许立炜《矩阵论》课后习题第一章答案(个人)
矩阵理论第一章课后习题答案
1.按通常矩阵的加法及数与矩阵的乘法,下列数域F 上方阵集合是否构成F 上的线性空间:(1)全体形如⎪⎪⎭⎫ ⎝⎛b a-a 0的二阶方阵的集合; (2)全体n 阶对称(或反对称、上三角)矩阵的集合; (3){|0,}n n V X AX X F ⨯==∈(A 为给定的n 阶方阵).解:(1)设⎪⎪⎭⎫ ⎝⎛=111b a-a 0α⎪⎪⎭⎫ ⎝⎛-=222a 0b a β⎪⎪⎭⎫⎝⎛-=3330b a a γ ①αββα+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+111222212121222111b a -a 0a 00a 0b a -a 0b a b b a a a a b a ②)(0b a -a 0000a 0b a -a 0)(323232111321321321333212121333222111γβαγβα++=⎪⎪⎭⎫⎝⎛+--++⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++---++=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=++b b a a a a b b b a a a a a a b a a b b a a a a b a a b a③存在零向量V ∈0,使得对每个V a ∈,a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+111111b a -a 00000b a -a 00④对每个V a ∈,存在负向量a -,使得0b -a a -0b a -a 0)(111111=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=-+a a再令F y x ∈,⑤αα)(b a -a 0xyb xya -xya 0yb ya -ya 0b a -a 0)(111111111111xy xy x y x y x =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛= ⑥αα=⎪⎪⎭⎫⎝⎛=111b a -a 011⑦βαβαx x b a xb xb xa xa xa xa b b a a a a x b a x x +=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+--+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+222111212121212121222111a 0b a -a 000a 0b a -a 0)(⑧ya xa yb xb yaxa ya xa y x y x +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+=+111111*********yb ya -ya 0xb xa -xa 00b a -a 0)()(α所以全体形如⎪⎪⎭⎫⎝⎛b a -a 0的二阶方阵的集合构成F 上的线性空间。
矩阵论第一章答案
α = (a1 , a2 ,..., an ) ,
∑a
i =1
i
= 0,
对任意 α , β ∈ L , α = (a1 , a2 ,..., an ) , β = (b1 , b2 ,..., bn ) 有
6
n
n i =1
n i =1
α + β = (a1 + b1 ,..., an + bn ),
7. 解:是线性空间.不难验证 sin t , sin 2t ,…, sin nt 是线性无关 的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所 以它们是 V 中的一个组基 . 由高等数学中傅里叶( Fourier )系数知
ci =
1 π
∫
2π
0
t sin itdt .
8. 解:⑴ 不是,因为公理 2 ' ) 不成立:设 r=1, s=2, α=(3, 4), 则 (r+s) o (3, 4)= (9, 4), 而 r o (3, 4) ⊕ s o (3, 4)=(3,4) ⊕ (6, 4)= (9, 8), 所以 (r+s) o α≠r o α ⊕ s o α. ⑵ 不是,因为公理 1)不成立:设α= (1,2) , β= (3,4) , 则α ⊕ β=(1,2) ⊕ (3,4) = (1,2), 所以 α ⊕ β≠β ⊕ α. ⑶ 不是,因为公理 2 ' ) 不成立:设 r=1, 则 (r+s) o α=3 o (3, 4)= (27, 36) 而 s=2, α=(3,4) , β ⊕ α= (3,4) ⊕ (1,2) = (3,4) ,
3. 解:⑴ 不是,因为 当 k∈Q 或 R 时,数乘 k α 不封闭;⑵ 有 理域上是;实数域上不是,因为当 k∈R 时,数乘 k α 不封闭.⑶ 是 ; ⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭.
矩阵论课后题答案(研究生用书)改
⎞ ⎠
⎠
A
P
⎞ ⎠
⎠ ⎞
P
⎠
− 1
A
⎠
A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E
⎞
A
A A E
A
⎠
f A
A
A
A
A
A
E
A
E
E
A A
⎠
⎞
A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E
⎠
⎞
⎞ ⎠
f A E
E
⎞
A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F
矩阵论习题答案
自测题一一、解:因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解:(1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解:(1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即212)21(311-⋅≤e .四、解:(1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=-得T )1,1,1(3=ξ .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P , :,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故12211)])([)],([(sin -⋅=P J f J f Pdiag A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112sin 2cos 2sin 1sin 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2cos 1sin 1sin 2cos 1sin 2cos 2sin 2sin 1sin 1sin 2sin 1sin 2sin 2cos 2cos 2sin 2cos .五、解:(1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1)6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以7557)(1=⨯==∞∞-∞A A A cond ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故5lim )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3)-+-r B B B ,,均可取1-B .七、证:设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解:I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ ,其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α,得n aA n A ===212,1,α,即有212ααA A >.五、解:(1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫ ⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫ ⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以,方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n 必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解:(1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(411322003---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解:由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证:当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ;从而0>=FTX X α. ,C k ∈∀FT FTX k kx kX αα()(===X k X k FT=α,FTFTFT T FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FT T FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证:⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ. 1)(<≤⇐A A ρ便得证.八、证:(1)1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2)B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B ,则AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证:易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX =,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-=,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此3,521==λλ,所以5m ax)(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解:由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a ,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(,,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T . 令 AA f 1)(=, 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X TT T T ,所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x-,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解:(1),9,1,3,3121====∞m T XX XXX3,4,3===∞∞X X XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫⎝⎛-=100000010J .六、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2)⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1)当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A对角化,取⎪⎪⎪⎭⎫ ⎝⎛=110001020C 使⎪⎪⎪⎭⎫⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y ,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1))1(4963752542-=---+---=-λλλλλλA I,A 的特征根1,0321===λλλ;行列式因子)1()(23-=λλλD ,易得1)()(12==λλD D ; 不变因子)1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即,BA AB -=两端右乘B 得BAB AB -=2, 从而AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(. (2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I ,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λn;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故A e 为正交矩阵.七、证:(1) 设R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k ,得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以22200212),(2n k +++=-= αα .八、证:由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑=====③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b aE E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a000000; (2) 由,B A AB +=得到I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((,显然I A -与I B -均为阶可逆方阵,于是有I I A I B =--))((,即I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而AB BA =.三、解:(1))2()1(2320110012λλλλλλ--=---=-E A ,)2()1()(23λλλ--=D ,1)(2=λD ,1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d , 所以初等因子为:λλ--2,)1(2.A 的Jordan标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011.(2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd =且,0Ie = 得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B B B cond 54145=⨯⨯=. (3)2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--21103001052152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解: (1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故1±=λ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以11-+=V V V . 又 ⇒∈∀-11V V α,)(αα=且,)(αα-=;得αα-=,即0=α,故11-⊕=V V V .自测题八{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====10121121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令矩阵,3)(I A A f -=若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan标准形为⎪⎪⎪⎭⎫⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴ +-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令()==T R R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证:()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故()()I a A a AAA n n n 12111111--++-+++-=.自测题九一、解:不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.V Y X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B . (3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B ,⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解:非负性.A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行. (2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TT T F F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11TT T G GG G G .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解:(1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解:,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TT T T =Λ=Λ=Λ,,即A 为实对称矩阵,故A是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =,故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321x x x x A , 其中 ⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛=-101001010010001,10100101001000011=C C , 所以在4321,,,εεξξ下的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴B 是幂收敛.∴原级数和为()⎪⎪⎭⎫⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F HH,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H五、解:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=7610,122121211142b A , ⎪⎪⎪⎪⎭⎫⎝⎛----=+561651224112331A ,。
工程硕士矩阵论第一章
n 例 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
定理1.2 设W是线性空间V的非空子集, 则W是V的子空间的充要条件是: W对V 中的线性运算封闭.
