高中物理第六章万有引力与航天第4节万有引力理论的成就教案新人教版必修2
最新人教版高中物理必修2第六章《万有引力理论的成就》教学设计2

万有引力理论的成就教学目标1、知识与技能了解万有引力在天文学上的重要应用,会用万有引力定律计算天体的质量。
2、过程与方法通过了解“称量地球质量”“计算太阳质量”的基本方法,体会万有引力定律经受实践的检验,取得的巨大成功。
3、情感、态度与价值观通过学习,使学生深刻体会科学规律对人类探索未知世界的作用,激发学生对科学探究的兴趣,培养热爱科学的情感。
教学重点:地球质量和太阳质量的测量方法教学难点:如何根据已知条件测天体的质量教学重点和难点根据已有条件求中心天体的质量教学方法:讲练结合、启发式教学教学器材:多媒体教材分析:这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量。
在讲课时,应用万有引力定律有两条思路要交待清楚。
1.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题。
2.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量。
这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。
教学设计:复习引入:1、万有引力定律的内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量和的乘积成正比,与它们之间的距离的二次方成反比。
公式表示:其中提出问题引导学生思考:在天文学上,天体的质量无法直接测量,能否利用万有引力定律和前面学过的知识找到计算天体质量的方法呢?一、地球质量的测定(科学真是迷人)分析:在地球表面处忽略地球的自转,F引=mg.所以,在地球表面处:得:卡文迪许把自己的实验说成是“称量地球的质量”由实验室里测出几个铅球间的相互作用力,就可以称量地球,这不能说是一个科学奇迹,难怪一位外行人,著名的文学家马克·吐温满怀激情的说:“ 科学真是迷人,根据零星的的事实,增加一点猜想,竟能赢得那么多收获”拓展点1、如何求地球密度?学生推导出公式教师启发:(1)该方法能否用于其它行星表面?(2)黄金代换GM=gR2例、有一星球的密度是地球密度的2倍,但它表面的重力加速度是地球表面的重力加速度的8倍,则该星球的质量是地球质量的几倍?学生解答,讲解做题思路。
万有引力理论的成就说课稿

《万有引力理论的成就》说课稿说课人:李鑫锐课题:&6.4 万有引力理论的成就课型:新授课(1课时)尊敬的各位专家、评委,大家好!我叫李鑫锐,来自鹤岗市第三中学。
今天我说课的内容是《万有引力理论的成就》一、#二、教材分析《万有引力理论的成就》是人教版高中新教材必修2第六章第4节。
教材的第六章是万有引力与航天,高考重点考察查运用万有引力定律及向心力公式分析人造卫星的绕行速度,运行周期以及计算天体的质量、密度等。
第4节正是涉及计算天体质量和密度这一部分内容,是高考的重要考点。
该节承接第3节万有引力定律,通过卡文迪许测量G值进而得到地球质量这一说法,将学生引入并使之体会,理解万有引力理论的巨大作用和价值。
使学生掌握了万有引力充当向心力的研究方法同时,也为第5节学习人造卫星的知识做了铺垫。
三、学生分析学生在上一节当中已经学习了万有引力定律,并可以对两个物体之间的万有引力进行简单计算。
但学生对万有引力定律有什么价值,有哪些作用和影响还没能够有一个足够的认识。
对于公式的深刻理解以及灵活运用上还很欠缺。
另外,学生对于重力和万有引力之间的关系应该有一些困惑。
这节课的教学内容也就会针对这些方面展开,并在这一过程中渗透情感价值观教育。
四、教学目标根据课程要求和学生的认知结构,制定了以下的学习目标。
知识与技能:#1.万有引力与重力的关系2.利用万有引力计算地球和其他天体质量3.了解用万有引力知识发现未知天体的过程过程与方法:1.使学生了解为什么在地球表面重力近似等于万有引力,并依此计算出地球的质量2.了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理天体问题的思路方法.情感态度与价值观:1.学习利用万有引力计算地球等天体的质量和密度的方法,让学生感受科学巨大的魅力。
、2.通过了解发现新行星的过程,使学生认识到科学发展过程的曲折和复杂,体会科学对人类发展的巨大作用。
四、重点与难点教学的重点在于运用万有引力计算天体质量和密度,难点在于如何让学生根据已知条件去选用恰当的方法解决天体问题。
高中物理 必修二 物理必修二第6章 《万有引力与航天》备课精品:教案 第四节 万有引力理论的成就

第四节 万有引力理论的成就教学过程:(一)复习提问,引入新课提问:万有引力定律的内容及公式是什么?公式中的G 又是什么?G 的测定有何重要意义?内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比。
公式:F =G 221rm m . 公式中的G 是引力常量,它在大小上等于质量为1 kg 的两个物体相距1 m 时所产生的引力大小,经测定其值为6.67×10—11 N ·m 2/kg 2。
总结:万有引力定律的发现有着重要的物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。
这节课我们就共同来学习万有引力定律在天文学上的应用。
(二)新课教学1、“科学真实迷人”引导学生阅读教材“科学真实迷人”部分的内容,思考问题[投影出示]:(1)推导出地球质量的表达式,说明卡文迪许为什么能把自己的实验说成是“称量地球的重量”?(2)设地面附近的重力加速度g=9.8m/s 2,地球半径R =6.4×106m ,引力常量G =6.67×10-11 Nm 2/kg 2,试估算地球的质量。
学生阅读课文,推导出地球质量的表达式,在练习本上进行定量计算。
教师投影学生的推导、计算过程,师生一起点评。
24112621061067.6)104.6(8.9⨯=⨯⨯⨯==-G gR M kg 2、计算天体的质量引导学生阅读教材“天体质量的计算”部分的内容,同时思考下列问题[投影出示]。
(1)应用万有引力定律求解天体质量的基本思路是什么?(2)求解天体质量的方程依据是什么?学生阅读课文第一部分,从课文中找出相应的答案.(1)应用万有引力定律求解天体质量的基本思路是:根据环绕天体的运动情况,求出其向心加速度,然后根据万有引力充当向心力,进而列方程求解.(2)从前面的学习知道,天体之间存在着相互作用的万有引力,而行星(或卫星)都在绕恒星(或行星)做近似圆周的运动,而物体做匀速圆周运动时合力充当向心力,故对于天体所做的圆周运动的动力学方程只能是万有引力充当向心力,这也是求解中心天体质量时列方程的根源所在.教师引导学生深入探究,让学生结合课文知识以及前面所学匀速圆周运动的知识,加以讨论、综合,然后思考下列问题[投影出示]。
