平面向量基础知识
高中平面向量知识点详细归纳总结(附带练习)
![高中平面向量知识点详细归纳总结(附带练习)](https://img.taocdn.com/s3/m/3ab31e69783e0912a2162aa2.png)
向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
高中数学的向量知识
![高中数学的向量知识](https://img.taocdn.com/s3/m/640fefd1b9f3f90f76c61b16.png)
高中数学的平面向量知识向量的概念既有方向又有大小的量叫做向量(物理学中叫做矢量),向量可以用a,b,c,.......表示,也可以用表示向量的有向线段的起点和终点字母表示。
只有大小没有方向的量叫做数量(物理学中叫做标量)。
在自然界中,有许多量既有大小又有方向,如力、速度等。
我们为了研究这些量的这个共性,在它们的基础上提取出了向量这个概念。
这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。
向量的几何表示具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。
(AB是印刷体,也就是粗体字母,书写体是上面加个→)有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
相等向量、平行向量、共线向量、零向量、单位向量:长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量或共线向量,向量a、b平行,记作a//b,零向量与任意向量平行,即0//a,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)长度等于0的向量叫做零向量,记作0。
(注意粗体格式,实数“0”和向量“0”是有区别的)零向量的方向是任意的;且零向量与任何向量都平行,垂直。
模等于1个单位长度的向量叫做单位向量。
平面向量的坐标表示在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=x i+y j我们把(x,y)叫做向量a的(直角)坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,上式叫做向量的坐标表示。
在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。
注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。
而点的坐标是绝对的。
若一向量的起点在原点,例如该向量为(1,2)那么该向量上的所有点都可以用(a,2a)表示。
平面向量基础知识
![平面向量基础知识](https://img.taocdn.com/s3/m/783dc1e3f61fb7360a4c6514.png)
平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。
平面向量与解三角形基础知识
![平面向量与解三角形基础知识](https://img.taocdn.com/s3/m/7a95e28e5ebfc77da26925c52cc58bd631869395.png)
04
平面向量与解三角形的结合应用
向量在解三角形中的应用
力的合成与分解
在物理和工程中,向量可以表示 力和速度,通过向量的合成与分 解可以解决与力相关的问题,如 力的平衡、加速度等。
速度和加速度分析
01 02
答案解析1
首先计算向量$overset{longrightarrow}{a}$和 $overset{longrightarrow}{b}$的模长,然后利用向量的夹角公式计算 夹角。
答案解析2
利用向量的坐标运算求出边AB上的高所在的直线斜率,然后利用点斜 式求出直线方程。
03
答案解析3
利用向量的夹角公式计算夹角的余弦值。
平面向量与解三角形基础知识
目
CONTENCT
录
• 平面向量基本概念 • 平面向量的数量积和向量积 • 解三角形基础知识 • 平面向量与解三角形的结合应用 • 练习题与答案解析
01
平面向量基本概念
向量的表示与定义
总结词
平面向量通常用有向线段表示,包括 起点、方向和长度。
详细描述
平面向量是一种既有大小又有方向的 量,通常用有向线段表示,包括起点 、方向和长度。向量的大小称为模, 表示为向量的长度。
解三角形的步骤和注意事项
01
02
03
04
确定解的类型
根据题目条件和要求,确定解 的类型是角度、边长还是角度 和边长都需要求解。
选择合适的公式
根据解的类型,选择合适的公 式进行计算,如正弦定理、余 弦定理等。
计算过程需谨慎
在计算过程中,需要注意单位 的统一和计算的准确性,避免 出现误差。
平面向量知识点归纳
![平面向量知识点归纳](https://img.taocdn.com/s3/m/5fddef5ca55177232f60ddccda38376bae1fe07d.png)
平面向量知识点归纳平面向量是高中数学中的重要内容,也是大学数学中的基础知识,它是向量的一种。
向量是数学中的一个概念,它有方向和大小,用有向线段表示。
平面向量是指在平面中的向量,以下是平面向量的知识点归纳。
一、平面向量的定义平面向量是表示平面上有大小和方向的箭头的数学概念。
平面向量AB用符号→AB表示,它的长度表示向量大小,而方向则由方向角表示。
二、平面向量的加减法1. 平面向量的加法平面向量加法是指将一条平面向量按照另一条向量的方向和大小来平移,并合成为一条新的向量。
记作→AB+→BC=→AC。
向量加法满足交换律、结合律、分配律。
2. 平面向量的减法平面向量减法是将另一向量的方向翻转,依次相加,得到一个新向量。
记作→AB-→AC=→CB。
三、平面向量的数量积平面向量的数量积是指两个向量之间相乘得到的标量。
记作→a⋅→b=a·b·cosθ,其中a、b是两个向量,θ是它们之间的夹角。
四、平面向量的叉积平面向量的叉积是在二维平面内的两个向量所形成的向量垂直于平面,大小等于两个向量所组成的平行四边形的面积。
记作→a×→b,其中a、b是两个向量。
五、平面向量的共线、垂直及夹角1. 平面向量的共线两个向量共线的充要条件是它们的数量积等于它们的模的乘积,即→a//→b,当且仅当a·b=|a||b|。
2. 平面向量的垂直两个向量垂直的充要条件是它们的数量积等于0,即→a⊥→b当且仅当a·b=0。
3. 平面向量的夹角两个向量的夹角是指它们之间的夹角,记作θ,其中θ的范围是0≤θ≤π。
六、平面向量的投影与单位向量1. 平面向量的投影平面向量投影是指一个向量在另一个向量上的投影,也是向量的一个重要应用。
投影的值等于向量的模与夹角的余弦的乘积。
记作pr→a。
2. 平面向量的单位向量单位向量是模等于1的向量,它表示的方向与原向量相同。
单位向量是向量的一种特殊情况,用符号→e表示。
高中数学平面向量知识点与典型例题总结(师)
![高中数学平面向量知识点与典型例题总结(师)](https://img.taocdn.com/s3/m/c736f5c50875f46527d3240c844769eae009a39c.png)
高中数学平面向量知识点与典型例题总结(师)《数学》必会基础题型——《平面向量》【基本概念与公式】【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=?。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a ba b +=+13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?=? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+=题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
平面向量坐标运算知识点
![平面向量坐标运算知识点](https://img.taocdn.com/s3/m/6ead988f80c758f5f61fb7360b4c2e3f5727258f.png)
平面向量坐标运算知识点一、知识概述《平面向量坐标运算知识点》①基本定义:平面向量坐标运算,简单说就是用坐标来表示平面向量,然后做各种运算。
就像给向量这个抽象的东西在平面上找好了“住址”(坐标),方便计算向量的和、差、数乘等。
比如向量A在平面直角坐标系里,有个坐标(x,y),这就是它在这个“数学小区”里的具体位置信息。
②重要程度:在数学学科里,平面向量坐标运算就像是一把魔力钥匙,能打开很多难题的大门。
它在几何图形的平移、伸缩,力的合成与分解等问题里都占着相当重要的分量。
要是不掌握这个,很多跟向量相关的稍微复杂点的题都搞不定。
③前置知识:要学这个,得先把平面直角坐标系、向量的基本概念(比如向量的大小和方向是啥)、向量的加法、减法这些基础知识掌握得妥妥的。
就像盖房子,前面那些知识是地基,平面向量坐标运算这楼才能盖起来。
④应用价值:实际应用场景超多。
比如说在物理里计算力的分解与合成,把力当成向量,用坐标运算就能轻松算出各个方向的分力或者合力。
在计算机图形学里,图形的平移、旋转、缩放都可以用向量坐标运算来描述,这样才能让图形在屏幕上“乖乖听话”,准确地实现各种效果。
二、知识体系①知识图谱:在整个向量知识体系里,平面向量坐标运算像是一条主线。
它跟向量的基本运算(向量加法等)、向量的性质(如平行、垂直的判定)都有千丝万缕的联系。
就像一张复杂的人际关系网里的关键角色,联系着很多其他相关概念的。
②关联知识:跟三角函数有点联系呢,有时候在计算向量夹角的时候会用到三角函数的知识。
还有跟解析几何也相关,有时候在解析几何里表示直线的方向或者图形在平面上的位置关系时,平面向量坐标运算就派上大用场了。
③重难点分析:- 掌握难度:这个知识点理解起来不算太难,但是要熟练运用还是有一定难度的。
刚开始接触时,让向量和坐标对应起来,建立这种思维转换有点挑战。
- 关键点:坐标的正确选取和运算规则的准确应用是关键。
一个坐标错误,后面的计算统统白搭。
高中数学基础知识大筛查(5)-平面向量
![高中数学基础知识大筛查(5)-平面向量](https://img.taocdn.com/s3/m/ecd6b7353968011ca30091ea.png)
基础知识大筛查-平面向量概念与定理1、有关概念(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示 (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是||AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0 );④三点A B C 、、共线⇔ AB AC、共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下:()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ=,注意:λ≠0。
4、平面向量的数量积:(1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,,垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做与的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
高中平面向量知识点总结
![高中平面向量知识点总结](https://img.taocdn.com/s3/m/c58adf8c09a1284ac850ad02de80d4d8d15a01f9.png)