例 函数集合 f x C a, b f a 0是线性空间C[a,b] 的子空间.
例 函数集合 f x C a, b f a 1 不是线性空间 C[a,b]的子空间.
例
22 R 求
中
1 1 2 2 1 1 2 0 A1 0 1 , A2 0 2 , A3 1 0 , A4 1 1 ,
的秩和极大无关组.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若 W关于 V中的线性运算也 构成数域 P 上的线性空间,则称 W 是 V 的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
• 若ka=0,则k=0或a=0
第二节 基、坐标与维数
一.向量组的线性相关性 1.有关概念 定义 设V为数域P上的线性空间,对V 中的向 , 1 , 2 ,, m , 如果存在一组数 量(元素) k1 , k 2 ,, k m P ,使得
则称 或 可由向量组 1 , 2 ,, m 线性表示. k1 , k 2 ,, k m 称为组合系数(或表示系数)
矩阵论智慧树知到课后章节答案2023年下浙江理工大学
矩阵论智慧树知到课后章节答案2023年下浙江理工大学浙江理工大学绪论单元测试1.矩阵论与线性代数之间是()答案:矩阵论是线性代数的拓展与延伸;矩阵论与线性代数既有关系又有差异第一章测试1.非零方阵必存在逆矩阵。
()答案:错2.上三角矩阵的逆矩阵仍是上三角矩阵。
()答案:对3.对应不同特征值的特征向量必线性无关,对应同一特征值的特征向量必线性相关。
()答案:错4.若矩阵 A、B 均为 n 阶正交矩阵,则 A-B 也是正交矩阵。
()答案:错5.若矩阵 A、B 相似,则矩阵 A T与B T相似。
答案:对第二章测试1.设,则A的特征值为()答案:-1,1,22.若 n 阶方阵 A 的特征值不为零,则 A 必然为( )答案:满秩矩阵3.已知三阶方阵 A的三个特征值为 1,-2,3, 则的特征值为( )答案:1,4,164.( )答案:5.( )答案:第三章测试1.任意算子范数和诱导它的向量范数都是相容的。
()答案:对2.在任意线性空间中,向量范数都具有等价性。
()答案:错3.任意矩阵范数都具备相容性。
()答案:错4.对于相容矩阵范数,都存在与之相容的向量范数。
()答案:对5.任意相容范数都是算子范数。
()答案:错第四章测试1.矩阵值函数可逆与满秩是等价的。
()答案:错2.n阶可导的矩阵值函数,它的幂次求导与一般函数的幂次求导法则是相同的。
()答案:错3.若矩阵级数绝对收敛,则一定收敛,并且任意交换它的求和次序,不改变其收敛性。
()答案:对4.矩阵幂级数的绝对收敛性,与对应的一般幂级数的绝对收敛性相同。
()答案:错5.已知收敛的矩阵序列可逆,则它的极限矩阵也可逆。
()答案:对第五章测试1.任意一个n阶复矩阵,则下面哪一个说法正确()答案:酉相似于一个上三角矩阵2.满秩分解 A=BC中,则()答案:B为列满秩矩阵3.Householder矩阵是一个初等矩阵。
()答案:对4.矩阵的奇异值分解是惟一的。
()答案:错5.对任意向量w,矩阵称为Householder矩阵。
研究生 矩阵论 课后答案
|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
矩阵论de 课后答案.pdf
习题 1.11.解:除了由一个零向量构成的集合{θ}可以构成线性空间外,没有两个和有限(m)个向量构成的线性空间,因为数乘不封闭(kα 有无限多个,k∈p数域).2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭.3. 解:⑴不是,因为当k∈Q 或 R 时,数乘kα不封闭;⑵有理域上是;实数域上不是,因为当k∈R时,数乘kα不封闭.⑶是;⑷是;⑸是;⑹不是,因为加法与数乘均不封闭.4.解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理.5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量).6. 解:(1)设A的实系数多项式f(A)的全体为{f (A)= a0 I + a1 A + a m A m a i∈ R, m正整数}1显然,它满足两个封闭性和八条公理,故是线性空间.(2)与(3)也都是线性空间.7. 解:是线性空间.不难验证sin t,sin 2t,…,sin nt是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V中的一个组基.由高等数学中傅里叶(Fourier)系数知c i= 1 2π t sin itdt .π ⎰08. 解:⑴不是,因为公理 2 ')不成立:设 r=1, s=2, α=(3, 4),则(r+s) (3, 4)= (9, 4),而r (3, 4)⊕s (3, 4)=(3,4)⊕(6, 4)= (9, 8), 所以(r+s)α≠rα⊕sα.⑵ 不是,因为公理1)不成立:设α= (1,2) ,β= (3,4) ,则α⊕β=(1,2)⊕(3,4) = (1,2),β⊕α= (3,4)⊕(1,2) = (3,4) , 所以α⊕β≠β⊕α.⑶ 不是,因为公理2')不成立:设r=1, s=2,α=(3,4) ,则(r+s)α=3 (3, 4)= (27, 36) 而r α⊕ s α=1 (3,4)⊕ 2 (3,4)=(3, 4)⊕ (12, 16)= (15, 20),于是(r+s) α≠ r α⊕ s α.⑷ 是.9.证若α,β∈V,则2(α+β)= 2α+ 2β=(1 + 1)α+(1 + 1)β=(1α+ 1α)+ (1β+ 1β )= (α + α )+ (β + β )= α + (α + β )+ β2另一方面,因此从而有2(α+β)=(1+ 1)(α+β)=(1α+ 1β)+ 1(α+β)= (α + β )+ (α + β ) = α + ( β +α )+ βα+(α+β)+β=α+(β+α)+β,(-α )+α + (α + β )+ β + (- β ) = (-α )+α + (β +α )+ β + (- β )于是得α+β=β+α.10. 解:先求齐次方程组的基础解系ξ1=(3,3,2,0)T,ξ2=(-3,7,0,4)T,即为解空间V的一组基.所以,dim V=2.11. 