC=8cm ,10cm AB ∴===.由折叠的性质可知:DC=DE ,AC=AE=6cm ,1064cmBE AB AE ∴=-=-=(2)由折叠的性质可知:DC=DE ,AC=AE=6cm ,∠DEA=∠C=90°,∴∠DEB=90°,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x )2,解得:x=3,3CD ∴=cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用;熟练掌握翻折的性质和勾股定理是解题的关键.24.(1)VIP 用户:10.2500y x =+,普通用户:20.4y x =.(2)当1500x =时,注册普通用户比较合算;(3)当下载量为2500份时,注册两种用户的收费相等.【解析】【分析】(1)依据若注册VIP 用户,则下载每份资源收0.2元,另外每年收500元的VIP 会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用,即可得到VIP 用户的收费(y 1元)和注册普通用户y 2(元)与下载数量x (份)之间的函数关系式;(2)依据x=1500,分别求得y 1和y 2的值,即可得到结论;(3)由y 1=y 2得:0.2x+500=0.4x ,进而得出当下载量为2500份时,注册两种用户的收费相等.【详解】解:()1VIP 用户:10.2500y x =+,普通用户:20.4y x =.()2 当1500x =时,10.25000.21500500800(y x =+=⨯+=元)20.40.41500600(y x ==⨯=元)12y y ∴>∴当1500x =时,注册普通用户比较合算;()3由1y =2y 得:0.25000.4x x +=,解得:2500x =,所以当下载量为2500份时,注册两种用户的收费相等.【点睛】这道题主要考查了一次函数的定义和综合应用的知识点,只要掌握这个知识点进行计算即可.25.5【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:∵四边形ABCD 是长方形,BC=10cm ,AB=8cm ∴AD=BC=10cm ,AB=CD=8cm又∵AF 为AD 折叠所得∴AF=AD=10cm ,,DE EF ∴BF 2=AF 2-AB 2=36∴BF=6cm∴FC=BC-BF=4设CE 长为x cm ,则DE 长为(8-x )cm ,则EF 长为(8-x )cm .在RT △CEF 中,x 2+42=(8-x)2解得:x=3∴CE=3cm∴EF=8-3=5cm故EF 的长为5cm .。
北师大版八年级上册数学期中考试试卷带答案
北师大版八年级上册数学期中考试试题一、单选题1.5的算术平方根是()A .5B .±5CD .2.下列四组数据不能作为直角三角形的三边长的是()A .6、8、10B .5、12、13C .7、10、12D .3、4、53.在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是()A .(3,﹣2)B .(2,﹣3)C .(﹣3,2)D .(﹣2,﹣3)4.下列二次根式中,是最简二次根式的是()AB C .D 5.点P (m +3,m -1)在y 轴上,则点P 的坐标为()A .(0,-4)B .(5,0)C .(0,5)D .(-4,0)6.若点A 的坐标(x ,y )满足条件20x +=,则点A 在()A .第一象限B .第二象限C .第三象限D .第四象限7.下列运算中,正确的是()A 9=-B 5±C1=-D .(22=-8.如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数()A .B .1-+C .1-D .19.在ABC 中,A ∠,B Ð,C ∠的对应边分别是a ,b ,c ,若90B ∠=︒,则下列等式中成立的是()A .222+=a b c B .222b c a +=C .222a cb +=D .222c a b -=10.如图,有一个直角三角形纸片,两直角边AC=5cm ,BC=12cm ,现将直角边AC 沿线段AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长是()cm .A .3B .4C .133D .243二、填空题11.2_________,绝对值是__________.12.点A (4,-3)到x 轴的距离是________,到原点的距离是________.13.斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是_______.14.已知直角三角形的三边分别为6、8、x ,则x =_____.15.如图,一圆柱高8cm ,底面半径为6πcm ,一只蚂蚁从点A 沿侧面爬到点B 处吃食,要爬行的最短路程是_____cm .16.如图,在正方形的网格中建立平面直角坐标系,若B 、C 两点的坐标分别是(0,2)B ,(1,0)C ,则A 点的坐标为________.17.若点A (m-5,1),点B (4,m+1),且直线AB ∥y 轴,则点A 的坐标为________.18.若x ,小数部分是y ,则x-y 的绝对值是________.三、解答题19.计算(15-(2)))(3)02(1+-(41+20.求下列式中的x 的值(1)23750x -=(2)31(3)42x -=-21.已知A (-2,0),B (4,0),C (x ,y )(1)若点C 在第二象限,且44x y ==,,求点C 的坐标,(2)在(1)的条件下,求三角形ABC 的面积;22.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 也外移4米,对吗?为什么?23.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如1===,化简:(1)(2)++24.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.参考答案1.C 【解析】【分析】根据算术平方根的定义即可求出结果.【详解】解:5故选C.【点睛】本题考查了算术平方根的定义.注意一个正数只有一个算术平方根.2.C【解析】【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:A、62+82=102,能组成直角三角形,故此选项不合题意;B、52+122=132,能组成直角三角形,故此选项不合题意;C、72+102≠122,不能组成直角三角形,故此选项符合题意;D、32+42=52,能组成直角三角形,故此选项不合题意;故选C.【点睛】此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.3.D【解析】【分析】根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标是(﹣2,﹣3).故选:D【点睛】本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.4.C【解析】【分析】化简得到结果,即可做出判断.【详解】A.不是最简二次根式;不是最简二次根式;C.D.不是最简二次根式;故选C.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.5.A【解析】【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.【详解】解:∵P(m+3,m-1)在y轴上,∴m+3=0,解得m=-3,即m-1=-3-1=-4.即点P的坐标为(0,-4).故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.6.B【解析】【分析】根据非负数的性质,易求x、y,从而可求点A的坐标,进而可知A点在哪一个象限.【详解】x+=,解:∵20∴x+2=0,y-2=0,∴x=-2,y=2,∴A点的坐标是(-2,2),在第二象限,故选:B.【点睛】本题考查了非负数的性质、点的坐标,解题的关键是熟练掌握每一个象限内点的坐标的特点.7.C【解析】【分析】直接根据二次根式和立方根的性质进行化简即可判断.【详解】解:A.9=,该选项错误;B.,该选项错误;C.1=-,该选项正确;D.(22=,该选项错误.故选:C.【点睛】此题主要考查二次根式和立方根的化简,熟练掌握二次根式和立方根的性质是解题关键.8.D【解析】【分析】根据勾股定理的公式算出正方形的对角线长,即可得到答案.【详解】解:数轴上正方形的边长为1,则正方形的对角线长为:=OA则点A表示的数为1故答案为D【点睛】本题考查勾股定理及两点间距离公式,熟记勾股定理的公式是解题的关键.9.C 【解析】【分析】根据勾股定理解题.【详解】解:如图,由勾股定理得,222a c b +=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.10.C 【解析】【分析】设CD xcm =,从而可得()12BD x cm =-,再根据勾股定理可得13AB cm =,然后根据折叠的性质可得,5,90DE CD xcm AE AC cm AED C ====∠=∠=︒,从而可得8BE cm =,最后在Rt BDE 中,利用勾股定理即可得.【详解】设CD xcm =,则()12BD BC CD x cm =-=-,在Rt ABC 中,5,2901,AC cm BC c C m =∠==︒,13AB cm ∴=,由折叠的性质得:,5,90DE CD xcm AE AC cm AED C ====∠=∠=︒,,980BE AB AE c BED m ∠∴===-︒,∴在Rt BDE 中,222DE B D E B +=,即()222812x x +=-,解得13()3x cm =,即133CD cm =,故选:C .【点睛】本题考查了勾股定理、折叠的性质等知识点,熟练掌握折叠的性质是解题关键.11.22-【解析】【详解】12.35【解析】【分析】直角坐标系中,某点到x 轴的距离是它的纵坐标的绝对值,到y 轴的确距离是它的横坐标的.【详解】解:点A (4,-3)到x 轴的距离为3,故答案为:3,5.13.60cm 2【详解】设另一条直角边为x ,由勾股定理得x ==15,直角三角形的面积是12×8×15=60,故直角三角形的面积是60cm 2.故答案为:60cm 214.10或【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【详解】分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得10x==,②一直角边为6,一斜边为8,由勾股定理得x==;故答案为:10或15.10【分析】将圆柱展开,然后利用两点之间线段最短解答.【详解】解:∵一圆柱高8cm,底面半径为6πcm,∴底面周长为:2×π×6π=12cm,则半圆弧长为6cm,展开得:BC=8cm,AC=6cm,由勾股定理得:10AB==(cm).故答案为:10cm.【点睛】本题考查了勾股定理的实际运用—求最短距离,解题的关键是根据题意画出展开图,表示出各线段的长度.-16.(1,3)【解析】【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示:A点的坐标为(−1,3).故答案为:(−1,3).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.17.(4,1)【解析】【分析】根据平行于y轴的直线上的点的横坐标相同即可得结果.【详解】解:∵点A(m-5,1),点B(4,m+1),且直线AB∥y轴,∴m-5=4,∴点A的坐标为(4,1),故答案为:(4,1).【点睛】本题考查了坐标与图形性质.需要掌握平行于坐标轴直线上点的坐标特征.18.12【解析】【分析】根据12<+,可得x和y值,代入计算即可.<,可得111012【详解】解:∵12<<,∴111012<+,∴x=11,1,∴111x y =--=12故答案为:12-.【点睛】本题考查了估计无理数的大小,确定x 、y 的值是解题的关键.19.(1)3;(2)﹣1;(3)(4)1.【解析】【分析】(1)先计算二次根式的乘法再算减法;(2)利用平方差公式计算;(3)先算乘法和完全平方公式计算,最后算加减;(4)先化简最简二次根式和去绝对值,最后算加减.【详解】解:(15=8-5=3;(2)原式=22561-=-=-;(3)原式=1+2-(1-+2)=3-;(4)原式=1=1.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式以及零次幂,熟练掌握各运算法则是解题的关键.20.