(整理)5平面向量基础知识.
初中数学平面向量常用公式归纳
![初中数学平面向量常用公式归纳](https://img.taocdn.com/s3/m/78892832bb1aa8114431b90d6c85ec3a87c28bcb.png)
初中数学平面向量常用公式归纳数学中的向量是表示大小和方向的物理量,常用于解决空间几何和物理问题。
平面向量是指在平面上的向量,它由两个有序的数或字母组成。
在初中数学中,掌握平面向量的常用公式是非常重要的基础知识。
本文将对初中数学中平面向量的常用公式进行归纳总结。
1. 向量的加法和减法公式向量 $\overrightarrow{AB}$ 的加法和减法公式可以直接应用于平面向量的加法和减法。
加法公式:$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$减法公式:$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AC}$2. 向量的数量积公式向量的数量积(也称为点积或内积)是指两个向量相乘得到的一个数。
在平面向量中,计算数量积有以下两种常用公式:(1)坐标法公式:设向量 $\overrightarrow{AB} = \overrightarrow{a}(x_1,y_1)$,向量 $\overrightarrow{CD} = \overrightarrow{a}(x_2, y_2)$,则数量积$\overrightarrow{AB} \cdot \overrightarrow{CD} = x_1 \cdot x_2 + y_1 \cdot y_2$(2)模长法公式:设向量 $\overrightarrow{AB}$ 的模长为$|\overrightarrow{AB}|$,向量 $\overrightarrow{CD}$ 的模长为$|\overrightarrow{CD}|$,$\theta$ 为$\overrightarrow{AB}$ 与$\overrightarrow{CD}$ 的夹角,则有数量积公式 $\overrightarrow{AB} \cdot\overrightarrow{CD} = |\overrightarrow{AB}| \cdot |\overrightarrow{CD}| \cdot\cos{\theta}$3. 向量的向量积公式向量的向量积(也称为叉积或外积)是指两个向量相乘得到的另一个向量。
高中数学平面向量知识点总结及常见题型
![高中数学平面向量知识点总结及常见题型](https://img.taocdn.com/s3/m/a9424d5d326c1eb91a37f111f18583d049640f00.png)
平面向量一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a;坐标表示法),(y x yj xi a =+=向量的大小即向量的模长度,记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0⇔|a|= 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行共线的问题中务必看清楚是否有“非零向量”这个条件.注意与0的区别 ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量共线向量:方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b行任意的平移即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC1a a a=+=+00;2向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”:1用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量2 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: i )(a --=a; ii a +a -=a -+a =0 ; iii 若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量a 、b有共同起点 4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:Ⅰa a⋅=λλ;Ⅱ当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ 6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:1向量的加法与减法是互逆运算2相等向量与平行向量有区别,向量平行是向量相等的必要条件3向量平行与直线平行有区别,直线平行不包括共线即重合,而向量平行则包括共线重合的情况4向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对x,y 是一一对应的,因此把x,y 叫做向量a 的坐标,记作a =x,y,其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标1相等的向量坐标相同,坐标相同的向量是相等的向量2向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =x,y,则λa =λx, λy(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3,数与向量的乘积,向量的数量内积及其各运算的坐标表示和性质12(a b x x +=+AB BC AC +=12(a b x x -=-)(b a b a-+=- AB BA =-OB OA AB -=a a)()(λμμλ=12a b x x •=+三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积或内积 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义:a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律: ①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:1结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; 2消去律不成立a b a c⋅=⋅不能得到b c =⋅3a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ001800≤≤θ叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质题型1.基本概念判断正误:1共线向量就是在同一条直线上的向量.2若两个向量不相等,则它们的终点不可能是同一点. 3与已知向量共线的单位向量是唯一的. 4四边形ABCD 是平行四边形的条件是AB CD =. 5若AB CD =,则A 、B 、C 、D 四点构成平行四边形. 6因为向量就是有向线段,所以数轴是向量. 7若a 与b 共线, b 与c 共线,则a 与c 共线. 8若ma mb =,则a b =. 9若ma na =,则m n =.10若a 与b 不共线,则a 与b 都不是零向量. 11若||||a b a b ⋅=⋅,则//a b . 12若||||a b a b +=-,则a b ⊥. 题型2.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += .2.化简()()AB MB BO BC OM ++++= .3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 .4.已知AC AB AD为与的和向量,且,AC a BD b ==,则AB = ,AD = .5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC . 题型3.向量的数乘运算1.计算:13()2()a b a b +-+= 22(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= .题型4.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -.a b题型5.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD . 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和.题型6.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 .4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -.5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值.6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = .7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e --和4 C.122133e e e e +-和 D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标.2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标.题型9.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求1a b ⋅,2()a a b ⋅+,31()2a b b -⋅,4(2)(3)a b a b -⋅+.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,2a b ⋅,3(2)a a b ⋅+, 4(2)(3)a b a b -⋅+.题型10.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角.2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠. 题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求1||a b +,2|23|a b -.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,5||a b +,61||2a b -.3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +.题型12.求单位向量 与a 平行的单位向量:||a e a =± 1.与(12,5)a =平行的单位向量是 .2.与1(1,)2m =-平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,1//a b 2a b ⊥2.已知(1,2)a =,(3,2)b =-,1k 为何值时,向量ka b +与3a b -垂直 2k 为何值时,向量ka b +与3a b -平行3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-.题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线. 3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 .4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标.3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标.3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b .4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c .5.已知(,3)a m =,(2,1)b =-,1若a 与b 的夹角为钝角,求m 的范围; 2若a 与b 的夹角为锐角,求m 的范围.6.已知(6,2)a =,(3,)b m =-,当m 为何值时,1a 与b 的夹角为钝角 2a 与b 的夹角为锐角7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度.10.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,1若0AB AC ⋅=,求c 的值;2若5c =,求sin A 的值.备用1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角.2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦.1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= .4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值.5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围. 变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围. 选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c = A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 2.排除法例:已知M 是ABC ∆的重心,则下列向量与AB 共线的是A.AM MB BC ++B.3AM AC +C.AB BC AC ++D.AM BM CM ++。
(完整版)平面向量全部讲义
![(完整版)平面向量全部讲义](https://img.taocdn.com/s3/m/c0bba593fad6195f312ba6d8.png)
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)
![高中数学知识点总结(第五章 平面向量 第三节 平面向量的数量积)](https://img.taocdn.com/s3/m/d294f71c58eef8c75fbfc77da26925c52cc591a9.png)
第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向; 当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a||b| cos θ叫做a 与b 的数量积(或内积),记作a·b ,即a·b =|a||b|cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b|cos θ叫做向量b 在向量a 的方向上的投影,|a|cos θ叫做向量a 在向量b 的方向上的投影.(2)a·b 的几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a·b =b·a.(2)数乘结合律:(λa)·b =λ(a·b)=a·(λb). (3)分配律:(a +b)·c =a·c +b·c.向量数量积的运算不满足乘法结合律,即(a·b)·c 不一定等于a·(b·c),这是由于(a·b)·c 表示一个与c 共线的向量,a·(b·c)表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a. (4)cos θ=a ·b|a ||b |.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a|=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式 (1)(a +b)·(a -b)=a 2-b 2; (2)(a±b)2=a 2±2a·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)(2018·新乡二模)若向量m =(2k -1,k )与向量n =(4,1)共线,则m·n =( ) A .0 B .4 C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172.(2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a·b =0, ∵|a|=2,|b|=1,∴AC ―→·CB ―→=(a +b)·(-b)=-a·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a·(b +a)=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a|=5, 由a·(b +a)=2,可得a·b +a 2=2, ∴a·b =-3,∴向量b 在a 方向上的投影为a·b |a|=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14. 答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a·b =0,|a|=3,且a 与a +b 的夹角为π4,则|b|=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a·b =-12,向量c 与a +b 共线,则|a +c|的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a|=3,∴a·(a +b)=a 2+a·b =|a||a +b|cos π4,∴|a +b|=32,将|a +b|=32两边平方可得,a 2+2a·b +b 2=18,解得|b|=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b)(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c)2=(t +1)2a 2+2t (t +1)·a·b +t 2b 2, ∵向量a ,b 为单位向量,且a·b =-12,∴(a +c)2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c|≥32,∴|a +c|的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a|=1,|b|=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b|2=|a|2+4|b|2+4a·b =1+1+4×1×12×cos π3=3,所以|a +2b|= 3.又(a +2b)·b =a·b +2|b|2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=a +2b ·b|a +2b||b|=343×12=32, 所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b|cos 〈a ,b 〉=-3,又|a|=12+32=2,所以a·b =|a||b|cos 〈a ,b 〉=-6,又a·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b|=32+-332=6,所以cos 〈a ,b 〉=a·b |a||b|=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a|=223|b|,且(a -b)⊥(3a +2b),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a|=223|b|,(a -b)⊥(3a +2b), 所以(a -b)·(3a +2b)=3|a|2-2|b|2-a·b =83|b|2-2|b|2-223|b|2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→ ·BC ―→=0,即AP ―→ ·BC ―→=(λAB ―→+AC ―→ )·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n)⊥(m -n),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b|=1,|2a -b|=1,则|a|=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b|=1,∴a·b =|a|×1×12=|a|2,∵|2a -b|=1,∴|2a -b|2=4a 2-4a·b +b 2=4|a|2-2|a|+1=1,∴4|a|2-2|a|=0,∴|a|=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a|=1,|b|=2,a +b =(1,3),记向量a ,b 的夹角为θ,则tan θ=________.