解:考察齐次式k (x2+ x)+ k (x2-x) +k (x+1) = 01 2 3即(k+k )x2 + (k-k + k )x+k = 0 ,1 2 1 2 3 3得线性方程组k1 + k2 = 0k1 - k2+ k3=0k3 = 0由于系数行列式不等于零,那么只有k1 = k2= k3 = 0 时,上述齐次式才对∀x成立,所以x2+x,x2-x,x+1 线性无关,且任二次多项式ax2+ bx + c 都可惟一地用它们来表示(因为相应的非齐次方程组有惟一解),故为基.令2x2+ 7x+ 3 = (k1+k2 )x2+ (k1-k2+k3 )x+k3得k1=3,k2= -1,k3=3,即坐标为( 3, -1, 3 ) .312. 解:⑴因为 ( β1,β2,β3,β4)=(α1,α2,α3,α4)C,故C=(α1,α2,α3,α4)-1(β1,β2,β3,β4)1 0 0 0 -12 0 5 6 2 0 5 6= 0 1 0 0 1 3 3 6 1 3 3 6 0 0 1 0 -1 1 2 1 = -1 1 2 1.0 0 0 1 1 0 1 3 1 0 1 3⑵ 显然,向量α在基α1,α2,α3,α4下的坐标为X=(ξ1,ξ2,ξ3,ξ4)T, 设α在基β1,β2,β3,β4下的坐标为Y=(η1,η2,η3,η4)T,则ξ1 2 0 5 6 - 1 ξ1Y=C -1ξ2=1 3 3 6 ξ2ξ3 -1 1 2 1 ξ3ξ4 1 0 1 3 ξ44 1 -1 - 119 319ξ11 4 23= - 3 - ξ2 = B X27 9 271 2 ξ33 0 0 - 3 ξ4- 7 - 1 1 2627 3 279⑶ 如果X = Y,则有X= BX,即得齐次方程组(I- B)X=0 ,求其非零解为X = k (-1,-1,-1, 1 )T,k∈R ,即为所求.13. 解:(1)对k=1,2, ,n;l=k,k+1, ,n令F kl=(a ij)n⨯n,其中a kl=1,其余的a ij=0,则{F kl}为上三角矩阵空间的一组基,维数为12 n(n +1).(2)R+中任意非零元素都可作R+的基,dim R+=1.(3)I,A,A2为所述线性空间的一组基,其维数为3.414. 解: (1)由已知关系式求得⎧β1 = 4α1 + 8α2 + α3 - 2α4⎪ = -2α1 - 4α2 +α4⎪β2⎨ = α1 + 2α2⎪β3⎪= α2 + 2α3⎩β4于是,由基(I )到基(II )的过渡矩阵为⎡ 4 - 2 1 0⎤ ⎢ - 4 ⎥ C = ⎢ 8 2 1⎥⎢1 0 0⎥⎢ 2⎥⎣- 2 10 0⎦(2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为C (2,-1,1,1)T =(11,23,4,-5)T .(3)不难计算得 det (1·I —C )=0,所以 1 是 C 的特征值.不妨取过渡矩阵 C 的对应于特征值 1 的一个特征向量为η,则有 C η=1 ·η,那么α= (β1 , β 2 , β3 , β 4 )η≠0,再由坐标变换公式知,α在基(I )下的坐标为ξ=C η=η,即存在非零α∈V 4 ,使得α在基(I )和基(II )下有相同的坐标.15. 解:不难看出,由简单基 E 11,E 12,E 21,E 22 改变为基(I )和基(II )的过渡矩阵分别为⎡2 0 - 2 1⎤⎡ 11 -1 -1⎤⎢ ⎥⎢⎥ C = ⎢1 1 13⎥ , C = ⎢2-1 2 -1⎥1⎢2 1⎥2⎢1 0 ⎥⎢1⎥⎢-1 1⎥⎣1 22 2⎦⎣ 0 1 1 1 ⎦则有(B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)C 2=(A1,A2,A3,A4)C1 1C25。
矩阵论课后习题答案
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
矩阵论简明教程习题答案第一张
习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λa a aaA I =)223(22+---a λλλ 将λ=1, 2 代入上式求得 A =0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫ ⎝⎛001令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫ ⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100.7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为 p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫ ⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f(λ)=(149542235-+-+λλλλ),)(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫ ⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1=(32,32,31--)T.当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110. (2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-==10)1(e e 0e 1e 101e e ee)(220t tt t t t ttt I X X B A .。
考博必备 研究生矩阵理论课后答案矩阵分析所有习题共73页
11、不为五斗米折腰。 12、芳菊开林耀,青松冠岩列。怀此 贞秀姿 ,卓为 霜下杰 。
13、归去来兮,田蜀将芜胡不归。 14、酒能祛百虑,菊为制颓龄。 15、春蚕收长丝,秋熟靡王税。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走
研究生矩阵论课后习题答案 全 习题一
2.求下列线性空间的维数与一个基:
(1) Rn×n 中全体对称(反对称、上三角)矩阵构成的实数域 R 上的空间;
(2)第 1 题(4)中的空间;
(3)实数域 R 上由矩阵 A 的全体实系数多项式组成的空间,其中
⎡1 0 0 ⎤
A = ⎢⎢0 ⎢⎣0
ω 0
0 ω2
⎥ ⎥ ⎥⎦
,ω
=
−1 + 2
3i ,ω2 = ω,ω3 = 1
们的和不属于这个集合,因此此集合对向量的加法不封闭. (3)是. 封闭性显然成立.下面证明此集合满足线性空间的八个要求.