高中物理第六章万有引力与航天4万有引力理论的成就教学案新人教版必修2(new)

4 万有引力理论的成就[学习目标] 1.了解万有引力定律在天文学上的重要应用.2。
理解“计算天体质量"的基本思路。
3.了解地球对地面物体的万有引力与重力的区别和联系。
一、计算天体的质量1。
称量地球的质量(1)思路:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力。
(2)关系式:mg=G错误!。
(3)结果:M=错误!,只要知道g、R、G的值,就可计算出地球的质量。
2.太阳质量的计算(1)思路:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力。
(2)关系式:错误!=m错误!r.(3)结论:M=错误!,只要知道行星绕太阳运动的周期T和半径r就可以计算出太阳的质量。
(4)推广:若已知卫星绕行星运动的周期T和卫星与行星之间的距离r,可计算行星的质量M。
二、发现未知天体1。
海王星的发现:英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的伽勒在勒维耶预言的位置附近发现了这颗行星——海王星。
2。
其他天体的发现:近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体.[即学即用]1.判断下列说法的正误。
(1)地球表面的物体的重力必然等于地球对它的万有引力.(×)(2)若只知道某行星绕太阳做圆周运动的半径,则可以求出太阳的质量.(×)(3)已知地球绕太阳转动的周期和轨道半径,可以求出地球的质量.(×)(4)天王星是依据万有引力定律计算的轨道而发现的.(×)(5)牛顿根据万有引力定律计算出了海王星的轨道。
(×)(6)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性.(√)2.已知引力常量G=6。
67×10-11N·m2/kg2,重力加速度g=9。
8 m/s2,地球半径R=6。
高中物理 6_4 万有引力理论的成就教案2 新人教版必修2

6.4 万有引力理论的成就(2)课题 6.4 万有引力理论的成就(2)课型新授课教学目标1、了解万有引力定律在天文学上的重要应用。
2、会用万有引力定律计算天体质量。
3、理解并运用万有引力定律处理天体问题的思路和方法。
重点1、会用已知条件求中心天体的质量。
2、根据已有条件求中心天体的质量。
难点1、会用已知条件求中心天体的质量。
2、根据已有条件求中心天体的质量。
教法及教具自主探究、交流讨论、自主归纳教学过程教学内容个案调整教师主导活动学生主体活动【自学指导1】:引导学生回顾上节课学习的内容,回答问题。
【点评】:引导学生定量计算,用无可辩驳的一、复习巩固师:上节我们学习了万有引力理论的成就的有关知识,现在请同学们回忆一下:1、我们研究天体运动的理论依据是什么?2、研究天体运动及研究天体表面物体重力的相关公式有哪些?师:万有引力定律还有哪些方面的应用?本节课我们继续来学习二、新课讲解(一)、天体的密度由VM=ρ代入2324GTrMπ=和334RVπ=可得3233RGTrπρ=其中R为中心天体的半径。
当匀速圆周运动的天体绕中心天体表面运行时,Rr=,则23GTπρ=。
说明:【做一做】:阅读课文,从课文中找出必要的信息,在练习本上进行定量计算教学过程(1)在求天体质量时,只能求出中心天体的质量,不能求出环绕天体的质量。
(2)应掌握地球的公转周期、地球的自转周期、月球的周期等,在估算天体质量时,应作为已知条件。
例:一艘宇宙飞船飞近某一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员进行预定的考察工作。
宇航员能不能仅用一只表通过测定时间来测定该行星的密度?说明理由及推导过程。
分析:本题不需要具体确定M和R,只需求出3/RM即可,而该比值可用宇宙飞船绕行星运行的周期表达,周期可用表测出。
解答:使宇宙飞船靠近行星表面做匀速圆周运动,设行星的质量为M,宇宙飞船质量为m,行星半径为r,测出飞船运行周期TrTmrMmG2224π=所以2324GTrMπ=又行星的体积334rVπ=所以23GTVMπρ==即宇航员只需测出T就能求出行星的密度。
2024-2025学年高中物理第六章万有引力与航天3万有引力定律(2)教案新人教版必修2

4.该物体的质量为:F / G = 10 N / 6.67 * 10^-11 N * m^2 / kg^2 = 1.5 * 10^26 kg。
5.地球和太阳之间的引力为:G * (M * M') / r^2 = 6.67 * 10^-11 N * m^2 / kg^2 * (5.97 * 10^24 kg * 1.99 * 10^30 kg) / (1.496 * 10^11 m)^2 = 4.07 * 10^27 N。
-使用不同的字体或颜色来区分万有引力定律的不同应用领域,如航天、地球物理学等。
课后作业
1.请计算地球和月球之间的引力,假设地球的质量为5.97×10^24千克,月球的质量为7.35×10^22千克,地球和月球之间的平均距离为384400千米。
2.假设一个物体的质量为2千克,距离地球表面100千米,计算该物体受到的地球引力。
教学方法与策略
为了达到本节课的核心素养目标,并适应学生的学情,我们将采用多种教学方法与策略,以提高教学效果。
1.教学方法:
-讲授法:教师将运用讲授法向学生传授万有引力定律的基本概念和数学表达式,以及引力计算的方法。
-案例研究法:通过分析地球与月球之间的引力案例,让学生理解万有引力定律在实际问题中的应用。
4.科学交流:鼓励学生在课堂上积极发言,与他人交流自己的观点和思考,培养学生的科学交流能力。
学情分析
在进入本节课的学习之前,我们需要对学生的学情进行深入分析,以便更好地设计教学活动和指导学生学习。
1.学生层次:本节课面向的是高中一年级的学生,他们在之前的学习中已经掌握了基本的数学运算技能,具备一定的逻辑推理能力。他们对物理学科有一定的兴趣,但可能在实际问题的解决上还缺乏一定的经验。
人教版(新课标)高中物理必修二第六章万有引力与航天6.4万有引力理论的成就说课稿

2r 3 M
G
M
4 2r 3 GT 2
发现未知天体 你知道海王星是如何被发现的吗?