高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。
2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。
(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。
(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。
二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。
2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。
3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。
4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。
(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。
2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。
平面向量知识点归纳
![平面向量知识点归纳](https://img.taocdn.com/s3/m/fcda3c48a8956bec0975e32b.png)
平面向量基础知识复习平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||ABAB ±); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a∥b ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线 AB AC ⇔、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -.举例2 如下列命题:(1)若||||a b = ,则a b =.(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB D C =,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB D C =.(5)若a b = ,b c = ,则a c =.(6)若//a b ,//b c则//a c .其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;2.符号表示:用一个小写的英文字母来表示,如a,b ,c 等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j为基底,则平面内的任一向量a可表示为(,)a xi yj x y =+=,称(,)xy 为向量a 的坐标,(,)a x y = 叫做向量a的坐标表示. 结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+ .(1)定理核心:1122a λe λe =+ ;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a的合成.(3)向量的正交分解:当12,e e 时,就说1122a λe λe =+ 为对向量a 的正交分解. 举例3 (1)若(1,1)a = ,(1,1)b =- ,(1,2)c =- ,则c =. 结果:1322a b -.(2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e = ,2(1,2)e =- B.1(1,2)e =- ,2(5,7)e = C.1(3,5)e = ,2(6,10)e = D.1(2,3)e =- ,213,24e ⎛⎫=- ⎪⎝⎭(3)已知,A D B E分别是ABC△的边BC,AC 上的中线,且AD a =,BE b =,则BC可用向量,a b表示为 . 结果:2433a b + . (4)已知ABC △中,点D 在BC 边上,且2CD DB = ,CD rAB sAC =+,则r s +=的值是 . 结果:0.四、实数与向量的积实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅;平面向量基础知识复习(2)方向:当0λ>时,a λ 的方向与a 的方向相同,当0λ<时,a λ 的方向与a的方向相反,当0λ=时,0a λ= ,注意:0a λ≠. 五、平面向量的数量积1.两个向量的夹角:对于非零向量a,b ,作OA a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a,b的夹角.当0θ=时,a,b同向;当θπ=时,a,b反向;当2πθ=时,a,b垂直.2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ⋅ ,即||||cos a b a b θ⋅=⋅.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB = ,||4AC = ,||5BC = ,则AB BC ⋅=_________. 结果:9-. (2)已知11,2a ⎛⎫= ⎪⎝⎭,10,2b ⎛⎫=-⎪⎝⎭,c a kb =+ ,d a b =- ,c 与d的夹角为4π,则k = ____. 结果:1.(3)已知||2a = ,||5b = ,3a b ⋅=-,则||a b += ____. (4)已知,a b 是两个非零向量,且||||||a b a b ==- ,则a 与a b +的夹角为____. 结果:30.3.向量b 在向量a上的投影:||cos b θ ,它是一个实数,但不一定大于0.举例5 已知||3a = ,||5b =,且12a b ⋅= ,则向量a 在向量b上的投影为______. 结果:125. 4.a b ⋅ 的几何意义:数量积a b ⋅ 等于a 的模||a与b 在a 上的投影的积.5.向量数量积的性质:设两个非零向量a ,b,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=;(2)当a 、b 同向时,||||a b a b ⋅=⋅ ,特别地,22||||a a a a a =⋅=⇔ ;||||a b a b ⋅=⋅是a 、b 同向的充要分条件;当a 、b 反向时,||||a b a b ⋅=-⋅ ,||||a b a b ⋅=-⋅是a 、b 反向的充要分条件;当θ为锐角时,0a b ⋅> ,且a、b 不同向,0a b ⋅> 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅< ,且a、b 不反向;0a b ⋅< 是θ为钝角的必要不充分条件.(3)非零向量a ,b 夹角θ的计算公式:cos ||||a b a b θ⋅=;④||||a b a b ⋅≤.举例6 (1)已知(,2)a λλ=,(3,2)b λ=,如果a与b的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF F Q ⋅= ,若12S <,则OF ,FQ夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭;(3)已知(cos ,sin )a x x =,(cos ,sin )b y y =,且满足|||ka b a kb +-(其中0k >).①用k 表示a b ⋅ ;②求a b ⋅ 的最小值,并求此时a与b的夹角θ的大小. 结果:①21(0)4k a b k k+⋅=>;②最小值为12,60θ= .六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.平面向量基础知识复习运算形式:若AB a = ,BC b = ,则向量AC 叫做a 与b的和,即a b AB BC AC +=+= ;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a = ,AC b = ,则a b AB AC CA -=-=,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++= ;②AB AD DC --=;③()()AB C D A C B D ---= . 结果:①AD ;②CB ;③0;(2)若正方形ABCD 的边长为1,AB a = ,BC b = ,AC c = ,则||a b c ++=.结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA-=+-,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++= ,设||||AP PD λ=,则λ的值为 . 结果:2;(5)若点O 是ABC △的外心,且0O A O B CO ++=,则ABC △的内角C 为 . 结果:120 .2.坐标运算:设11(,)a x y =,22(,)b x y = ,则(1)向量的加减法运算:1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--.举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12;(2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =,,(,)22x y ππ∈-,则x y += .结果:6π或2π-;(3)已知作用在点(1,1)A 的三个力1(3,4)F =,2(2,5)F =- ,3(3,1)F =,则合力123F F F F =++的终点坐标是 .结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==. (3)若11(,)A x y ,22(,)B x y ,则2121(,)A B x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13A CA B =,3AD AB =,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-.(4)平面向量数量积:1212a b x x y y ⋅=+.举例10 已知向量(sin ,cos )a x x = ,(sin ,sin )b x x =,(1,0)c =-.(1)若3x π=,求向量a、c的夹角;(2)若3[,]84x ππ∈-,函数()f x a bλ=⋅的最大值为12,求λ的值.结果:(1)150 ;(2)12或1.(5)向量的模:2222||||a a x y a ==+⇔举例11 已知,a b均为单位向量,它们的夹角为60 ,那么|3|a b +== .(6)两点间的距离:若11(,)A x y ,22(,)B x y,则||AB 举例12 如图,在平面斜坐标系xOy 中,60xOy ∠= ,平面上任一点P的斜坐标是这样定义的:若12OP xe ye =+ ,其中12,e e分别为与x 轴、y 位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+ ,()()a a λμλμ= ,a b b a ⋅=⋅ ;平面向量基础知识复习2.结合律:()a b c a b c ++=++ ,()a b c a b c --=-+ ,()()()a b a b a b λλλ=⋅=⋅;3.