任取该集合中的三个元素,设为α = (a,b), β = (c, d ),γ = ( f , g) ,以及任意实
数 k, l ,则有 ① α ⊕ β = (a + c, b + d + ac) = β + α ; ② (α ⊕ β ) ⊕ γ = (a + c,b + d + ac) ⊕ γ
其中 k 为实数, f (x), h(x), d (x) 是实系数多项式.V1 中含有 A 的零多项式,为V1 的
零元素. f ( A) 有负元 − f ( A) ∈V1 .由于矩阵加法与数乘运算满足其它各条,故V1 关
于矩阵加法与数乘运算构成实数域上的线性空间. (2)否.例如以那个已知向量为对角线的任意平行四边形的两个邻边向量,它
i=1 j=i
关,故它们是 Rn×n 中全体上三角矩阵所构成的线性空间的一组基,该线性空间的
维数是 n(n +1) . 2
(2)数 1 是该空间的零元素,于是非零元素 2 是线性无关的,且对于任一正
实数 a ,有 a = 2log2 a = log2 a o 2 ,即 R+中任意元素均可由 2 线性表示,所以 2 是
矩阵论答案习题 1.2
习题 1.21. 解:因为对2的任一向量(21,x x),按对应规则都有2中惟一确定的向量与之对应,所以是2的一个变换.(1) 关于x 轴的对称变换; (2) 关于y 轴的对称变换; (3) 关于原点的对称变换; (4) 到x 轴的投影变换; (5) 到y 轴的投影变换.2. 解: (1) 不是.因为(2211ααk k +)=2211ααk k ++β≠k1(1α)+k2)()()(22112βαβαα+++=k k=2211ααk k ++)(21k k +β(2) 不是.因为(2211ααk k +)=β≠k1(1α)+k2βα)()(212k k +=(3) 不是.因为取 x =(1 , 0 , 0 ) ,1≠k 时,(k x )=(k 2,0, 0)≠k( x )= k (1, 0, 0)=(k , 0, 0) (4) 是.因为 设x =(321,,x x x ) ,y =(321,,y y y)(k 1x +k 2y )=112(x k),,2(),,1322121322y y y y y k x x x x +-++-=k1(x )+k 2( y )(5) 是.因为()()(2211x f k x f k+)=)1()1(2211+++x f k x f k=k1(f 1(x ))+k2))((2x f(6) 是.因为()()(2211x f k x f k+)=)()(022011x f k x f k+= k1(f 1(x ))+k2))((2x f(7) 不是.因为 设x =(321,,x x x) ,y =(321,,y y y)(k 1x +k 2y )= ()0),sin(),cos(22211211y k x k y k x k ++≠k 1(x )+k2( y )=)0,sin ,(cos )0,sin ,(cos 212211y y k x x k+ =()0,sin sin ,cos cos 22211211y k x k y k x k++.3. 解:1(α+β)=1[()]()11222221,,y x y x y x y x--+=++()()=-+-=1212,,y y x x 1(α)+1(β)1(k α)=1(k (x 1, x 2))()()kx x k kx kx=-=-=1212,,1(α)所以1是线性变换.同理可证2也是线性变换.(1+2)(α)= (1+2)[(x 1, x 2)]=1[(x 1, x 2)]+2[(x 1, x 2)]),(),(),(21212112x x x x x x x x --+=-+-=12(α)=1[2(α)]=1[( x 1, -x 2)]=(- x 2, -x 1)21(α)=2[1(α)]=2[( x 2, -x 1)]=( x 2, x 1) .4. 证:(1)因()()()C B A B A C B A +-+=+()()=-+-=BCCBACCA (A )+(B )()()()()=-=-=ACCA k C kA kA C kA k(A )故是线性变换.(2)(A )B +A (B )()()BC CB A B AC CA -+-==-=ABC CAB (AB )5. 解:令 ()3,,R c b a c c b a a ∈↔⎥⎦⎤⎢⎣⎡+ 即可.6. 证:设()[]nx p x f ∈,则(12-21)(f(x))=1[2(f(x))]-2[1(f(x))]=1[xf(x)]-2[f(x)]()()()()x f x f x x f x x f ='-'+=故12-21是恒等变换.7. 证:设2V∈α,则2211e k e k +=α,由于2(e 1)+ 2(e 2)=2(e 1+e 2)=e '1+e '22(e 1)-2(e 2)=2(e 1-e 2)=e '1-e '2所以,2(e 1)=e '1,2(e 2)= e '2于是1(α)=k11(e 1)+k21(e 2)2211e k e k'+'== k12(e 1)+k22(e 2)=2(α)故1=2.8. 解:(1) 因为j i ,在xoy 平面上,其投影不变,故有(i )=i ,(j)=j ,又k 垂直xoy 平面,则0)(=k , 得((i ),(j ),(k ))=(i ,j ,k ) 0010001所求矩阵为A =010001.(2) 因为,001)(γβαα++==i,010)(γβαβ++==j ,,011)(γβαγ++=+=j i所以, 所求矩阵为 A =110101 .(3) 由的定义知,(i )=((1 ,0 ,0 ))= ( 2 ,0 ,1)(j )= ((0 ,1, 0 ))= ( -1, 1 , 0)(k )=((0 ,0 ,1))= ( 0 ,1 , 0)有 ((i ),(j ),(k ))=(),,k j i1110012-所求矩阵为 A =1110012- .(4) 据题设:)())(('t f t f = 则)(1x =(bt eatcos )'=btbebt aeatatsin cos -=21bx ax-)(2x =(bteatsin )'=12bx ax +)(3x =( btteatcos )'=431bx ax x-+ )(4x =(btte atsin )'=342bx ax x++ )(5x =(bte t atcos 212)'=653bx ax x-+)(6x = (btt sin 212)'=564bx ax x++于是 ()(1x ,)(2x ,)(3x ,)(4x ,)(5x ,)(6x )()Dx x x x x x 654321,,,,,= ,所求矩阵为D =abb a a bbaa bba ---000010000100001000019. 解:(1) (123,,e e e)=(321,,e e e )1010100=(321,,e e e)C所求矩阵为 B=C 1-AC =111213212223313233a a a a a a a a a(2) (321,,e ke e)=(321,,e e e )100001k =(321,,e e e)C所求矩阵为B=C1-AC =333231232221131211akaakaakaakaa(3)(3221,,eeee+)=(321,,eee)1111=(321,,eee)C 所求矩阵为B=C1-AC=33323231132312221211222113121211aaaaaaaaaaaaaaaa+----++10. 解:由定义知()()31121,0,2εεε+==212)0,1,1()(εεε+-=-=()()23,1,0εε==所以,所求矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-11112.11. 解:因为()()21121,2εεε'+'==()()1231,3εε'==()()2131,1εεε'+'-=-=所以,所求矩阵为⎥⎦⎤⎢⎣⎡-11132.12. 