海王星地貌
轨道太“古怪”
理论轨道 实际轨道
笔尖下发现的行星
亚当斯[英国]
勒维列[法国]
1846年9月23日晚,由德国的伽勒在柏林天文台 用望远镜在勒维列预言的位置附近发现了这颗行 星——海王星
海王星发现之后,人们发现它的轨道也与理论 计算的不一致。于是几位学者用亚当斯和勒维列的 方法预言另一颗新星的存在。
mg G Mm r2
得M
gr 2 G
2hr2 G t2
h1gt2 g2h
2
t2
不同星球表面的力学规律相 同,只是重力加速度g不同。
练一练.在研究宇宙发展演变的理论中,有一种学说
叫做“宇宙膨胀说”.这种学说认为万有引力常量G
在缓慢地减小,根据这一理论,在很久很久以前,
太阳系中地球的公转情况与现在相比( )
F向
F= FG
F
FG
F FG
F向
思考探究1: 为什么忽略地球自转,地面上物体的重力等 于地球对物体的引力?能否通过数据证明。
万有引力提供向心力:
G
Mm r2
m
2 T
2
r
G
M r
m
2
m
v r
2
G
M r
m
2
m
2r
G
Mm r2
m
2 T
2
r
v 2r M
G
思考探究2:
M 2r 3 G
4 2r 3 M GT 2
在预言提出之后,1930年3月14日,汤博发现 了这颗新星——冥王星。
第六章 万有引力与航天4 万有引力理论的成就 教学设计

第六章万有引力与航天4万有引力理论的成就学习目标1.通过学习未知天体的发现,了解万有引力定律在天文学上的应用.2.通过计算地球和太阳的质量掌握利用万有引力定律计算天体的质量和密度的方法.3.掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法.自主探究1.卡文迪许是如何测量地球质量的?2.人造地球卫星、月球绕地球的运动,行星绕太阳的运动的向心力是分别由谁提供的?3.如何求太阳的质量?4.海王星是如何发现的?合作探究一、称量地球的质量【创设情景1】设地面附近的重力加速度g取9.8m/s2,地球半径R=6.4×106m,引力常量G=6.67×10-11N·m2/kg2,试估算地球的质量.【拓展】1.利用以上数据能否求出地球的密度?如果能请列出公式.2.若已知月球表面的重力加速度g0和月球半径R0,求月球的质量和密度.【结论1】求天体质量的方法一:.二、计算中心天体的质量【自主探究】1.应用万有引力定律求解天体质量的基本思路是什么?2.求解天体质量的方程依据是什么?【小组合作1】1.天体实际做何运动?而我们通常可认为做什么运动?2.描述匀速圆周运动的物理量有哪些?3.根据环绕天体的运动情况求解其向心加速度有几种求法?4.应用天体运动的动力学方程——万有引力充当向心力求出的天体质量有几种表达式?各是什么?各有什么特点?5.应用此方法能否求出环绕天体的质量?【结论2】求天体质量的方法二:.【创设情景2】把地球绕太阳公转看作是匀速圆周运动,平均半径为1.5×1011m,已知引力常量G=6.67×1-N·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字)【拓展】1.利用以上数据能否求出太阳的密度?如果能请列出公式.2.能否用类似办法求地球质量?需要选谁为研究对象?需要知道哪些量?请列出表达式.三、发现未知天体【小组合作2】1.应用万有引力定律除可估算天体质量外,还可以在天文学上有何应用?2.应用万有引力定律发现了哪些天体?3.人们是怎样应用万有引力定律来发现未知天体的?发表你的看法.【课堂小结】1.求天体质量的两条思路:①②2.用万有引力定律研究天体运动时,将天体的运动近似地看作运动,其所需向心力都来自于.然后结合向心力公式,据题目中所给的实际情况,选择适当的形式进行研究.3.测出卫星绕天体做圆周运动的轨道半径R和周期T,由万有引力F=G=,可解得天体质量M=.若已知该天体的半径为R0,据M=ρ·,可知天体密度ρ=.这就是估算天体质量和密度的方法.如果卫星在天体表面绕天体运动,则R=R0,故ρ=.由此可知只要知道近天体表面运行的即可估算天体的密度.4.现在我们知道太阳系有八大行星,其中被称为“笔尖下发现的行星”的是.因为它是据算出来的.它的发现也更进一步地证明了万有引力定律的正确性.课堂检测1.利用下列哪组数据,可以计算出地球的质量()A.已知地球的半径R和地面的重力加速度gB.已知卫星绕地球做匀速圆周运动的轨道半径r和周期TC.已知地球半径R和卫星绕地球做匀速圆周运动的线速度vD.已知卫星绕地球做匀速圆周运动的线速度v和周期T2.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,已知其周期为T,引力常量为G,那么该行星的平均密度为()A. B. C. D.3.