分配律:()a a a λμλμ+=+ ,()a b a b λλλ+=+ ,()a b c a c b c +⋅=⋅+⋅.举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅;② ()()a b c a b c ⋅⋅=⋅⋅;③ 222()||2||||||a b a a b b -=-+; ④ 若0a b ⋅= ,则a = 或b = ;⑤若a b c b⋅=⋅ 则a c= ;⑥22||a a = ;⑦2a b b a a⋅= ;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+.其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-= .举例14 (1)若向量(,1)a x =,(4,)b x =,当x =_____时,a 与b共线且方向相同. 结果:2.(2)已知(1,1)a = ,(4,)b x = ,2u a b =+ ,2v a b =+,且//u v ,则x = . 结果:4.(3)设(,12)PA k = ,(4,5)PB = ,(10,)PC k =,则k = _____时,,,A B C 共线. 结果:2-或11. 九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=.特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 举例15 (1)已知(1,2)OA =-,(3,)OB m =,若O A O B ⊥,则m = .结果:32m =;(2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b = 向量n m ⊥ ,且||||n m =,则m = 的坐标是 .结果:(,)b a -或(,)b a -. 十、线段的定比分点1.定义:设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=,则实数λ叫做点P 分有向线段12P P 所成的比λ,P 点叫做有向线段12P P的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P,即点P 在线段12PP 上0λ⇔>; (2)P 外分线段12P P 时,①点P 在线段12P P 的延长线上1λ⇔<-,②点P 在线段12P P 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12P P所成的比为λ,则点P 分有向线段21P P所成的比为1λ.举例16 若点P 分AB所成的比为34,则A 分BP所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩.平面向量基础知识复习特别地,当1λ=时,就得到线段12P P 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M,且2AM MB = ,则a =. 结果:2或4-.十一、平移公式如果点(,)P x y 按向量(,)a h k = 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k = 平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a 把(2,3)-平移到(1,2)-,则按向量a把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin2y x =的图象按向量a 平移后,所得函数的解析式是cos21y x =+,则a =________. 结果:(,1)4π-.十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+.(1)右边等号成立条件: a b 、同向或 a b 、中有0 ||||||a b a b ⇔+=+; (2)左边等号成立条件: a b 、反向或 a b 、中有0 ||||||a b a b ⇔-=+; (3)当 a b 、不共线||||||||||a b a b a b ⇔-<+<+. 3.三角形重心公式在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭.5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔为△ABC 的重心,特别地0PA PB PC G ++=⇔ 为△ABC 的重心. (2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔ 为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭所在直线过△ABC 的内心.6.点P 分有向线段12P P所成的比λ向量形式设点P 分有向线段12P P 所成的比为λ,若M 为平面内的任一点,则121MP MP MP λλ+=+ ,特别地P 为有向线段12P P 的中点122MP MPMP +⇔=.平面向量基础知识复习7. 向量,,PA PB PC 中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。
高三数学一轮复习平面向量基本定理及坐标表示
![高三数学一轮复习平面向量基本定理及坐标表示](https://img.taocdn.com/s3/m/6031b5b19b89680203d825fa.png)
A. 2
√B. 5
C. 10
D.5
解析 根据题意可得1×t=2×(-2),可得t=-4,
所以a+b=(-1,-2),
从而可求得|a+b|= 1+4= 5,故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任
∴-2×(4-k)=-7×(-2k),解得 k=-23.
3 课时作业
PART THREE
基础保分练
1.已知 M(3,-2),N(-5,-1),且M→P=12M→N,则 P 点的坐标为
A.(-8,1)
√B.-1,-23
解析 设 P(x,y),则M→P=(x-3,y+2).
C.1,32
D.(8,-1)
而12M→N=12(-8,1)=-4,12,
x-3=-4, ∴y+2=12,
x=-1, 解得y=-32,
∴P-1,-23.故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·山西榆社中学诊断)若向量A→B=D→C=(2,0),A→D=(1,1),则A→C+B→C等于
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .
高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案
![高一 平面向量基本定理及坐标表示知识点+例题+练习 含答案](https://img.taocdn.com/s3/m/5eb78dceaf45b307e97197ca.png)
1.平面向量基本定理如果e 1、e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2) (a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ )1.设e 1,e 2是平面内一组基底,那么下列说法正确的是________(填序号). ①若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0;②空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数); ③对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内;④对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对. 答案 ①2.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s =________. 答案 0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝⎛⎭⎫-23=0. 3.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.答案 12解析 ∵a ∥b ,∴sin 2θ×1-cos 2 θ=0, ∴2sin θcos θ-cos 2 θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12.5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.题型一 平面向量基本定理的应用例1 (1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ=________.(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 答案 (1)45 (2)311解析 (1)因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.思维升华 (1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.(1)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)(2)如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为________.答案 (1)-23e 1+512e 2 (2)13解析 (1)如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.(2)易知AG →=13AB →+13AC →,MN →=-xAB →+yAC →,故MG →=⎝⎛⎭⎫13-x AB →+13AC →.由于MG →与MN →共线,所以⎝⎛⎭⎫13-x y =-13x , 即xy =13(x +y ),因此xy x +y =13.题型二 平面向量的坐标运算例2 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =________. (2)已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为__________. 答案 (1)⎝⎛⎭⎫-133,-43 (2)⎝⎛⎭⎫35,-45 解析 (1)由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝⎛⎭⎫-133,-43. (2)A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4), ∴与A B →同方向的单位向量为A B→|A B →|=⎝⎛⎭⎫35,-45. 思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.(1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为__________.(2)在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.答案 (1)(5,14) (2)(-6,21)解析 (1)设点B 的坐标为(x ,y ),则AB →=(x +1,y -5).