解: (1η,2η,3η)=(321,,εεε)111101011--(321,,εεε)=(1η,2η,3η)111101011--1-= (1η,2η,3η) CB=C 1-AC =111101011--21011101-111101011-- 1-= 12121211---- .13. 解:(1) (1η,2η,3η) = (321,,e e e) C ,过渡矩阵为C=(321,,e e e)1-(1η,2η,3η)=11110121 1-111122221---- =252112323123232---(2) ()(1e ,)(2e ,)(3e )=(1η,2η,3η) = (321,,e e e) C故在基{}ie 下的矩阵就是 C . (3) (()1η,(2η),(3η) ) = (1η,2η,3η) = (321,,e e e) C=()(1e ,)(2e ,)(3e ) C = (1η,2η,3η) C故在基{}iη下的矩阵仍为C . 14. 解:(1) 由于()21111110cE aE c aE +=⎥⎦⎤⎢⎣⎡=()22121210cE aE c a E +=⎥⎦⎤⎢⎣⎡=()211121100dE bE db E +=⎥⎦⎤⎢⎣⎡=()2212221dE bE d b E +=⎥⎦⎤⎢⎣⎡=故1在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d cd c b a b a A 00000001类似地,可得2在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=d bc ad bc a A 00000002.由于3=12,所以3在该基下的矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==2222213d bdcdbccd ad cac bd bad abbc ab ac a A A A同理,可得4在该基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a ca cb a b aA 0200022000204(2)由于由简单基E 11,E 12,E 21,E 22改变为给定基E 1,E 2,E 3,E 4的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=001110011000001C于是,4在给定基下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==-a bca b c cc a b b a C A C B 002202204115. 解: (1)将题给关系式写成矩阵形式为(()1e ,(2e ),(3e ) )()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11011101,,423312121321εεε即()()()B e e e 3211321321,42331212111011101,,,,εεεεεε=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-由于()()C e e e 321321,,,,=εεε,所以有(=),,321εεε()()BCC e e e 321321,,,,εεε=故在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==256355123BC A(2)因为(=)1ε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001,,001,,321321A εεεεεε()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=953,,001,,321321e e e CA e e e所以()1ε在基(I )下的坐标为(3,5,9).16. 解:(1)取[]2x p 的简单基1,x ,x 2,则有()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==101110102,,1,,1,,22321xx Axx f f f从简单基改变到基f 1,f 2,f 3和g 1,g 2,g 3的过渡阵分别为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5222101011C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=211010112C故有(g 1, g 2, g 3)=(1, x, x 2)C =()211321,,C C f f f -()()21101232121102,,,,1C C A C g g g C C Axx ---==即在基(II )下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==--11211221211012C C A C A(2)因为()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-321,,321,,1123212C g g g xx x f()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=032,,321g g g所以(f(x))=()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-032,,032,,321321A g g g g g g()23211354,,x x g g g +--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= .17. 证:设在给定基下的矩阵为()ija A =,并设C 为从旧基到新基的过渡矩阵,由于在任一组基下的矩阵相同,则有ACCA 1-=,即AC=CA ,根据“A 与一切满秩矩阵可变换”性质,即可定出A 必为数量矩阵()常数k kI A ,=.18. 解:由基321,,ηηη到基321,,εεε的过渡矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=3103161213121211C故{}i ε在基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-46846453106111C B C B .那么,+,,, (+ )在基{}iε下的矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+2644241011151061B A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=60127212212661AB ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=123414026215291361BA ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=+3612078611442549675181B A B .19. 证:设有可逆方阵P 与Q ,使 B=P 1-AP , D=Q 1-CQ 则DB OO =CQQAPP11--O O=11--OO QPCA OOQP O=QP OO 1-CA OOQP OO即 CA OO 与 DB OO 相似.20. 证:设1r rankA=,2r rankB =,则A ,B 的行向量的极大无关组中分别含有21,r r 个行向量,设分别为11,,r αα 和21,,r ββ ,则A 的每个行向量均可由11,,r αα线性表示,B的每个行向量均可由21,,r ββ线性表示.