设地球表面的重力加速度为g0,物体在距离地心4R(R是地球半径)处,由于地球的作用产生的加速度为g,则为()A.1B.C.D.4.若已知某行星的一颗卫星绕其运转的轨道半径为R,周期为T,引力常量为G,可求得()A.该卫星的质量B.行星的质量C.该卫星的平均密度D.行星的平均密度5.地球公转的轨道半径是R1,周期是T1,月球绕地球运转的轨道半径是R2,周期是T2,则太阳质量与地球质量之比是()A. B. C. D.6.下面说法错误的是()A.海王星是人们依据万有引力定律计算出轨道而发现的B.天王星是人们依据万有引力定律计算出轨道而发现的C.天王星的运行轨道偏离,其原因是天王星受到轨道外面其他行星的引力作用D.冥王星是人们依据万有引力定律计算出轨道而发现的=p,火星半径R火和7.假设火星和地球都是球体,火星质量M火和地球质量M地之比为火地地球半径R地之比为火=q,那么火星表面处的重力加速度g火和地球表面处的重力加速度g地地等于()之比火地A. B.pq2 C. D.pq8.已知月球的质量是M,半径是R,求在月球表面的物体自由下落H所用的时间.9.已知月球到地球的球心距离为r=4×108m,月亮绕地球运行的周期为30天,求地球的质量.参考答案自主探究1.根据重力加速度求天体质量,即mg=G2.地球太阳3.利用G=m()2r得M=,其中M是太阳质量,r是某行星到太阳的距离,T是该行星绕太阳公转的周期.4.利用万有引力定律计算出来的.合作探究【创设情景1】kg=6.0×1024kg由mg=G得:M=-【拓展】1.由ρ=和V=得ρ=2.由mg0=G得M0=由ρ0=和V=得ρ0=【结论1】根据重力加速度求天体质量,即mg=G【自主探究】1.根据环绕天体的运动情况,求出其向心加速度,然后根据万有引力充当向心力,进而列方程求解.2.天体之间存在着相互作用的万有引力,行星绕恒星做近似圆周运动,而物体做圆周运动时合力充当向心力,故对于天体所做的圆周运动只能是万有引力充当向心力,这也是求解中心天体质量时列方程的根源所在.【小组合作1】1.天体实际运动是沿椭圆轨道运动的,而我们通常情况下可以把它的运动轨道处理为圆形轨道,即认为天体在做匀速圆周运动.2.在研究匀速圆周运动时,为了描述其运动特征,我们引入了线速度v、角速度ω、周期T 三个物理量.3.根据环绕天体的运动状况,求解向心加速度有三种求法.即:(1)a心=(2)a心=ω2·r(3)a心=4.应用天体运动的动力学方程——万有引力充当向心力,结合圆周运动向心加速度的三种表述方式可得三种形式的方程,即(1)F引=G=F心=ma心=m,即:G=m①得:M=.(2)F引=G=F心=ma心=mω2r,即:G=mω2·r②得:M=.(3)F引=G=F心=ma心=m,即:G=m③得:M=上述三种表达式分别对应已知环绕天体的线速度v,角速度ω,周期T时求解中心天体质量的方法.5.从以上各式的推导过程可知,利用此法只能求出中心天体的质量,而不能求环绕天体的质量,因为环绕天体的质量同时出现在方程的两边,已被约掉.【结论2】根据天体的圆周运动,即其向心力由万有引力提供.【创设情景2】M=2×1030kg【拓展】1.不能,因为不知道太阳的半径2.可以选地球的一颗卫星,需要知道卫星到地球球心的距离r和卫星绕地球运动的周期T,利用G=m()2r得M=【小组合作2】1.应用万有引力定律还可以用来发现未知的天体.2.海王星、冥王星就是应用万有引力定律发现的.3.人们在长期的观察中发现天王星的实际运行轨道与应用万有引力定律计算出的轨道总存在一定的偏差,所以怀疑在天王星周围还可能存在有行星,然后应用万有引力定律,结合对天王星的观测资料,计算出了另一颗行星的轨道,后来在计算的位置观察到新的行星.万有引力定律的发现,为天文学的发展起到了积极的作用,用它可以来计算天体的质量,同时还可以来发现未知天体.【课堂小结】1.求天体质量的两条思路:①地面附近物体与地球间的万有引力约等于物体的重力,即F引=mg.②把环绕天体(或卫星)的运动看成是匀速圆周运动,即F引=F向.2.匀速圆周万有引力3.m()2R M=卫星的周期4.海王星万有引力定律课堂检测1.ABD2.D3.D4.B5.B6.B7.A8.9.5.89×1024kg。
人教版高中物理必修2第6章万有引力与航天 6-4万有引力理论的成就 讲稿

阿基米德在研究杠杆原理后,曾经说过一句什 么名言?
“给我一个支点,我可以撬动球。”
那给我们一个杠杆(天平)是否就可以称量地球的质量 了呢? 答案:不能 测量巨大的天体质量显然只能采用间接的方法.
那我们又是怎么知道巨大的地球的质量呢?
卡文迪许在实验室称量出了地球的质量!