(1)5x =±;(2)1x =.【解析】【分析】(1)利用平方根的性质解方程即可得;(2)利用立方根的性质解方程即可得.【详解】(1)23750x -=,2375x =,225x =,5x =±;(2)31(3)42x -=-,3(3)8x -=-,32x -=-,1x =.【点睛】本题考查了利用平方根和立方根的性质解方程,熟练掌握平方根和立方根的性质是解题关键.21.(1)点C 的坐标为(-4,4);(2)三角形ABC 的面积为12.【解析】【分析】(1)根据点C (x ,y )在第二象限,可得0,0x y <>,再由44x y ==,,即可求解;(2)根据A (-2,0),B (4,0),可得AB=6,即可求解.【详解】解:(1)∵点C (x ,y )在第二象限,∴0,0x y <>,∵44x y ==,,∴4,4x y =-=,∴点C 的坐标为(-4,4);(2)∵A (-2,0),B (4,0),∴AB=6,∴146122ABCS =⨯⨯= .【点睛】本题主要考查了平面直角坐标系内,各象限内点的坐标特征,三角形的面积,熟练掌握平面直角坐标系内,各象限内点的坐标特征是解题的关键.22.不对,8米.【解析】【分析】要判断梯子底端B是否外移4米,即要求BB'的长度,梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可.【详解】不对.理由:如图,依题意可知AB=25(米),AO=24(米),∠O=90°,∴BO2=AB2﹣AO2=252-242,∴BO=7(米),移动后,A'O=20(米),B'O2=(A'B')2-(A'O)2=252-202=152,∴B'O=15(米),∴BB'=B'O-BO=15-7=8(米).【点睛】本题主要考查勾股定理的应用.23.(1(2).2【解析】【分析】(1)利用分母有理化的形式进行化简;(2【详解】===;解:(1(2+=+122=+-+1)2=2=.【点睛】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和平方差公式是解决问题的关键.24.(1);(2)在运动过程中,△PQB 能形成等腰三角形,出发后83秒后第一次形成等腰三角形.(3)4.【解析】【分析】(1)求出AP 、BP 、BQ ,根据勾股定理求出PQ 即可.(2)根据等腰直角三角形得出BP=BQ ,代入得出方程,求出方程的解即可.(3)根据周长相等得出10+t+(6-2t )=8-t+2t ,求出即可.【详解】解:(1)∵出发2秒后AP=2cm ,∴BP=8﹣2=6(cm ),BQ=2×2=4(cm ),在Rt △PQB 中,由勾股定理得:cm )即出发2秒后,求PQ 的长为.(2)在运动过程中,△PQB 能形成等腰三角形,AP=t ,BP=AB ﹣AP=8﹣t ;BQ=2t由PB=BQ 得:8﹣t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形.(3)Rt △ABC 中由勾股定理得:=10(cm );∵AP=t ,BP=AB ﹣AP=8﹣t ,BQ=2t ,QC=6﹣2t ,又∵线段PQ 第一次把直角三角形周长分成相等的两部分,∴由分成的周长相等得:AC+AP+QC=PB+BQ10+t+(6﹣2t )=8﹣t+2t解得t=4(s )即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分.25.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,÷=秒,点P移动的时间是:52 2.5第二种情况,当点P在BA上时.++÷=秒,点P移动的时间是:(641)2 5.5故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
新北师大版八年级上册数学期中评价检测试卷附答案
新北师大版八年级上册数学期中评价检测试卷附答案新北师大版八年级上册数学期中评价检测试卷一、选择题(每题3分,共30分)1、1的平方根是()。
A) (B)−(C)±(D)±答案:(B)−2、长方形的一条对角线的长为10cm,一边长为6cm,它的面积是()。
A) 60cm (B) 64 cm (C) 24 cm (D) 48 cm答案:(C) 24 cm3、若一个三角形三边满足(a+b)−c=2ab,则这个三角形是()。
A) 直角三角形 (B) 等腰直角三角形 (C) 等腰三角形 (D) 以上结论都不对答案:(B) 等腰直角三角形4、估计56的大小应在()。
A) 5~6之间 (B) 6~7之间 (C) 8~9之间 (D) 7~8之间答案:(D) 7~8之间5、已知x,y为实数,且x−1+3(y−2)=2,则x−y的值为()。
A) 3 (B) −3 (C) 1 (D) −1答案:(A) 36、如果点P(m+3,m+1)在x轴上,则点P的坐标为()。
A) (0,2) (B) (2,0) (C) (4,0) (D) (0,−4)答案:(C) (4,0)7、已知点P的坐标为(2−a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标为()。
A) (3,3) (B) (3,−3) (C) (6,−6) (D) (3,3)或(6,−6)答案:(D) (3,3)或(6,−6)8、已知一次函数y=kx−k,若y随着x的增大而减小,则该函数图象经过()。
A) 第一、二、三象限 (B) 第一、二、四象限 (C) 第二、三、四象限 (D) 第一、三、四象限答案:(B) 第一、二、四象限9、下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n为常数,且mn≠)的图象的是()。
A) (B) (C) (D)OxOxOxOxyyyy答案:(A)10、点P1(x1,y1),点P2(x2,y2)是一次函数y=−4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1227,0.1010010001 (2)π中无理数有()A .4个B .3个C .2个D .1个2.16的平方根是()A .±8B .8C .4D .±43.下列数据中不能确定物体的位置的是()A .南偏西40°B .红旗小区3号楼701号C .龙山路461号D .东经130°,北纬54°4.下列计算结果正确的是()A3=-B .3=C 2=D .2(5=5.已知点1(1,5)P a -和2(2,1)P b -关于x 轴对称,则a+b 的值为()A .1-B .0C .1D .56.若y =(k ﹣2)x |k ﹣1|+1表示一次函数,则k 等于()A .0B .2C .0或2D .﹣2或07.若点P 位于平面直角坐标系第四象限,且点P 到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为()A .()1,2-B .()1,2-C .()2,1-D .()2,1-8.满足下列条件时,ABC 不是直角三角形的是()A .AB =,4BC =,5AC =B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .40A ∠=︒,50B ∠=︒9.实数a ,b =()A .﹣bB .bC .﹣2a ﹣bD .﹣2a+b10.下列图形中,表示一次函数y mx n =+切与正比例函数y mnx =(m ,n 为常数,且0mn ≠)的图象的是()A B C D二、填空题1116_____.12.一个实数的平方根为33x +与1x -,则这个实数是________.1321x -x 的取值范围是____.14.如图,正方形ODBC 中,2OA=OB ,则数轴上点A 表示的数是________.15.a 13b 133a b -=_______;16.如图,有一圆柱,其高为14cm ,它的底面周长为10cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,其中B 离上沿2cm ,则蚂蚁经过的最短路程为________.17.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形n 1n n n A B C C -,使得点1A 、2A 、3A 、…在直线1上,点1C 、2C 、3C 、…在y 轴正半轴上,则点n B 的坐标是________.三、解答题18183222+19.△ABC 在直角坐标系内的位置如图.(1)分别写出A 、B 、C 的坐标;(2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标.20.如图,有一块直角三角形纸片,两直角边6AC =cm ,8BC =cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,求CD 的长.21.已知3a+b-1的平方根为±4,5a+2的立方根为3.(1)求a ,b 的值;(2)求2a-b+1的算术平方根.22.如图,在四边形ABCD 中,已知90B ∠=︒,213AB BC AD CD ====,,.(1)求DAB ∠的度数;(2)求四边形ABCD 的面积.23.已知函数y=(m+1)x 2-|m |+n+4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?24.小明在解决问题:已知a,求2a 2﹣8a+1的值,他是这样分析与解答的:∵a 2=-∴a ﹣2∴(a ﹣2)2=3,即a 2﹣4a+4=3.∴a 2﹣4a =﹣1,∴2a 2﹣8a+1=2(a 2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1=;(2(3)若a2a 2﹣8a+1的值.25.在平面直角坐标系中,O 为坐标原点,过点A (8,6)分别做x 轴、y 轴的平行线,交y 轴于点B ,交x 轴于点C ,点P 是从点B 出发,沿B→A→C 以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t (秒).(1)直接写出点B 和点C 的坐标:B (,)C (,).(2)当点P 运动时,用含t 的代数式表示线段AP 的长,并写出t 的取范围;(3)点D (2,0),连结PD 、AD ,在(2)的条件下是否存在这样的t 值,使S △APD =18S 四边形ABOC,若存在,请求t 值,若不存在,请说明理由.参考答案1.B 【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】4=2,是整数,属于有理数;227是分数,属于有理数;无理数有0.1010010001 (32),共3个.故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.D【解析】【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.3.A【解析】【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A.南偏西40︒,不是有序数对,不能确定物体的位置,故本选项符合题意;B.红旗小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.龙山路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130︒,北纬54︒,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.【点睛】本题考查了坐标确定点的位置,解题的关键是要明确,一个有序数对才能确定一个点的位置.4.D【解析】【分析】直接利用二次根式的除法运算、加减运算法则分别计算得出答案.【详解】解:3=,故此选项不合题意;B.==,故此选项不合题意;D.2(5=,故此选项符合题意.故选:D .【点睛】本题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.A 【解析】【分析】根据两个点关于x 轴对称,则横坐标相等,纵坐标互为相反数,即可求出结果.【详解】解:∵点1(1,5)P a -和2(2,1)P b -关于x 轴对称,∴12a -=,510b +-=,即3a =,4b =-,∴()a b 341+=+-=-.故选:A .【点睛】本题考查点坐标的对称,解题的关键是掌握关于坐标轴对称的点坐标的特点.6.A 【解析】【分析】依据一次函数的定义可知|k ﹣1|=1且k ﹣2≠0,从而可求得k 的值.【详解】解:∵函数y =(k ﹣2)x |k ﹣1|+3是一次函数,∴|k ﹣1|=1且(k ﹣2)≠0,解得:k =0.