解析:∵|a|=1,|b|=2,a +b =(1,3),∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =1+3,∴a·b =-12,∴cos θ=a·b |a|·|b|=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴tan θ=sin θcos θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a|=1,|b|=23,a 与b 的夹角的余弦值为sin 17π3,则b·(2a -b)等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32,∴a·b =-3,b·(2a -b)=2a·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b)·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a|=1,b =(2,1),且a·b =0,则|a -b|=( ) A.6 B.5 C .2D.3解析:选A 因为|a|=1,b =(2,1),且a·b =0,所以|a -b|2=a 2+b 2-2a·b =1+5-0=6,所以|a -b|= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c)∥b ,c ⊥(a +b),则c =( ) A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c)∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞ B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12 D.⎝⎛⎭⎫-∞,12 解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b|=|a -b|=2|b|,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b|=|a -b|,∴|a +b|2=|a -b|2,∴a·b =0.又|a +b|=2|b |,∴|a +b|2=4|b|2,|a|2=3|b|2,∴|a|=3|b|,cos 〈a +b ,a 〉=a +b ·a |a +b||a|=a 2+a·b |a +b||a|=|a|22|b||a|=|a|2|b|=32,故a +b 与a 的夹角为π6.7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e|=1,a·e =1,b·e =-2,|a +b|=2,则a·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b|=1+m +n2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn=4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a·b =-2+mn ≤-54,综上可得a·b 的最大值为-54.9.已知平面向量a ,b 满足a·(a +b)=3,且|a|=2,|b|=1,则向量a 与b 的夹角的正弦值为________.解析:∵a·(a +b)=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-cos 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a|=1,|b|=2,若(λa +b)⊥(a -2b),则λ=________.解析:∵|a|=1,|b|=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b)⊥(a -2b),∴(λa +b)·(a -2b)=0,即(λa +b)·(a -2b)=λa 2-2b 2+(1-2λ)a·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a|=1,|b|=2,|a +b|=3,则a 在b 方向上的投影等于________.解析:∵|a|=1,|b|=2,|a +b|=3, ∴(a +b)2=|a|2+|b|2+2a·b =5+2a·b =3, ∴a·b =-1,∴a 在b 方向上的投影为a·b |b|=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→ ·(OB ―→-OA ―→ )=(OA ―→+AC ―→ )·AB ―→=OA ―→ ·AB ―→+AC ―→ ·AB ―→= 2 c os 3π4+24 ×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a|=|b|=1,且|2a -b|= 5. (1)求|2a -3b|的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b|2=4a 2-4a·b +b 2=4-4a·b +1=5,∴a·b =0, ∴|2a -3b|=4a 2-12a·b +9b 2=4+9=13.(2)cos θ=3a -b ·a -2b |3a -b||a -2b|=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22, ∵θ∈[0,π],∴θ=π4.。
(完整版)平面向量重要基础知识点
![(完整版)平面向量重要基础知识点](https://img.taocdn.com/s3/m/ff1866ed6394dd88d0d233d4b14e852458fb3983.png)
平面向量重要知识点1、向量相关观点 :( 1)向量的观点 :既有大小又有方向的量,向量是能够平移的,(2)零向量 :长度为 0的向量叫零向量,记作: 0 ,注意零向量的方向是随意的 ;( 3)单位向量 :长度为一个单位长度的向量叫做单位向量uuur( 与 AB 共线的单位向量是uuur uuur AB) ;|AB|( 4)相等向量 :长度相等且方向同样的两个向量叫相等向量,相等向量有传达性;( 5)平行向量(也叫共线向量) :方向 同样或相反 的非零向量 a 、 b 叫做平行向量,记r作: a ∥ b ,规定零向量和任何向量平行 。
提示平行向量 无传达性 !(由于有 0 )2. 平面向量的基本定理 :假如 e 1 和 e 2 是同一平面内的两个不共线向量,那么对该平面内的任一直量 a ,有且只有一对实数 1 、 2 ,使 a= 1 e 1 + 2 e 2。
3、实数与向量的积 :实数与向量 a 的积是一个向量,记作a :当 >0 时,a 的方向与 a 的方向同样,当<0 时,a 的方向与 a 的方向相反4、平面向量的数目积 :(1)两个向量的夹角 :( 2)平面向量的数目积 :规定:零向量与任一直量的数目积是注意数目 积是一个实数,不再是一个向量 。
r0。
(4) a ? b 的几何意( 3) b 在 a 上的投影 为 | b | cos ,它是一个实数,但不必定大于r义:数目积 a ? b 等于 a 的模 | a | 与 b 在 a 上的投影的积。
( 5)向量数目积的性质 :设两个非零向量 a , b ,其夹角为 ,则:r r r r 0 ;① ab a ? br rr 2 r r r 2 r r 2 ②当 a , b 同向时, a ? b = a b ,特别地, a a ?a a , a a ;当 a 与 b 反向时,r r r r r r 0是 为锐角的必需非充足 a ? b =- a b ;当 为锐角时, a ? b > 0,且 a 、b 不一样向, a b1 / 4条件;当r r r r0是为钝角的必需非充足条件;为钝角时, a ? b <0,且 a、b 不反向, a br rr r r r③非零向量 a , b 夹角的计算公式: cos a ?b;④ | a ?b | | a ||b | 。
高中数学第五章_平面向量
![高中数学第五章_平面向量](https://img.taocdn.com/s3/m/0e0c6067a2161479171128a2.png)
第五章⎪⎪⎪平面向量第一节平面向量的概念及其线性运算1.向量的有关概念平行四边形法则向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . [小题体验]1.下列四个命题中,正确的命题是( ) A .若a ∥b ,则a =b B .若|a |=|b |,则a =b C .若|a |=|b |,则a ∥b D .若a =b ,则|a |=|b |答案:D2.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案:D3.若D 是△ABC 的边AB 上的中点,则向量CD ―→等于( ) A .-BC ―→+12BA ―→B .-BC ―→-12 BA ―→C .BC ―→ -12BA ―→D .BC ―→+12BA ―→答案:A4.已知a 与b 是两个不共线的向量,且向量a +λb 与-(b -3a )共线,则λ=________. 答案:-131.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的________条件. 解析:若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ⇒q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ⇒/ p . ∴p 是q 的充分不必要条件. 答案:充分不必要考点一 平面向量的有关概念(基础送分型考点——自主练透)[题组练透]1.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.2.下列说法中错误的是( )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 和b 不共线,则a 和b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等解析:选C 选项A 中向量与有向线段是两个完全不同的概念,故正确;选项B 中零向量与任意向量共线,故a ,b 都是非零向量,故正确;选项C 中是共线向量,故错误;选项D 中既然方向相反就一定不相等,故正确.3.(易错题)给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.解析:①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②[谨记通法]向量有关概念的5个关键点 (1)向量:方向、长度.(2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.考点二 向量的线性运算(基础送分型考点——自主练透)[题组练透]1.(2018·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.2.(2018·温州模拟)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB ―→+AC ―→)=12(AB―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.3.(2019·郑州第一次质量预测)如图,在△ABC 中,N 为线段AC 上靠近点A 的三等分点,点P 在线段BN 上且AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→,则实数m 的值为( )A .1 B.13C.911D.511解析:选D AP ―→=⎝⎛⎭⎫m +211AB ―→+211BC ―→=⎝⎛⎭⎫m +211AB ―→+211(AC ―→-AB ―→)=m AB ―→+211AC ―→,设BP ―→=λBN ―→(0≤λ≤1),则AP ―→=AB ―→+λBN ―→=AB ―→+λ(AN ―→-AB ―→)=(1-λ)AB ―→+λAN ―→,因为AN ―→ =13AC ―→,所以AP ―→=(1-λ)AB ―→+13λAC ―→,则⎩⎪⎨⎪⎧m =1-λ,211=13λ,解得⎩⎨⎧λ=611,m =511,故选D.[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考点三 共线向量定理的应用(重点保分型考点——师生共研)[典例引领]1.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )·AC ―→,则x 的取值范围是( )A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 解析:选D 设CO ―→=y BC ―→,∵AO ―→=AC ―→+CO ―→=AC ―→+y BC ―→=AC ―→+y (AC ―→-AB ―→)=-y AB ―→+(1+y ) AC ―→,∵BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO ―→=x AB ―→+(1-x )AC ―→,∴x ∈⎝⎛⎭⎫-13,0. 2.设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→.∴AB ―→,BD ―→共线,又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又∵λ>0,∴k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.2.如图,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到▱ABGC , 所以AG ―→=a +b , AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→=( ) A .2OA ―→-OB ―→B .-OA ―→+2OB ―→C.23OA ―→-13OB ―→ D .-13OA ―→+23OB ―→解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→=2OA ―→-OB ―→. 2.(2019·石家庄质检)在△ABC 中,点D 在边AB 上,且BD ―→=12DA ―→,设CB ―→=a ,CA ―→=b ,则CD ―→=( )A.13a +23bB.23a +13b C.35a +45b D.45a +35b 解析:选B ∵BD ―→=12DA ―→,∴BD ―→=13BA ―→,∴CD ―→=CB ―→+BD ―→=CB ―→+13BA ―→=CB ―→+13(CA ―→-CB ―→)=23CB ―→+13CA ―→=23a +13b . 3.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形 C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→. 又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.4.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13. 答案:135.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM ―→=34AB ―→,因为在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形ANDM 为菱形,因为AB =4,所以AN =AM =3,AD =3 3.答案:3 3二保高考,全练题型做到高考达标1.已知向量a ,b ,且AB ―→=a +2b ,BC ―→=-5a +6b ,CD ―→=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D解析:选A AD ―→=AB ―→+BC ―→+CD ―→=3a +6b =3AB ―→.因为AB ―→与AD ―→有公共点A ,所以A ,B ,D 三点共线.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.(2019·浙江六校联考)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB ―→=a ,AD ―→=b ,则向量BF ―→=( )A.13a +23b B .-13a -23bC .-13a +23b D.13a -23b解析:选C 如图,因为点E 为CD 的中点,CD ∥AB ,所以BFEF =ABEC =2,所以BF ―→=23BE ―→=23(BC ―→+CE ―→)=23⎝⎛⎭⎫b -12a =-13a +23b . 4.(2018·遂昌期初)已知a ,b 是两个不共线的非零向量,且起点在同一点上,若a ,t b ,13(a +b )三向量的终点在同一直线上,则实数t 的值为( )A .2B .1C .23D .12解析:选D 由题可设13(a +b )=λa +μt b ,因为a ,t b ,13(a +b )三向量的终点在同一直线上,所以有λ+μ=1.所以13=λ,μ=23,所以13=23t ,解得t =12.5.(2019·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA ―→+PB ―→+PC ―→=2AB ―→,若S △ABC=6,则△PAB 的面积为( )A .2B .3C .4D .8解析:选A ∵PA ―→+PB ―→+PC ―→=2AB ―→=2(PB ―→-PA ―→),∴3PA ―→=PB ―→-PC ―→=CB ―→,∴PA ―→∥CB ―→,且方向相同,∴S △ABC S △PAB =BC AP =|CB ―→||PA ―→|=3,∴S △PAB =S △ABC3=2. 6.已知O 为△ABC 内一点,且2AO ―→=OB ―→+OC ―→,AD ―→=t AC ―→,若B ,O ,D 三点共线,则t 的值为________.解析:设线段BC 的中点为M ,则OB ―→+OC ―→=2OM ―→. 因为2AO ―→=OB ―→+OC ―→,所以AO ―→=OM ―→,则AO ―→=12AM ―→=14(AB ―→+AC ―→)=14⎝⎛⎭⎫AB ―→+1t AD ―→=14AB ―→+14t AD ―→.由B ,O ,D 三点共线,得14+14t =1,解得t =13.答案:137.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|=|AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→, 则AM 为Rt △ABC 斜边BC 上的中线, 因此,|AM ―→|=12|BC ―→|=2.答案:28.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC ―→=a ,CA ―→=b ,给出下列命题:①AD ―→=12a -b ;②BE ―→=a +12b ;③CF ―→=-12a +12b ;④AD ―→+BE ―→+CF ―→=0. 其中正确命题的个数为________.解析:BC ―→=a ,CA ―→=b ,AD ―→=12CB ―→+AC ―→=-12a -b ,故①错;BE ―→=BC ―→+12CA ―→=a +12b ,故②正确;CF ―→=12(CB ―→+CA ―→)=12(-a +b )=-12a +12b ,故③正确;AD ―→+BE ―→+CF ―→=-b -12a +a +12b +12b -12a =0,故④正确.∴正确命题为②③④. 答案:39.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-k e 2,且B ,D ,F 三点共线, ∴BF ―→=λBD ―→(λ∈R ), 即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ. 解得k =12.10.已知a ,b 不共线,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,OE ―→=e ,设t ∈R ,如果3a =c ,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD ―→=d -c =2b -3a ,CE ―→=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE ―→=k CD ―→,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.三上台阶,自主选做志在冲刺名校1.如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM ―→=m AB ―→,AN ―→=n AC ―→,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3 C.1m +1n 是定值,定值为2 D.2m +1n 是定值,定值为3解析:选D 因为M ,D ,N 三点共线,所以AD ―→=λAM ―→+(1-λ)AN ―→.