圆轨道做匀速圆周运动
近似
探究二 如何测量太阳的质量
(2)地球作圆周运动的向心力是由谁来提供的? 太阳对地球的引力,即F引=F向 已知地球绕太阳公转的哪个物理量? 公转周期
探究二 如何测量太阳的质量
(3)动力学方程——万有引力充当向心力
F引=F向 即
G
Mm r2
m
2
T
2
r
从而求出太阳的质量
M
笔尖下发现的行 星—海王星
发现未知天体
2、冥王星的发现
背景:海王星发现之后,经过一段时间的观测研究,天 文学家们认为,就算把海王星施加给天王星的影响考虑 进去,还是不能完全使天王星的计算位置与观测结果相 符。不但如此,天文学家们还发现海王星的运动也不正 常,因此推测,在海王星外应该还有一颗行星。1930年 3月14日,汤博发现了这颗新星——冥王星.
日地中心的距离 r=1.5×1011 m,地球表面的重力加速度 g=10m/s2,1年约为 3.2×107 s,试估算目前太阳的质量
M.(引力常数未知) 解:由万有引力定律和动力学知识得
GMr2m= m2Tπ2r
对地球表面的物体m′,有 m′g=GmmR2′
联立两式得
M=
4π2mr3 gR2T2
代入数据得 M=2.0×1030 kg.
2019-2020学年高中物理 第6章 4 万有引力理论的成就教案 新人教版必修2

4.万有引力理论的成就[学习目标] 1.了解万有引力定律在天文学上的重要应用. 2.掌握计算天体的质量和密度的方法.(重点) 3.掌握解决天体运动问题的基本思路.(重点、难点)一、计算天体的质量 1.地球质量的计算(1)依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物体的万有引力,即mg =G Mm R2.(2)结论:M =gR 2G,只要知道g 、R 的值,就可计算出地球的质量.2.太阳质量的计算(1)依据:质量为m 的行星绕太阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力,即G Mm r 2=4π2mrT.(2)结论:M =4π2r 3GT2,只要知道行星绕太阳运动的周期T 和半径r ,就可以计算出太阳的质量.3.其他行星质量的计算(1)依据:绕行星做匀速圆周运动的卫星,同样满足G Mm r 2=4π2mrT2(M 为行星质量,m 为卫星质量).(2)结论:M =4π2r3GT2,只要知道卫星绕行星运动的周期T 和半径r ,就可以计算出行星的质量.二、发现未知天体 1.海王星的发现英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23日,德国的伽勒在勒维耶预言的位置附近发现了这颗行星——海王星.2.其他天体的发现近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体.1.思考判断(正确的打“√”,错误的打“×”) (1)地球表面的物体,重力就是物体所受的万有引力. (×) (2)绕行星匀速转动的卫星,万有引力提供向心力. (√) (3)利用地球绕太阳转动,可求地球的质量.(×) (4)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性. (√) (5)科学家在观测双星系统时,同样可以用万有引力定律来分析. (√) (6)冥王星被称为“笔尖下发现的行星”. (×)2.下列说法正确的是( )A .海王星是人们直接应用万有引力定律计算出轨道而发现的B .天王星是人们依据万有引力定律计算出轨道而发现的C .海王星是人们经过长期的太空观测而发现的D .天王星的运行轨道与由万有引力定律计算的轨道存在偏差,其原因是天王星受到轨道外的行星的引力作用,由此人们发现了海王星D [由行星的发现历史可知,天王星并不是根据万有引力定律计算出轨道而发现的;海王星不是通过观测发现,也不是直接由万有引力定律计算出轨道而发现的,而是人们发现天王星的实际轨道与理论轨道存在偏差,然后运用万有引力定律计算出“新”星的轨道,从而发现了海王星.由此可知,A 、B 、C 错误,D 正确.]3.“嫦娥二号”是我国月球探测第二期工程的先导星.若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T ,已知引力常量为G ,半径为R 的球体体积公式V =43πR 3,则可估算月球的( )A .密度B .质量C .半径D .自转周期A [由万有引力提供向心力有G Mm r 2=m 4π2T2r ,由于在月球表面轨道有r =R ,由球体体积公式V =43πR 3,联立解得月球的密度ρ=3πGT2,故选A.]1.(1)重力加速度法若已知天体(如地球)的半径R 及其表面的重力加速度g ,根据在天体表面上物体的重力近似等于天体对物体的引力,得mg =G Mm R 2,解得天体的质量为M =gR 2G ,g 、R 是天体自身的参量,所以该方法俗称“自力更生法”.(2)环绕法借助环绕中心天体做圆周运动的行星(或卫星)计算中心天体的质量,俗称“借助外援法”.常见的情况如下:若天体的半径为R ,则天体的密度ρ=M43πR 3,将M =4π2r 3GT 2代入上式可得ρ=3πr3GT 2R3.特殊情况:当卫星环绕天体表面运动时,卫星的轨道半径r 可认为等于天体半径R ,则ρ=3πGT 2.【例1】 (多选)若宇航员在月球表面附近自高h 处以初速度v 0水平抛出一个小球,测出小球的水平射程为L .已知月球半径为R ,万有引力常量为G .则下列说法正确的是( )A.月球表面的重力加速度g 月=2hv 2L2B .月球的质量m 月=2hR 2v 2GL2C .月球的自转周期T =2πR v 0D .月球的平均密度ρ=3hv 202πGL2AB [根据平抛运动规律,L =v 0t ,h =12g 月t 2,联立解得g 月=2hv 20L2,选项A 正确;由mg 月=G mm 月R 2解得m 月=2hR 2v 20GL 2,选项B 正确;根据题目条件无法求出月球的自转周期,选项C 错误;月球的平均密度ρ=m 月43πR 3=3hv 22πGL 2R ,选项D 错误.]