又可A+B 的每个行向量是A 与B 的相应行向量的和,故A+B 的每个行向量均可由11,,r αα,21,,r ββ 线性表示.因此A+B 的行向量组的极大无关组中所含向量的个数不超过21r r+,即()rankBrankA B A rank+≤+.21. 证:设()n B r rankAβββ,,,,21 ==,则()()0,,,,,,2121===n n A A A A AB ββββββ ,所以θβ=1A ,θβ=2A ,…,θβ=n A .这就说明B 的列向量nβββ,,,21 都是以A 为系数矩阵的齐次方程组的解.由于rr a n k A =,所以解空间的维数为r n -,从而知nββ,,1的极大无关组所含向量的个数rn -≤,即rn rankB-≤,因此有nr n r rankB rankA =-+≤+ .22. 证:设A ,B 为同一数域上的n m ⨯与g n ⨯阶矩阵,显然,方程组BX=θ的解向量X 也满足方程组()θ=XAB ,记{}θ==BX X U , (){}θ==XAB XV则VU⊂,于是dinV AB rank n rankB n U =-≤-=)(dim即()rankBAB rank ≤.又由于()()()TT TAB rank AB rankAB rank ==rankArankAT=≤因此 (){}r a n k B r a n k AAB rank,min ≤.23. 证:由上题知,()rankAA A rank T≤,现在只需证明()rankAA A rank T≥即可.考虑线性方程组θ=AX A T,设()T nx x x X,,,21 =是方程组的一组解,将θ=AX A T两边左乘X T ,得θ=AX A XTT,即()θ=AX AX T,所以θ=AX,即{}{}00=⊂=AX X AX A XT.于是()rankAn A Arankn T-≤-即有()rankAA Arank T≤,故有()rankAA Arank T= ,并且有()()rankArankA A A rankA ArankTTTT T===即有()()TTAA rankA ArankrankA==.注:对复矩阵A ,上式不一定成立.例如⎥⎦⎤⎢⎣⎡-=11ii A ,1=rankA .由于⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=00001111i i i i A AT故()=A Arank T.此时,相应的关系式应为()()A A rankAA rankrankA **== .24. 证:必要性.由上题已证得,充分性只要在AX=θ两边左乘A T 即可.25. 证:(1)因为nrankA=,故nm≥,不妨设A 的前n 行线性无关,且构成的n 阶满秩方阵为A 1,后n m -行构成的矩阵为A 2,则⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A B A B A A AB 2121所以()()rankBB A rankAB rank =≥1,但()r a n k B AB rank ≤,故()r a n k BAB rank =.(2) 同理可证. 26. 解:(1)⎥⎦⎤⎢⎣⎡=0011A ,⎥⎦⎤⎢⎣⎡--=0011B ;(2)⎥⎦⎤⎢⎣⎡=0001A , ⎥⎦⎤⎢⎣⎡=0020B ; (3)⎥⎦⎤⎢⎣⎡=0001A ,⎥⎦⎤⎢⎣⎡=1000B .27. 证:因为()()()n m rankBrankA AB rankrankC,min ,min ≤≤=,但n m >,故m 阶方阵C 的秩mn <≤,所以C 是降秩的.28. 解:先求矩阵A 的特征值和特征向量为 121==λλ,()T20,6,31-=α23-=λ,()T1,0,02=α故的特征值和特征向量为121==λλ,()3212063e e ek +-,0≠k23-=λ,3ke , 0≠k .29. 解:(1)121==λλ,()T1,0,11=α,()T0,1,02=α,13-=λ,()T1,0,13-=α.(2)1=λ,()T2,1,31-=α,i143,2±=λ,().10,1432,1463,2Ti i -±-±=α(3)121==λλ,()T20,6,31-=α,23-=λ,()T1,0,02=α;(4)2321===λλλ,()T0,0,1,11=α,()T0,1,0,12=α,()T1,0,0,13=α,24-=λ,()T1,1,1,14---=α.以上分别求出了在不同基下所对应矩阵A 的特征值和特征向量,则类似于上题的方法,可求出不同基下所对应的特征值和特征向量.30. 解:(1),(2),(4)为非亏损矩阵(单纯矩阵),其变换矩阵P 分别为(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010101;(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---+101021432143211461463i ii i;(4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---11101010011111.31. 证 : 设在给定基下的矩阵为A ,则()n i A i ni i ,,2,100det 1=≠⇔≠=∏=λλ32. 证:设rrankA =,则存在满秩矩阵P 与Q ,使得()0,r I diagPAQ =,故有()C I diagBPPAQQPABPr 0,111==---其中()ijC BQQC==--11, 这说明AB 与diag (0,rI)相似.另一方面,有()0,111r I C d i a g P A Q BPQBAQ Q==---,说明BA 与()0,r I Cdiag相似.不难验证有()()()()0,det 0,det r r I CdigI C I diagI -=-λλ故AB 与BA 有相同的特征多项式,因此有相同的特征值和迹.33. 证:设A 的任一特征值为λ,λ的对应于λ的特征子空间记为λV .对λV 中任意向量Z 有BZZ B BAZ ABZ λλ===故λV BZ ∈,因此λV 为线性变换()BZZ =的不变子空间,即()BZZ =为λV 中的线性变换,此线性变换的特征向量即为B 的特征向量,但它又属于λV ,由λV 的定义知它又是A 的特征向量,即A 与B 有公共的特征向量.34. 证:设A 的特征值为iλ,则A 2的特征值为2iλ,由12=iλ有1±=i λ,若所有1=i λ,则A+I 为满秩矩阵,故由(A+I )(A-I )=A 2-I 2=0,有A=I .35. 证:不失一般性,设B 非奇异,有AB=B -1(BA )B 即AB 与BA 相似,所以它们有相同的特征多项式.36. 证:设A 为n 阶方阵,具其秩为r ,由于A 2=A ,知A 的列向量都是A 的对应于特征值1的特征向量.因γ=rankA ,故特征值1的几何重复度为r ,其代数重复度至少为r .又θ=AX的基础解系中的向量个数为r n -,即A 的特征值0的几何重复度为r n -,其代数重复度不小于r n -.由于一个n 阶矩阵的特征值的代数重复度之和恰为n ,故特征值1和0的代数重复度分别为r 和r n -.可见A 除了1和0外无其它特征值,而1和0的几何重复度之和为n ,故A 为非亏损矩阵,所以A 相似()0,rIdiag .37. 证:用反证法.若A 可相似于对角矩阵,对角元素即为A 的特征值,且至少有一个不为0.但是,由于λαα=A ,于是θαλα==kkA,因为θα≠,所以0=kλ,故0=λ,即A 的特征值都等于0,矛盾.38. 证:由XAX λ=,有()Xk kX A λ=,XX A kk λ=,从而有()()Xf X A f λ=,即X 也是()A f 的特征向量.显然()A f 的特征值为()λf ,即为λ的多项式.39. 