又AM ―→=m AB ―→,AN ―→=n AC ―→,所以AD ―→=λm AB ―→+(1-λ)n AC ―→.又BD ―→=12DC ―→,所以AD ―→-AB ―→=12AC ―→-12AD ―→,所以AD ―→=13AC ―→+23AB ―→.比较系数知λm =23,(1-λ)n =13,所以2m +1n =3,故选D.2.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:133.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→(m ,n ∈R ). (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→), ∴OP ―→-OB ―→=m (OA ―→-OB ―→), 即BP ―→=m BA ―→,∴BP ―→与BA ―→共线. 又∵BP ―→与BA ―→有公共点B ,∴A ,P ,B 三点共线. (2)若A ,P ,B 三点共线, 则存在实数λ,使BP ―→=λBA ―→, ∴OP ―→-OB ―→=λ(OA ―→-OB ―→). 又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→, 即(m -λ)OA ―→+(n +λ-1)OB ―→=0.∵O ,A ,B 不共线,∴OA ―→,OB ―→不共线,∴⎩⎪⎨⎪⎧m -λ=0,n +λ-1=0,∴m +n =1. 第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.[小题体验]1.已知a =(4,2),b =(-6,m ),若a ∥b ,则m 的值为______.答案:-32.(教材习题改编)已知a =(2,1),b =(-3,4),则3a +4b =________. 答案:(-6,19)3.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案:23 -134.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 答案:-11.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.[小题纠偏]1.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案:02.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-3考点一 平面向量基本定理及其应用(基础送分型考点——自主练透)[题组练透]1.(2019·温州模拟)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC边上一点,BC ―→=3EC ―→,F 为AE 的中点,则BF ―→=( )A.23AB ―→-13AD ―→B.13AB ―→-23AD ―→ C .-23AB ―→+13AD ―→D .-13AB ―→+23AD ―→解析:选C 如图,取AB 的中点G ,连接DG ,CG ,易知四边形DCBG 为平行四边形,∴BC ―→=GD ―→=AD ―→-AG ―→=AD ―→-12AB ―→,∴AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23⎝⎛⎭⎫AD ―→-12AB ―→=23AB ―→+23AD ―→,于是BF ―→=AF ―→-AB ―→=12AE ―→-AB ―→=12⎝⎛⎭⎫23AB ―→+23AD ―→-AB ―→=-23AB ―→+13AD ―→,故选C.2.在△ABC 中,点M ,N 满足AM ―→=2MC ―→,BN ―→=NC ―→.若MN ―→=x AB ―→+y AC ―→,则x =________;y =________.解析:∵AM ―→=2MC ―→,∴AM ―→=23AC ―→.∵BN ―→=NC ―→,∴AN ―→=12(AB ―→+AC ―→),∴MN ―→=AN ―→-AM ―→=12(AB ―→+AC ―→)-23AC ―→=12AB ―→-16AC ―→. 又MN ―→=x AB ―→+y AC ―→, ∴x =12,y =-16.答案:12 -16L ,且AK ―→=3.如图,已知平行四边形ABCD 的边BC ,CD 的中点分别是K ,e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,CD ―→.解:设BC ―→=x ,CD ―→=y ,则BK ―→=12x ,DL ―→=-12y .由AB ―→+BK ―→=AK ―→,AD ―→+DL ―→=AL ―→,得⎩⎨⎧-y +12x =e 1, ①x -12y =e 2, ②①+②×(-2),得12x -2x =e 1-2e 2,即x =-23(e 1-2e 2)=-23e 1+43e 2,所以BC ―→=-23e 1+43e 2.同理可得y =-43e 1+23e 2,即CD ―→=-43e 1+23e 2.[谨记通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.考点二 平面向量的坐标运算(基础送分型考点——自主练透)[题组练透]1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b 为( ) A .(-3,4) B .(3,4) C .(3,-4)D .(-3,-4)解析:选A 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),∴b =12(-6,8)=(-3,4),故选A.2.已知M (3,-2),N (-5,-1),且MP ―→=12MN ―→,则P 点的坐标为( )A .(-8,1)B .⎝⎛⎭⎫-1,-32 C .⎝⎛⎭⎫1,32 D .(8,-1)解析:选B 设P (x ,y ),则MP ―→= (x -3,y +2),而12MN ―→=12(-8,1)=⎝⎛⎭⎫-4,12,所以⎩⎪⎨⎪⎧x -3=-4,y +2=12,解得⎩⎪⎨⎪⎧x =-1,y =-32,所以P ⎝⎛⎭⎫-1,-32. 3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[谨记通法]平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示(重点保分型考点——师生共研)[典例引领]1.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x ,2-y ),AB ―→=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)2.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. 解:(1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线, ∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[由题悟法]向量共线的充要条件 (1)a ∥b ⇔a =λb (b ≠0);(2)a ∥b ⇔x 1y 2-x 2y 1=0(其中a =(x 1,y 1),b =(x 2,y 2)).当涉及向量或点的坐标问题时一般利用(2)比较方便.[即时应用]1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6.当m =-6时,a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件.2.(2018·贵阳监测)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )∥(m -n ),则λ=________. 解析:因为m +n =(2λ+3,3),m -n =(-1,-1), 又(m +n )∥(m -n ),所以(2λ+3)×(-1)=3×(-1),解得λ=0. 答案:03.设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________. 解析:∵a 与b 方向相反,∴可设a =λb (λ<0), ∴a =λ(2,1)=(2λ,λ).由|a |=5λ2=25,解得λ=-2或λ=2(舍去), 故a =(-4,-2). 答案:(-4,-2)4.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值等于________.解析:AB ―→=(a -2,-2),AC ―→=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案:12一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,AC 为对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( ) A .(-2,-4) B .(-3,-5) C .(3,5)D .(2,4)解析:选B 由题意得BD ―→=AD ―→-AB ―→=BC ―→-AB ―→=(AC ―→-AB ―→)-AB ―→=AC ―→-2AB ―→=(1,3)-2(2,4)=(-3,-5).2.已知A (-1,-1),B (m ,m +2),C (2,5)三点共线,则m 的值为( ) A .1 B .2 C .3D .4解析:选A AB ―→=(m ,m +2)-(-1,-1)=(m +1,m +3), AC ―→=(2,5)-(-1,-1)=(3,6), ∵A ,B ,C 三点共线,∴AB ―→∥AC ―→,∴3(m +3)-6(m +1)=0, ∴m =1.故选A.3.如图,在△OAB 中,P 为线段AB 上的一点,OP ―→=x OA ―→+y OB ―→,且BP―→=2PA ―→,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14解析:选A 由题意知OP ―→=OB ―→+BP ―→,又BP ―→=2PA ―→,所以OP ―→=OB ―→+23BA ―→=OB ―→+23(OA ―→-OB ―→)=23OA ―→+13OB ―→,所以x =23,y =13. 4.(2019·舟山模拟)已知向量a =(2,3),b =(-1,2),若m a +b 与a -2b 共线,则m 的值为________. 解析:由a =(2,3),b =(-1,2),得m a +b =(2m -1,3m +2),a -2b =(4,-1),又m a +b 与a -2b 共线,所以-1×(2m -1)=(3m +2)×4,解得m =-12.答案:-125.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:12二保高考,全练题型做到高考达标1.(2018·温州十校联考)已知a =(-3,1),b =(-1,2),则3a -2b =( ) A .(7,1) B .(-7,-1) C .(-7,1)D .(7,-1)解析:选B 由题可得,3a -2b =3(-3,1)-2(-1,2)=(-9+2,3-4)=(-7,-1).2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π3解析:选B 因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3.3.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC ―→=2CB ―→,则实数a 等于( )A .2B .1C .45D .53解析:选A 设C (x ,y ),则AC ―→=(x -7,y -1),CB ―→=(1-x,4-y ),∵AC ―→=2CB ―→,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3). 又∵点C 在直线y =12ax 上,∴3=12a ×3,∴a =2.4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC ―→=a ,BD ―→=b ,则AF ―→=( )A.14a +12bB.12a +14bC.23a +13bD.13a +23b 解析:选C 如图,∵AC ―→=a ,BD ―→=b , ∴AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=12a +12b .∵E 是OD 的中点, ∴|DE ||EB |=13, ∴|DF |=13|AB |.∴DF ―→=13AB ―→=13(OB ―→-OA ―→)=13×⎣⎡⎦⎤-12 BD ―→⎝⎛⎭⎫-12AC ―→=16AC ―→-16BD ―→=16a -16b , ∴AF ―→=AD ―→+DF ―→=12a +12b +16a -16b =23a +13b ,故选C.6.已知向量a =(1,3),b =(-2,1),c =(3,2).若向量c 与向量k a +b 共线,则实数k =________,若c =x a +y b ,则x +y 的值为________.解析:k a +b =k (1,3)+(-2,1)=(k -2,3k +1),因为向量c 与向量k a +b 共线,所以2(k -2)-3(3k +1)=0,解得k =-1.因为c =x a +y b ,所以(3,2)=(x -2y,3x +y ),即x -2y =3,3x +y =2,解得x =1,y =-1,所以x +y =0.答案:-1 07.已知向量OA ―→=(1,-3),OB ―→=(2,-1),OC ―→=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.解析:若点A ,B ,C 能构成三角形,则向量AB ―→,AC ―→不共线. ∵AB ―→=OB ―→-OA ―→=(2,-1)-(1,-3)=(1,2), AC ―→=OC ―→-OA ―→=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1. 答案:k ≠18.如图,在正方形ABCD 中,P 为DC 边上的动点,设向量AC ―→=λDB ―→+μAP ―→,则λ+μ的最大值为________.解析:以A 为坐标原点,以AB ,AD 所在直线分别为x 轴,y 轴建立平面直角坐标系(图略),设正方形的边长为2,则B (2,0),C (2,2),D (0,2),P (x,2),x ∈[0,2]. ∴AC ―→=(2,2),DB ―→=(2,-2),AP ―→=(x,2).∵AC ―→=λDB ―→+μAP ―→,∴⎩⎪⎨⎪⎧2λ+xμ=2,-2λ+2μ=2,∴⎩⎪⎨⎪⎧λ=2-x2+x ,μ=42+x ,∴λ+μ=6-x 2+x .令f (x )=6-x2+x(0≤x ≤2), ∵f (x )在[0,2]上单调递减,∴f (x )max =f (0)=3,即λ+μ的最大值为3. 答案:39.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k . 解:(1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎨⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.10.如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA ―→=a ,BC ―→=b ,试用a ,b 为基底表示向量EF ―→,DF ―→,CD ―→.解:EF ―→=EA ―→+AB ―→+BF ―→=-16b -a +12b =13b -a ,DF ―→=DE ―→+EF ―→=-16b +⎝⎛⎭⎫13b -a =16b -a , CD ―→=CF ―→+FD ―→=-12b -⎝⎛⎭⎫16b -a =a -23b . 三上台阶,自主选做志在冲刺名校1.在平面直角坐标系xOy 中,已知点A (2,3),B (3,2),C (1,1),点P (x ,y )在△ABC 三边围成的区域(含边界)内,设OP ―→=m AB ―→-n CA ―→(m ,n ∈R ),则2m +n 的最大值为( )A .-1B .1C .2D .3解析:选B 由已知得AB ―→=(1,-1),CA ―→=(1,2),设OP ―→=(x ,y ),∵OP ―→=m AB ―→-n CA ―→,∴⎩⎪⎨⎪⎧x =m -n ,y =-m -2n ,∴2m +n =x -y .作出平面区域如图所示,令z =x -y ,则y =x -z ,由图象可知当直线y =x -z 经过点B (3,2)时,截距最小,即z 最大.∴z 的最大值为3-2=1,即2m +n 的最大值为1.2.设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3―→=λA 1A 2―→(λ∈R ),A 1A 4―→=μA 1A 2―→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知点C (c,0),D (d,0)(c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上解析:选D 根据已知得(c,0)-(0,0)=λ[(1,0)-(0,0)],即(c,0)=λ(1,0),从而得c =λ.(d,0)-(0,0)=μ[(1,0)-(0,0)],即(d,0)=μ(1,0),得d =μ.根据1λ+1μ=2,得1c +1d =2.线段AB 的方程是y =0,x ∈[0,1].若C 是线段AB 的中点,则c =12,代入1c +1d =2得,1d =0,此等式不可能成立,故选项A 的说法不正确;同理选项B 的说法也不正确;若C ,D 同时在线段AB 上,则0<c ≤1,0<d ≤1,此时1c ≥1,1d ≥1,1c +1d ≥2,若等号成立,则只能c =d =1,根据定义,C ,D 是两个不同的点,矛盾,故选项C 的说法也不正确;若C ,D 同时在线段AB 的延长线上,即c >1,d >1,则1c +1d <2,与1c +1d =2矛盾,若c <0,d <0,则1c +1d 是负值,与1c +1d =2矛盾,若c >1,d <0,则1c <1,1d <0,此时1c +1d <1,与1c +1d =2矛盾,故选项D 的说法是正确的.3.已知三点A (a,0),B (0,b ),C (2,2),其中a >0,b >0.(1)若O 是坐标原点,且四边形OACB 是平行四边形,试求a ,b 的值; (2)若A ,B ,C 三点共线,试求a +b 的最小值. 解:(1)因为四边形OACB 是平行四边形, 所以OA ―→=BC ―→,即(a,0)=(2,2-b ),⎩⎪⎨⎪⎧ a =2,2-b =0,解得⎩⎪⎨⎪⎧a =2,b =2. 故a =2,b =2.(2)因为AB ―→=(-a ,b ),BC ―→=(2,2-b ), 由A ,B ,C 三点共线,得AB ―→∥BC ―→,所以-a (2-b )-2b =0,即2(a +b )=ab , 因为a >0,b >0,所以2(a +b )=ab ≤⎝⎛⎭⎫a +b 22, 即(a +b )2-8(a +b )≥0,解得a +b ≥8或a +b ≤0. 因为a >0,b >0,所以a +b ≥8,即a +b 的最小值是8. 当且仅当a =b =4时,“=”成立.第三节平面向量的数量积与平面向量应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.[小题体验]1.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( ) A.π6 B.π3 C.2π3 D.5π6 答案:D2.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =( ) A .1 B .2 C .3D .4解析:选C 由题意可得a ·b =|a |·|b |·cos 〈a ,b 〉=2×3×32=3. 3.已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |=( ) A.7 B.10 C.13D .4解析:选C 依题意得a ·b =12,则|a +3b |=a 2+9b 2+6a ·b =13.4.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =________.解析:因为向量a ,b 为单位向量,所以b 2=1,又向量a ,b 的夹角为60°,所以a ·b =12,由b ·c =0,得b ·[t a +(1-t )b ]=0,即t a ·b +(1-t )b 2=0,所以12t +(1-t )=0,所以t =2.答案:25.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ―→·BD ―→=________.解析:选向量的基底为AB ―→,AD ―→,则BD ―→=AD ―→-AB ―→,AE ―→=AD ―→+12AB ―→,所以AE ―→·BD ―→=⎝⎛⎭⎫AD ―→+12AB ―→ ·(AD ―→-AB ―→)=2. 