由AB →=3a ,得⎩⎪⎨⎪⎧ x +1=6,y -5=9,解得⎩⎪⎨⎪⎧x =5,y =14.(2)BC →=3PC →=3(2PQ →-P A →)=6PQ →-3P A →=(6,30)-(12,9)=(-6,21).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标例3 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 答案 (1)(-4,-8) (2)(2,4)解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)∵在梯形ABCD 中,AB ∥CD ,DC =2AB , ∴DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x,2-y ), AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 命题点2 利用向量共线求参数例4 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5, ∴a =-54.命题点3 求交点坐标例5 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0,解得λ=34,所以OP→=34OB →=(3,3),所以点P 的坐标为(3,3). 方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).11.解析法(坐标法)在向量中的应用典例 (14分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思维点拨 可以建立平面直角坐标系,将向量坐标化,求出点A ,B 的坐标,用三角函数表示出点C 的坐标,最后转化为三角函数求最值. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).[4分]设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin(α+π6),[11分]又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.[14分]温馨提醒 本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.[方法与技巧]1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值. [失误与防范]1.要区分点的坐标和向量的坐标,向量坐标中包含向量大小和方向两种信息;两个向量共线有方向相同、相反两种情况.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:40分钟)1.如图,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是________. 答案 ①③解析 ①中AD →,AB →不共线;③中CA →,DC →不共线.2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =________.答案 (-1,2)解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2). 3.已知a =(1,1),b =(1,-1),c =(-1,2),则c =________. 答案 12a -32b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .4.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=________. 答案 12解析 ∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12.5.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为________.答案 3解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即mn=3. 6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎪⎨⎪⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.7.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.答案 (-2,-4)解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2). 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6). 因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别为(0,4),(-2,0), 从而CD →=(-2,-4).8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________. 答案 m ≠54解析 由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC →不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54. 9.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解 (1)由已知得AB →=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB →∥AC →.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2).∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3.∴点C 的坐标为(5,-3).10.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0, 故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.B 组 专项能力提升(时间:15分钟)11.在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,则t 的值为________.答案 34解析 ∵CP →=23CA →+13CB →, ∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →.∴2AP →=PB →,因此P 为AB 的一个三等分点.∵A ,M ,Q 三点共线,∴CM →=xCQ →+(1-x )CA →=x 2CB →+(x -1)AC → (0<x <1). ∵CB →=AB →-AC →,∴CM →=x 2AB →+⎝⎛⎭⎫x 2-1AC →. ∵CP →=CA →-P A →=-AC →+13AB →, 且CM →=tCP →(0<t <1),∴x 2AB →+⎝⎛⎭⎫x 2-1AC →=t ⎝⎛⎭⎫-AC →+13AB →. ∴x 2=t 3且x 2-1=-t ,解得t =34. 12.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为________.答案 -12解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12. 13.已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________.答案 16解析 由m a +n b =c ,可得⎩⎪⎨⎪⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为OP +1=3+1=4,故(m -3)2+n 2的最大值为42=16.14.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.答案 3解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连结AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →. 又AD →=12(AB →+AC →), ∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.15.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).。
知识讲解_平面向量的基本定理及坐标表示_基础
![知识讲解_平面向量的基本定理及坐标表示_基础](https://img.taocdn.com/s3/m/0aac888976a20029bd642d8d.png)
平面向量的基本定理及坐标表示【学习目标】1.了解平面向量的基本定理及其意义;2.掌握平面向量的正交分解及其坐标表示;3.会用坐标表示平面向量的加法、减法与数乘运算;4.理解用坐标表示的平面向量共线的条件. 【要点梳理】要点一:平面向量基本定理 1.平面向量基本定理如果12,e e 是同一平面内两个不共线的向量,那么对于这个平面内任一向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,称1122e e λλ+为12,e e 的线性组合.①其中12,e e 叫做表示这一平面内所有向量的基底;②平面内任一向量都可以沿两个不共线向量12,e e 的方向分解为两个向量的和,并且这种分解是唯一的.这说明如果1122a e e λλ=+且''1122a e e λλ=+,那么1122λλλλ''=,=.③当基底12,e e 是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础. 要点诠释:平面向量基本定理的作用:平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基底的向量是不共线向量.2.如何使用平面向量基本定理平面向量基本定理反映了平面内任意一个向量可以写成任意两个不共线的向量的线性组合.(1)由平面向量基本定理可知,任一平面直线形图形,都可以表示成某些向量的线性组合,这样在解答几何问题时,就可以先把已知和结论表示为向量的形式,然后通过向量的运算,达到解题的目的. (2)在解具体问题时,要适当地选取基底,使其他向量能够用基底来表示.选择了不共线的两个向量1e 、 2e ,平面上的任何一个向量a 都可以用1e 、 2e 唯一表示为a =1λ1e +2λ2e ,这样几何问题就转化为代数问题,转化为只含有1e 、 2e 的代数运算.要点二:向量的夹角已知两个非零向量a 与b ,在平面上任取一点O ,作OA =a ,OB =b ,则00(0180)AOB θθ∠=≤≤叫做a 与b 的夹角,记为〈a ,b 〉.当向量a 与b 不共线时,a 与b 的夹角()000,180θ∈;当向量a 与b共线时,若同向,则00θ=;若反向,则0180θ=,综上可知向量a 与b 的夹角000,180θ⎡⎤∈⎣⎦.当向量a 与b 的夹角是90,就说a 与b 垂直,记作a ⊥b .要点诠释:(1)向量夹角是指非零向量的夹角,零向量与任何向量不能谈夹角问题.(2)向量a ⊥b 是两向量夹角的特殊情况,可以理解为两向量所在直线互相垂直. 