解:取3中的自然基321,,εεε,计算得(1ε)=(0 , -2 ,-2 ) , (2ε)=(-2 , 3 ,-1 ) , (3ε)=(-2 , -1 ,3 )则在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=31213222A而A的特征值为2,4321-===λλλ,与之对应的特征向量为()TX0,2,11-=,()TX2,0,12-=,()TX1,1,23=,则有()2,4,41-=Λ=-diagACC,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112211C.由()321,,ααα=(321,,εεε)C求得3R的另一组基为()0,2,12211-=+-=εεα,()2,0,12312-=+-=εεα,()1,1,223213=++=εεεα,显然在该基下的矩阵为对角阵Λ.40. 解:(1)因为()21xx+=,()21xx+=,()xx+=12,所以在基1,x,x2下的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111A.(2)由于A原特征值为121-==λλ,23=λ,相应的特征向量为()TX01,11-=,()TX1,12-=,()TX11,13=,存在可逆阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111111C,使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==-2111AACC,故所求的基321,,eee为()()()2223211,1,1,,1,,xxxxCxxeee+++-+-==.41. 解:(1)对任意的V∈βα,及Rlk∈,,有()()()()()BBlBBkBlklkBlkTTTTTTββααβαβαβα-+-=+-+=+=k ((α))+l ((β))故是线性变换.(2)取V的简单基⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=1,1,11321AAA由于(),111⎥⎦⎤⎢⎣⎡-=A⎥⎦⎤⎢⎣⎡-=11)(2A,⎥⎦⎤⎢⎣⎡-=11)(3A,所以在基321,,AAA下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=111111RR的特征值为2,0321===λλλ,对应的线性无关的特征向量为(1,1,0)T,(0,1,1)T,(0,1,-1)T,令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=111111C,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ2则有Λ=-RCC1,由(B1,B2,B3)=(A1,A2,A3)C求得V的另一组基为⎥⎦⎤⎢⎣⎡-=+=111211AAB,⎥⎦⎤⎢⎣⎡=+=11322AAB,⎥⎦⎤⎢⎣⎡-=-=11323AAB,在该基下的矩阵为Λ.42. 证:(1)取n的一组基neee,,,21,设1(neee,,,21)=(n eee,,,21)A2(neee,,,21)=(n eee,,,21)B则有 (12)(n e e e ,,,21)=(n e e e ,,,21)(AB )(1+2)(ne e e,,,21)=(ne e e,,,21)(A+B )由12=1+2,可得AB=A+B ,从而有B T A T =A T +B T .若1是1的特征值,则 1也是A 的特征值,从而1也是A T 的特征值,设A T 对应于特征值1的特征向量为β,即()0≠=βββTA,由(B T A T )β=(A T +B T )β,可得B T β=β+B T β,即β=0,这与β是A T 的特征向量矛盾,故1不是1的特征值.(2)因1有几个不同的特征值,所以1有n 个线性无关的特征向量.记1的对应于特征值nλλλ,,,21的线性无关的特征向量为X 1,X 2,…,X n ,即1ii iXXλ= (i =1,2,…,n ),则X 1,X 2,…,X n 作为n的基时,1的矩阵A =diag (nλλλ,,,21).再由AB=A+B 及1≠iλ知 ()⎪⎪⎭⎫ ⎝⎛---=-=-1,,1,122111n n d i a g A I A B λλλλλλ 即1与2在该基X 1,X 2,…,X n 下的矩阵都为对角阵.43. 证:对任意0λαV ∈,有1(αλα0)∈.由于1(2(α))=2(1(α))=2(λα)所以2()0λαV ∈, 故0λV 是2的不变子空间.44. 解:(1) ('3'2''1,,,ee e e )=( 4321,,,e e e e )C=(4321,,,e e e e)2111011*********---∴ B=C1-AC =242134040168101042699631-----(2) 先求核θ(1-) . 设η=)(1θ-在基{}iε下的坐标为(4321,,,x x x x),(θη=)在此基下的坐标为(0,0,0,0),于是A4321x x x x = 000此时A 的秩为2,解之,得基础解系 )1,0,2,1(,)0,1,23,2(21--=--=ξξ,作 421232112,232e e e e e e +--=+--=ηη. 显然,21,ηη为核θ(1-)的一组基,故核由21,ηη所张成,即 θ(1-)=Span (21,ηη) .再求值域(4) . 由于((e 1),(e 2),(e 3),(e 4)) = (4321,,,e e e e) A而A 的秩为2,所以(e 1),(e 2),(e 3),(e 4)的秩也为2,且(e 1),(e 2)线性无关,故组成(4)的基,从而(4)=Span ((e 1),(e 2)) .(3) 由(2)知21,ηη是核θ(1-)的一组基,易知2121,,,ηηe e为4的一组基,由于有(2121,,,ηηe e)=(4321,,,e e e e )1100223101201---- = (4321,,,e e e e) D所以在此基下的矩阵为B=D 1-AD =220021001290025-(4) (2)知(e 1),(e 2)是值域(4)的一组基,又知(e 1),(e 2),43,e e为4的一组基,有((e1),(e2),43,e e )=(4321,,,e e e e )122012100210001--=(4321,,,e e e e) T所以在此基下的矩阵为B=T 1-A T =00002231291225 .45. 证:取3中的自然基321,,εεε,因为(+ )(1ε)=(1ε)+ (1ε)=(1,0,0)+(0,0,1)=(1,0,1)同理有(+ )(2ε)=(2,0,0),(+ )(3ε) =(1,1,0)这表明+ 将基321,,εεε变换成3中的另一组基1e =(1,0,1),2e =(2,0,0),3e =(1,1,0)(易证它们线性无关). 又因(+ )(3)是3的子空间,而321,,e e e是(+ )(3)的最大无关组,故这个子空间的维数为3,再由习题1.1中第22题的结果知(+ )(3)=3(此时取V 2=3).46. 解:因为2[(321,,a a a)]=([(321,,a a a)])=()[]21,,0a a =(0,0,1a )所以2的像子空间为R (2)(){}R a a ∈=,0,核子空间为N (2)(){}R a a a a ∈=2232,,,因此,dimR (2)=1,其一组基为(0,0,1);dim N (2)=2,其一组基为(0,1,0),(0,0,1).47. 证 :(1)由的定义容易验证满足可加性和齐次性,所以它为线性变换.又因2[(nx x x,,,21)]=[()()2111,,,0,0],,,0--=n n x x x x ,…推知n[()()0,,0,0],,,21==n x x x,即nϑ=(零变换).(2)若[()()()0,,0,0,,,0],,,1121==-n n x x x x x,则1x =2x =…=1-n x=0即()θ1-为由一切形如(0,0,…,n x )的向量构成的子空间,它是一维子空间,则(0,…,0,1)是它的基.又由维数关系 dim (V)+dim1-(θ)=n便得 (V) 的维数等于 n-1 .48. 证 :(1)必要性.若(V)= (V),对任V∈α,则∈)(α(V )=(V) ,故存在V∈β,使=)(α)(β,=)(α2)(β= )(β=)(α ,由α的任意性有 = .同理可证= .充分性.若= ,=, 对任(∈)α(V )V ⊂,=)(α)(α= ()(α)∈ (V ) , 故(V)⊂ (V) ;同理可证 (V)⊂(V).(2)必要性.若()=-θ1)(1θ-,对任V∈β,作-β)(β,因(-β)(β)=)(β-2)(β=)(β-)(β=θ ,所以,-β)(β∈()θ1- =)(1θ- ,则 (-β)(β)= θ,故=)(β )(β,由β的任意性有 =. 同理,通过作β- )(β, 可得=.充分性.若= , =, 对任 ∈α()θ1-,由=)(α=)(α()(α)= (θ)=θ ,故()⊂-θ1)(1θ-;同理,由任∈β)(1θ- ,可得 ()⊂-θ1)(1θ-.。