答案:21.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量. 2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.3.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 4.在用|a |=a 2求向量的模时,一定要把求出的a 2再进行开方. [小题纠偏]1.若a ,b 是两个互相垂直的非零向量,给出以下式子:①a ·b =0;②a +b =a -b ;③|a +b |=|a -b |;④a 2+b 2=(a +b )2.其中正确的个数是( )A .1B .2C .3D .4解析:选C 因为a ,b 是两个互相垂直的非零向量,所以a·b =0;所以(a +b )2=a 2+b 2+2a·b =a 2+b 2;(a -b )2=a 2+b 2-2a ·b =a 2+b 2;所以(a +b )2=(a -b )2,即|a +b |=|a -b |.故①③④是正确的,②是错误的.2.设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=________.解析:|a +2b |=(a +2b )2=|a |2+4a ·b +4|b |2= 1+4×⎝⎛⎭⎫-12+4= 3. 答案: 3考点一 平面向量的数量积的运算(基础送分型考点——自主练透)[题组练透]1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3D .-11解析:选C ∵a +2b =(1,-2)+2(-3,4)=(-5,6), ∴(a +2b )·c =(-5,6)·(3,2)=-3.2.(2018·浙江考前冲刺)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |=4,则向量a 在a +b 上的投影为( )A. 3 B .3 C. 6D .6解析:选B 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0, 由|a +b |=2|b |,得a 2+2a ·b +b 2=4b 2,即a 2=3b 2,所以|a |=3|b |=23, 所以向量a 在a +b 上的投影为a ·(a +b )|a +b |=a 2|a +b |=3.中点,则AB ―→·AD―→3.如图,在等腰直角三角形ABC 中,∠C =90°,AC =2,D 为BC 的=________.解析:法一:由题意知,AC =BC =2,AB =22, ∴AB ―→·AD ―→=AB ―→·(AC ―→+CD ―→)=AB ―→·AC ―→+AB ―→·CD ―→=|AB ―→|·|AC ―→|cos 45°+|AB ―→|·|CD ―→|cos 45° =22×2×22+22×1×22=6. 法二:建立如图所示的平面直角坐标系,由题意得A (0,2),B (-2,0), D (-1,0),∴AB ―→=(-2,0)-(0,2)=(-2,-2), AD ―→=(-1,0)-(0,2)=(-1,-2), ∴AB ―→·AD ―→=-2×(-1)+(-2)×(-2)=6. 答案:64.(2019·台州模拟)以O 为起点作三个不共线的非零向量OA ―→,OB ―→,OC ―→,使AB ―→=-2BC ―→,|OA ―→|=4,OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,则OA ―→·BC ―→=________. 解析:法一:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|,平方得OA ―→|OA ―→|·OB ―→|OB ―→|=-12,即cos ∠AOB =-12,因为OA ―→,OB ―→不共线,所以0°<∠AOB <180°,所以∠AOB =120°.因为AB ―→=-2BC ―→,所以C 为线段AB 的中点.由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|两边同乘以OC ―→|OC ―→|,得cos ∠AOC +cos ∠BOC =1,即cos ∠AOC +cos(120°-∠AOC )=1,解得∠AOC =60°,所以OC 为∠AOB 的平分线,所以OC ―→⊥AB ―→.又|OA ―→|=4,所以|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.法二:由OA ―→|OA ―→|+OB ―→|OB ―→|=OC ―→|OC ―→|及AB ―→=-2BC ―→,结合向量加法的平行四边形法则得OC 为∠AOB 的平分线,C 为AB 的中点,所以OC ―→⊥AB ―→,且|OA ―→|=|OB ―→|=4,|AC ―→|=|BC ―→|=23,所以OA ―→·BC ―→=(OC ―→+CA ―→)·BC ―→=BC ―→2=12.答案:12[谨记通法]向量数量积的2种运算方法考点二 平面向量数量积的性质(题点多变型考点——多角探明) [锁定考向]平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,难度适中,属中档题. 常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直;(4)与最值、范围有关问题.[题点全练]角度一:平面向量的模1.已知e 1,e 2是单位向量,且e 1·e 2=12.若向量b 满足b ·e 1=b ·e 2=1,则|b |=________.解析:法一:∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°. 由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.法二:由题可得,不妨设e 1=(1,0),e 2=⎝⎛⎭⎫12,32,b =(x ,y ). ∵b ·e 1=b ·e 2=1,∴x =1,12x +32y =1,解得y =33.∴b =⎝⎛⎭⎫1,33,∴|b |= 1+13=233. 答案:233角度二:平面向量的夹角2.(2018·浙江十校联盟适考)若向量a ,b 满足|a |=4,|b |=1,且(a +8b )⊥a ,则向量a ,b 的夹角为( ) A.π6 B.π3C.2π3D.5π6解析:选C 由(a +8b )⊥a ,得|a |2+8a ·b =0,因为|a |=4,所以a ·b =-2,所以cos 〈a ,b 〉=a ·b |a |·|b |=-12,所以向量a ,b 的夹角为2π3. 3.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.解析:因为a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),|a |=5,|b |=25, 所以c ·a =5m +8,c ·b =8m +20. 因为c 与a 的夹角等于c 与b 的夹角, 所以c ·a |c |·|a |=c ·b|c |·|b |, 即5m +85=8m +2025,解得m =2. 答案:2角度三:平面向量的垂直4.(2019·南宁模拟)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.解析:由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. 答案:7125.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2, 即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β。
平面向量基础知识点总结
![平面向量基础知识点总结](https://img.taocdn.com/s3/m/b259fa365627a5e9856a561252d380eb6294234e.png)
平面向量知识点总结基本知识回首:1. 向量的观点: 既有大小又有方向的量叫向量 , 有二个因素:大小、方向 .2. 向量的表示方法:uuur①用有向线段表示 -----AB ( 几何表示法 ) ;r r②用字母 a 、 b 等表示 ( 字母表示法 ) ;③平面向量的坐标表示(坐标表示法):分别取与 x 轴、 y 轴方向同样的两个单位向量r ri 、 j 作为基底。
任作一个向量 a ,由平x 、 y ,使得 ar r面向量基本定理知,有且只有一对实数xi yj , ( x, y) 叫做向量 a 的(直r轴上的坐标,y 叫做 a 在 y 轴上的坐标,角)坐标,记作 a (x, y) ,此中 x 叫做 a 在 x rrr (0,0) rx 2y 2;若 A( x 1 , y 1 ) , B( x 2 , y 2 ) ,特别地, i(1,0) , j(0,1) , 0 。
a则 AB x 2x 1 , y 2 y 1 , AB( x 2x 1 ) 2 ( y 2 y 1 ) 23. 零向量、单位向量:①长度为 0 的向量叫零向量,记为 0 ;②长度为 1 个单位长度的向量,叫单位向量. (注:a就是单位向量)| a |4. 平行向量:①方向同样或相反的非零向量叫平行向量;rr r r r r r ②我们规定 0 与任一直量平行 . 向量 a 、 b 、 c 平行,记作 a ∥ b ∥ c . 共线向量与平行向量关系:平行向量就是共线向量 .0, ur与 rb 同向r ur rr r r方向 --- (ur r性质: a // b (b0)ab 是独一)r 0, b 与 a 反向长度 ---r| a |br ur r r x yx y 0 (此中rur ( x , y ) )a //b (b0) 2a ( x , y ), b12111225. 相等向量和垂直向量:①相等向量:长度相等且方向同样的向量叫相等向量.②垂直向量——两向量的夹角为2性质:raurbr ragbrurrura bx 1x 2 y 1 y 2 0(此中a ( x 1 , y 1 ),b ( x 2 , y 2 ))6. 向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
平面向量讲义
![平面向量讲义](https://img.taocdn.com/s3/m/babe01b83968011ca200911c.png)
平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。
平面向量基础知识
![平面向量基础知识](https://img.taocdn.com/s3/m/783dc1e3f61fb7360a4c6514.png)
平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。
平面向量知识点总结
![平面向量知识点总结](https://img.taocdn.com/s3/m/60505f2659fafab069dc5022aaea998fcc2240c6.png)
平面向量知识点总结平面向量是高中数学中的重要内容,也是数学中的基础知识之一。
它在几何、代数、物理等方面有着广泛的应用,因此对平面向量的理解和掌握是非常重要的。
接下来,我将对平面向量的基本概念、性质和运算进行总结,希望能够帮助大家更好地理解和掌握这一知识点。
1. 平面向量的基本概念。
平面向量是具有大小和方向的量,通常用有向线段来表示。
在平面直角坐标系中,平面向量可以表示为一个有序数对(a, b),其中a和b分别表示向量在x轴和y 轴上的投影。
平面向量的模可以表示为|AB|,方向可以用角度或者方向角来表示。
2. 平面向量的性质。
平面向量具有以下性质:平行向量,如果两个向量的方向相同或者相反,则它们是平行向量。
相等向量,具有相同大小和方向的向量称为相等向量。
零向量,模为0的向量称为零向量,记作0。
共线向量,如果存在实数k,使得向量a=kb,则称向量a与b共线。
3. 平面向量的运算。
平面向量具有加法、数乘和数量积等运算。
加法,向量a和向量b的和记作a+b,其坐标分别相加。
数乘,实数k与向量a的数乘记作ka,其坐标分别乘以k。
数量积,向量a与向量b的数量积记作a·b,其大小为|a|·|b|·cosθ,其中θ为向量a和向量b的夹角。
4. 平面向量的应用。
平面向量在几何、代数和物理等方面有着广泛的应用。
几何,平面向量可以用来表示线段、向量共线、向量共面等几何性质。
代数,平面向量的运算可以用来解决代数方程组、向量方程等问题。
物理,平面向量可以用来表示力、速度、位移等物理量,并且可以进行运算和分解。
总结,平面向量是数学中的重要内容,它具有基本概念、性质和运算,应用广泛。
通过对平面向量的学习,可以帮助我们更好地理解和应用数学知识,提高数学解决问题的能力。
希望以上内容能够帮助大家更好地理解和掌握平面向量的知识点,欢迎大家在学习过程中多加练习,加深对平面向量的理解和运用。
高考数学考点与题型知识点5平面向量
![高考数学考点与题型知识点5平面向量](https://img.taocdn.com/s3/m/607fdd259e314332396893e7.png)
平面向量平面向量 (2)第一节平面向量的概念及线性运算 (2)考点一平面向量的有关概念 (3)考点二平面向量的线性运算 (5)考点三共线向量定理的应用 (7)第二节平面向量基本定理及坐标表示 (13)考点一平面向量基本定理及其应用 (14)考点二平面向量的坐标运算 (15)考点三平面向量共线的坐标表示 (16)第三节平面向量的数量积 (22)考点一平面向量的数量积的运算 (23)考点二平面向量数量积的性质 (26)第四节平面向量的综合应用 (33)考点一平面向量与平面几何 (33)考点二平面向量与解析几何 (34)考点三平面向量与三角函数 (35)第五章 平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a|a |和-a|a |.3.向量的线性运算三角形法则 平行四边形法则三角形法则多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.只有a≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P为线段AB的中点,O为平面内任一点,则OP―→=12(OA―→+OB―→).(2)OA―→=λOB―→+μOC―→(λ,μ为实数),若点A,B,C三点共线,则λ+μ=1.考点一平面向量的有关概念[典例]给出下列命题:①若a=b,b=c,则a=c;②若A,B,C,D是不共线的四点,则AB―→=DC―→是四边形ABCD为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [答案] ①②[解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( ) A .0B .1C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( )A.34AB ―→-14AC ―→B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→(2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r +3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[答案] (1)A (2)C[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果. (4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( ) A .AD ―→=-13AB ―→+43AC ―→B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→D .AD ―→=43AB ―→-13AC ―→解析:选A 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→. 2.(2019·太原模拟)在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________.解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.答案:43考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , ∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→, ∴AB ―→,BD ―→共线. 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( )A .矩形B .平行四边形C .梯形D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0 C .e 1∥e 2D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上 B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:选D 由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P在射线AB 上,故选D.[课时跟踪检测]1.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ―→+FC ―→=( ) A .AD ―→B.12AD ―→C.12BC ―→ D .BC ―→解析:选A 由题意得EB ―→+FC ―→=12(AB ―→+CB ―→)+12(AC ―→+BC ―→)=12(AB ―→+AC ―→)=AD ―→.2.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12解析:选B 由于c 与d 共线反向,则存在实数k 使c =kd (k <0), 于是λa +b =k []a +(2λ-1)b . 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.3.设向量a ,b 不共线,AB ―→=2a +p b ,BC ―→=a +b ,CD ―→=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( )A .-2B .-1C .1D .2解析:选B 因为BC ―→=a +b ,CD ―→=a -2b ,所以BD ―→=BC ―→+CD ―→=2a -b .又因为A ,B ,D 三点共线,所以AB ―→,BD ―→共线.设AB ―→=λBD ―→,所以2a +p b =λ(2a -b ),所以2=2λ,p =-λ,即λ=1,p =-1.4.(2019·甘肃诊断)设D 为△ABC 所在平面内一点,BC ―→=-4CD ―→,则AD ―→=( ) A.14AB ―→-34AC ―→ B.14AB ―→+34AC ―→C.34AB ―→-14AC ―→ D.34AB ―→+14AC ―→解析:选B 法一:设AD ―→=x AB ―→+y AC ―→,由BC ―→=-4CD ―→可得,BA ―→+AC ―→=-4CA―→-4AD ―→,即-AB ―→-3AC ―→=-4x AB ―→-4y AC ―→,则⎩⎪⎨⎪⎧-4x =-1,-4y =-3,解得⎩⎨⎧x =14,y =34,即AD ―→=14AB ―→+34AC ―→,故选B.法二:在△ABC 中,BC ―→=-4CD ―→,即-14BC ―→=CD ―→,则AD ―→=AC ―→+CD ―→=AC ―→-14BC―→=AC ―→-14(BA ―→+AC ―→)=14AB ―→+34AC ―→,故选B.5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC ―→=34OA ―→+14OB ―→,则|BC ―→||AC ―→|等于( )A .1B .2C .3D.32解析:选C 因为BC ―→=OC ―→-OB ―→=34OA ―→+14OB ―→-OB ―→=34BA ―→,AC ―→=OC ―→-OA ―→=34OA ―→+14OB ―→-OA ―→=14AB ―→,所以|BC ―→||AC ―→|=3.故选C.6.已知△ABC 的边BC 的中点为D ,点G 满足GA ―→+BG ―→+CG ―→=0,且AG ―→=λGD ―→,则λ的值是( )A.12 B .2 C .-2D .-12解析:选C 由GA ―→+BG ―→+CG ―→=0,得G 为以AB ,AC 为邻边的平行四边形的第四个顶点,因此AG ―→=-2GD ―→,则λ=-2.故选C.7.下列四个结论:①AB ―→+BC ―→+CA ―→=0;②AB ―→+MB ―→+BO ―→+OM ―→=0; ③AB ―→-AC ―→+BD ―→-CD ―→=0;④N Q ―→+Q P ―→+MN ―→-MP ―→=0, 其中一定正确的结论个数是( ) A .1 B .2 C .3D .4解析:选C ①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确;②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错误;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CD ―→+DC ―→=0,③正确;④N Q ―→+Q P ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确.