要点三:平面向量的坐标表示 1.正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 要点诠释:如果基底的两个基向量1e 、2e 互相垂直,则称这个基底为正交基底,在正交基底下分解向量,叫做正交分解,事实上,正交分解是平面向量基本定理的特殊形式.2.平面向量的坐标表示如图,在平面直角坐标系内,分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于平面上的一个向量a ,由平面向量基本定理可知,有且只有一对实数,x y ,使得a =x i +y j .这样,平面内的任一向量a 都可由,x y 唯一确定,我们把有序数对(,)x y 叫做向量a 的(直角)坐标,记作a =(,)x y ,x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标.把a =(,)x y 叫做向量的坐标表示.给出了平面向量的直角坐标表示,在平面直角坐标系内,每一个平面向量都可以用一有序数对唯一表示,从而建立了向量与实数的联系,为向量运算数量化、代数化奠定了基础,沟通了数与形的联系.要点诠释:(1)由向量的坐标定义知,两向量相等的充要条件是它们的坐标相等,即12a b x x =⇔=且12y y =,其中1122(,),(,)a x y b x y ==.(2)要把点的坐标与向量坐标区别开来.相等的向量的坐标是相同的,但始点、终点的坐标可以不同.比如,若(2,3)A ,(5,8)B ,则(3,5)AB =;若(4,3)C -,(1,8)D -,则(3,5)CD =,AB CD =,显然A 、B 、C 、D 四点坐标各不相同.(3)(,)x y 在直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量. 要点四:平面向量的坐标运算记a =(x λa =(λx ,λ2.如何进行平面向量的坐标运算在进行平面向量的坐标运算时,应先将平面向量用坐标的形式表示出来,再根据向量的直角坐标运算法则进行计算.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.但同时注意以下几个问题:(1)点的坐标和向量的坐标是有区别的,平面向量的坐标与该向量的起点、终点坐标有关,只有起点在原点时,平面向量的坐标与终点的坐标才相等.(2)进行平面向量坐标运算时,先要分清向量坐标与向量起点、终点的关系. (3)要注意用坐标求向量的模与用两点间距离公式求有向线段的长度是一样的. (4)要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置有关.要点五:平面向量平行(共线)的坐标表示 1.平面向量平行(共线)的坐标表示设非零向量()()1122,,,a b x y x y ==,则a →∥b →⇔(x 1,y 1)=λ(x 2,y 2),即1212x x y y λλ=⎧⎨=⎩,或x 1y 2-x 2y 1=0.要点诠释:若()()1122,,,a b x y x y ==,则a →∥b →不能表示成,2121y y x x =因为分母有可能为0. 2.三点共线的判断方法判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定,即已知112233(,),(,),(,),A x y B x y C x y AB --→=(x 2-x 1,y 2-y 1),AC --→=(x 3-x 1,y 3-y 1),若21313121()()()()0,x x y y x x y y -----=则A ,B ,C 三点共线. 【典型例题】类型一:平面向量基本定理例1.如果1e 、2e 是平面α内两个不共线的向量,那么下列说法中不正确的是( ) ①12e e λμ+(,R)λμ∈可以表示平面α内的所有向量;②对于平面α内任一向量a ,使12a e e λμ=+的实数对(,)λμ有无穷多个;③若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得11122122()e e e e λμλλμ+=+;④若实数λ,μ使得120e e λμ+=,则0λμ==. A .①② B .②③ C .③④ D .② 【思路点拨】考查平面向量基本定理. 【答案】 B【解析】由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当向量1112e e λμ+与2122e e λμ+均为零向量,即12120λλμμ====时,满足条件的实数λ有无数个.故选B .【总结升华】考查两个向量能否构成基底,主要看两向量是否为非零向量且不共线.此外,一个平面的基底一旦确定,那么平面内任意一个向量都可以由这组基底唯一表示.例2.如图所示,四边形OADB 是以向量OA a =,OB b =为邻边的平行四边形,C 为对角线的交点.又13BM BC =,13CN CD =,试用a ,b 表示OM ,ON . 【解析】 由题意,得OB BA OA +=,所以BA a b =-, 则1()2BC a b =-,11()36BM BC a b ==-, 115()666OM OB BM b a b a b =+=+-=+.144122()333233ON OC CN OC CD OC a b a b =+=+==⨯+=+.【总结升华】用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平面四边形法则结合实数与向量的积的定义,解题时要注意解题途径的优化与组合.举一反三:【高清课堂:平面向量基本定理及坐标运算394885 例1】【变式1】如图,在ABC ∆中,:1:2OA a OB b BE EA ===,,,F 是OA 中点,线段OE 与BF 交于点G ,试用基底,a b 表示: (1)OE ;(2)BF ;(3)OG .【解析】(1)OE OB BE =+=13b BA +=1()3b OA OB +-=1()3b a b +-=1233a b +(2)BF OF OB =-=1122OA b a b -=-(3)在OAE ∆中,取13MA BA =//FM OE ∴1||||2FM OE ∴=同理://GE FM1||||2GE FM =∴G 是BF 的中点1()2OG OB OF ∴=+=111222b a +⋅=1142a b +类型二:利用平面向量基本定理证明三点共线问题例3.(2015春 山东枣庄月考)设1e ,2e 是二个不共线向量,知1228AB e e =-,123CB e e =+,122CD e e =-.(1)证明:A 、B 、D 三点共线(2)若123BF e ke =-,且B 、D 、F 三点共线,求k 的值.【思路点拨】向量共线的充要条件中要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.【答案】(1)略;(2)λ=3,k =12.【解析】(1)证明:124BD CD CB e e =-=-122(4)2//AB e e BD AB BD ⇒=-=⇒,∵AB 与BD 有公共点, ∴A 、B 、D 三点共线(2)解:∵B 、D 、F 三点共线, ∴存在实数λ,使BF BD λ=, ∴121234e ke e e λλ-=-, ∴12(3)(4)e k e λλ-=-, 又∵1e ,2e 不共线,∴3040k λλ-=⎧⎨-=⎩,解得λ=3,k =12. 【总结升华】证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.举一反三:【变式1】设1e ,2e 是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.【解析】 因为1212121(4)()233AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线. 类型三:平面向量的正交分解例4.如下图,分别用基底i ,j 表示向量a 、b 、c ,并求出它们的坐标.【解析】 由图可知23a OA OB i j =+=-+,∴a =(―2,3). 同理可知b =3i +4j =(3,4).c =4i ―4j =(4,―5).举一反三:【变式1】已知O 是坐标原点,点M 在第二象限,||63OM =xOM=120°,求OM 的坐标. 【解析】设M (x ,y ),则60x =-︒=-609y =︒=,即(M -,所以(OM =-.【总结升华】向量的坐标表示是向量的另一种表示方法,对此要从两个方面加深理解:一是相等向量的坐标相同;二是当向量的起点在原点时,终点坐标即为向量的坐标.类型四:平面向量的坐标运算例5.已知(2,4),(3,1),(3,4)A B C ----,且3,2,CM CA CN CB ==求M 、N 及MN 的坐标. 【思路点拨】根据题意可设出点M 、N 的坐标,然后利用已知的两个关系式,列方程组,求出坐标. 【解析】(2,4),(3,1),(3,4)A B C ----(1,8),(6,3).3(3,24),2(12,6).CA CB CM CA CN CB ∴==∴====设(,)M x y ,则(3,4)(3,24),CM x y =++=33,0,,(0,20).424,20x x M y y +==⎧⎧∴∴∴⎨⎨+==⎩⎩同理可求(9,2)N ,因此(9,18).MN =-(0,20),(9,2),(9,18).M N MN ∴=-【总结升华】向量的坐标是向量的另一种表示形式,它只与起点、终点、相对位置有关,三者中给出任意两个,可求第三个.在求解时,应将向量坐标看做一“整体”,运用方程的思想求解.向量的坐标运算是向量中最常用也是最基本的运算,必须熟练掌握.举一反三:【变式1】 已知点)8,2(),2,1(B A -以及11,,33AC AB DA BA ==-求点C ,D 的坐标和CD 的坐标.【解析】设点C 、D 的坐标分别为1122(,),(,)x y x y ,由题意得1122(1,2),(3,6),(1,2),(3,6).AC x y AB DA x y BA =+-==---=-- 因为11,,33AC AB DA BA ==-, 所以有1111,22x y +=⎧⎨-=⎩和2211,22x y --=⎧⎨-=⎩,解得110,4x y =⎧⎨=⎩和222,0x y =-⎧⎨=⎩所以点C 、D 的坐标分别是(0,4),(-2,0),从而(2,4).CD =--类型五:平面向量平行的坐标表示例6.如图所示,在平行四边形ABCD 中,A (0,0)、B (3,1)、C (4,3)、D (1,2),M 、N 分别为DC 、AB 的中点,求AM 、CN 的坐标,并判断AM 、CN 是否共线.【解析】 已知A (0,0)、B (3,1)、C (4,3)、D (1,2),又M 、N 分别为DC 、AB 的中点,∴由中点坐标公式可得M (2.5,2.5),N (1.5,0.5),∴(2.5,2.5)AM =,( 2.5, 2.5)CN =--, 其坐标满足2.5×(―2.5)―2.5×(-2.5)=0, ∴AM 、CN 共线.【总结升华】求出两向量的坐标,验证x 1y 2-x 2y 1=0即可. 举一反三:【变式1】向量(,12)PA k =,(4,5)PB =,(10,)PC k =,当k 为何值时,A 、B 、C 三点共线? 【解析】 (,12)(4,5)(4,7)BA PA PB k k =-=-=-,(,12)(10,)(10,12)CA PA PC k k k k =-=-=--.∵A 、B 、C 三点共线,∴//BA CA ,即(k ―4)(12―k)―(k ―10)×7=0. 整理,得k 2―9k ―22=0.