故选:A .此题考查一次函数的定义,注意一次项系数不为0是关键,难度一般.7.D 【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点P 的横坐标为2,纵坐标为1-∴点P 的坐标为()2,1-故选D .【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.8.C 【解析】【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】解:A 、22245=+符合勾股定理的逆定理,故A 选项是直角三角形,不符合题意;B 、32+42=52,符合勾股定理的逆定理,故B 选项是直角三角形,不符合题意;C 、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C 选项不是直角三角形,符合题意;D 、根据三角形内角和定理,求得各角分别为90°,40°,50°,故D 选项是直角三角形,不符合题意.故选:C .9.D 【解析】【分析】先根据数轴可确定a <﹣1,0<b <1,然后根据二次根式的性质化简,即可求解.解:由数轴可得:a <﹣1,0<b <1,∴a ﹣b <0,故原式2a b a a b =-+-=-+故选:D .【点睛】本题主要考查了数轴和二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.10.A 【解析】【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项不符合题意;C.由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn <,两结论不一致,故本选项不符合题意;D.由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项不符合题意;故选A .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.11.2【解析】【分析】根据算术平方根的运算法则,直接计算即可.【详解】,4的算术平方根是2,2.故答案为:2【点睛】此题考查了求一个数的算术平方根,16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.12.9 4【解析】【分析】根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.【详解】解:根据题意得:①这个实数为正数时:3x+3+x-1=0,∴x=-12,∴(x-1)2=9 4,②这个实数为0时:3x+3=x-1,∴x=-2,∵x-1=-3≠0,∴这个实数不为0.故答案为:9 4.【点睛】本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.13.12 x≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】210x-≥,解得:12 x≥;故答案为12 x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14.【解析】【分析】在直角三角形中根据勾股定理求得OB的值,即OA的值,进而求出数轴上点A表示的数.【详解】解:∵,∴∵点A在数轴上原点的左边,∴点A表示的数是,故答案为【点睛】本题考查了实数与数轴,勾股定理,解题时需注意根据点的位置确定数的符号.15.12【解析】【分析】由34,可得,a b的值,再把,a b的值代入3,a b-即可得到答案.【详解】解: 34,的整数部分是3,则3,a =3,-则3,b -)39312a b ∴-=-=-故答案为:12-【点睛】本题考查的是无理数的估算,无理数的整数部分与小数部分,熟悉判断无理数的整数部分与小数部分的方法是解题的关键.16.13cm【解析】【分析】如图,在A 点沿母线剪开,连接AB 即为最短的路径,过B 向底边作垂线交点为C ,在Rt ABC ,1105cm 14212cm2AC BC =⨯==-=,,对AB =【详解】解:如图,在A 点沿母线剪开,连接AB 即为最短的路径,过B 向底边作垂线交点为C在Rt ABC ,1105cm 14212cm 2AC BC =⨯==-=,∴13cmAB =故答案为:13cm .【点睛】本题考查了几何体的展开图,勾股定理.解题的关键在于找到最短的路径.17.()12,21n n --【解析】【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“Bn (2n -1,2n-1)(n 为正整数)”,依此规律即可得出结论.【详解】解:当y=0时,有x-1=0,解得:x=1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴Bn (2n -1,2n-1)(n 为正整数),故答案为:()12,21n n --【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn (2n -1,2n-1)(n 为正整数)”是解题的关键.18.【解析】【分析】先将二次根式化简,再去括号、合并即可.【详解】⎝===【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.19.(1)A(0,3);B(-4,4);C(-2,1);(2)画图见解析;B 1(4,4)【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 1的坐标.(1)根据平面直角坐标系得:A(0,3);B(-4,4);C(-2,1);(2)△A 1B 1C 1如图所示,B 1(4,4).【点睛】本题考查了利用轴对称作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.CD 长为3cm【解析】【分析】在Rt ABC 中,由勾股定理得AB =,由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒,BE AB AE =-,设DE CD x ==,则8BD x =-,在Rt BDE 中,由勾股定理得222BD DE BE =+,计算求解即可.【详解】解:∵6AC =cm ,8BC =cm∴在Rt ABC 中,AB =由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒∴1064BE AB AE =-=-=cm设DE CD x ==,则8BD x=-∴在Rt BDE 中,由勾股定理得222BD DE BE =+即()22284x x -=+解得3x =∴CD 的长为3cm .【点睛】本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.21.(1)a=5,b=2;(2)2a-b+1的算术平方根是3.【解析】【分析】(1)根据题意及平方根、立方根可直接进行求解;(2)由(1)及算术平方根的定义可进行求解.【详解】解:(1)∵3a+b-1的平方根为±4,5a+2的立方根为3,∴()23314,523a b a +-=±+=,∴5,2a b ==;(2)由(1)可得:2125219a b -+=⨯-+=,∵()239±=,∴2a-b+1的算术平方根为3.【点睛】本题主要考查立方根、算术平方根及平方根,熟练掌握求一个数的立方根、算术平方根及平方根是解题的关键.22.(1)135︒;(2)2S =+【解析】【分析】(1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC ,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD;(2)连接AC,则可以计算△ABC的面积,根据AB、BC可以计算AC的长,根据AC,AD,CD可以判定△ACD为直角三角形,根据AD,CD可以计算△ACD的面积,四边形ABCD的面积为△ABC和△ADC面积之和.【详解】(1)连结AC,∵∠B=90°,AB=BC=2,∴AC=,∠BAC=45°,∵AD=1,CD=3,∴AD2+AC2=122=9,CD2=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=135°.(2)在Rt△ABC中,S△ABC =12•BC•AB=12×2×2=2,在Rt△ADC中,S△ADC =12•AD•AC=12∴S四边形ABCD=S△ABC+S△ADC=【点睛】此题考查等腰三角形的性质,勾股定理,勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.23.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.【解析】【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.【点睛】此题考查一次函数的定义,正比例函数的定义,解题关键在于利用其各定义进行解答. 24.(11;(2)1;(3)3【解析】【分析】(1)根据小明的解答过程即可进行计算;(2)结合(1)进行分母有理化,再合并即可得结果;(3)根据平方差公式,可分母有理化,根据整体代入,可得答案.【详解】==-,解:(111;(2)原式1=-+⋯1=1=;(3)2a = ,222)9a ∴==+2281a a ∴-+2(92)1=+-+18161=+--+3=.答:2281a a -+的值为3.【点睛】本题考查了分母有理化的应用,能求出a 的值和正确变形是解此题的关键.25.(1)B (0,6)C (8,0)(2)()820428(47)AP t t AP t t =-≤≤=-<≤(3)3,5【解析】【分析】(1)根据题意即可得到结论;(2)当点P 在线段BA 上时,根据A (8,6),B (0,6),C (8,0),得到AB=8,AC=6当点P 在线段AC 上时,于是得到结论;(3)当点P 在线段BA 上时,当点P 在线段AC 上时,根据三角形的面积公式即可得到结论.【详解】(1)B (0,6),C (8,0),故答案为0、6,8、0;(2)当点P 在线段BA 上时,由A (8,6),B (0,6),C (8,0)可得:AB=8,AC=6,∵AP=AB-BP ,BP=2t ,∴AP=8-2t (0≤t <4);当点P 在线段AC 上时,∵AP=点P 走过的路程-AB=2t-8(4≤t≤7);(3)存在两个符合条件的t 值,当点P 在线段BA 上时,∵S △APD =12AP•AC ,S ABOC =AB•AC ,∴12•(8-2t )×6=18×8×6,解得:t=3<4,当点P 在线段AC 上时,∵S △APD =12AP•CD ,CD=8-2=6,∴12•(2t-8)×6=18×8×6,解得:t=5<7,综上所述:当t 为3秒和5秒时S △APD =18S ABOC ,。
【北师大版】数学八年级上册《期中测试卷》附答案解析
【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:
①k>0,b>0⇔y=kx+b的图象在一、二、三象限;
②k>0,b<0⇔y=kx+b的图象在一、三、四象限;
③k<0,b>0⇔y=kx+b的图象在一、二、四象限;
④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
12.如图所示,有一个高 ,底面周长为 的圆柱形玻璃容器,在外侧距下底 的点 处有一只蚂蚁,与蚂蚁相对的圆柱形容器的上口内侧距开口处 的点 处有一滴凝固的蜂蜜,则蚂蚁到凝固蜂蜜所走的最短路径的长度是()
A. B.
C. D.
【答案】B
【解析】
【分析】
从点S处竖直向上剪开,此圆柱体的侧面展开图如图,其中SC为圆柱体的底面周长的一半,再由勾股定理进行解答即可.
【详解】如图:
过F点作容器上沿的对称点B,过S作SC⊥BC于C,
连接SB,则SB即为最短距离,
由题意得:SC为圆柱体的底面周长的一半, (cm),
B、12+( )2=4=22,符合勾股定理的逆定理,是直角三角形,故此选项错误;
C、32+42=25=52,符合勾股定理的逆定理,是直角三角形,故此选项错误;
D、22+22=8≠32,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;
故选D.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
【答案】A
【解析】
【分析】
根据点的纵坐标的绝对值是点到x轴的距离,可得答案.