故①③④正确.8.如图,在平行四边形ABCD 中,M ,N 分别为AB ,AD 上的点,且AM ―→=34AB ―→,AN ―→=23AD ―→,AC ,MN 交于点P .若AP ―→=λAC ―→,则λ的值为( ) A.35 B.37C.316D.617解析:选D ∵AM ―→=34AB ―→,AN ―→=23AD ―→,∴AP ―→=λAC ―→=λ(AB ―→+AD ―→)=λ⎝⎛⎭⎫43AM ―→+32AN ―→=43λAM ―→+32λAN ―→.∵点M ,N ,P 三点共线,∴43λ+32λ=1,则λ=617.故选D. 9.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为向量λa +b 与a +2b 平行,所以可设λa +b =k (a +2b ),则⎩⎪⎨⎪⎧λ=k ,1=2k ,所以λ=12.答案:1210.若AP ―→=12PB ―→,AB ―→=(λ+1)BP ―→,则λ=________.解析:如图,由AP ―→=12PB ―→,可知点P 是线段AB 上靠近点A 的三等分点,则AB ―→=-32BP ―→,结合题意可得λ+1=-32,所以λ=-52.答案:-5211.已知平行四边形ABCD 的对角线AC 和BD 相交于O ,且OA ―→=a ,OB ―→=b ,则DC ―→=________,BC ―→=________.(用a ,b 表示)解析:如图,DC ―→=AB ―→=OB ―→-OA ―→=b -a ,BC ―→=OC ―→-OB ―→=-OA ―→-OB ―→=-a -b .答案:b -a -a -b12.(2019·长沙模拟)在平行四边形ABCD 中,M 为BC 的中点.若AB ―→=λAM ―→+μDB ―→,则λ-μ=________.解析:如图,在平行四边形ABCD 中,AB ―→=DC ―→,所以AB ―→=AM ―→+MB ―→=AM ―→+12CB ―→=AM ―→+12(DB ―→-DC ―→)=AM ―→+12(DB ―→-AB ―→)=AM ―→+12DB ―→-12AB ―→,所以32AB ―→=AM ―→+12DB ―→,所以AB ―→=23AM ―→+13DB ―→,所以λ=23,μ=13,所以λ-μ=13.答案:1313.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2, ∵AB ―→=2e 1-8e 2, ∴AB ―→=2BD ―→.又∵AB ―→与BD ―→有公共点B , ∴A ,B ,D 三点共线. (2)由(1)可知BD ―→=e 1-4e 2,∵BF ―→=3e 1-ke 2,且B ,D ,F 三点共线, ∴存在实数λ,使BF ―→=λBD ―→, 即3e 1-ke 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧λ=3,-k =-4λ.解得k =12.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2), 则a +b =(x 1+x 2,y 1+y 2), a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.[解] ∵BA ―→=OA ―→-OB ―→=a -b , BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b , ∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→ =23OD ―→=23a +23b , ∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组. (2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q ―→=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A 由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b . 2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→(0<λ<1), 由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知, m +n =-2λ,所以m +n ∈(-2,0). 答案:(-2,0)考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c , ∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b , ∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18).[变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________. 解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1.答案:-1 -12.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.答案:72[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解.2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1), ∴k a -b =k (1,0)-(2,1)=(k -2,-1), a +2b =(1,0)+2(2,1)=(5,2), ∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3), BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→, ∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2). a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.(2019·唐山模拟)已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:选D 设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD , ∴DC ―→=2AB ―→.设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 答案:(2,4)[课时跟踪检测]1.(2019·昆明调研)已知向量a =(-1,2),b =(1,3),则|2a -b |=( ) A.2 B .2 C.10D .10解析:选C 由已知,易得2a -b =2(-1,2)-(1,3)=(-3,1),所以|2a -b |=(-3)2+12=10.故选C.2.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A .(-23,-12) B .(23,12) C .(7,0)D .(-7,0)解析:选A 由题意可得3a -2b +c =3(5,2)-2(-4,-3)+(x ,y )=(23+x,12+y )=(0,0),所以⎩⎪⎨⎪⎧ 23+x =0,12+y =0,解得⎩⎪⎨⎪⎧x =-23,y =-12,所以c =(-23,-12).3.(2018·石家庄模拟)已知向量a =(1,m ),b =(m,1),则“m =1”是“a ∥b ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若a ∥b ,则m 2=1,即m =±1,故“m =1”是“a ∥b ”的充分不必要条件,选A.4.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC ―→=2AE ―→,则EM ―→=( ) A.12AC ―→+13AB ―→ B.12AC ―→+16AB ―→C.16AC ―→+12AB ―→ D.16AC ―→+32AB ―→解析:选C 如图,因为EC ―→=2AE ―→,所以EC ―→=23AC ―→,所以EM ―→=EC ―→+CM ―→=23AC ―→+12CB ―→=23AC ―→+12(AB ―→-AC ―→)=12AB ―→+16AC ―→.5.已知点A (8,-1),B (1,-3),若点C (2m -1,m +2)在直线AB 上,则实数m =( ) A .-12 B .13 C .-13D .12解析:选C 因为点C 在直线AB 上,所以AC ―→与AB ―→同向.又AB ―→=(-7,-2),AC ―→=(2m -9,m +3),故2m -9-7=m +3-2,所以m =-13.故选C.6.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限的点,且∠AOC =π4,|OC |=2,若OC ―→=λOA ―→+μOB ―→,则λ+μ=( )A .22 B.2 C .2 D .42解析:选A 因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC ―→=λOA ―→+μOB ―→,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.7.已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→, 点C 在线段AB 上,∠AOC =30°.设OC ―→=m OA ―→+n OB ―→(m ,n ∈R ),则m n等于( )A.13 B .3 C.33D.3 解析:选B 如图,由已知|OA ―→|=1,|OB ―→|=3,OA ―→⊥OB ―→,可得AB =2,∠A =60°,因为点C 在线段AB 上,∠AOC =30°,所以OC ⊥AB ,过点C 作CD ⊥OA ,垂足为点D ,则OD =34,CD =34,所以OD ―→=34OA ―→,DC ―→= 14OB ―→,即OC ―→=34OA ―→+14OB ―→,所以mn=3.8.(2019·深圳模拟)如图,在正方形ABCD 中,M 是BC 的中点,若AC ―→=λAM ―→+μBD ―→,则λ+μ=( )A.43B.53C.158D .2解析:选B 以点A 为坐标原点,分别以AB ―→,AD ―→的方向为x 轴,y 轴的正方向,建立平面直角坐标系(图略).设正方形的边长为2,则A (0,0),C (2,2),M (2,1),B (2,0),D (0,2),所以AC ―→=(2,2),AM ―→=(2,1),BD ―→=(-2,2),所以λAM ―→+μBD ―→=(2λ-2μ,λ+2μ),因为AC―→=λAM ―→+μBD ―→,所以⎩⎪⎨⎪⎧2λ-2μ=2,λ+2μ=2,解得⎩⎨⎧λ=43,μ=13,所以λ+μ=53.9.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析:∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5, ∴m -n =2-5=-3. 答案:-310.已知向量a =(1,m ),b =(4,m ),若有(2|a |-|b |)(a +b )=0,则实数m =________. 解析:因为a +b =(5,2m )≠0,所以由(2|a |-|b |)(a +b )=0得2|a |-|b |=0, 所以|b |=2|a |,所以42+m 2=212+m 2,解得m =±2. 答案:±211.(2019·南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =________.解析:∵a =(m ,n ),b =(1,-2), ∴由|a |=25,得m 2+n 2=20, ① 由a =λb (λ<0),得⎩⎪⎨⎪⎧m <0,n >0,-2m -n =0, ②由①②,解得m =-2,n =4. ∴m -n =-6. 答案:-612.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析:因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4), v =2(1,2)-(x,1)=(2-x,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.答案:1213.在平面直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A ―→+PB ―→+PC ―→=0,求|OP ―→|;(2)设OP ―→=m AB ―→+n AC ―→(m ,n ∈R ),用x ,y 表示m -n .解:(1)∵P A ―→+PB ―→+PC ―→=0,P A ―→+PB ―→+PC ―→=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得x =2,y =2, 即OP ―→=(2,2),故|OP ―→|=2 2.(2)∵OP ―→=m AB ―→+n AC ―→,AB ―→=(1,2),AC ―→=(2,1). ∴(x ,y )=(m +2n,2m +n ),即⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减,得m -n =y -x .第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π]. 当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律 (1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c表示一个与c共线的向量,a·(b·c)表示一个与a共线的向量,而c与a不一定共线.5.平面向量数量积的性质设a,b为两个非零向量,e是与b同向的单位向量,θ是a与e的夹角,则(1)e·a=a·e=|a|cos θ.(2)a⊥b⇔a·b=0.(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地,a·a=|a|2或|a|=a·a.(4)cos θ=a·b|a||b|.(5)|a·b|≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a=(x1,y1),b=(x2,y2),θ为a与b的夹角,则(1)|a|=x21+y21;(3)a⊥b⇔x1x2+y1y2=0;(2)a·b=x1x2+y1y2;_ (4)cos θ=x1x2+y1y2x21+y21x22+y22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a±b)2=a2±2a·b+b2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).考点一平面向量的数量积的运算[典例](1)(2018·新乡二模)若向量m=(2k-1,k)与向量n=(4,1)共线,则m·n=()A .0B .4C .-92D .-172(2)(2018·天津高考)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12, ∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN . ∵BM ―→=2MA ―→,CN ―→=2NA ―→, ∴AM AB =AN AC =13. ∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→). ∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2) =3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0. 故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[答案] (1)D (2)C[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解.[题组训练]1.(2019·济南模拟)已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1 C.6D .22解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0, ∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.(2019·南昌调研)已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55B .-55C .-255D .-355解析:选D 由a =(1,2),可得|a |=5, 由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0, ∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1, ∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.答案:14考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)(2019·昆明适应性检测)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .22D .3(2)(2019·福州四校联考)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,故选D.(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2, ∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,故选D. [答案] (1)D (2)D考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________.[解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b |a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3. [答案] (1)A (2)2π3考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A.π4B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [答案] (1)A (2)712[解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.(2018·深圳高级中学期中)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1解析:选B ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B.2.(2018·永州二模)已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12 B .1 C.2D .2解析:选A ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a-b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.(2019·益阳、湘潭调研)已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________.解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cos θ=a ·b |a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 答案:-15[课时跟踪检测]1.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a-b )等于( )A .2B .-1C .-6D .-18解析:选D ∵a 与b 的夹角的余弦值为sin 17π3=-32, ∴a ·b =-3,b ·(2a -b )=2a ·b -b 2=-18.2.已知平面向量a =(-2,3),b =(1,2),向量λa +b 与b 垂直,则实数λ的值为( ) A.413 B .-413C.54D .-54解析:选D ∵a =(-2,3),b =(1,2),∴λa +b =(-2λ+1,3λ+2).