解得k 1=―2或k 2=11. ∴当k=―2或11时,A 、B 、C 三点共线.【总结升华】以上方法是用了A 、B 、C 三点共线即公共点的两个向量BA ,CA 共线,本题还可以利用A 、B 、C 三点共线6(1)11PB PA k λλλ=-⎧⇔=+-⇔⎨=⎩或122k λ⎧=⎪⎨⎪=-⎩,即得k=―2或11时,A 、B 、C 三点共线.【变式2】(2015秋 海南期末)已知(1,0)a =,(2,1)b =, (1)若k 为何值时,ka b -与2a b +共线.(2)若23AB a b =+,BC a mb =+,且A 、B 、C 三点共线,求m 的值. 【答案】(1)12k =-;(2)32m = 【解析】(1)(1,0)(2,1)(2,1)ka b k k -=-=--.2(1,0)2(2,1)(5,2)a b +=+=.∵ka b -与2a b +共线 ∴2(k ―2)―(―1)×5=0,即2k -4+5=0, 得12k =-. (2)∵A 、B 、C 三点共线, ∴//AB BC .∴存在实数λ,使得23()a b a mb a mb λλλ+=+=+, 又a 与b 不共线,∴23m λλ=⎧⎨=⎩,解得32m =. 【高清课堂:平面向量基本定理及坐标运算394885 例4】 例7.如图,已知点A (4,0),B (4,4),C (2,6),求AC 与OB 的交点P 的坐标.【解析】方法一:由O 、P 、B 三点共线,可设(4,4)OP OB λλλ==, 则(44,4)AP OP OA λλ=-=-.(2,6)AC OC OA =-=-,由AP 与AC 共线得(4λ-4)×6-4λ×(-2)=0,解得34λ=, 所以3(3,3)4OP OB ==.所以P 点坐标为(3,3). 方法二:设P (x ,y ),则(,)OP x y =,因为(4,4)OB =,且OP 与OB 共线,所以44x y=,即x=y . 又(4,)AP x y =-,(2,6)AC =-,且AP 与AC 共线,则得(x -4)×6-y ×(-2)=0,解得x=y=3,所以P 点坐标为(3,3).【总结升华】(1)平面向量的坐标表示,使向量问题完全代数化,将数与形紧密地结合起来,这样很多几何问题的证明,就转化为熟悉的数量运算.(2)要注意把向量的坐标与点的坐标区别开来,只有当始点在原点时,向量坐标才与终点坐标相等. 举一反三:【变式1】如图,已知ABCD 的三个顶点A 、B 、C 的坐标分别是(―2,1)、(―1,3)、(3,4),试求顶点D 的坐标.【解析】设顶点D 的坐标为(x ,y ).∵(1(2),31)(1,2)AB =----=,(3,4)DC x y =--. 由AB DC =,得(1,2)=(3―x ,4―y ). ∴1324x y =-⎧⎨=-⎩,∴22x y =⎧⎨=⎩.∴顶点D 的坐标为(2,2).。
平面向量知识点归纳
![平面向量知识点归纳](https://img.taocdn.com/s3/m/d54a66c2f61fb7360b4c65c1.png)
第一章 平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baC BAa b C C-=A -AB =B为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
平面向量综合运用知识点
![平面向量综合运用知识点](https://img.taocdn.com/s3/m/5dcd0fc7b1717fd5360cba1aa8114431b90d8ec8.png)
平面向量综合运用知识点一、知识概述《平面向量综合运用知识点》①基本定义:平面向量啊,就是在一个平面内既有大小又有方向的量。
这么说吧,就像你要描述一个人在操场上跑,只说跑多远不行,还得说往哪个方向跑,这就是向量的直观感觉。
大小就是向量的长度嘛,方向就是它指向哪儿。
②重要程度:在数学学科里特别重要。
很多几何问题、物理问题(像是力的合成啥的)都得靠它来解决。
要是没有平面向量,很多复杂的图形关系和物理真实现象都不好处理。
③前置知识:你得先知道基本的代数运算,像加减乘除这些。
还得了解一些几何的基本概念,比如点线面之类的,因为很多向量的问题都和几何图形有关。
④应用价值:实际应用那就太多了。
在建筑工程里,计算一些力的合成与分解就得用到向量。
比如说想知道一个斜着的梁受到的几个力合起来多大,往哪个方向,用向量就很容易。
还有在导航里,如果说一个飞机的速度是有方向有大小的向量,风的速度也是向量,那求飞机实际飞行方向和速度就得向量的知识。
二、知识体系①知识图谱:平面向量综合运用知识在数学里属于向量这一块内容。
它就像是各个向量知识的集大成者,用到向量的基本运算、向量与几何图形关系这些基础知识。
②关联知识:和三角学、解析几何联系很紧密。
比如向量的方向可以用三角函数表示,在解析几何里很多直线和曲线的关系可以转化成向量关系。
③重难点分析:- 掌握难度:说实话有点难。
因为它是综合运用,需要把好多知识点揉在一起。
- 关键点:要能清楚地把向量问题转化成可计算的形式,不管是用坐标表示也好,还是用几何关系推导也好。
④考点分析:- 在考试中的重要性:非常重要。
数学考试里常常会有和向量综合起来的题目。
- 考查方式:有选择题问向量关系的判断,填空题让你求向量的值,还有大题综合几何和向量让你证明或者求值。
三、详细讲解【理论概念类】①概念辨析:- 向量加法的平行四边形法则和三角形法则。
平行四边形法则就是把两个向量当成平行四边形的相邻两边,那它们的和向量就是这个平行四边形的对角线(同一起点)。
平面向量基础知识点总结
![平面向量基础知识点总结](https://img.taocdn.com/s3/m/b259fa365627a5e9856a561252d380eb6294234e.png)
平面向量知识点总结基本知识回首:1. 向量的观点: 既有大小又有方向的量叫向量 , 有二个因素:大小、方向 .2. 向量的表示方法:uuur①用有向线段表示 -----AB ( 几何表示法 ) ;r r②用字母 a 、 b 等表示 ( 字母表示法 ) ;③平面向量的坐标表示(坐标表示法):分别取与 x 轴、 y 轴方向同样的两个单位向量r ri 、 j 作为基底。
任作一个向量 a ,由平x 、 y ,使得 ar r面向量基本定理知,有且只有一对实数xi yj , ( x, y) 叫做向量 a 的(直r轴上的坐标,y 叫做 a 在 y 轴上的坐标,角)坐标,记作 a (x, y) ,此中 x 叫做 a 在 x rrr (0,0) rx 2y 2;若 A( x 1 , y 1 ) , B( x 2 , y 2 ) ,特别地, i(1,0) , j(0,1) , 0 。
a则 AB x 2x 1 , y 2 y 1 , AB( x 2x 1 ) 2 ( y 2 y 1 ) 23. 零向量、单位向量:①长度为 0 的向量叫零向量,记为 0 ;②长度为 1 个单位长度的向量,叫单位向量. (注:a就是单位向量)| a |4. 平行向量:①方向同样或相反的非零向量叫平行向量;rr r r r r r ②我们规定 0 与任一直量平行 . 向量 a 、 b 、 c 平行,记作 a ∥ b ∥ c . 共线向量与平行向量关系:平行向量就是共线向量 .0, ur与 rb 同向r ur rr r r方向 --- (ur r性质: a // b (b0)ab 是独一)r 0, b 与 a 反向长度 ---r| a |br ur r r x yx y 0 (此中rur ( x , y ) )a //b (b0) 2a ( x , y ), b12111225. 相等向量和垂直向量:①相等向量:长度相等且方向同样的向量叫相等向量.②垂直向量——两向量的夹角为2性质:raurbr ragbrurrura bx 1x 2 y 1 y 2 0(此中a ( x 1 , y 1 ),b ( x 2 , y 2 ))6. 向量的加法、减法:①求两个向量和的运算,叫做向量的加法。
专题1 平面向量的基础知识
![专题1 平面向量的基础知识](https://img.taocdn.com/s3/m/864b72feb04e852458fb770bf78a6529647d3592.png)
专题1 平面向量的基础知识知识点一 向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小没有方向的量称为数量. 知识点二 向量的几何表示 1.有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度叫做有向线段AB →的长度记作|AB →|. 2.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(a ,b ,c ,书写时用a →, b →, c →). 3.模、零向量、单位向量向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量. 知识点三 相等向量与共线向量1.平行向量:方向相同或相反的非零向量叫做平行向量. (1)记法:向量a 与b 平行,记作a ∥b . (2)规定:零向量与任意向量平行.2.相等向量:长度相等且方向相同的向量叫做相等向量.3.共线向量:由于任一组平行向量都可以平移到同一直线上,所以平行向量也叫做共线向量. 向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .【例1】(2022•开封开学)已知非零向量a 与b 共线,下列说法不正确的是( ) A .a b =或a b =- B .a 与b 平行C .a 与b 方向相同或相反D .存在实数λ,使得a b λ=【例2】(2022•象山区期末)如图所示,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .6个B .7个C .8个D .9个知识点四 向量加法的定义及其运算法则 1.三角形法则已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC →.这种求向量和的方法,称为向量加法的三角形法则.2.平行四边形法则以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB ,则以O 为起点的对角线OC →就是a 与b 的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则【例3】化简:(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 知识点五 向量的减法1.定义:向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.几何意义:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量a -b =BA →,如图所示.3.如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.4.若a ,b 是不共线向量,|a +b |与|a -b |的几何意义分别是什么?如图所示,设OA →=a ,OB →=b .根据向量加法的平行四边形法则和向量减法的几何意义,有OC →=a +b ,BA →=a -b .因为四边形OACB 是平行四边形,所以|a +b |=|OC →|,|a -b |=|BA →|,分别是以OA ,OB 为邻边的平行四边形的两条对角线的长.【例4】(2022•禅城区月考)下列各式中结果为零向量的是( ) A .AB MB BO OM +++ B .AB AD DC -- C .OA OC BO CO +++D .AB AC BD CD -+-【例5】(2022•昌吉市期末)在四边形ABCD 中,若AB CD =-,且||||AB AD AB AD -=+,则四边形ABCD 为( ) A .