【详解】在平面直角坐标系中,点P(4,-3)到x轴的距离为: =3
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试卷含答案试题一:选择题(共50小题,每小题2分,共100分)1. 已知正方形的边长为8cm,其对角线长度为x cm,下列等式中正确的是:A. $x = 8$B. $x = 4\sqrt{2}$C. $x = 4\sqrt{3}$D. $x = \sqrt{2} + \sqrt{3}$2. 若$m$是一个正整数,$m$的9倍再加上5可以被9整除,则$m$的值为:A. 0B. 1C. 2D. 33. 下列选项中,不等于$\frac{5}{6}$的是:A. $\frac{9}{12}$B. $\frac{10}{15}$C. $\frac{4}{5}$D. $\frac{25}{30}$4. 若$x = 2$,则$2x^2 - x - 3$的值为:A. 3B. 4C. 5D. 65. 若$y = 4x - 3$,则当$x = 2$时,$y$的值为:A. 1B. 2C. 5D. 8...试题五:解答题(共5题,每题10分,共50分)1. 设$a = -2$,$b = 3$,求$|a + b| - |a - b|$的值。
解:将$a$和$b$的值带入表达式中,得到:$|-2 + 3| - |-2 - 3| = |1| - |-5| = 1 - 5 = -4$所以,$|a + b| - |a - b|$的值为-4。
2. 若函数$y = kx - 3$关于直线$x = 2$对称,求常数$k$的值。
解:因为函数关于直线$x = 2$对称,所以点$(2, y)$和点$(4, y')$关于直线$x = 2$对称,即点$(2, y)$和点$(4, y')$的横坐标对称。
则根据对称性质可得:$2 + 2 = 4$将函数$y = kx - 3$带入,得到:$k \cdot 2 - 3 = k \cdot 4 - 3$整理得到:$-k = -2$解得$k = 2$所以,常数$k$的值为2。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在实数:3.14159,364,1.010010001,4.21,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列根式中是最简二次根式的是()A .15B .213C .8D .273.若()2 1 3my m x -=-+是关于x 的一次函数,则m 的值为()A .1B .1-C .±1D .2±4.以下四组数中,不是勾股数的是()A .3n ,4n ,5n (n 为正整数)B .5,12,13C .20,21,29D .8,5,75.已知点A (4,3)和点B 在坐标平面内关于x 轴对称,则点B 的坐标是()A .(4,3)B .(﹣4,3)C .(4,﹣3)D .(﹣4,﹣3)6.已知a<7<b ,且a ,b 为两个连续的整数,则a+b 等于()A .3B .5C .6D .77.如图,长方体的长为15宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是()A .20B .25C .30D .328.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为()A .23-B .29-C .47-D .27-9.如图,三级台阶,每一级的长、宽、高分别为8dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为()A.15dm B.17dm C.20dm D.25dm10.如图,在平面直角坐标系中,△ABC与△DEF关于直线m:x=1对称,M,N分别是这两个三角形中的对应点.如果点M的横坐标是a,那么点N的横坐标是()A.-a B.-a+1C.a+2D.2-a二、填空题11.点M(﹣3,4)到y轴的距离是__.12.已知a+2的平方根是±3,a﹣3b立方根是﹣2,求a+b的平方根为_____.13.若已知a、b5a-5a-,则a b+=_____.14.△ABC中,∠ABC=30°,AB=3AC=4,则BC=____.15.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________三、解答题16.计算与解方程(1(π﹣3)0(2)⎛ ⎝(3(4)解方程23(1)471x +-=17.已知2a ﹣1的算术平方根是5,b +1的立方根是﹣2,求3a ﹣b 算术平方根.18.在平面直角坐标系中,已知点()1,24P m m -+,试分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 横坐标比纵坐标大3;(3)点P 在过()5,2A -点,且与y 轴平行的直线上.19.如图,在四边形ABCD 中,已知AB =AD =2,BC =3,CD =1,∠A =90°.(1)求BD 的长;(2)求∠ADC 的度数.20.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式;(2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由.(3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?21.如图,已知A (0,4),B (﹣2,2),C (3,0).(1)作△ABC 关于x 轴对称的△A 1B 1C 1;(2)求△A1B1C1的面积与A1B1边上的高;(3)在x轴上有一点P,使PA+PB最小,求PA+PB的最小值.22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.23.如图,小亮发现升旗的绳子放下时,末端刚好接触到地面E处,但将绳子末端拉到距离旗杆8米的B处,发现此时绳子末端距离地面2米.求旗杆的高度.24.某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当0<x≤5时,单价y为元.当单价y=8.8时,x的取值范围为.(2)根据函数图象,求第②段函数图象中单价y(元)与购买量(千克)的函数关系式,并写出x的取值范围.(3)促销活动期间,张老师计划去该店购买A种水果10千克,那么张老师共需花费多少钱?参考答案1.A【分析】根据无理数的定义逐一判断即可.【详解】解:3.14159,1.010010001,4.21,227都是有理数;根据无理数的定义得,只有π是无理数.故选A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:含π的式子;开方开不尽的数;以及像0.1010010001…,等有这样有规律但不循环的小数.2.B 【分析】最简二次根式应满足的条件:①被开方数的因数或因式的指数小于2;②被开方数的因数或因式是整数.【详解】解:A.B.C.,不是最简二次根式D.不是最简二次根式故选B.【点睛】此题考查了最简二次根式应满足的条件.3.B 【分析】根据一次函数定义求出m 的值即可.【详解】∵()2 1 3my m x -=-+是一次函数∴21m -=∴1m =±∵10m -≠∴1m =-故选B 【点睛】本题主要考查了一次函数的定义,掌握一次函数的定义是解题的关键.4.D 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.A、(3n)2+(4n)2=(5n)2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】此题考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.5.C【分析】根据关于x轴对称的点的坐标,纵坐标互为相反数,横坐标相等求出点B的坐标即可.【详解】点A(4,3)关于x轴对称的点的坐标为(4,﹣3),∴B(4,﹣3).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.B【分析】a、b为两个连续整数,若a b,即可得到a=2,b=3,从而求出a+b.【详解】解:∵,,∴a=2,b=3,∴a+b=5.【点睛】本题考查估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.7.B【详解】试题解析:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:.(2)如图,BC=5,AC=20+10=30,由勾股定理得,(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴;由于25<<故选B .8.A 【详解】如图,梯形的面积=1(26)282⨯+⨯=,直线把梯形的面积分成相等的两部分,每部分为4,∴直线2y kx =+一定过(0,2),即点D ,设直线与横轴交于点E ,则1242AE ⨯⨯=,∴4AE =,即点E 坐标为(3,0),把点(3,0)代入2y kx =+,得23k =-.故选A .9.B 【分析】根据勾股定理求解出最短路程即可.【详解】最短路径17dm =故答案为:B .【点睛】本题考查了利用勾股定理求最短路程的问题,掌握勾股定理是解题的关键.10.D 【分析】根据对应点的中点在对称轴上,可得点N 与M 点的关系,根据解方程,可得答案【详解】解:设N 点的横坐标为b ,由△ABC 与△DEF 关于直线m=1对称,点M 、N 分别是这两个三角形中的对应点,得12a b+=,解得2b a =-.故选:D .【点睛】此题考查坐标与图形变化对称,解题关键在于列出方程11.3.【分析】根据点到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点A 的坐标(﹣3,4),它到y 轴的距离为|﹣3|=3,故答案为:3.【点睛】本题考查了点的坐标,点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值.12.【分析】先根据平方根,立方根的定义列出关于a 、b 的二元一次方程组,再求出a+b 的值,然后根据平方根的定义求解即可.【详解】∵a+2的平方根是±3,a ﹣3b 立方根是﹣2,∴2038a ab +=⎧⎨-=-⎩,解得75a b =⎧⎨=⎩,∴a+b =12,∴a+b 的平方根为故答案为:【点睛】本题考查了平方根,立方根的定义,列式求出a 、b 的值是解题的关键.13.1【解析】有意义,所以50{50a a -≥-≥,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考点:二次根式.14.8或4.【分析】分两种情况进行解答,一是∠ACB 为锐角,另一种∠ACB 为钝角,分别画出图形,通过作高,构造直角三角形,利用直角三角形的性质和边角关系进行解答即可.【详解】①当∠ACB 为锐角时,如图1,过点A 作AD ⊥BC ,垂足为D ,在Rt △ABD 中,∵∠ABC =30°,AB =∴AD =12AB =BD =cos30°×AB =6,在Rt △ADC 中,DC 2,∴BC =BD+DC =6+2=8;②当∠ACB 为钝角时,如图2,过点A 作AD ⊥BC ,交BC 的延长线于点D ,在Rt △ABD 中,∵∠ABC =30°,AB =∴AD =12AB =BD =cos30°×AB =6,在Rt △ADC 中,DC 2,∴BC =BD ﹣DC =6﹣2=4;因此BC 的长为8或4,故答案为:8或4.【点睛】本题考查直角三角形的性质、直角三角形的边角关系等知识,分类画出相应的图形,作高构造直角三角形是常用的方法.15【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,BD 8==,∵CE 是AB 边上的中线,CD =AE ,∴152CD AE BE AB ====,取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线,∴132EF AD ==,EF//AD ,∴∠EFB=∠D=90°,在Rt △BEF 中,根据勾股定理,4BF ==,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,CE ===,.【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.16.(1)(2)4;(3)(4)1=3x ,2=-5x 【分析】(1)利用立方根,算术平方根及零指数幂的运算进行计算;(2)利用二次根式的混合运算的计算;(3)二次根式的化简,进行计算;(4)利用开平方法解方程.【详解】解:(1(π﹣3)0=(-3+1-(2)⎛ ⎝()3-5=2+2=4(3==(4)解方程23(1)471x +-=解:23(1)=48x +2(1)=16x +=41x +±=41x +1=3x -41=x +2=-5x 【点睛】本题考查了二次根式的混合运算及一元二次方程-直接开平方法,掌握二次根式的化简及运算顺序是本题的解题关键.17.【分析】利用平方根,立方根定义求出a 与b 的值,即可求出所求.【详解】解:∵2a ﹣1的算术平方根是5,b+1的立方根是﹣2,∴2a ﹣1=25,b+1=﹣8,解得:a =13,b =﹣9,∴3a ﹣b =48,48的算术平方根是【点睛】本题是对算术平方根和立方根的考查,熟练掌握算术平方根和立方根知识是解决本题的关键.18.(1)()3,0-;(2)()9,12--;(3)()5,4--【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标-纵坐标=3得m 的值,代入点P 的坐标即可求解;(3)让横坐标为-5求得m 的值,代入点P 的坐标即可求解.【详解】解:(1)∵点P 在x 轴上,∴令2m+4=0,解得m=-2,则P 点的坐标为(-3,0);(2)∵点P 横坐标比纵坐标大3,∴令m-1-(2m+4)=3,解得m=-8,则P 点的坐标为(-9,-12);(3)∵点P 在过()5,2A -点,且与y 轴平行的直线上,∴令m-1=-5,解得m=-4.则P 点的坐标为(-5,-4).【点睛】本题考查了点的坐标,用到的知识点为:x 轴上的点的纵坐标为0;平行于y 轴的直线上的点的横坐标相等.19.(1)(2)135°.【分析】(1)首先在Rt △BAD 中,利用勾股定理求出BD 的长;(2)根据等腰直角三角形的性质求出∠ADB =45°,再根据勾股定理逆定理在△BCD 中,证明△BCD 是直角三角形,即可求出答案.