∵λa +b 与b 垂直,∴(λa +b )·b =0,∴(-2λ+1,3λ+2)·(1,2)=0,即-2λ+1+6λ+4=0,解得λ=-54.3.已知向量a ,b 满足|a |=1,b =(2,1),且a ·b =0,则|a -b |=( ) A.6 B.5 C .2D.3解析:选A 因为|a |=1,b =(2,1),且a ·b =0,所以|a -b |2=a 2+b 2-2a ·b =1+5-0=6,所以|a -b |= 6.故选A.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(a +c )∥b ,c ⊥(a +b ),则c =( ) A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 解析:选D 设c =(m ,n ),则a +c =(1+m,2+n ),a +b =(3,-1), 因为(a +c )∥b ,则有-3(1+m )=2(2+n ), 即3m +2n =-7,又c ⊥(a +b ),则有3m -n =0,联立⎩⎪⎨⎪⎧3m +2n =-7,3m -n =0.解得⎩⎨⎧m =-79,n =-73.所以c =⎝⎛⎭⎫-79,-73. 5.(2018·襄阳调研)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A.⎝⎛⎭⎫-2,23∪⎝⎛⎭⎫23,+∞B.⎝⎛⎭⎫12,+∞ C .(-∞,-2)∪⎝⎛⎭⎫-2,12D.⎝⎛⎭⎫-∞,12解析:选C 不妨令i =(1,0),j =(0,1),则a =(1,-2),b =(1,λ),因为它们的夹角为锐角,所以a ·b =1-2λ>0且a ,b 不共线,所以λ<12且λ≠-2,故选C.6.(2019·石家庄质检)若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( )A.π6B.π3C.2π3D.5π6解析:选A ∵|a +b |=|a -b |,∴|a +b |2=|a -b |2,∴a ·b =0.又|a +b |=2|b |,∴|a +b |2=4|b |2,|a |2=3|b |2,∴|a |=3|b |,cos 〈a +b ,a 〉=(a +b )·a |a +b ||a |=a 2+a ·b |a +b ||a |=|a |22|b ||a |=|a |2|b |=32,故a +b 与a 的夹角为π6. 7.(2018·宝鸡质检)在直角三角形ABC 中,角C 为直角,且AC =BC =1,点P 是斜边上的一个三等分点,则CP ―→·CB ―→+CP ―→·CA ―→=( )A .0B .1 C.94D .-94解析:选B 以点C 为坐标原点,分别以CA ―→,CB ―→的方向为x 轴,y 轴的正方向建立平面直角坐标系(图略),则C (0,0),A (1,0),B (0,1),不妨设P ⎝⎛⎭⎫13,23,所以CP ―→·CB ―→+CP ―→·CA ―→=CP ―→·(CB ―→+CA ―→)=13+23=1.故选B.8.(2019·武汉调研)已知平面向量a ,b ,e 满足|e |=1,a ·e =1,b ·e =-2,|a +b |=2,则a ·b 的最大值为( )A .-1B .-2C .-52D .-54解析:选D 不妨设e =(1,0),则a =(1,m ),b =(-2,n )(m ,n ∈R),则a +b =(-1,m +n ),所以|a +b |=1+(m +n )2=2,所以(m +n )2=3,即3=m 2+n 2+2mn ≥2mn +2mn =4mn ,当且仅当m =n 时等号成立,所以mn ≤34,所以a ·b =-2+mn ≤-54,综上可得a ·b的最大值为-54.9.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.解析:∵a ·(a +b )=a 2+a ·b =22+2×1×cos 〈a ,b 〉=4+2cos 〈a ,b 〉=3, ∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴sin 〈a ,b 〉=1-c os 2〈a ,b 〉=32. 答案:3210.(2018·湖北八校联考)已知平面向量a ,b 的夹角为2π3,且|a |=1,|b |=2,若(λa +b )⊥(a -2b ),则λ=________.解析:∵|a |=1,|b |=2,且a ,b 的夹角为2π3,∴a ·b =1×2×⎝⎛⎭⎫-12=-1,又∵(λa +b )⊥(a -2b ),∴(λa +b )·(a -2b )=0,即(λa +b )·(a -2b )=λa 2-2b 2+(1-2λ)a ·b =λ-8-(1-2λ)=0,解得λ=3.答案:311.(2018·合肥一检)已知平面向量a ,b 满足|a |=1,|b |=2,|a +b |=3,则a 在b 方向上的投影等于________.解析:∵|a |=1,|b |=2,|a +b |=3, ∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =3, ∴a ·b =-1,∴a 在b 方向上的投影为a ·b |b |=-12.答案:-1212.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.解析:由已知得|AB ―→|=2,|AC ―→|=24,则OC ―→·(OB ―→-OA ―→)=(OA ―→+AC ―→)·AB ―→=OA ―→·AB ―→+AC ―→·AB ―→=2cos 3π4+24×2=-12. 答案:-1213.(2019·南昌质检)设向量a ,b 满足|a |=|b |=1,且|2a -b |= 5. (1)求|2a -3b |的值;(2)求向量3a -b 与a -2b 的夹角θ.解:(1)∵|2a -b |2=4a 2-4a ·b +b 2=4-4a ·b +1=5,∴a ·b =0, ∴|2a -3b |=4a 2-12a ·b +9b 2=4+9=13.(2)cos θ=(3a -b )·(a -2b )|3a -b ||a -2b |=3a 2+2b 29a 2+b 2×a 2+4b 2=510×5=22,∵θ∈[0,π],∴θ=π4.。
高中数学平面向量知识及注意事项
![高中数学平面向量知识及注意事项](https://img.taocdn.com/s3/m/5344b50e763231126edb1195.png)
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
平面向量坐标运算知识点
![平面向量坐标运算知识点](https://img.taocdn.com/s3/m/6ead988f80c758f5f61fb7360b4c2e3f5727258f.png)
平面向量坐标运算知识点一、知识概述《平面向量坐标运算知识点》①基本定义:平面向量坐标运算,简单说就是用坐标来表示平面向量,然后做各种运算。
就像给向量这个抽象的东西在平面上找好了“住址”(坐标),方便计算向量的和、差、数乘等。
比如向量A在平面直角坐标系里,有个坐标(x,y),这就是它在这个“数学小区”里的具体位置信息。
②重要程度:在数学学科里,平面向量坐标运算就像是一把魔力钥匙,能打开很多难题的大门。
它在几何图形的平移、伸缩,力的合成与分解等问题里都占着相当重要的分量。
要是不掌握这个,很多跟向量相关的稍微复杂点的题都搞不定。
③前置知识:要学这个,得先把平面直角坐标系、向量的基本概念(比如向量的大小和方向是啥)、向量的加法、减法这些基础知识掌握得妥妥的。
就像盖房子,前面那些知识是地基,平面向量坐标运算这楼才能盖起来。
④应用价值:实际应用场景超多。
比如说在物理里计算力的分解与合成,把力当成向量,用坐标运算就能轻松算出各个方向的分力或者合力。
在计算机图形学里,图形的平移、旋转、缩放都可以用向量坐标运算来描述,这样才能让图形在屏幕上“乖乖听话”,准确地实现各种效果。
二、知识体系①知识图谱:在整个向量知识体系里,平面向量坐标运算像是一条主线。
它跟向量的基本运算(向量加法等)、向量的性质(如平行、垂直的判定)都有千丝万缕的联系。
就像一张复杂的人际关系网里的关键角色,联系着很多其他相关概念的。
②关联知识:跟三角函数有点联系呢,有时候在计算向量夹角的时候会用到三角函数的知识。
还有跟解析几何也相关,有时候在解析几何里表示直线的方向或者图形在平面上的位置关系时,平面向量坐标运算就派上大用场了。
③重难点分析:- 掌握难度:这个知识点理解起来不算太难,但是要熟练运用还是有一定难度的。
刚开始接触时,让向量和坐标对应起来,建立这种思维转换有点挑战。
- 关键点:坐标的正确选取和运算规则的准确应用是关键。
一个坐标错误,后面的计算统统白搭。
高中数学基础知识大筛查(5)-平面向量
![高中数学基础知识大筛查(5)-平面向量](https://img.taocdn.com/s3/m/ecd6b7353968011ca30091ea.png)
基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
平面向量知识点总结(精华)
![平面向量知识点总结(精华)](https://img.taocdn.com/s3/m/904c3ec6ed630b1c58eeb597.png)
平面向量一、向量的基本概念1.向量的概念2.零向量:3.单位向量:长度为一个单位长度的向量(与AB 共线的单位向量是||AB AB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b , 规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ⇔、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.二、向量的表示方法1.几何表示:2.符号表示:3.坐标表示三、平面向量的基本定理定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+.(1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成.(3)向量的正交分解:当21e e ⊥时,就说1122a λe λe =+为对向量a 的正交分解. 举例3 (1)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e = D.1(2,3)e =-,213,24e⎛⎫=- ⎪⎝⎭(2)已知,AD BE 分别是ABC △的边BC ,AC上的中线,且AD a=,BE b =,则BC 可用向量,a b 表示为 . 结果:2433a b +. (3)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;(2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=,注意:0a λ≠.五、平面向量的数量积1.两个向量的夹角:对于非零向量a ,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角.当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2πθ=时,a ,b 垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则AB BC ⋅=_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=- ⎪⎝⎭,c a kb =+,d a b =-,c 与d 的夹角为4π,则k = ____. 结果:1. (3)已知||2a =,||5b =,3a b ⋅=-,则||a b +=____.(4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30. 3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.举例5 已知||3a =,||5b =,且12a b ⋅=,则向量a 在向量b 上的投影为______. 结果:125. 4.a b ⋅的几何意义:数量积a b ⋅等于a 的模||a 与b 在a 上的投影的积. 5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: (1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅,特别地,222||||a a a a a a =⋅=⇔=; ||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅>,且a 、b 不同向,0a b ⋅>是θ为锐角的必要不充分条件; 当θ为钝角时,0a b ⋅<,且a 、b 不反向;0a b ⋅<是θ为钝角的必要不充分条件. (3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例 6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a 与b 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=,若12S <,则OF ,FQ 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足||3||ka b a kb +=-(其中0k >).①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小. 结果:①21(0)4k a b k k+⋅=>;②最小值为12,60θ=. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =,BC b =,则向量AC 叫做a 与b 的和,即a b AB BC AC +=+=; 作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =,AC b =,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同. 举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --= ;③()()AB CD AC BD ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a =,BC b =,AC c =,则||a b c ++= . 结果: (3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为 . 结果:2;(5)若点O 是ABC △的外心,且0O A O B CO ++=,则ABC △的内角C 为 . 结果:120. 2.坐标运算:设11(,)a x y =,22(,)b x y =,则(1)向量的加减法运算:1212(,)a b x x y y +=++,1212(,)a b x x y y -=--.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R ,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12; (2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =-,3(3,1)F =,则合力123F F F F =++的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x =,(sin ,sin )b x x =,(1,0)c =-. (1)若3x π=,求向量a 、c 的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅的最大值为12,求λ的值.结果:(1)150;(2)12或1.(5)向量的模:222222||||a a x y a x y ==+⇔=+.举例11 已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +== .结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y ,则||AB 举例12 如图,在平面斜坐标系xOy 中,60xOy ∠=一点P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+其中12,e e 分别为与x 轴、y 轴同方向的单位向量,则P 点斜坐标为(,)x y . (1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+,()()a a λμλμ=,a b b a ⋅=⋅;2.结合律:()a b c a b c ++=++,()a b c a b c --=-+,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+,()a b a b λλλ+=+,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+; ④ 若0a b ⋅=,则0a =或0b =;⑤若a b c b ⋅=⋅则a c =;⑥22||a a =;⑦2a b b a a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=.60举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b 共线且方向相同. 结果:2.(2)已知(1,1)a =,(4,)b x =,2u a b =+,2v a b =+,且//u v ,则x = . 结果:4. (3)设(,12)PA k =,(4,5)PB =,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11. 九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||ABAC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若O A O B ⊥,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =向量n m ⊥,且||||n m =,则m =的坐标是 .结果:(,)b a -或(,)b a -. 十、线段的定比分点1.定义:设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P ,即点P 在线段12P P 上0λ⇔>;(2)P 外分线段12P P 时,①点P 在线段12P P 的延长线上1λ⇔<-,②点P 在线段12P P 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12P P 所成的比为λ,则点P 分有向线段21P P 所成的比为1λ.举例16 若点P 分AB 所成的比为34,则A 分BP 所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P 所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12P P 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =,则a = . 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =平移得曲线(,)0f x h y k --=.举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0||||||a b a b ⇔-=+;(3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++.举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G ++=⇔为△ABC 的重心. (2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭所在直线过△ABC 的内心.6.点P 分有向线段12P P 所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+,特别地P 为有向线段12P P 的中点122MP MP MP +⇔=.7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .知识应用1.(2018•卷Ⅰ)在中,AD 为BC 边上的中线,E 为AD 的中点,则( )A. B. C. D.2.(2018•浙江)已知a , b , e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为 ,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是( )A. −1B. +1C. 2D. 2−3.如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为()A. B. C. D.4.(2018•卷Ⅱ)已知向量,满足=1, ⋅=−1 ,则·(2-)=()A.4B.3C.2D.05.过点()0,2-且斜率为的直线与抛物线:交于,两点,若的焦点为,则()A. B. C. D.6.已知,且,则向量在方向上的投影为()A. B. C. D.7.抛物线的焦点为 ,过点的直线交抛物线于、两点,点为轴正半轴上任意一点,则()A. B. C. D.AAABDCB8.已知向量,,则________.9.(2018•江苏)在平面直角坐标系中,为直线上在第一象限内的点,以为直径的圆与直线交于另一点,若,则点的横坐标为________ 310.(2018•卷Ⅲ)已知向量,,,若,则________。