求解天体质量和密度时的两种常见误区(1)根据轨道半径r 和运行周期T ,求得M =4π2r3GT2是中心天体的质量,而不是行星(或卫星)的质量.(2)混淆或乱用天体半径与轨道半径,为了正确并清楚地运用,应一开始就养成良好的习惯,比如通常情况下天体半径用R 表示,轨道半径用r 表示,这样就可以避免如ρ=3πr 3GT 2R3误约分;只有卫星在天体表面做匀速圆周运动时,如近地卫星,轨道半径r 才可以认为等于天体半径R.1.已知地球和月球半径的比值为4,地球和月球表面重力加速度的比值为6,则地球和月球密度的比值为( )A .23B .32C .4D .6 B [设月球的半径为R 0,地球的半径为R ,月球表面的重力加速度为g 0,地球表面的重力加速度为g ,在地球表面,重力等于万有引力,故mg =G Mm R 2,解得M =gR 2G ,故密度ρ=MV =gR 2G43πR3=3g 4πGR .同理,月球的密度ρ0=3g 04πGR 0,故地球和月球的密度之比ρρ0=gR 0g 0R =6×14=32,B 正确.]1一般行星或卫星的运动可看成匀速圆周运动,所需要的向心力都由中心天体对它的万有引力提供,所以研究天体时可建立基本关系式:G MmR2=ma ,式中a 是向心加速度.2.四个重要结论它们叫作“小行星”,谷神星就是小行星之一.现有两个这样的天体,它们的质量分别为m 1和m 2,绕太阳运行的轨道半径分别是r 1和r 2,求:(1)它们与太阳间的万有引力之比; (2)它们的公转周期之比.[解析] (1)设太阳质量为M ,由万有引力定律得,两天体与太阳间的万有引力之比F 1F2=GMm 1r 21G Mm 2r 22=m 1r 22m 2r 21. (2)两天体绕太阳的运动可看成匀速圆周运动,向心力由万有引力提供,则有G Mmr2=m ⎝⎛⎭⎪⎫2πT 2r ,所以,天体绕太阳运动的周期T =2πr 3GM, 则两天体绕太阳的公转周期之比T 1T 2=r 31r 32. [答案] (1)m 1r 22m 2r 21(2)r 31r 32上例中,若r 1>r 2,则两行星的运行的角速度ω1、ω2和线速度v 1、v 2的关系怎样? 提示:ω1<ω2,v 1<v 2.2.设土星绕太阳的运动为匀速圆周运动,若测得土星到太阳的距离为R ,土星绕太阳运动的周期为T ,万有引力常量G 已知,根据这些数据,不能求出的量有( )A .土星线速度的大小B .土星加速度的大小C .土星的质量D .太阳的质量C [根据已知数据可求:土星的线速度大小v =2πR T 、土星的加速度a =4π2T2R 、太阳的质量M =4π2R 3GT2,无法求土星的质量,所以选C.]如图所示,宇宙中两个靠得比较近的天体称为双星,它们绕其连线上的某固定点做匀速圆周运动.双星具有以下特点:(1)由于双星和该固定点总保持三点共线,所以双星做匀速圆周运动的角速度和周期分别相同.(2)由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等. (3)轨道半径与质量的关系 由F =mr ω2和L =r 1+r 2,可得r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,则r 1r 2=m 2m 1. 【例3】 (多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距400 km ,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星A .质量之积B .质量之和C .速率之和D .各自的自转角速度BC [由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T =112 s ,两中子星的角速度均为ω=2πT ,两中子星构成了双星模型,假设两中子星的质量分别为m 1、m 2,轨道半径分别为r 1、r 2,速率分别为v 1、v 2,则有:Gm 1m 2L2=m 1ω2r 1、G m 1m 2L 2=m 2ω2r 2,又r 1+r 2=L =400 km ,解得m 1+m 2=ω2L 3G,A 错误,B 正确;又由v 1=ωr 1、v 2=ωr 2,则v 1+v 2=ω(r 1+r 2)=ωL ,C 正确;由题中的条件不能求解两中子星自转的角速度,D 错误.]3.(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,双星系统中两颗恒星的质量关系描述正确的是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT2BCD [对于两星有共同的周期T ,由牛顿第二定律得Gm 1m 2(R 1+R 2)2=m 14π2T 2R 1=m 24π2T2R 2,所以两星的质量之比m 1∶m 2=R 2∶R 1,C 正确;由上式可得m 1=4π2R 2(R 1+R 2)2GT 2,m 2=4π2R 1(R 1+R 2)2GT2,D 正确,A 错误;m 1+m 2=4π2(R 1+R 2)3GT2,B 正确.]1.关于万有引力定律应用于天文学研究的历史事实,下列说法中正确的是( ) A .天王星、海王星和冥王星,都是运用万有引力定律、经过大量计算后发现的 B .在18世纪已经发现的7颗行星中,人们发现第七颗行星——天王星的运动轨道总是同根据万有引力定律计算出来的结果有比较大的偏差,于是有人推测,在天王星轨道外还有一颗行星,是它的存在引起了上述偏差C .第八颗行星,是牛顿运用自己发现的万有引力定律,经大量计算而发现的D .