【详解】解:(1)在Rt △BAD 中,∵AB =AD =2,∴BD =(2)在Rt △BAD 中,∵AB =AD =2,∴∠ADB =45°,在△BCD 中,DB 2+CD 2=8+12=9=CB 2,∴△BCD 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.【点睛】此题主要考查了勾股定理以及逆定理的运用,解决问题的关键是求出∠ADB =45°,再求出∠BDC =90°.20.(1)y 甲=x +1500,y 乙=2.5x ;(2)选择乙印刷厂比较合算;(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可;(3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,∵y 甲>y 乙,∴选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,∵1500>1200,∴选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.21.答案见解析.【分析】(1)依据轴对称的性质,即可作△ABC 关于x 轴对称的△A 1B 1C 1;(2)依据割补法即可得到△A 1B 1C 1的面积,进而得出A 1B 1边上的高;(3)连接AB 1,交x 轴于点P ,则BP=B 1P ,PA+PB 的最小值等于AB 1的长,运用勾股定理即可得到结论.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=111 452522347 222⨯-⨯⨯-⨯⨯-⨯⨯=∵A1B1=,∴A1B1边上的高2=;(3)如图所示,连接AB1,交x轴于点P,则BP=B1P,∴PA+PB的最小值等于AB1的长,∵AB1=∴PA+PB的最小值等于.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22.(1)y=﹣x+6;(2)S△OAC=12;(3)存在,M的坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7)【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的14时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y kx b=+,根据题意得:42 60 k bk b+=⎧⎨+=⎩,解得:16kb=-⎧⎨=⎩,则直线的解析式是:y x6=-+;(2)在y=﹣x+6中,令x=0,解得:y=6,OAC 1S64122∆=⨯⨯=;(3)设OA的解析式是y=mx,则4m=2,解得:1 m2 =,则直线的解析式是:12y x =,∵当△OMC的面积是△OAC的面积的14时,∴当M的横坐标是141 4⨯=,在12y x=中,当x=1时,y=12,则M的坐标是1(1,2;在y x6=-+中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,12)或M2(1,5).当M的横坐标是:﹣1,在y x6=-+中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7).【点睛】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.23.17米【分析】如图:作BC AE ⊥于点C ,由题意得8BC =,设AE x =,则AB x =,2AC x =-,然后运用勾股定理求得x 即可.【详解】解:作BC AE ⊥于点C ,由题意得8BC =设AE x =,则AB x =,2AC x =-.在Rt ABC ∆中,222AC BC AB +=222(2)8x x -+=解得17x =.答:旗杆的高度是17米.【点睛】本题主要考查了勾股定理的应用,做出辅助线、构造直角三角形成为解答本题的关键.24.(1)10,x ≥11;(2)y =﹣0.2x +11(5≤x ≤11);(3)促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【分析】(1)根据观察函数图象的横坐标,纵坐标,可得答案;(2)根据待定系数法,可得函数的解析式;(3)根据(2)的结论解答即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;x ≥11;(2)设②段函数图象的解析式y =kx +b (k 是常数,b 是常数,k ≠0),图象过点(5,10)(11,8.8),510118.8k b k b +=⎧⎨+=⎩,解得k 0.2b 11=-⎧⎨=⎩,第②段函数图象的解析式y =﹣0.2x +11(5≤x ≤11);(3)当x =10时,y =﹣0.2×10+11=9,答:促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【点睛】本题考查了一次函数的应用,(1)观察图象是解题关键;(2)待定系数法是求函数解析式的关键.。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下面说法中,正确的是()A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和02.在△ABC 中,AB=12,BC=16,AC=20,则△ABC 的面积为()A .96B .120C .160D .2003.若一个正数的两个平方根为1a +和27a -,则这个正数是()A .2B .3C .8D .94.在平面直角坐标系中,若点P(a -3,1)与点Q(2,b +1)关于x 轴对称,则a +b 的值是()A .1B .2C .3D .45.有理数a 和b -∣a-b ∣等于()A .aB .-aC .2b+aD .2b-a6.如图,分别以Rt ABC 的三边为斜边向外作等腰直角三角形,若斜边6AB =,则图中阴影部分的面积为()A .6B .12C .16D .187.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .748.在平面直角坐标系中,一次函数的图象是()A.B.C.D.9.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)10.如图,在数轴上点A所表示的数为a,则a的值为()A.1-B.1C.D.1-+二、填空题11.如图数轴上的点O表示的数是0,点A表示的数是2,OB⊥OA,垂足为O,且OB=1,以A为圆心,AB长为半径画弧,交数轴于点C,则点C表示的数为_______.12.a b3a b-=_______;13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为__________.14.已知点P的坐标为(3-2a,a-9),且点P到两坐标轴的距离相等,则点P的坐标为_______.156b -=+,则-a b 的算术平方根为______.16.如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F 处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为__________cm (容器壁厚度忽略不计).三、解答题17.计算:(1(2)2)22.18.阅读下列材料,然后解答下列问题:这样的式子,其实我们还可以将其进一步化简:(一)=;(二)1-;(三)221=-.以上这种化简的方法叫分母有理化.(1):①参照(二)__________.②参照(三)=_____________(2)+19.如图,已知等腰△ABC 的底边BC =13,D 是腰AB 上一点,且CD =12,BD =5.(1)求证:△BDC是直角三角形;(2)求AC的长.20.在平面直角坐标系中,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点,(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,当△BCD 的面积等于10时,求点P的坐标.21.如图,将一张长方形纸片ABCD沿E折叠,使,C A两点重合.点D落在点G处.已知=4AB,BC=.8(1)求证:AEF∆是等腰三角形;(2)求线段FD的长.22.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,若BD=3,CF=4,求DF的长.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点B、C的坐标分别为(﹣2,0),(﹣1,2).(1)请在如图所示的网格中根据上述点的坐标建立对应的直角坐标系;(只要画图,不需要说明)(2)在(1)中建立的平面直角坐标系中,先画出△ABC关于y轴对称的图形△A1B1C1,再画出△A1B1C1关于x轴对称的图形△A2B2C2.24.已知:如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2.(1)求证:∠A=90°;(2)若AB=8,BC=10,求AE的长.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动3.5秒时,求出点P的坐标;(3)在移动过程中,若点P到x轴的距离为4个单位长度时,求点P移动的时间.参考答案1.C【解析】【分析】直接利用有关实数的性质分别分析得出答案.【详解】解:A、实数分为正实数、负实数和0,故选项错误,不符合题意;B2,故选项错误,不符合题意;C、无限不循环小数都是无理数,故选项正确,符合题意;D、平方根等于本身的数是0,故选项错误,不符合题意;故选:C.【点睛】本题主要考查了实数,解题的关键是正确掌握实数的分类及概念.2.A【解析】【详解】∵122+162=202,即AC2=AB2+BC2,∴△ABC是直角三角形,且AC是直角边,∴△ABC的面积是12×12×16=96.故选:A.3.D【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a的值,即可确定出这个正数.【详解】解:根据题意得:a+1+2a-7=0,解得:a=2,则这个正数是(2+1)2=9.故选:D .【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.4.C 【解析】【分析】直接利用关于x 轴对称点的性质:横坐标不变,纵坐标互为相反数,即可得出a ,b 的值,进而得出答案.【详解】解: 点(3,1)P a -与点(2,1)Q b +关于x 轴对称,32a ∴-=,11b +=-,5a ∴=,2b =-,则523a b +=-=.故选:C .【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆关于x 轴对称点的符号关系是解题关键.5.B 【解析】【分析】先观察数轴得b <0<a ,判断0a b ->,再化简a b a b -=-a =,然后合并同类项即可【详解】解:观察数轴可知:b <0<a ,b b ==-,0a b ->,a b a b -=-()a b b a b b a b a --=---=--+=-,故答案为:B.【点睛】本题主要考查二次根式中一些化简公式的运用以及绝对值符号的化简,整式的加减计算,需要熟练掌握以上基本概念方法.6.D【解析】【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【详解】解:在Rt△AHC中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴,同理:在Rt△ABC中,AB2=AC2+BC2,AB=6,S阴影=S△AHC+S△BFC+S△AEB=12HC•AH+12CF•BF+12AE•BE,即22211112224⎛⎛++=⎝⎝(AC2+BC2+AB2)14=(AB2+AB2) 12=AB22162=⨯18=.故选:D.【点睛】本题考查了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.7.D【解析】【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=25 4,∴CE=2584-=74,故选:D.【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.8.B【解析】【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【详解】一次函数y=x-1的图象过(1,0)、(0,-1)两个点,观察图象可得,只有选项B符合要求,故选B.【点睛】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.9.D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m+3,m+1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.10.A【解析】【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】∴由图可知:点A所表示的数为:1-故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.11.2【解析】【分析】利用勾股定理求出AB的长,可得AB AC==2OC即可解决问题.【详解】解:在Rt AOB中,AB==,AB AC∴==,2OC AC OA∴=-=-,C点在x轴负半轴,∴点C表示的数为2-故答案为:2【点睛】本题考查实数与数轴、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.12【解析】【分析】由34,可得,a b的值,再把,a b的值代入3,a b-即可得到答案.【详解】解: 34,的整数部分是3,则3,a=3,-则3,b-)39312a b ∴-=-=-故答案为:12-【点睛】本题考查的是无理数的估算,无理数的整数部分与小数部分,熟悉判断无理数的整数部分与小数部分的方法是解题的关键.13.8【解析】【分析】根据勾股定理的几何意义:S 正方形A+S正方形B=S 正方形E ,S 正方形D-S 正方形C=S 正方形E 解得即可.【详解】解:由题意:S 正方形A+S 正方形B=S 正方形E ,S 正方形D-S 正方形C=S 正方形E ,∴S 正方形A+S 正方形B=S 正方形D-S 正方形C ,∵正方形A 、C 、D 的面积依次为4、6、18,∴S 正方形B+4=18-6,∴S 正方形B=8.