第五章 平面向量
![第五章 平面向量](https://img.taocdn.com/s3/m/1f80a602c281e53a5802fff4.png)
第一节平面向量的概念与线性运算一、知识梳理1.向量的有关概念(1).向量:既有 ,又有的量叫向量;通常记为 ;长度为的向量是零向量,记作: ; 的向量,叫单位向量.(2).平行向量(或共线向量)记作: ;规定:零向量与任何向量 .(3).相等向量:(4).相反向量:2.向量加法与减法(1).向量加法按法则或法则;向量加运算律:交换律: ;结合律:(2).向量减法作法:3.实数与向量的积(1). 实数与向量a的积是一个向量,记作,它的长度与方向规定如下:长度:方向:(2).运算律4.共线定理:5.平面向量基本定理:6.基底:二、考点分析考点一:平面向量的基本概念例1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a//b;⑤若a//b,b//c,则a//c;其中正确的序号是。
例2:设0为单位向量,(1)若为平面内的某个向量,则=||·0;(2) 若与a0平行,则=||·0;(3)若与0平行且||=1,则=0。
上述命题中,假命题个数是()A.0 B.1 C.2 D.3考点二:平面向量的线性运算例2:如图所示,已知正六边形ABCDEF,O是它的中心,若BA=a,BC=b,试用a,b将向考点三:平面向量共线定理例3:如图所示,△ABC 中,点M 是BC 的中点,点N 在AC 边上,且AN=2NC,AM 与BN 相交于点P,求AP :PM 的值.三、课堂检测1.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||,AB AC AB AC +=-则|AM |=( )A.8B.4C.2D.12.已知△ABC 中,点D 在BC 边上,且2,,CD DB CD r AB sAC ==+则r+s 的值是( )24..33A B C.-3 D.0 3.平面向量a,b 共线的充要条件是( )A.a,b 方向相同B.a,b 两向量中至少有一个为0C.存在λ∈R,使b=λ aD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=04.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C,满足20,AC CB +=则OC 等于( )2112.2.2..3333A OA OB B OA OBC OA OBD OA OB --+--+5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,2,2,DC BD CE EA AF FB ===则AD BE CF ++与()BCA.反向平行B.同向平行C.不平行D.无法判断6.已知a,b 是不共线的向量,AB =λa+b,AC =a+μb,(λ,μ∈R),那么A 、B 、C 三点共线的充要条件为()A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1 7、关于非零向量,有下列四个命题 ① “||+||=||”的充要条件是“方向相同”; ② “||+||=||”的充要条件是“方向相反”; ③ “||+||=||”的充要条件是“有相等的模”;④“||-||=||”的充要条件是“方向相同”;其中真命题的个数是(A ) 1个 (B )2个 (C )3个 (D )4个8.若点O 是△ABC 所在平面内的一点,且满足|||2|OB OC OB OC OA -=+-,则△ABC 的形状为________.9.在平行四边形ABCD 中,E 、F 分别是边CD 和BC 的中点,若AC =λAE +u ,AF 其中λ,u∈R,则λ+u=________.10.如图,平面内有三个向量OA 、OB 、,OC 其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为_______11.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB,AC 于不同的两点M,N,若,,AB mAM AC nAN ==则m+n 的值为________.第二节 平面向量的基本定理及坐标表示一、知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 . 2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→= , |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ . 基础检测1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 3.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .04.已知平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 5.已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =________.6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).二、考点分析考点一 平面向量基本定理及其应用例1.1.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB =a ,AC =b ,则AO =( )A.12a +12b B.12a +13b C.14a +12b D.12a +14b2.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =________.3.如图,已知▱ABCD 的边BC ,CD 的中点分别是K ,L ,且AK ―→=e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,4.如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.✧ 方法总结1.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.考点二 平面向量的坐标运算例2.1.若向量a =(2,1),b =(-1,2),c =⎝⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B .-12a -b C.32a +12b D.32a -12b 2.(2018·江西九校联考)已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.✧ 方法总结平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示例3.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值.1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb .2.共线问题解含参,列出方程求得解向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.变式3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1 D .2三、课堂检测1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( )A .(-3,4)B .(3,4)C .(3,-4)D .(-3,-4)2.若向量AB ―→=(2,4),AC ―→=(1,3),则BC ―→=( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)4.在平行四边形ABCD 中,AC 为一条对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(c os A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π36.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则PQ ―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 7.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________. 8.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .9.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 10.已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.5.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC ―→=λOA ―→+OB ―→,则实数λ的值为________.3.(1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) 2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |的值为( ) A .12 B .6 C .3 3D .33.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )等于( ) A .2 B .-1 C .-6D .-184.(2017·全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥bD .|a |>|b |5.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 6.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.二、考点分析考点一 平面向量的数量积的运算1.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.522.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 3.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.✧ 方法总结向量数量积的2种运算方法4.(2018·云南第一次统一检测)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .125.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.6.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________. ✧ 方法总结计算有关平面几何中数量积的方法(1)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后再根据平面向量的数量积的定义进行计算求解.(2)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算法则求得.考点二 平面向量数量积的性质角度(一) 平面向量的模1.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________ 2.如图,在△ABC 中,O 为BC 的中点,若AB =1,AC =3,AB ―→与AC ―→的夹角为60°,则|OA ―→|=________.✧ 方法总结 求向量模的常用方法(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.角度(二) 平面向量的夹角3.(2018·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π44.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 ✧ 方法总结求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. [注意] 〈a ,b 〉∈[0,π].角度(三) 平面向量的垂直5.(2018·湘中名校联考)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( )A .1 B. 2 C. 3 D .26.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.✧方法总结1.利用坐标运算证明两个向量的垂直问题坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.变式2.1.(2018·广东五校协作体诊断)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-22.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.3.已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为________.考点三 平面向量与三角函数的综合例3.(2017·江苏高考)已知向量a =(c os x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.✧ 方法总结平面向量与三角函数的综合问题的解题思路(1)给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.变式3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R. (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.三、课堂检测1.(2018·洛阳第一次统一考试)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .32.已知平面向量a ,b 的夹角为π3,且a ·(a -b )=2,|a |=2,则|b |等于( )A. 2 B .2 3 C .4 D .23.已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c ·(a +b )=( ) A .(2,12) B .(-2,12) C .14 D .104.(2018·湘中名校联考)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A .13+6 2 B .2 5 C.30 D.345.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( )A .-12 B.32-1 C.12 D.326.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5 D.3227.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.8.(2018·张掖一诊)已知平面向量a ,b 满足|a |=|b |=1,a ⊥(a -2b ),则|a +b |=________. 9.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则向量m ,n 的夹角的余弦值为________.10.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.11.(2018·惠州三调)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形仁荣中学2019届高三文科数学一轮复习导学案------专题五 平面向量11C .正三角形D .等腰直角三角形12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-113.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 314.(2018·广东五校协作体第一次诊断考试)已知向量a =(1,3),b =(3,m ),且b 在a 方向上的投影为3,则向量a 与b 的夹角为________.15.已知向量a =⎝⎛⎭⎫-12,32,OA ―→=a -b ,OB ―→=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.16.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |;(2)当k 为何值时,(a +2b )⊥(k a -b ).17.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长. (2)设实数t 满足(AB ―→-t OC ―→)·OC ―→=0,求t 的值.。
平面向量知识点归纳
![平面向量知识点归纳](https://img.taocdn.com/s3/m/d23ebac258fb770bf68a5553.png)
平面向量知识点归纳■标准化文件发布号:(9556・EUATWK・MWUB・WUNN-INNUL-DDQTY・Kn第—童平面向量2.1向量的基本概念和基本运算16、向量:既有大小,乂有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度.零向量:长度为0的向量• 单位向量:长度等于1个单位的向量• 平行向量(共线向量):方向相同或相反的非零向量•零向量与任一向量平 行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:||«|-|/?|| < d + b <|^| + |/?a+b=b+a ;② 结合律:(& + b) + c : = d + (b + c :) ;(3 J + 0 = 6 + « = (i . (5)坐标运算:设0 =(不,)\), b=(x 2,y 2)t 贝IJ万+5 = (召+疋,开+儿)・«-^=AC-AB=BC(1)三角形法则的特点:共起点,连终点,方向指向被减向量・⑵坐标运算:设a = S = (x 2,y 2),则a-b=(x l -x 29y l -y 2).设A 、B 两点的坐标分别为(人切),(x 2,y 2),则AB = (^-y 2).19、向量数乘运算: (1)实数兄与向量万的积是一个向量的运算叫做向量的数乘,记作久刁・ ②当兄>0时,久/的方向与7的方向相同;当几<0时?久/的方向与〃的方向相 反;当 >1 = 0 时,Ad = 6 .⑵运算律:①;1(“町=(;1“)万;②(兄+〃)厅=脑+炖;③兄(刁+5)=肪+舫(3)坐标运算:设 a = (x,y).则 Aa = A(x,y) =(Ax 9Ay).20、 向量共线定理:向量耳〃工0)与5共线,当且仅当有唯一一个实数几,使 b = A,a . 设"&,)[), b=(x 2,y 2),其中,则当且仅当人儿-兀儿=°时 向量⑷运算性质:①交换律:18、向量减法运算: B&、6(5工0)共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果兀、&是同一平面内的两个不共线向量,那么对于这一平面内的任意向量X,有且只有一对实数&、,使万=入石+入瓦.(不共线的向量石、:作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P是线段Pf?上的一点,P】、的坐标分别是(%))(兀2,儿),当卒"匝时,点P的坐标是(芝牛,塔字)•(当2 = 1B寸,就为屮点公式。
平面向量、三角函数重点知识梳理及典例分析
![平面向量、三角函数重点知识梳理及典例分析](https://img.taocdn.com/s3/m/88cec64516fc700aba68fc39.png)