平行四边形B .菱形C .矩形D .正方形知识点六 向量数乘的定义1.实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反.特别地,当λ=0时,λa =0. 当λ=-1时,(-1)a =-a .2.向量数乘的运算律1.(1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 特别地,(-λ)a =-λa =λ(-a ),λ(a -b )=λa -λb .【例6】(2022•金牛区期末)已知a ,b 是不共线的向量,OA a b λμ=+,32OB a b =-,23OC a b =+,若A ,B ,C 三点共线,则实数λ,μ满足( ) A .1λμ=-B .5λμ=+C .5λμ=-D .135μλ=-【例7】(2021•浙江)已知非零向量a ,b ,c ,则“a c b c ⋅=⋅”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件知识点七 共线向量表示之对面的女孩看过来平面上O ,A ,B 三点不共线,D 在直线AB 上,且AD AB λ=,令a OA =,b OB =,x OD =,则有(1)x b a λλ=+-其表达意思就是从一个顶点O 引出三个向量,且它们共线,每一个向量a ,b 分别乘以它对面的比值,简称对面的女孩看过来.特殊点:当D 为AB 中点时,12=λ,1122x b a =+(中线定理)注意:【例8】(2018•新课标Ⅰ)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB = ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【例9】(2022•新高考Ⅰ)在ABC ∆中,点D 在边AB 上,2BD DA =.记CA m =,CD n =,则(CB =)A .32m n -B .23m n -+C .32m n +D .23m n +知识点八 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角(如图所示).当θ=0时,a 与b 同向;当θ=π时,a 与b 反向.2.垂直:如果a 与b 的夹角是π2,则称a 与b 垂直,记作a ⊥b .知识点九 向量数量积的定义1.非零向量a ,b 的夹角为θ,数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,2.投影向量:在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.设与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→与e ,a ,θ之间的关系为OM 1→=|a |cos θ e . 3.平面向量数量积的性质设向量a 与b 都是非零向量,它们的夹角为θ,e 是与b 方向相同的单位向量.则(1)a ·e =e ·a =|a |·cos θ. (2)a ⊥b ⇔a ·b =0. (3)当a ∥b 时,a ·b =⎩⎪⎨⎪⎧|a ||b |,a 与b 同向,-|a ||b |,a 与b 反向.(4)|a ·b |≤|a ||b |.知识点十 平面向量数量积的运算律1.a ·b =b ·a (交换律).2.(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律).3.(a +b )·c =a ·c +b ·c (分配律). 【例10】(2022•乙卷)已知向量a ,b 满足||1a =,||3b =,|2|3a b -=,则(a b ⋅= ) A .2-B .1-C .1D .2【例11】(2020•新课标Ⅱ)已知单位向量a ,b 的夹角为60︒,则在下列向量中,与b 垂直的是( ) A .2a b +B .2a b +C .2a b -D .2a b -【例12】(2020•新课标Ⅲ)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos a <,(a b +>= ) A .3135-B .1935-C .1735D .1935【例13】.(2022•上海)若平面向量||||||a b c λ===,且满足0a b ⋅=,2a c ⋅=,1b c ⋅=,则λ= .知识点十一 平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.由于任何一个向量只能用同一组基底用一种形式表示,故我们可以通过设两个未知系数λ和μ,分别用两种不同形式来表达同一向量,最后通过同一基底必须时唯一的系数来列方程组,从而解出λ和μ. 【例14】在△OAB 的边OA 、OB 上分别取点M 、N ,使|OM |:|OA |=1△3,|ON |:|1:4OB |,设线段AN 与BM 交于点P ,记OA a ,OB b ,用a ,b 表示向量OP .【例15】(2022•重庆期末)在ABC ∆在中,点D 线段BC 上任意一点,点D 满足3AD AP =,若存在实数m 和n ,使得BP mAB nAC =+,则(m n += ) A .23B .13C .13-D .23-【例16】(2022•大理市校级月考)在ABC ∆中,D 、E 分别为边AB 、AC 上的动点,若2AD DB =,3AE EC =,CDBE F =,AF mAB nAC =+,则(m n += )A .16-B .16 C .56-D .56【例17】(2022•濮阳开学)如图,在梯形ABCD 中,//AB DC 且2AB DC =,3BE EC =,2AF FD =,AE 与BF 交于点O ,则(AO = )A .3477AB BC +B .4377AB BC +C .4355AB BC +D .2377AB BC +【例18】(2022•潍坊月考)设||8,||5OA OB ==,且对任意t R ∈,均有||||OB OB tOA +,D 为线段AB 上一点,连接OD 并延长到P ,使||15OP =,若5()3PO xPB x PA =+-,则( )A .ABO ∆为直角三角形B .||10PD =C .||6OD = D .这样的D 点有2个知识点十二 平面向量的坐标表示1.在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).2.在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 知识点十三 平面向量加、减运算以及数乘的坐标表示 1.设a =(x 1,y 1),b =(x 2,y 2), 向量加法:a +b =(x 1+x 2,y 1+y 2) 向量减法:a -b =(x 1-x 2,y 1-y 2)已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.2.已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 知识点十四 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb .如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线.可简记为:纵横交错积相减. 知识点十五 平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 则a ·b =x 1x 2+y 1y 2.(1)若a =(x ,y ),则|a |若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1),(x 2,y 2),则a =(x 2-x 1,y 2-y 1), |a |=(x 2-x 1)2+(y 2-y 1)2. (2)a ⊥b ⇔x 1x 2+y 1y 2=0.(3)cos θ=a·b|a||b|=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.【例19】(2021•乙卷)已知向量(1,3)a =,(3,4)b =,若()a b b λ-⊥,则λ= . 【例20】(2021•甲卷)已知向量(3,1)a =,(1,0)b =,c a kb =+.若a c ⊥,则k = .【例21】(2021•北京)已知向量a ,b ,c 在正方形网格中的位置如图所示,若网格纸上小正方形的边长为1,则()a b c +⋅= ;a b ⋅= .【例22】(2020•江苏)在ABC ∆中,4AB =,3AC =,90BAC ∠=︒,D 在边BC 上,延长AD 到P ,使得9AP =.若3()(2PA mPB m PC m =+-为常数),则CD 的长度是 .【例23】(2022•长汀县月考)已知ABC ∆中,2AB =,BC 在AB 方向上的投影为3,D 为AC 的中点,E 为BD 的中点,则下列式子有确定值的是( )A .AB BD ⋅ B .BD AC ⋅ C .CE AB ⋅D .CE BD ⋅达标训练1.(2022•乙卷)已知向量(2,1)a =,(2,4)b =-,则||(a b -= ) A .2B .3C .4D .52.(2022•新高考Ⅱ)已知向量(3,4)a =,(1,0)b =,c a tb =+,若a <,c b >=<,c >,则(t = ) A .6-B .5-C .5D .63.(2019•新课标Ⅱ)已知(2,3)AB =,(3,)AC t =,||1BC =,则(AB BC ⋅= ) A .3-B .2-C .2D .34.(2021•新高考Ⅰ)已知O 为坐标原点,点1(cos ,sin )P αα,2(cos ,sin )P ββ-,3(cos()P αβ+,sin())αβ+,(1,0)A ,则( )A .12||||OP OP =B .12||||AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅5.(2022•天津)在ABC ∆中,CA a =,CB b =,D 是AC 中点,2CB BE =,试用a ,b 表示DE 为 ,若AB DE ⊥,则ACB ∠的最大值为 .6.(2021•新高考Ⅱ)已知向量0a b c ++=,||1a =,||||2b c ==,则a b b c c a ⋅+⋅+⋅= .7.(2022•浙江)设点P 在单位圆的内接正八边形128A A A ⋯的边12A A 上,则222128PA PA PA ++⋯+的取值范围是 .8.(2021•天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E ,//DF AB 且交AC 于点F ,则|2|BE DF +的值为 1 ;()DE DF DA +⋅的最小值为 .9.(2020•浙江)已知平面单位向量1e ,2e 满足12|2|2e e -.设12a e e =+,123b e e =+,向量a ,b 的夹角为θ,则2cos θ的最小值是 .10.(2020•上海)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB = .11.(2020•上海)已知1A 、2A 、3A 、4A 、5A 五个点,满足1120(1n n n n A A A A n +++⋅==,2,3),112||||1(1n n n n A A A A n n +++⋅=+=,2,3),则15||A A 的最小值为 .12.(2019•浙江)已知正方形ABCD 的边长为1.