故答案为:8.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.14.(-5,-5)或(15,-15)也可以(15,-15)或(-5,-5)【解析】【分析】由点P 的坐标为(3-2a ,a-9),且点P 到两坐标轴的距离相等,可列方程:329a a -=-,再解绝对值方程可得答案.解:∵点P 的坐标为(3-2a ,a-9),且点P 到两坐标轴的距离相等,∴329a a -=-∴3-2a=a-9或3-2a=-a+9解之:a=4或a=-6当a=4时3-2a=3-8=-5,a-9=-5;当a=-6时3-2a=3+12=15,a-9=-15;∴点P 的坐标为(-5,-5)或(15,-15).故答案为:(-5,-5)或(15,-5)【点睛】本题考查的是点到坐标轴的距离,掌握“(),P x y 到x 轴的距离为,y 到y 轴的距离为x ,”是解题的关键.15.3【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式求出a ,代入原式求出b ,根据算术平方根的概念解答即可.【详解】解:由题意得,30a - ,30a -,解得,3a =,60b ∴+=,解得,6b =-,3(6)9a b ∴-=--=,a b ∴-算术平方根为3,故答案为:3.【点睛】本题考查的是二次根式有意义的条件、算术平方根的概念,解题的关键是掌握二次根式的被开方数是非负数.16.34【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间线段最短,可知CF的长即为所求;然后结合已知条件求出DF与CD的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF是蜘蛛由C到F的最短路程.根据题意,可知DF=18-1-1=16(cm),CD160302=⨯=(cm),∴34CF==(cm),即蜘蛛所走的最短路线的长度是34cm.故答案为34.【点睛】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;17.(1)0;(2)2-【解析】【分析】(1)根据二次根式的计算原则,计算即可(2)根据平方差公式和平方运算,化简即可.【详解】解:(1)原式=-=0=(2)原式=22 23 --=543--=2-【点睛】本题考查二次根式的加减混合计算,平方差公式计算等知识点,根据相关运算规则解题是重点.18.见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)==-22===;(2)原式1131222222=+++==L .【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.19.(1)见解析;(2)AC =16.9【解析】【分析】(1)由BC =13,CD =12,BD =5,知道BC 2=BD 2+CD 2,所以△BDC 为直角三角形,(2)由(1)可求出AC 的长.【详解】证明:(1)∵BC =13,CD =12,BD =5,52+122=132,∴BC 2=BD 2+CD 2,∴△BDC 为直角三角形;(2)设AB =x ,∵△ABC 是等腰三角形,∴AB =AC =x ,∵AC 2=AD 2+CD 2,即x 2=(x ﹣5)2+122,解得:x =16.9,∴AC =16.9.【点睛】此题考查等腰三角形的性质、勾股定理以及逆定理的应用,关键是勾股定理的逆定理解答.20.(1)点C 的坐标为(-2,0);(2)点P 的坐标为(0,2)或(0,-2).【解析】【分析】(1)由A 、B 坐标得出AB=5,根据点C 是点A 关于点B 的对称点知BC=AB=5,据此可得;(2)根据S △BCD=12BC•AD=10且BC=5,可得AD=4,即可知OP=2,据此可得答案.【详解】解:(1)∵点A (8,0),点B (3,0),∴AB=5,∵点C 是点A 关于点B 的对称点,∴BC=AB ,则点C 的坐标为(-2,0);(2)由题意知S △BCD=12BC•AD=10,BC=5,∴AD=4,则OP=2,∴点P 的坐标为(0,2)或(0,-2).【点睛】本题主要考查了坐标与图形的变化-对称,解题的关键是掌握对称的定义和性质.21.(1)见解析;(2)3【解析】【分析】(1)根据矩形的性质可得//AD BC ,则FEC AFE ∠=∠,因为折叠,FEC AEF ∠=∠,即可得证;(2)设FD x =用含x 的代数式表示AF ,由折叠,AG DC =,再用勾股定理求解即可【详解】(1) 四边形ABCD 是矩形∴//AD BC∴FEC AFE∠=∠因为折叠,则FEC AEF∠=∠AEF AFE∴∠=∠∴AEF ∆是等腰三角形(2) 四边形ABCD 是矩形8,4AD BC CD AB ∴====,90D ∠=︒设FD x =,则8AF AD x x=-=-因为折叠,则FG x =,4AG CD ==,90G D ∠=∠=︒在Rt AGF △中222FG AF AG =-即222(8)4x x =--解得:3x =∴3FD =【点睛】本题考查了矩形的性质,等腰三角形的判定定理,图像的折叠,勾股定理,熟悉以上知识点是解题的关键.22.(1)证明见解析;(2)5DF =.【解析】【分析】(1)根据AE ⊥AD ,可得∠DAE=∠DAC+∠CAE=90°,根据∠BAC=∠DAC+∠BAD=90°,可得∠CAE=∠BAD ,可证△ABD ≌△ACE (SAS );(2)连接EF ,由△ABD ≌△ACE (SAS );可得∠ABD=∠ACE ,BD=CE ,由AF 平分∠DAE 交BC 于F ,可得∠DAF=∠EAF ,可证△DAF ≌△EAF (SAS ).得出DF=EF .由∠BAC=90°,AB=AC ,可得∠ABC=∠ACB=45°,可求∠ECF=90°,根据勾股定理可得CE 2+CF 2=EF 2,由DF=EF ,BD=CE ,可求DF 2=BD 2+FC 2=32+42=25.【详解】(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠CAE=90°,又∵∠BAC=∠DAC+∠BAD=90°,∴∠CAE=∠BAD ,在△ABD 和△ACE 中AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)解:连接EF ,∵△ABD ≌△ACE (SAS );∴∠ABD=∠ACE ,BD=CE∵AF 平分∠DAE 交BC 于F ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AFDAF EAF AD AE=⎧⎪∠=∠⎨⎪=⎩∴△DAF ≌△EAF (SAS ).∴DF=EF .∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∴∠ECF=∠ACB+∠ACE=∠ACB+∠ABD=45°+45°=90°,∴CE 2+CF 2=EF 2,∵DF=EF ,BD=CE ,∴BD2+FC2=DF2.∴DF2=BD2+FC2=32+42=25.∴DF=5.23.(1)见解析;(2)见解析.【解析】(1)根据B、C两点的坐标即可判断出坐标原点的位置,画坐标系即可;(2)根据题意画图即可.【详解】解:(1)∵B点坐标为:(﹣2,0),∴坐标原点在B右侧,并距B点2个单位长度.如图:(2)如图:分别画出A、B、C三点关于y轴的对称点A1、B1、C1,连接各个顶点即可得到△A1B1C1.然后分别画出A1、B1、C1关于x轴的对称点A2、B2、C2,连接各个顶点即可得到△A2B2C2.【点睛】此题考查的是根据点的坐标画平面直角坐标系和在平面直角坐标系中画关于坐标轴对称的图形,掌握点的坐标与坐标原点的位置关系和关于坐标轴对称的两个图形的画法是解决此题的关键.24.(1)见解析;(2)7 4 .【解析】【分析】(1)连接CE,根据勾股定理的逆定理即可证出△ACE是直角三角形且∠A=90°;(2)先根据勾股定理求出AC,然后再利用勾股定理列方程即可求出AE的长.【详解】(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵AB=8,BC=10,∴AC6,设AE=x,在Rt△AEC中,62+x2=(8﹣x)2,∴x=7 4,∴AE的长为7 4.【点睛】此题考查的是勾股定理及逆定理,掌握利用勾股定理的逆定理判定直角三角形和利用勾股定理解直角三角形是解决此题的关键.25.(1)4;6;(4,6);(2)(1,6);(3)点P移动的时间为2秒或6秒.【解析】【分析】(1﹣6|=0、算术平方根的非负性及绝对值的非负性即可求出a和b,从而求出B的坐标;(2)根据P点的速度和时间,即可求出P移动的路程,从而判断出P点所在的边,然后计算P点坐标即可;(3)根据P到x轴的距离为4个单位长度,分类讨论即可.【详解】解:(1)由题意得,a﹣4=0,b﹣6=0,解得,a=4,b=6,∴OA=4,OB=6,∵四边形OABC为长方形,∴点B的坐标为(4,6),故答案为4;6;(4,6);(2)∵点P的速度是每秒2个单位长度,∴点P移动3.5秒时,移动的距离为:3.5×2=7,而6<7<10故此时P点在CB上∴CP=7﹣6=1,且P点纵坐标为6.∴点P的坐标(1,6);(3)当点P在OC上时,∵点P到x轴的距离为4个单位长度∴此时移动的路程为4,∴移动的时间为:4÷2=2(秒);当点P在BA上时,∴此时移动的路程为6+4+6﹣4=12,∴移动的时间为:12÷2=6(秒),综上所述,点P到x轴的距离为4个单位长度时,点P移动的时间为2秒或6秒.【点睛】此题考查的是坐标系中的动点问题,掌握算术平方根的非负性及绝对值的非负性、行程问题中速度、时间和路程的关系及分类讨论数学思想是解决此题的关键.21。
北师大版八年级上册数学期中考试试题附答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列计算正确的是()A4=-B 5112=C 1=D =2.以下列各组数中的三个数据为边长构建三角形,能组成直角三角形的一组是()A .7,14,15B .12,16,20C .4,6,8D3.下列计算不正确的是()AB 4=C D 2÷=4.下列各数:0.101001…(相邻两个1之间的0的个数逐次加1),227,2π,)A .1个B .2个C .3个D .4个5.在平面直角坐标系中,点A (﹣1,2)关于y 轴的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限6.如果点P (3,y 1),Q (2,y 2)在一次函数y=2x ﹣1的图象上,则y 1,y 2的大小关系是A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7.已知A 在第三象限,到x 轴的距离为3,到y 轴的距离为4,则点A 的坐标为()A .(3,4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣3,﹣4)8.如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A .A 点B .B 点C .C 点D .D 点9.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对10.一次函数y =kx -k(k <0)的图象大致是()A .B .C .D .11.已知点M (3,2),N (1,﹣1),点P 在y 轴上,且PM+PN 最短,则最短距离为()A .3B .4C .5D12.一次函数y=﹣25x+2的图象与x 轴,y 轴分别交于A 、B 两点,以AB 为腰,作等腰Rt △ABC ,则直线BC 的解析式为()A .y=35x+2B .y=﹣37x+2C .y=﹣35x+2D .y=37x+2二、填空题13=______.14.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).15.如图,一扇卷闸门用一块宽18cm ,长80cm 的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起_____cm 高.16.如图,在Rt △AOB 中,∠AOB 为直角,A (﹣3,a )、B (3,b ),a+b ﹣12=0,则△AOB 的面积为_____.三、解答题17.计算:(1)12×16(2)45+55(3)(22﹣3)(﹣3﹣22)(4)(2﹣10)2+4018.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=______.19.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇被吹倒一边,顶端齐至水面,芦苇移动的水平距离为5尺,求水池的深度和芦苇的长度各是多少?20.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:(1)哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?(2)求出两个人在途中行驶的速度是多少?(3)分别求出表示自行车和摩托车行驶过程的函数关系式.21.如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.22.如图,四边形ABCD 中,4AB BC ==,6CD =,2DA =,且90B = ∠.(1)求AC 的长;(2)求DAB ∠的度数.23.已知一次函数y=kx+b 的图象经过点(﹣2,﹣4),且与正比例函数12y x =的图象相交于点(4,a ),求:(1)a 的值;(2)k 、b 的值;(3)画出这两个函数图象,并求出它们与y 轴相交得到的三角形的面积.24.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(34)A -,,(41)B -,,(12)C -,.(1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆;(2)请直接写出点C 关于y 轴的对称点C '的坐标:;(3)ABC ∆的面积=;(4)在y 轴上找一点P ,使得PAC ∆周长最小,并求出PAC ∆周长的最小值.25.如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,OA=12,OC=9,连接AC .