平面向量、三角函数重点知识梳理及典例分析作者:张巧凤来源:《中学课程辅导高考版·学生版》2012年第11期一、平面向量基础知识提炼1.向量的概念(能级要求:B):既有大小又有方向的量,注意向量和数量的区别.①零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;②单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是±AB|AB|);③相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;④平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a∥b,规定:零向量和任何向量平行.⑤相反向量:长度相等方向相反的向量叫做相反向量.a的相反向量是-a.2.向量的加减法及数乘运算(能级要求:B)(1)向量加法减法几何运算:加法利用“平行四边形法则”和“三角形法则”进行;符号运算:AB+BC=AC和AB=OB-OA坐标运算:设a=(x1,y1),b=(x2,y2),则a±b=(x1±x2,y1±y2).(2)实数与向量的积:实数λ与向量a的积是一个向量,记作λa,它的长度和方向规定如下:(1)|λa|=|λ||a|,(2)当λ>0时,λa的方向与a的方向相同,当λ3.向量的坐标表示(能级要求:B):在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量i,j为基底,则平面内的任一向量a可表示为a=xi+yj=(x,y),称(x,y)为向量a的坐标,a=(x,y)叫做向量a的坐标表示.如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.4.平面向量的数量积(能级要求:C):(1)两个向量的夹角:对于非零向量a,b,作OA=a,OB=b,∠AOB=θ(0≤θ≤π)称为向量a,b的夹角(必须在同一起点),当θ=0时,a,b同向,当θ=π时,a,b反向,当θ=π2时,a,b垂直.(2)平面向量的数量积:如果两个非零向量a,b,它们的夹角为θ,我们把数量|a||b|cosθ叫做a与b的数量积(或内积或点积),记作:a·b,即a·b=|a||b|cosθ.规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量.(3)向量数量积的性质:设两个非零向量a,b,其夹角为θ,则:①a⊥ba·b=0;②当a,b同向时,a·b=|a||b|,特别地,a2=a·a=|a|2,a2=|a|;当a与b反向时,a·b=-|a||b|;当θ为锐角时,a·b>0,且a、b不同向,a·b>0是θ为锐角的必要非充分条件;当θ为钝角时,a·b③非零向量a,b夹角θ的计算公式:cosθ=a·b|a||b|;5.平面向量的平行和垂直(能级要求:B)设a=(x1,y1),b=(x2,y2),则非空向量平行(共线)的充要条件:a∥ba=λb(a·b)2=(|a||b|)2x1y2-y1x2=0.向量垂直的充要条件:a⊥ba·b=0|a+b|=|a-b| x1x2+y1y2=0二、三角函数、三角恒等变换和解三角形基础知识剖析1.三角函数的定义和三角函数线(能级要求:B):三角函数值只与角的大小有关,而与终边上点P的位置无关.三角函数线的重要应用:①比较三角函数值的大小;②解三角不等式;③圆的参数方程.2.同角三角函数的基本关系式(能级要求:B):(1)平方关系:sin2α+cos2α=1,(2)商数关系: tanα=sinαcosα.主要应用:①已知一个角的三角函数值,求此角的其它三角函数值,②化简,③证明恒等式.3.三角函数诱导公式(能级要求:B):(k2π+α)的本质是奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角).诱导公式的应用是求任意角的三角函数值,其一般步骤:(1)负角变正角,再写成2kπ+α,0≤α4.正弦函数、余弦函数、正切函数的图象与性质(能级要求:B):通过图像来研究三个三角函数的有关性质.5.函数y=Asin(ωx+φ)的图象和性质(能级要求:A):(1)几个物理量:A—振幅;f=1T—频率(周期的倒数);ωx+φ—相位;φ—初相;(2)表达式的确定:A由最值确定,ω由周期确定,φ由图象上的特殊点确定.(3)函数y=Asin(ωx+φ)+k的图象与y=sinx图象间的关系.6.两角和与差的正弦、余弦、正切公式及倍角公式(能级要求:C):sin(α±β)=sinαcosβ±cosαsinβ令α=βsin2α=2sinαcosαcos(α±β)=cosαcosβsinαsinβ令α=βcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αcos2α=1+cos2α2sin2α=1-cos2α2tan(α±β)=tanα±tanβ1tanαtanβ令α=β tan2α=2tanα1-tan2α7.三角形中的有关公式(能级要求:B):(1)正弦定理:asinA=bsinB=csinC=2R(R为三角形外接圆的半径).(2)余弦定理:a2=b2+c2-2bccosA,cosA=b2+c2-a22bc等,(3)面积公式:S=12aha=12absinC=12r(a+b+c)(其中r为三角形内切圆半径).(4)解三角形的类型:①已知两角和一边(正弦定理);②已知三边a、b、c(余弦定理);③已知两边和夹角(如a、b、C),用余弦定理求c边;再用正弦定理先求较短边所对的角,然后利用A+B+C=π,求另一角.④已知两边和其中一边的对角:若运用正弦定理,则务必注意可能有两解的情况.注:知识点中的能级要求来自《2012年高考数学考试说明》,其中A级为了解,B级为理解,C级为掌握.三、典例分析例1 下列命题中:① a·(b-c)=a·b-a·c;② a·(b·c)=(a·b)·c;③(a-b)2=|a|2-2|a|·|b|+|b|2;④若a·b=0,则a=0或b=0;⑤若a·b=c·b,则a=c;⑥|a|2=a2;⑦a·ba2=ba;⑧(a·b)2=a2·b2;⑨(a-b)2=a2-2a·b+b2.其中正确的是解析:正确命题的序号为①⑥⑨注:本题考查的是向量的运算法则,要注意与实数的运算法则区别开来.例2 如图在等腰直角△ABC中,点P是斜边BC的中点,过点P的直线分别交直A线AB、AC于不同的两点M、N,若ABAM=m,ACAN=n,求mn的最大值.解析:AP=12AB+12AC=12mAM+12nAN,因为M、P、N三点共线,故12m+12n=1,即m+n=2,∴mn≤(m+n2)2=1,当且仅当m=n=1时取等号.注:本题考查的是向量共线定理和向量的表示,最后与不等式的最值,综合求解.例3 已知点P在△ABC所在的平面内,若2PA+3PB+4PC=3AB,则△PAB与△PBC的面积之比是;解析:∵2PA+3PB+4PC=3AB∴2PA+4PC=3(AB+BP)=3AP,即得4PC=5AP,故点P在线段AC上且4|PC|=5|AP|,则△PAB与△PBC的面积之比是4∶5.注:本题考查的是向量的符号运算与线性表示.例4 如图放置的边长为1的正方形DEFG的顶点D,G分别在Rt△ABC的两直角边所在的直线上滑动,则CE·CF的最大值是解析:CE·CF=(CD+DE)·(CG+GF)=CD·CG+CD·GF+DE·CG+DE·GF=0+CD·GF+DE·CG+1=0+CD·DE+DE·CG+1=DE·(CD+CG)+1取DG的中点M,则=2DE·CM+1=2|DE|·|CM|cosα+1=cosα+1≤2.当DE、CM同向时取“=”.注:因为数量积是C级要求,所以与数量积有关的问题难度往往较大.本题考查的是向量数量积的计算,转化成已知基底的运算.例5 已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).(1)若m∥n,求证:△ABC为等腰三角形;(2)若m⊥p,边长c=2,角C=π3,求△ABC的面积.解析:(1)∵m∥n,∴asinA=bsinB,即a·a2R=b·b2R,其中R是三角形ABC外接圆半径,a=b∴△ABC为等腰三角形.(2)由题意可知m·p=0,即a(b-2)+b(a-2)=0,所以a+b=ab.由余弦定理可知,4=a2+b2-ab=(a+b)2-3ab 即(ab)2-3ab-4=0.∴ab=4(舍去ab=-1).∴S=12absinC=12·4·sinπ3=3.注:本题是三角和向量的综合性题型,利用向量平行的坐标运算,和正余弦定理解决.例6 在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC,求b.解析:在△ABC中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:a·a2+b2-c22ab=3b2+c2-a22bc·c,化简并整理得:2(a2-c2)=b2.又由已知a2-c2=2b∴4b=b2.解得b=4或b=0(舍).注:高考考纲中就明确提出要加强对正余弦定理的考查.正余弦定理的运用中抓住边角的互化是解题的核心,在备考中应注意总结、提高自己对问题的分析和解决能力及对知识的灵活运用能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础知识第一课时:向量的概念向量的定义(两要素)向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性向量是矢量的抽象、数量是标量的抽象向量的表示几何表示 (几何中用点表示位置、用射线表示方向 起点到终点)用有向线段表示向量使向量具有几何直观性有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变)向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”)用符号表示向量使向量具有代数的属性坐标表示用坐标表示向量使向量具有算术的属性向量的模及其表示 写法与读法 (“外套”)模特殊的向量零向量 定义、表示0、方向单位向量 定义 方向的惟一性与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k位置特殊的向量位置向量 起点为坐标原点的向量方向关系特殊的向量与表示平行向量(共线向量 “平行向量”与“共线向量”是等意词)垂直向量相等向量 平移变换用之相反向量 反向变换用之零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量判断:1、若两向量相等,则它们的起点与终点相同2、AB BA =-3、若a ∥b ,b ∥c ,则a ∥c4、若AB CD =,则AB CD5、若a 与b 不共线,则a ≠0,b ≠06、若AB ∥CD ,则A 、B 、C 、D 四点共线7、若AB ∥AC ,则A 、B 、C 三点共线8、若AB=CD ,则AB CD =∥ =9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套)两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样)向量的类型:自由向量、滑动向量、固定向量第二课时:向量的加法向量加法的定义向量加法处理方法:三角形法则、平行四边形法则(当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的)向量加法的特征:尾首相接,首尾相连(与接点的位置无关)向量的和拆分 封闭折线的和向量△ABC 中,G 是重心⇔GA +GB +GC =0求和向量时需要把向量具体化、几何化向量加法的运算律:交换律、结合律向量加法的性质1、两个向量的和为一个向量2、若两个向量平行,则它们的和向量与它们也平行3、若两个向量不平行,则它们的和向量与它们也不平行4、||a |-|b ||≤|a +b |≤|a |+|b |,当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立.第三课时:向量的减法向量减法的定义 向量减法是向量加法的逆运算向量减法处理方法:三角形法则、平行四边形法则向量减法的特征:首首相聚,被减被指(与起点的位置无关)向量的差拆分向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量求差向量时需要把向量具体化、几何化向量减法的性质1、两个向量的差为一个向量2、若两个向量平行,则它们的差向量与它们也平行3、若两个向量不平行,则它们的差向量与它们也不平行4、||a |-|b ||≤|a -b |≤|a |+|b |,当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.平行四边形与向量的加减法:平行四边形ABCD中AB=a,AD=b,若|a+b|=|a -b|,则平行四边形ABCD是第四课时:向量的加减法第五课时:向量的数乘乘法的类型、意义与表示方法乘法的加法意义乘法是加法的简便运算系数范围从自然数扩大到实数实数与向量的积的定义可看作是实数与实数的积的概念的推广向量的数乘的定义实数λ与向量a相乘,叫做向量的数乘,其积是一个向量,记作λa,且满足(1)|λa|=|λ||a|;(2)当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa=0,总之λa∥a向量数乘的几何表示伸缩变换与反向变换向量数乘的运算律结合律、分配律(第一、第二)、交换律向量数乘与实数乘法的异同:运算结果不同,运算律相同向量的线性运算的定义向量的加法、减法、数乘及其混合运算叫做向量的线性运算,又叫向量的初等运算(结果为向量的“一次”式)向量的线性运算结果是一个向量,运算法则与多项式运算类似(去掉箭头即为多项式法则)第六课时:向量的线性表示向量的线性表示:若a≠0,且b=λa,则称b可用非零向量a线性表示,其中a叫做基底非零向量的单位向量的定义与表示公式若向量a≠0,则称与a方向相同的单位向量叫做a的单位向量;若x是a的单位向量,则x=a a向量共线定理(向量共线的判定与性质)已知a≠0,(1)若b=λa,则b∥a;(2)若b∥a;,则有且只有一个实数λ,使b=λa只有以非零向量作为基底,才能线性表示与之共线的所有向量,且线性表达式是惟一的;若以零向量作为基底,则无法线性表示非零向量,而表示零向量时,线性表达式有无数个若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线已知λa+μb=0,(1)若λ与μ不全为零,则a∥b;(2)若a与b不共线,则λ=μ=0第七课时:向量的线性运算向量线性运算的类型向量线性运算的常用方法平移(等量代换)、反向、拆分(路线的选择)、线性表示(中点、分点、交点)(平移与反向是线性表示的特例) 大写字母的变换反证法的运用向量恒等式问题中点问题(联想中位线)交点问题(三点共线的线性表示)待定系数法用向量法解题的思想方程思想 如待定系数法化归与转化思想 如向量的拆分数形结合思想 如三角形法则分类讨论思想 如方向关系的讨论(同向、反向、不共线)、零向量与非零向量 向量的等和变换 若P 1、P 2、P 3、…、P k 、…、P n-1依次是线段AB 的各个n 等分点,O 是平面内任一点,则 OA +OB =1OP +1n OP -=2OP +2n OP -=…=k OP +n k OP -第八课时:平面向量基本定理平面向量基本定理(共面向量的线性表示)如果e 1,e 2是同一平面内的两个不共线向量,那么对于该平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2平面向量基本定理的意义:用不共线的两个向量可把平面内的所有向量统一起来 基底 定义、特征、数量、作用、灵活性、不可交流性不共线的向量e 1,e 2,叫做表示平面内的所有向量的一组基底基底不惟一 数量可多于两个只有以不共线的向量(必为非零向量)作为基底,才能线性表示平面内的所有向量,且线性表达式是惟一的;若以共线向量作为基底,则无法线性表示和它们不共线的向量,而表示和它们共线的向量时,线性表达式有无数个向量的分解定义:一个平面向量a 用一组基底e 1,e 2,表示成a =λ1e 1+λ2e 2的形式,称为向量a 按e 1,e 2的分解分类:当e 1,e 2,互相垂直时,就称为向量的正交分解 非正交分解向量分解的几何方法 过向量的起点和终点分别作基底向量的平行线,两条直线相交于一点第九课时:平面向量的坐标表示与坐标运算平面向量的坐标表示位置向量 起点为坐标原点的向量平面向量的分解→平面向量的正交分解→平面向量的分解(以坐标轴的共线向量为基底)→平面向量的分解(以坐标轴的同向向量为基底)→平面向量的分解(以坐标轴的同向单位向量为基底)(“普通话”交流的便利)A (x ,y )⇔OA =(x ,y )=x i +y j AB =(x B -x A ,y B -y A )零向量的坐标为(0,0)单位向量的坐标为(cos θ,sin θ)若a =(x ,y ),则∣a ;∣AB 向量的坐标与起点和终点的相对位置有关,与起点和终点的绝对位置无关平面向量的坐标表示的意义:把几何问题代数化、算术化平面向量的坐标运算 坐标运算不需要几何特征若a =(x 1,y 1),b =(x 2,y 2),则a +b = a -b = λa =第十课时:有向线段的定比分点用黄金分割律引入定比分点的定义已知P 在直线AB 上,且P 与B 不重合,若AP =λPB ,则称P 分有向线段AB 所成的比为λ,P 叫AB 的定比分点 (PB 为基底)(注意起点、分点、终点的顺序 在起点和分点符号之间插入分点)定比分点的类型当P 在线段AB 上时,称P 为AB 的内分点,λ>0.特别地,P 若为线段AB 的中点,则λ=1.当P 在线段AB 的延长线或反向延长线上时,称P 为AB 的外分点,λ<0.特别地,P 若在AB 的延长线上,则λ<-1;若P 在AB 的反向延长线上,则-1<λ<0. 当P 与A 重合时,λ=0.综上得,λ≠-1.定比分点计算公式 (三点一值的计算)已知P 1(x 1,y 1),P 2(x 2,y 2),若点P (x ,y )分有向线段12PP 所成的比为λ(λ≠-1), 则OP =121OP OP λλ++=11λ+1OP +1λλ+2OP (定比分点向量公式)121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩ (定比分点坐标公式) 注意对号入座 线段中点坐标公式三角形重心坐标公式练习 1、O 分有向线段MN 所成的比为2,则( )A .OM =2ONB .MO =2ONC .MO =2NOD .OM =2NO2、若P 分有向线段AB 所成的比为3,则A 分有向线段PB 所成的比为3、若P 分有向线段AB 所成的比为3,则P 分有向线段BA 所成的比为4、黄金分割点的坐标三点共线问题的处理方法:方程法、斜率法、向量法、定比分点法、距离法 第十一课时:平面向量平行的坐标表示引入:若a =(1,3),b =(x ,4)则x 为何值时,a ∥b ?方法1:设a =λb ,列方程组解之,λ是辅助量,可消去不求,象一个学雷锋做好事不留名的人,当然,为了感谢他,也可以打听出其姓名(求出λ的值)问题:解决此题能否自力更生,不请外援?(总结辅助量的效果,事半功倍) 方法2:若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0 对号入座(记忆方法:先打草稿——写比例式,再写定稿——把分式化为整式)可以去掉课本上a ≠0的规定,且可用加减消元法推导上式写比例式法可以作为技巧解客观性试题待定系数法与坐标法的异同:待定系数法是方程组,可同时解决线性向量式的系数(或向量的坐标)与定向(确定同向还是反向);坐标法是方程,可求向量的坐标,但解决向量定向问题时比较麻烦. 推广:若a 与b 不共线,则(λ1a +μ1b )∥(λ2a +μ2b )⇔λ1μ2-λ2μ1=0第十二课时:平面向量的数量积用力作功为例引入 两矢量生成一标量 运算的含义 运算符号的意义向量数量积的定义 a ·b =||||cos ,a b a b <> 写法 读法 三个因素夹角的定义、表示、范围、类型向量垂直及其性质垂直是两个非零向量之间的一种关系(三条道路堵死两条)两向量的数量积为零是两向量垂直的必要条件零向量的规定零向量与任一向量的数量积为0,由于零向量的方向不确定,故不定义零向量与其它向量的夹角,更不可说零向量与其它向量垂直向量模的变换方法(平方加根号)向量的平方等于其模的平方判断1、x2=y2⇔x=y或x=-y2、x2=y2⇔x=y或x=-y3、x2=y2⇔∣x∣=∣y∣向量数量积的运算率及公式(限于“二次”以内)投影的概念第十二课时:平面向量的数量积的坐标表示已知a=(x1,y1),b=(x2,y2):(1)a·b=x1x2+y1y2不用夹角也可求数量积对号入座cosθ=(2)若a与b为非零向量,则(3)若a与b为非零向量,则a⊥b⇔x1x2+y1y2=0 注意大前提第十三课时:平面向量的数量积第十四课时:向量的应用用向量解决物理问题矢量的分解与合成分析力与做功向量源自物理用向量解决几何问题平几问题(向量的几何运算)和解几问题(向量的代数运算)平行问题平行四边形、梯形、三点共线、中位线、直线方程垂直问题三角形垂心、矩形、菱形、圆的方程长度问题平行四边形两对角线与四边的关系、三角形的三边关系角度问题三角形的射影定理、余弦定理、不等式问题三角形的三边关系、柯西不等式直线的方向向量与其斜率斜率为k的直线的方向向量的坐标为(1,k)有向量条件的问题(无需联想)、无向量条件的问题(公式特征和几何意义的联想)1、求证:平行四边形的两条对角线长的平方和等于四条边长的平方和2、求证:三角形的三条高交于一点3、已知直线上两点坐标求其方程4、求直径圆方程5、证明余弦定理6、证明三角形的射影定理7、求证:柯西不等式(x1x2+y1y2)2≤(x1,y1)2(x2,y2)28、证明三角形和梯形的中位线定理9、P89,第13题第十五课时:向量小结与综合向量的概念与表示向量的运算1、一次运算与二次运算2、向量的几何(图形)运算与向量的代数(坐标)运算向量的应用以算代证。