冥王星是英国剑桥大学的学生亚当斯和勒维耶合作研究后共同发现的B [由行星的发现历史可知,天王星并不是根据引力定律计算出轨道而发现的;海王星不是通过观测发现,也不是直接由万有引力定律计算出轨道而发现的,而是人们发现天王星的实际轨道与理论轨道存在偏差,然后运用万有引力定律计算出“新”星的轨道,从而发现了海王星.冥王星是克莱德·汤博发现的.由此可知,A 、C 、D 错误,B 正确.]2.土星最大的卫星叫“泰坦”,每16天绕土星一周,其公转轨道半径约为1.2×106km ,已知引力常量G =6.67×10-11N·m 2/kg 2,则土星的质量约为( )A .5×1017kg B .5×1026kg C .7×1033 kgD .4×1036 kgB [卫星绕土星运动,土星对卫星的引力提供卫星做圆周运动的向心力.设土星质量为M ,则有GMm R 2=m 4π2T 2R ,解得M =4π2R 3GT 2,带入计算可得:M =4×3.142×(1.2×106×103)36.67×10-11×(16×24×3 600)2kg≈5×1026kg ,故B 正确,A 、C 、D 错误.]3.2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m 2/kg 2.以周期T 稳定自转的星体的密度最小值约为( )A .5×109kg/m 3B .5×1012 kg/m 3C .5×1015kg/m 3D .5×1018kg/m 3C [毫秒脉冲星稳定自转时由万有引力提供其表面物体做圆周运动的向心力,根据G MmR2=m 4π2R T 2,M =ρ·43πR 3,得ρ=3πGT2,代入数据解得ρ≈5×1015 kg/m 3,C 正确.] 4.(多选)宇宙观测发现,在宇宙中甲、乙两个星体组成的双星系统,它们同时绕其连线上的某点O 做匀速圆周运动,已知甲、乙的质量之比为7∶1,由此可知( )A .甲、乙的线速度大小之比为7∶1B .甲、乙的向心力大小之比为1∶1C .甲、乙的运行轨道半径之比为1∶7D .甲、乙的周期之比为1∶7BC [作为双星系统,甲乙两星体周期是相等的,角速度也是相等的,它们之间的万有引力提供各自的向心力得:m ω2r =M ω2R ,甲乙质量比为7∶1,所以甲乙运行轨道半径之比为1∶7,根据v =ωr 可知,线速度之比为1∶7,故A 错误,C 正确;它们之间的万有引力提供各自的向心力,则甲乙向心力大小相等,故B 正确;甲乙两星体可视为双星系统,周期是相等的,故D 错误.]。
人教版高一物理必修2第六章第4节 万有引力理论的成就 教学设计

§ 6.4万有引力理论的成就【学习目标】1.了解万有引力定律的伟大成就,能测量天体的质量及预测未知天体等2.熟练掌握应用万有引力定律测天体质量的思路和方法。
3.体会万有引力定律在天文学史上取得的巨大成功,激发学科学习激情和探索精神。
【学习重难点】1.重点:测天体的质量的思路和方法2.难点:物体的重力和万有引力的区别和联系。
【学习方法】自主学习、合作交流、讲授法、练习法等。
【课时安排】 1课时【学习过程】一、导入新课:万有引力定律发现后,尤其是卡文迪许测出引力常量后,立即凸显出定律的实用价值,能利用万有引力定律测天体的质量,科学性的去预测未知的天体!这不仅进一步证明了万有引力定律的正确性,而且确立了万有引力定律在科学史上的地位,有力地树立起人们对年轻的物理学的尊敬。
二、多媒体展示问题,学生带着问题学习教材,交流讨论。
1.说一说物体的重力和万有引力的区别和联系2.写出应用万有引力定律测天体质量的思路和方法。
3.简述“笔尖下发现的行星”的天文学史事,该史事说明了什么?三、师生互动参与上述问题的学习与讨论1.学生互动学习交流发言。
2.教师指导、帮助学生进一步学习总结(结合课件展示)。
(1)万有引力和物体的重力地球表面附近的物体随地球的自转而做匀速圆周运动,受力分析如图(1)1)在两极点: F =mg 万2)除两极点外:万有引力的一个分力提供向心力,另外一个分力就是物体受到的重力, 由于提供向心力的力很小(即使在赤道上),物体的重力的数值和万有引力相差很小。
3)在赤道处:1n F -F ma =万,1F mg = 显然,地球表面附近随纬度的增加,重力加速度值略微增大。
若忽略地球自转的影响,物体受到的万有引力约为物体在该处受到的重力,不予考虑二者的差别。
物体在距离地心距离为r (r > R )处的加速度为a r :r 2Mm G =ma r 则: r 2GM a =r 若忽略地球自转的影响,物体在距离地心距离为r 处的重力加速度为g r :r 2Mm G =mg r 则:r r 2GM g =a r= F F n O F 1 mg 图(1)(2)“科学真是迷人”巧测地球的质量若不考虑地球自转的影响:2Mm mg=G R ,则: 2gR M=G 地面的重力加速度g 和地球半径R 在卡文迪许之前就已知道,卡文迪许测出了引力常量G ,就可以算出地球的质量M 。
「精品」高中物理第六章万有引力与航天6.4万有引力的成就教案新人教版必修2

6.4万有引力的成就
R
M
G
θ
m
w
r
F 向
F
引
(二)新课教学 1、地球质量
(1)练习计算:《中华一题》 已知:M 地= m= R= 求:(1)万有引力;(2)物体随地球自转的向心力;(3)比较可得什么结论?
(2)了解地球表面物体的重力与地球对物体的万有引力的关系。
多媒体投影图:物体m 在纬度为θ的位置,万有引力指向地心,分解为两个分力:m 随地球自转围绕地轴运动的向心力和重力。
给出数据:地球半径R 、纬度θ(取900
)、地球自转周期T ,计算两个分力的大小比值,引导学生得出结论:向心力远小于重力,万有引力大小近似等于重力。
因此不考虑(忽略)地球自转的影响,
2R
Mm
G mg =,地球质量: G gR M 2=
2、太阳质量
应用万有引力可算出地球的质量,能否算出太阳的质量是多少?提问:行星做圆周运动的向心力的来源是什么?是否需要考虑九大行星之间的万有引力?