(1)填空:点A 的坐标:;点B 的坐标:;(2)若CD 平分∠ACO ,交x 轴于D ,求点D 的坐标;(3)在(2)的条件下,经过点D 的直线交直线BC 于E ,当△CDE 为以CD 为底的等腰三角形时,求点E的坐标.参考答案1.D【分析】正确运四则运算法则即可得出答案.【详解】A、应为4,错误;B、应为1312,错误;C D正确,所以答案选择D项.【点睛】本题考查了四则运算,仔细审题是解决本题的关键.2.B【分析】计算三角形有两边的平方和是否等于第三边的平方,再根据勾股定理的逆定理判定即可解答.【详解】选项A,72+142≠152,根据勾股定理的逆定理可知不能构成直角三角形;选项B,122+162=202,根据勾股定理的逆定理可知能构成直角三角形;选项C,42+62≠82,根据勾股定理的逆定理可知不能构成直角三角形;选项D ,222+≠,根据勾股定理的逆定理知不能构成直角三角形.故选B.【点睛】本题考查了勾股定理的逆定理,验证两条较小边的平方和与最大边的平方之间的关系是解决问题的关键.3.B 【分析】根据二次根式的加减法对A 、C 进行判断;根据二次根式的除法法则对D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式=所以A 选项正确;B 、原式4=,所以B 选项正确;C 、原式==C 选项错误;D 、原式2=,所以D 选项正确.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.4.C 【分析】结合有理数的定义,根据无理数的定义逐一进行分析即可得.【详解】0.101001…(相邻两个1之间的0的个数逐次加1)是无理数,227是有理数,2π是无理数,是有理数,所以无理数有:0.101001…(相邻两个1之间的0的个数逐次加1),2π共3个,故选C .【点睛】本题考查了无理数的定义,能熟记无理数的定义的内容是解此题的关键,注意:无理数是指无限不循环小数.解此类问题时通常结合有理数的定义进行判断.5.A【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点A(﹣1,2)关于y轴的对称点是(1,2),在第一象限,故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.6.A【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P(3,y1)、Q(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.C【分析】根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】解:∵点A位于第三象限,且点A到x轴的距离为3,点A到y轴的距离为4,∴点A的横坐标是﹣4,纵坐标是﹣3,∴点A的坐标为(﹣4,﹣3).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.8.B【详解】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.9.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C 10.A【详解】试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选A.考点:一次函数的图象.11.C【分析】由题意可得:点M(3,2)关于y轴的对称点为M'(﹣3,2),当点M',点N,点P三点共线时,PM+PN最短.根据两点距离公式可求最短距离M'N的长度.【详解】解:∵点M(3,2)关于y轴的对称点为M'(﹣3,2)∴PM+PN=PM'+PN∴当点M',点N,点P三点共线时,PM+PN最短.∴PM+PN最短距离为为=5故选C.【点睛】本题考查了最短路线问题,坐标与图形性质,熟练运用轴对称的性质解决最短路线问题是本题的关键.12.D【分析】先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,得出C点坐标,用待定系数法即可求出直线BC的解析式;【详解】解:∵一次函数y=﹣25x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).如图,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,90BAO ACE BOA AEC AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABO ≌△CAE (AAS ),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C 的坐标是(7,5).设直线BC 的解析式是y=kx+b ,根据题意得:275b k b =⎧⎨+=⎩,解得3k 72b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式是y=37x+2.故选D .【点睛】本题考查的是一次函数问题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质、等腰直角三角形的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.13.3【详解】分析:根据算术平方根的概念求解即可.详解:因为32=9故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14.大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.82【详解】试题解析:设长方形的长为a,宽为b,对角线的长度为c,∵a=80cm,b=18cm,∴===c cm82.故最多可将这扇卷闸门撑起82cm.故答案为82.16.18【解析】【分析】=S梯形ACDB﹣S△AOC﹣S△BOD 作AC⊥x轴于C,BD⊥x轴于D,根据三角形面积公式,利用S△AOB=32(a+b),然后根据a+b﹣12=0可计算出△AOB的面积.可得到S△AOB【详解】解:作AC⊥x轴于C,BD⊥x轴于D,∵A(﹣3,a)、B(3,b),∴AC=a,OC=3,OD=3,BD=b,=S梯形ACDB﹣S△AOC﹣S△BOD∴S△AOB=12(a+b)×6﹣12×3×a﹣12×3×b=3(a+b)﹣32(a+b)=32(a+b),而a+b=12,=32×12=18.∴S△AOB故答案为18.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.也考查了坐标与图形性质.17.(1)22;(2)4;(3)-5;(4)14﹣210.【解析】【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式进而计算得出答案;(3)直接利用平方差公式计算,得出答案;(4)直接利用完全平方公式计算,进而得出答案.【详解】解:(1×16=8=22;(25=4;(3)(22﹣3)(﹣3﹣22)=3﹣8=﹣5;(4)(2﹣10)2+40=4+10﹣410+210=14﹣210.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(1)图形见解析.(2)A 1(0,-4),B 1(-2,-2),C 1(3,0);(3)7【解析】试题分析:(1)根据网格结构找出点、、A B C 关于x 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用三角形所在矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.题解析:(1)如图即为所求.(2)()()()1110,42,230A B C ---,,,.(3)111111542234522026520137.222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=---=-= 故答案为(0,−4);(−2,−2);(3,0);7.19.水池深度为12尺,芦苇长度为13尺.【分析】仔细分析题意得出:此题中水深、芦苇长及芦苇移动的水平距离构成一直角三角形,解此直角三角形即可.【详解】解:若高水池深度为x 尺,则芦苇长为(x+1)尺,根据勾股定理得x 2+52=(x+1)2,解得:x=12尺,即水池深度为12尺,则芦苇长度为13尺.【点睛】本题考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1)见解析;(2)小王:10千米/小时;小李40千米/小时;(3)小王:y=8x;小李:y=40x﹣120.【解析】【分析】(1)根据函数图象容易得出结果;(2)根据速度=路程÷时间,即可得出结果;(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得出方程,解方程即可;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得出方程组,解方程组即可.【详解】解:(1)根据图象得:小王出发早,早3小时,小李早到达目的地,早3(即8﹣5)小时;(2)小王行驶的速度为80÷8=10(千米/小时);小李行驶的速度为80÷2=40(千米/小时);(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得:8k=80,解得:k=10,∴小王骑自行车行驶过程中函数关系式为y=8x;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得:3+=05+=0,解得:a=40b=-120,∴小李骑摩托车行驶过程中函数关系式为y=40x﹣120.【点睛】本题考查了用一次函数解决实际问题,渗透了函数与方程的思想;此类题是近年中考中的热点问题,根据函数图象获取信息是解决问题的关键.21.(1)这个零件符合要求;(2)S四边形=114.【分析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求.【详解】解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB2+AD2=BD2,BD2+BC2=DC2.∴△ABD、△BDC是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.S四边形=11292⨯⨯+18152⨯⨯=114.【点睛】本题考查了勾股定理的逆定理,关键是根据勾股定理的逆定理判断△ABD、△BDC的形状.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.22.(1)(2)135°【分析】(1)根据勾股定理即可求得AC的长;(2)根据勾股定理的逆定理可以求得∠CAD=90°,根据等腰三角形的性质可以求得∠BAC=45°,从而求解.【详解】解:(1)∵AB=BC=4,且∠B=90°,∴(2)∵CD=6,DA=2,AC=∴CD2=DA2+AC2,∴∠CAD=90°.∵AB=BC,且∠B=90°,∴∠BAC=45°.∴∠DAB=90°+45°=135°【点睛】此题综合考查了勾股定理及其逆定理.能够根据勾股定理由直角三角形的已知两边求得第三边;能够根据三角形的三边判断三角形是否是直角三角形.23.(1)k=1,b=-2(2)2(3)4【详解】解:(1)将点(4,a)代入正比例函数12 y x∴a=×4=2(2)将点(4,2)、(-2,-4)分别代入y=kx+b得由题意可得:解方程组得:k=1,b=-2(3)直线y=x-2交y轴于点(0,-2),S==424.(1)作图见解析;(2)(1,2);(3)4;(4)【解析】【分析】①关于x轴对称,对应点X值不变,Y值变成相反数.②关于Y轴对称,对应点Y值不变,X值变成相反数.③△ABC面积=外接矩形的面积-三个小三角形的面积④作点A关于Y轴对称的点E,连接CE交Y轴与点P,则三角形PAC周长最短是=AC+CE【详解】①如图所示②关于Y 轴对称,对应点Y 值不变,X 值变成相反数.C 为(-1,2),对称点为(1,2).③△ABC 面积=3·3-1·3·12-2·2·12-1·3·12=4.④作点A 关于Y 轴对称的点E ,连接CE 交Y 轴与点P ,则三角形PAC 周长最短是=AC+CE【点睛】本题主要考察轴对称的知识和综合运用,熟悉相关知识并知道求周长最小三角形时利用对称和两边之和大于第三边是解题关键.25.(1)(12,0),(12,9);(2)D (92,0);(3)E (454,9).【分析】(1)根据矩形的性质即可解决问题;(2)如图1中,作DM ⊥AC 于M .由Rt △CDO ≌Rt △CDM (HL ),推出CM=OC=9,由,推出AM=6,设OD=DM=m ,在Rt △ADM 中,根据AD 2=DM 2+AM 2,构建方程即可解决问题;(3)如图2中,作线段CD 的中垂线EF ,垂足为F ,交BC 于E ,则EC=ED ,△ECD 是以CD 为底的等腰三角形.想办法求出直线EF 的解析式即可解决问题;【详解】解:(1)∵四边形OABC 是矩形,∴AB=OC=9,BC=OA=12,∴A (12,0),B (12,9),故答案为(12,0),(12,9);(2)如图1中,作DM ⊥AC 于M .∵DC平分∠ACO,DO⊥CO,DM⊥AC,∴DO=DM,∠COD=∠CMD=90°,∵CD=CD,∴Rt△CDO≌△Rt△CDM(HL),∴CM=OC=9,∵229+12,∴AM=6,设OD=DM=m,在Rt△ADM中,∵AD2=DM2+AM2,∴x2+62=(12﹣x)2,解得x=9 2,∴D(92,0).(3)如图2中,作线段CD的中垂线EF,垂足为F,交BC于E,则EC=ED,△ECD是以CD为底的等腰三角形.∵C(0,9),D(92,0),∴直线CD的解析式为y=﹣2x+9,∴F(94,92),∴直线EF的解析式为y=12x+278,当y=9时,x=45 4,∴E(454,9).【点睛】本题是四边形综合题,考查了矩形的性质、全等三角形的判定和性质、角平分线的性质、等腰三角形的判定和性质、勾股定理、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数解决交点问题,属于中考压轴题.。
北师大版八年级(上)数学期中试卷(含答案)