最新矩阵分析课后习题解答(整理版)
第一章线性空间与线性变换(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)(此处注意线性变换的核空间与矩阵核空间的区别)1.9.利用子空间定义,)R对m C满足加(AR是m C的非空子集,即验证)(A法和数乘的封闭性。
1.10.证明同1.9。
1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)1.13.提示:设),)(-⨯==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行),代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。
若X 是n 维复列向量,同样有0=ii a ,0=+ji ij a a ,再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(1.15.存在性:令2,2HH A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,唯一性:假设11C B A +=,1111,C C B B HH -==,且C C B B ≠≠11,,由1111C B C B A H H H -=+=,得C A A C B A A B HH =-==+=2,211(矛盾)第二章酉空间和酉变换(注意实空间与复空间部分性质的区别)2.8 法二:设~2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义⎩⎨⎧≠===j i j i X Y e e H j i 01),~~( 故n e e e ,,21是V 的一个标准正交基。
第一章 矩阵论
例 设V为数域P上的线性空间, 1 , 2 ,, m 是V中的一组元素,则
Span 1 , 2 , , m k1 1 k 2 2 k m m k1 , k 2 , , k m P
是V 的子空间,称为 1 , 2 ,, m的生成子空 间, 1 , 2 ,, m称为该子空间的生成元. •
定义1.7 设 1 , 2 ,, n和 1 , 2 ,, n是n维线性空间 V 的两组基,显然它们可以互相线性表示,若
1 c11 1 c 21 2 c n1 n , 2 c12 1 c 22 2 c n 2 n , n c1n 1 c 2n 2 c nn n ,
1 x 3 2 x 2 x 2 x 3 x 2 x 1 3 x 3 2x 2 x 1 4 x 3 x 2 1
求由基 渡矩阵.
第三节 线性子空间
一.子空间的概念 定义 设V为数域P上的线性空间,W是V 的非空子集,若W关于V中的线性运算也 构成数域P上的线性空间,则称W是V的 线性子空间,简称子空间. 对任何线性空间V ,显然由V中单个零向 量构成的子集是V的子空间,称为V的零子空 间; V本身也是V的子空间.这两个子空间称 为V的平凡子空间.其它子空间称为V的非平 凡子空间.
二.线性空பைடு நூலகம்的定义与性质
1、线性空间的定义
定义
n 例2 n维向量空间 R(及其子空间)按照向量的加 法以及向量与实数的数乘都构成实线性空间。
例3 全体 m n实矩阵,在矩阵的加法及数乘两种运 算下构成一个实线性空间,记为 R mn .
例4 区间[a,b]上的全体连续实函数,按照函数的 加法及数与函数的乘法构成一个实线性空间,记为 C[a,b].
矩阵论答案
V = Rn[ x] − Rn−1[ x] ,任取 f ( x ) ∈ V ,均有 0 ⋅ f ( x ) = 0 ∉ V ,所以, V 对数乘运算不封闭,故 V 不
构成实数域 R 上的线性空间。 (4)全体实数对 {( a, b) | a, b ∈ R} ,对于如下定义的加法 ⊕ 和数量乘 a = a k ,
其中 a, b ∈ R , k ∈ R . 因为该加法 ⊕ 和数量乘法 � 运算满足线性运算的全部性质: i) a1 ⊕ a2 = a1a2 = a2 a1 ) = a2 ⊕ a1 ; ii) (a1 ⊕ a2 ) ⊕ a3 = (a1a2) ⊕ a3 = (a1a2) a3 = a ( = a1 ⊕ ( a2 ⊕ a3) ; 1 a2 a3) iii ) a1 ⊕ 1 = a1 ⋅ 1 = a1 ; iv) a1 ⊕
A(kx) = k ( Ax) = k (λx) = λ (kx) ,所以 kx ∈ Eλ ,即 Eλ 对数乘运算封闭;故 Eλ 是 C n 的子空间。
6.设有 R 3 的两个子空间,
V1 = {( x1 , x 2 , x 3 ) | 2 x1 + x 2 − x3 = 0} , V 2 = {( x1 , x 2 , x3 ) | x1 + x 2 = 0,3x1 + 2 x 2 − x3 = 0} .
因为,
3 −2 1 −1
2 0 −1 4
1 −2 3 −5 =
2 0 −1 3
3 −2 1 −1
2 0 −1 4
−2 0 2 −4
0 −1 3
2 3
2 4
−2 2 = 4 ≠ 0, −4
= ( −2) − 1 − 1
所以, 线性方程组只有零解, 即向量组 α 1,α 2,α 3,α 4 线性无关, 故 α 1,α 2,α 3,α 4 构成 R 2× 2 的 基. 3.求线性空间 P4 [ x ] 的向量 f ( x ) = 6 − 5 x − x 在基 1, ( x − 1), ( x − 1) , ( x − 1) 下的坐标. 因为 f ( x ) = 6 − 5 x − x 2 = 6 − 5( x − 1) − 5 − ( x − 1) 2 − 2( x − 1) − 1 = −7( x − 1) − ( x − 1) 2 , 所以,
矩阵论课后参考答案(第一二三四
矩阵为 A
1 1
18 22
15 20
,
求
T
在 基 1 (1,2,1) , 2 (3,1,2),
1
21,2)下的矩阵。
解:由题可知1,2,3 与1,2,3 时空间 L(F 3) 的两组基,则存在一个
过渡矩阵 C 使得
3 -1 2
2 1 2
1 0 0
0 1 0
0 r 2(2)r1 1
0 r3(1)r10
1
0
3 5 -1
2 5 0
1 2 -1
0 1 0
0 0 1
1r2
5 (1)r 3
1 3 2 1 0
0
1 3 2 1 0 0
r2r30 1 0 1 0 1 r3(1)r20 1 0 1 0 1
2
1 0 0 0 0 1 0 0
0 0 0 0
0
0
0
0
,
1
0
0
0
,
0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1
(3)解:同上理,对 AT A 分析可知其为一个上下成负对称的矩阵,
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
0 0
所以V1 V2 {0} 。
2)明显V1 V2 Fn