总结:太阳质量远大于各个行星质量,高中阶段粗略计算,不考虑行星之间的万有引力。
设中心天体太阳质量M ,行星质量m ,轨道半径r ——也是行星与
2R
G ,地球质量G =
T r G 2⎪⎭
⎝2
GT =,3。
【优】高中物理人教版必修2 第六章第4节万有引力理论的成就 教案5

教学过程一.复习、引入[提出问题]如何测定物体的质量?能想到哪些方法?[学生活动]思考并回答。
(用PPT出示相关的图片)[过渡]如果我们想测定一个天体的质量,比如地球或太阳的质量,又有怎样的方法可以实现呢?[学生活动]思考提出自己的大胆设想。
(用PPT出示相关的图片,展示一些无法实际操作的方法)[过渡]这节课我们就来学习利用万有引力定律测定天体的质量的方法。
[板书]第4节万有引力理论的成就二.新课教学1.测量地球的质量[板书] 1.测量地球的质量[提问]关于地球的一些信息和参数,同学们知道哪些?[教师活动]引导学生建立模型,利用万有引力公式可写出引力的表达式。
[提问]用什么工具能直接把这个引力测出来呢?[学生回答]利用弹簧秤测出重力即万有引力。
[教师总结]我们建立了模型,在不考虑地球自传的影响下,测地球质量的基本思路为万有引力等于重力。
[学生活动]在笔记本上写出推导过程。
[教师活动]巡视学生完成的情况,请一名学生说出自己的思路并将演算过程写在黑板上。
[板书] mg R Mm G =2 得 GgR M 2= [过渡]在实际计算地球质量时,我们需要掌握三个数据,即地球表面的重力加速度、地球的半径和引力常量,那么这些数据又是如何得到的呢?[学生活动]思考并回答问题。
[观看视频]地球周长的测量。
[教师总结]卡文迪许曾将自己利用扭秤装置测定引力常量的实验称为“称量地球的重量”。
想想看,通过在实验室中研究几个铅球间的作用力,就能够计算出地球的质量,这正是科学的迷人之处。
[提问]利用这一方法能否测出月球或太阳的质量?[学生活动]回答问题,能测月球质量,但无法测太阳质量。
[过渡]下面我们就来研究一下测太阳质量的方法。
2.计算太阳的质量[板书] 2.计算太阳的质量[3D 动画] 用3D 动画模拟演示地球绕太阳的公转,演示从沿公转平面观察转变为从俯视的角度观察,帮助学生建立模型。
[提问]我们把地球绕太阳的公转简化为匀速圆周运动,那么地球运动需要的向心力由什么力来提供呢?[学生回答]由太阳对地球的万有引力来提供。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
G R G
在实验室里测量几个铅球之间的作用力,就可以称量地球,这不能不说是一个科学奇迹。
难怪一位外行人、著名文学家马克·吐温满怀激情地说:“科学真是迷人。
根据零星的事实,增添一点猜想,竟能赢得那么多收获!”
二、计算天体的质量
1.中心天体质量计算的公式
应用万有引力定律还可以计算太阳等中心天体的质量。
思考这个问题的出发点是:行星或卫星绕中心天体做匀速圆周运动的向心力是由它们之间的万有引力提供的,由此可以列出方程,从中解出中心天体的质量。
设M 是太阳的质量,m 是某个行星的质量,r 是行星与太阳之间的距离,ω是行星公转的角速度。
根据万有引力提供行星绕太阳运动的向心力,有:
F =222
2
2
4Mm
v G ma m r
m mr mv r r T
πωω
行星的质量m 在方程两侧被消去,所以只能求出中心天体的质量。
将万有引力和右侧向心加速度的不同表达式联立,得到中心天体质量的计算公式为
2
23223224r a r rv r r v M
G
G
G GT G
ωπω
测出行星的公转周期T 和它与太阳的距离r 等,就可以算出太阳的质量。
根据已知条件的不同,应选择不同的计算公式来计算中心天体的质量。
对同一个中心天体,M 是一个定值。
所以
2
4π(
)T
283
2112
4(3.14)(410)kg
6.6710(30243600)GT
2()
G m
R R T
22
44444
πRGπRGπR GπG GTπRG
G
是一个普适常量。
当h =0,物体在星球表面时,。
2
GM g R
由此可知:物体在地球表面处的重力加速度,一方面与纬度位置有关,另一方面还与高度有关。
三、发现未知天体
到了18世纪,人们已经知道太阳系有7颗行星,其中1781年发现的第七个行星──天王星的运动轨道有些“古怪”:根据万有引力定律计算出来的轨道与实际观测的结果总有一些偏差。
有人据此认为万有引力定律的准确性有问题。
但另一些人则推测,在天王星轨道外面还有一颗未发现的行星,它对天王星的吸引使其轨道产生了偏离。
到底谁是谁非呢?
有人问李政道教授,在他做学生时,刚一接触物理学,什么东西给他的印象最深?他毫不迟疑地回答,是物理学法则的普适性深深地打动了他。
物理学基本规律的简洁性和普适性,使人充分领略了它的优美,激励着一代又一代科学家以无限热情献身于对科学规律的探索。
英国剑桥大学的学生亚当斯和法国年轻的天文爱好者勒维耶相信未知行星的存在。
他们根据天王星的观测资料,各自独立地利用万有引力定律计算出这颗“新”行星的轨道。
1846年9月23日晚,德国的伽勒在勒维耶预言的位置附近发现了这颗行星,人们
称
其为“笔尖下发现的行星”。
后来,这颗行星命名为海王星。
2G
R G
2
m mr r T
2
G
G
G
GT G
2()
G m
R R T
22
44444
πRGπRGπR GπG GTπRG
G
是一个普适常量。