北师大版八年级(上)数学期中试卷(含答案)一、选择题(共30分,每小题3分)1.81的平方根是()A.3B.±3C.9D.±92.下列各图象中,不是y关于x的函数图象的是()A.B.C.D.3.下列二次根式中,是最简二次根式的是()A.B.C.D.4.点P的坐标是(﹣2,a2+1),则点P一定在第()象限A.一B.二C.三D.四5.下列计算正确的是()A.=1B.C.D.=26.已知M(a,3)和N(4,b)关于x轴对称,则(a+b)2019的值为()A.1B.﹣1C.72019D.﹣720197.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2)和(﹣m,4﹣2m),则m的值为()A.﹣1B.﹣2C.1D.28.已知一次函数y=(m+1)x+2m的图象必过第二,四象限,则m的值可能是()A.2B.﹣2C.﹣1D.09.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)10.如果关于x,y的方程组无解,那么直线y=﹣(k+3)x﹣k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共21分,每小题3分)11.比较大小:23.(填“>”“<”或“=”)12.在实数中,无理数有.13.已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+b上,则y1,y2的大小关系是y1y2.(填“>”“<”或“=”)14.如图,在一次“寻宝”游戏中,寻宝人找到了两个标志点A(2,1),C(0,1).则“宝藏”点B的坐标是.15.已知直线AB平行于y=﹣x,交x轴于点A,且过点B(0,﹣4),则线段AB的长度为.16.已知直线y=2x+1与y=﹣x+b的交点为(﹣1,a),则方程组的解为.17.在平面直角坐标系中,已知点A(1,4),点B(3,1),点M的坐标为(﹣1,m),当MA+MB的值最小时m的值是.三、解答题(共49分)18.计算:(1)﹣2×;(2).19.如图,在平面直角坐标系中,△ABC的三个顶点都在边长为1的正方形方格的格点上.(1)写出点A,B,C的坐标:A,B,C.(2)画出△ABC关于y轴对称的△A1B1C1.(3)△A1B1C1的面积为.20.如图,直线l1的解析式为y1=﹣2x+2,且l1与x轴交于点D,直线经过点A(4,0),B(0,﹣1),两直线交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积.21.甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且都有一定的优惠,甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%,设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.22.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=2,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长为;(2)直接写出当点C满足什么条件时,AC+CE的值最小;(3)根据(2)中的规律和结论,请构图求出代数式的最小值.23.甲、乙两人相约周末登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题.(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米.(2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?四、附加题(共20分)24.(1)如图,Rt△MBC中,∠MCB=90°,点M在数轴﹣1处,点C在数轴1处,MA=MB,BC=1,则数轴上点A对应的数是.(2)如图,点M是直线y=2x+3上的动点,过点M作MN垂直x轴于点N,点P是y轴上的动点,当以M,N,P为顶点的三角形为等腰直角三角形时,点M的坐标为.26.如图,直线y=kx+2与x轴、y轴分别交于A、B两点,OB=2OA.以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(1)求点A的坐标和k的值;(2)求点C坐标;(3)直线y=x在第一象限内的图象上是否存在点P使得△ABP的面积与△ABC的面积相等?如果存在,求出点P坐标;如果不存在,请说明理由.北师大版八年级(上)数学期中试卷答案一、选择题二、填空题三、解答题18.(1)113-;(2)561-19.(1)点A (-1,3)、点B (2,0)、点C (-3,-1);(2)作图略;(3)920.(1)直线2l 的表达式为:141-=x y A ;(2)1=∆ADC S . 21.(1)90021001+=x y ,x y 22502=;(2)6;(3)选择乙商场更优惠.22.(1)()14822+++-=+x x CE AC ;(2)当A 、C 、E 三点共线时,AC+CE 的值最小;(3)最小值为1323.(1)10,30(2)函数关系式为:()()⎩⎨⎧≤≤-≤≤=11230302015x x x x y (3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.四、附加题24.(1)点A 对应的数为51+-;(2)符合条件的点M 的坐标为(-3,-3)或(-1,1)或(43-,23) 25.(1)点A 的坐标为(-1,0);K 的值为2.(2)点C 的坐标为(-3,1)(3)存在,点P 的坐标为(2,1)。
新北师大版八年级上数学期中测试试卷附答案
新北师大版八年级上数学期中测试试卷一、选择题(每小题3分,共18分)1. 满足下列条件的三角形中,不是直角三角形的是( ) A. 三内角之比为1︰2︰3 B. 三边长的平方之比为1︰2︰3 C. 三边长之比为3︰4︰5D. 三内角之比为3︰4︰52. 下列计算结果正确的是( )A. 332=)(-B.636±=C.523=+D. 35323=+3. 下列说法正确的有( )(1)带根号的数是无理数;(2)无理数是带根号的数;(3)开方开不尽的都是无理数;(4)无理数都是开方开不尽的;(5)无理数是无限小数;(6)无限小数是无理数。
A. 2个B. 3个C. 4个D. 5个4. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A. (3,0) B. (3,0)或(-3,0) C. (0,3)D. (0,3)或(0,-3)5. y=kx +(k -3)的图象不可能是( )6. 如下图,梯子AB 靠在墙上。
梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A',使梯子的底端A 到墙根O 的距离等于3m ,同时梯子的顶端B 下降到B',那么BB'( )A. 小于1mB. 大于1mC.等于1mD. 小于或等于1m二、填空题(每小题3分,共30分) 7.2的倒数是 ;32的相反数是 ;绝对值等于2的数是 。
8. 已知0)3(22=++-b a ,则=-2)(b a 。
9. 一个实数的两个平方根分别是a +3和2a -5,则这个实数是 。
10. 一次函数y =2x +b 的图象与两坐标轴所围成的三角形的面积为8,则b= 。
11. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是 。
12. 已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,l -b ),则ab 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
新北师大版八年级上数学期中测试试卷 18分)一、选择题(每小题3分,共)1. 满足下列条件的三角形中,不是直角三角形的是(3 ︰三边长的平方之比为1︰2 A. 三内角之比为1︰2︰3 B.
5
3︰4︰D. 3︰4︰5 三内角之比为三边长之比为C.
下列计算结果正确的是()2.
2636??3(-3)? A. B.
52?323?53?3? D. C.
)3. 下列说法正确的有())开方开不尽的都是无理数;(4(1)带根号的数是无理数;(2)无理数是带根号的数;(3 6)无限小数是无理数。
无理数都是开方开不尽的;(5)无理数是无限小数;(个C. 4个 D. 5 A. 2个 B. 3个
yx),则点P的坐标为(4. 若P轴上的点到轴的距离为3 ,0), B. (30)或(-3 ) A. (3,0
,-3)()0 ,3)或(0D. 0 C. (,3- y=kxk +()35.)的图象不可能是
(
到地面的距离为B到墙根O的距离为2m,梯子的顶端6. 如下图,梯子AB靠在墙上。
梯子的底端ABO的距离等于3m,同时梯子的顶端A'7m,现将梯子的底端A向外移动到,使梯子的底端A
到墙根()下降到B',那么BB'
1m
小于或等于D. 1m 等于C. A. 小于1m 1m 大于B.
二、填空题(每小题303分,共分)3222。
;绝对值等于;的倒数是7. 的相反数是的数是
实用文档
22?a?b)(0)?(b?3?a?2已知。
,则8.
aa。
9. 一个实数的两个平方根分别是,则这个实数是+3和2 -5byx =2b= +。
的图象与两坐标轴所围成的三角形的面积为810. 一次函数,则的圆柱形水杯中,如图所示,设筷子露8cm将一根 11. 24cm的筷子,置于底面直径为15cm,高。
在杯子外面的长度为h cm,则h的取值范围是
abybab。
的值为l-)- 12. 已知点P(3,1)关于(轴的对称点Q的坐标是,+则,10b= aab,,小数部分为,则 13. 。
若= 的整数部分为的DEBE,若BC=15,则⊿⊥°, 14. 如图,已知⊿ABC中,∠A=90AB=AC,CD平分∠ACB,DEBC于周长为。
xyyxyx =l,则与。
2与成正比例,当的函数表达式是=3时, 15. 已知-
2214x?4?x?2x?x?x 2<化简的结果是<1。
,则已知-16.
52分)三、解答题(共分)计算:(每小题4分,共817.
1183108-275?5-;)1(33
23)?32716???3(?3)(2
实用文档
18. (4分)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的图形。
19. (5分)如图,小将同学将一个直角三角形ABC的纸片折叠,A与B重合,折痕为DE,若已
知AC=10cm,BC=6cm,你能求出CE的长吗?
20. (5分)甲乙两个仓库要向A、B两地运送水泥,已知甲仓库可调出100吨水泥,乙仓库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两仓库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)
12 15 12 20 A地8
10
20
B地 25
xyx(吨)的函数关系式。
设甲仓库运往A地水泥(元)关于吨,求总运费ymxm-++l)3 21. (6分)已知函数=(2(1)若函数图象经过原点,求m的值。
yxm的值 3(2)若函数的图象平行于直线,求=3-yxm的取值范围。
)若这个函数是一次函数,且3的增大而减小,求随着(22. (6分)同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体体的图形中认识一下无理数。
(1)如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正
方形的
实用文档
2,它是一个无理数。
边长就是
(滚动时与P)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点( 2 ′代表的实数就OO′的长度就等于圆的周长,所以数轴上点O点O重合)由原点到达点O′,则是,它是一个无理数。
,它是一个无AB= ,根据已知可求得中,∠C=90°,AC=2,BC=1△( 3)如图,在RtABC 理数。
好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中
作出两个无理数吧:
),画出一条长为的线段吗?×①你能在68的网格图中(每个小正方形边长均为1
②学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示
5的点吗?-
分)观察下列各式及验证过程:( 23. 8
实用文档
2111122111?-??-验证:23232?3?3223232311112131111??)(-??(-)验证:
28?4342342?3?2?383432441111141111???(-)?)(-验证:2154?54?453?453?3153454111)-()按照上述三个等结果并进行验证;式及其验证过程的基本思路,猜想的变形1 (654≥2的自然数)表示的等式,并进行验证。
(2)针对上述各式反映的规律,写出用n(n
ll, t的关系。
B骑车在同一路上行驶的路程分)如图, 24. (10S与时间步行与分别表示A BA
千米。
相距 A (1)B出发时与)走了一段路后,自行车发生故障,进行修理,所用的时间是小时。
(2相遇。
小时与)B出发后 A (3的出发A相遇?相遇点离BB (4)若的自行车不发生故障,保持出发时的速度前进,几小时与 C。
点几千米?在图中表示出这个相遇点tSA5 ()求出行走的路程与时间的函数关系式。
实用文档
4分)( 18.
)1(-,-1C34B23 A(-,)(-,-)分)( 19. 5实用文档。
解:连接BE x
x-则设EC=AE=10,关于DE对称∵A,B x -∴BE=AE=10
∵△BCE是直角三角形222∴+BCEC=BE2
22xx)=(∴10-+6x =3.2 ∴
cm)即CE=3.2(x解:设甲仓库运往 20. A地水泥吨。
x地水泥(100-)吨。
则
甲仓库运往B x 70-)吨。
乙仓库运往 A地水泥(xx +10)吨。
-(100-)=
(乙仓库运往B地水泥110xxxxy 8·()+10·12·(70-)+20··(∴
=20·12·+25·10100-)+15x+39200 =-30 21. (6分)m=3 ,-① m3=0
m=1
② 2m+1=3 ∴
1?③ 2m+1>0 ∴m>2 22. (6分)? 2)
(
5 3()
实用文档
①如图。
(答案不唯一)
②
8分)( 23.
511151151111?)??(-?-)()(1验证:224?64?5?654456?5244565n1111??)()(2)1)(n?1n(n?1n?1nn?验证:n11n111????(?)
2)1(n??n1(n?)n(?1)??1n)?(n)?(?n?n1n1n1??n1(?)n 10(分) 24.
10 )(11
)(2
实用文档
(3)3
12180,(4)13132510??st 5()6。