当每个(1i i λ=,2,3,4,5,6)取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是 ,最大值是 .13.(2019•天津)在四边形ABCD 中,//AD BC ,AB =5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE = .14.(2019•江苏)如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 . 15.(2018•上海)在平面直角坐标系中,已知点(1,0)A -、(2,0)B ,E 、F 是y 轴上的两个动点,且||2EF =,则AE BF ⋅的最小值为 .16.(2018•江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .17.(2017•江苏)在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆22:50O x y +=上.若20PA PB ⋅,则点P 的横坐标的取值范围是 .18.(2017•山东)已知1e ,2e 12e - 与12e e λ+的夹角为60︒,则实数λ的值是 .19.(2017•天津)在ABC ∆中,60A ∠=︒,3AB =,2AC =.若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为 .20.(2017•北京)已知点P 在圆221x y +=上,点A 的坐标为(2,0)-,O 为原点,则AO AP 的最大值为 6 . 21.(2022•广东月考)设a 与b 是两个不共线向量,关于向量a b λ+,(1)2a b λλ-+,(2)b a --,则下列结论中正确的是( )A .当1λ>时,向量a b λ+,(1)2a b λλ-+不可能共线B .当3λ>-时,向量a b λ+,(2)b a --可能出现共线情况C .若0a b ⋅=,且,a b 为单位向量,则当3λ>-时,向量(1)2a b λλ-+,(2)b a --可能出现垂直情况D .当2λ=时,向量()22a b b a λ---与平行22.(2022•龙凤区期末)如图,在等腰直角ABC ∆中,斜边||6BC =,且2DC BD =,点P 是线段AD 上任一点,则AP CP ⋅的可能取值是( )A .1-B .0C .4D .523.(2022春•甘肃期末)在ABC ∆中,M ,N 分别是线段AB ,AC 上的点,CM 与BN 交于P 点,若3177AP AB AC =+,则( ) A .AM MB = B .2AM MB = C .3AN NC =D .13AN NC =24.(2022•辽宁期末)在菱形ABCD 中,E ,F 分别为BC ,CD 的中点,则( ) A .3()2()AB AD AE AF +=+ B .2ACBF DE +=C .0AE AF DE BF ⋅+⋅=D .AE DE AF BF ⋅=⋅。
平面向量的基本定理及坐标运算] · [基础] · [知识点+典型例题]
![平面向量的基本定理及坐标运算] · [基础] · [知识点+典型例题]](https://img.taocdn.com/s3/m/0d346bcdf705cc1754270912.png)
平面向量的基本定理及坐标运算知识讲解一、平面向量的基本定理1.平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.2.基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e+叫做向量a 关于基底{}12,e e 的分解式.注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.3.平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =. 由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M , 过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N , 于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =, 所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+, 即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0, 不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.4‘证明A ,B ,P 三点共线或点在线上的方法:已知A 、B 是直线l 上的任意两点,O 是l 外一点,则对直线l 上任意一点P ,存在实数t ,使OP 关于基底{},OA OB 的分解式为(1)OP t OA tOB =-+ ……①,并且满足①式的点P 一定在l 上.证明:设点P 在直线l 上,则由平行向量定理知,存在实数t ,使AP t AB=()t OB OA =-,∴(1)OP OA AP OA tOB tOA t OA tOB =+=+-=-+设点P 满足等式(1)OP t OA tOB =-+,则AP t AB =,即P 在l 上. 其中①式可称为直线l 的向量参数方程式5.向量AB 的中点的向量表达式:点M 是AB 的中点,则1()2OM OA OB =+.可推广到OAB ∆中,若M 为边AB 中点,则有1()2OM OA OB =+存在.二、向量的正交分解与向量的直角坐标运算:1.向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.3.设12(,)a a a =,12(,)b b b =,则①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ== 注:① 两个向量的和与差的坐标等于两个向量相应坐标的和与差;② 数乘向量的积的坐标等于数乘以向量相应坐标的积.4.坐标含义:若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.5.用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.典型例题一.选择题(共11小题)1.(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣ B.﹣C.+D.+ 2.(2018•城关区校级模拟)在△ABC中,点D在BC边上,且,,则()A.,B.,C.,D.,3.(2018•资阳模拟)平行四边形ABCD中,M是BC的中点,若,则λ+μ=()A.B.2 C.D.4.(2018•黄浦区一模)已知向量,,则下列能使、成立的一组向量,是()A.,,,B.,,,C.,,,D.,,,5.(2018•吉林三模)下列各组向量中,可以作为基底的是()A.,,,B.,,,C.,,,D.,,,6.(2018春•薛城区校级期末)如图,已知=,=,=3,用、表示,则等于()A.+B.+C.+D.+7.(2018春•尧都区校级期末)如图所示,在△ABC中,BD=2CD,若,,则=()A.B.C.D.8.(2018•三明二模)已知平面向量=(1,2),=(﹣2,m),且∥,则|+|=()A.B.2 C.3 D.49.(2018•梅河口市校级二模)若向量,,,,则=()A. B.5 C.20 D.2510.(2018•咸阳二模)设向量和满足:,,则=()A.B.C.2 D.311.(2018•东莞市模拟)已知,,点B的坐标为(2,3),则点A的坐标为()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(1,3) D.(5,9)二.解答题(共9小题)12.在△ABC中,E为线段AC的中点,试问在线段AC上是否存在一点D.使得=+,若存在,说明D点位置:若不存在,说明理由.13.已知△ABC中,对于任意实数t,=t(+),证明:点P始终在∠ACB的平分线上.14.已知:平行四边形ABCD,对角线AC,BD交于点O,点E为线段OB中点,完成下列各题(用于填空的向量为图中已有有向线段所表示向量).(1)当以{,}为基底时,设=,=,用,表示=;用,表示=;(2)设点MN分别为边DC,BC中点.①当以{,}为基底时,设=,=,用,表示,则=+.②当以{,}为基底时,设=,=,用,表示:=,=,=.15.过△ABC的重心G任作一条直线分别交AB,AC于点D、E,设=,=.(1)用,表示向量;(2)若=x,=y,且xy≠0,求+的值.16.如图,△ABC中,点E、F、G分别在边BC、AC、AB上,且===,设=,=.(1)用、表示向量;(2)证明:++=0.17.若AD与BE分别为△ABC的边,BC与AC上的中线AD交BE于点O,=,=,试用,表示.18.已知A(1,﹣2),B(2,1),C(3,2),D(﹣2,3).(1)求+2﹣3;(2)设=3,=﹣2,求及M、N点的坐标.19.已知向量=(1,﹣3),=(3,0),求下列向量的坐标:(1)+;(2)﹣3.20.已知点O(0,0),A(1,2),B(4,5),=t1+t2.(1)证明:当t1=1时,不论t2为何实数,A、B、P三点共线;(2)试求当t1、t2满足什么条件时,O、A、B、P能组成一个平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础知识
一、向量的基本概念
1.向量定义中的两个要素:
2、向量的表示方法:几何表示、代数表示
3.向量AB的大小,也就是向量AB的长度(或称模),记作,a的模为a.
4.特殊向量:零向量、单位向量、平行(共线)向量、相等向量、相反向量.
规定:零向量与任一向量平行.
二、平面向量的线性运算
1.加法:平行四边形法则
三角形法则
2.减法:
→
→
-b
a=
-
3.数乘:
(1)定义:规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:
①|λa|=;
②当λ>0时,λa的方向与a的方向;当λ<0时,λa的方向与a的方向.
(2)运算律:设λ、μ为实数,那么
①λ(μa)=
②(λ+μ)a=
③λ(a+b)=.
(3)向量共线条件:a,b共线(a≠0)⇔
(4)A、B、C三点共线⇔
⇔
三、平面向量基本定理及表示
1.平面向量基本定理:基底的概念
2.平面向量的坐标运算
(1)平面向量的坐标
设i,j是与方向相同的两个向量,对于平面上任一向量a,,使得a=,有序数对叫做向量a的坐标,记作a=.
(2)平面向量的坐标运算
①设a=(x1,y1),b=(x2,y2),则有
a+b=
a-b=
λa=
②设A(x1,y1),B(x2,y2),则有AB=
③向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a,b共线⇔
四.平面向量数量积
1.定义:已知两个非零向量a,b,我们把数量叫做a与b的数量积(或内积).
叫做a在b方向上的投影,叫做b在a方向上的投影.
2.a·b的几何意义:
数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.
3.数量积的运算律:已知向量a,b和实数λ,则
①a·b=
②(λa)·b==
③(a+b)·c=
4.坐标表示:设a=(x1,y1),b=(x2,y2),则
a·b=
5.模长公式:设a=(x,y),则
|a|==.
6.垂直条件:设a,b为非零向量,则
a⊥b⇔⇔
7.夹角公式:设a=(x1,y1),b=(x2,y2),夹角为θ,则
θ
cos= =。